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HABILITATION A DIRIGER DES RECHERCHES

Interfaces in crystalline materials

Interfaces such as grain boundaries in polycrystalline as well as and heterointerfaces in mul-
tiphase are ubiquitous in materials science and engineering with wide-ranging properties and
applications. Therefore, understanding the basics of interfaces is key in optimization of ceramics
for a wide range of applications including electrochemical energy conversion and storage, optical,
magnetic, and mechanical applications, thermal applications including thermal and environmen-
tal barrier coatings in automobile and aeronautical industries.

Far from being featureless dividing surfaces between neighboring crystals, elucidating fea-
tures of solid-solid interfaces is challenging and requires theoretical and numerical strategies to
describe the physical and mechanical characteristics of these internal interfaces. The first part
of this manuscript is concerned with interface-dominated microstructures emerging from poly-
morphic structural (diffusionless) phase transformations. Under high hydrostatic compression
and shock-wave conditions, the pressure-driven phase transitions and the formation of internal
diffuse interfaces in iron are captured by a thermodynamically consistent framework for combin-
ing nonlinear elastoplasticity and multivariant phase-field approach at large strains. The calcu-
lations investigate the crucial role played by the plastic deformation in the morphological and
microstructure evolution processes under high hydrostatic compression and shock-wave condi-
tions. The second section is intended to describe such imperfect interfaces at a finer scale, for
which the semicoherent interfaces are described by misfit dislocation networks that produce a
lattice-invariant deformation which disrupts the uniformity of the lattice correspondence across
the interfaces and thereby reduces coherency. For the past ten years, the constant effort has been
devoted to combining the closely related Frank-Bilby and O-lattice techniques with the Stroh sex-
tic formalism for the anisotropic elasticity theory of interfacial dislocation patterns. The structures
and energetics are quantified and used for rapid computational design of interfaces with tailored
misfit dislocation patterns, including the interface sink strength for radiation-induced point de-
fects and semicoherent interfaces.



Contents

1 Introduction

2 Crystalline interfaces during solid-solid phase transitions in iron

2.1 Motivation . . . . ...
2.2 A phase-field model coupled with finite elastoplasticity . . . . .. ... ... ... ..
221 Kinematics. . . . . . ...
222 Balancelaws. . . .. .. ... ...
2.2.3 The Clausius-Duhem inequality . . .. ... ... ................
224 Constitutiveequations . . . . . ... ... L Lo Lo
2.2.5 Multiple reaction pathways and energy landscape . . . . . ... ... ... ..
226 Computational framework . .. .. ... ... ... ... ... . L ..
2.3 Pure hydrostaticcompression . . . . . ... ... ... ... ... ...
2.3.1 Material and modelinputs . . . .. ... ... .. . L oo oL
2.3.2 Analysis of the pressure-volume responses . . . . .. ... ...........
2.3.3 Microstructure and variant selection . . . . . ... ... ... ... . .. ...
24 Shock wave propagation . . . . ... ... ... ...
241 The internal structure of shockwaves . . .. ... ... .............
2.4.2 Effect of plasticity in shock-loadediron . . ... ... ... . ... .......
2.4.3 Residual stresses in the plastically-deformed microstructure . . . . . ... ..
2.44 Dynamical instability in structural phase transitions . . . ... ... ... ...
25 Limitations . . . . . . ... e

Dislocation structures and energetics at heterophase interfaces

31 Motivation . . . . ...

3.2 Determining the Burgers vectors of interface dislocation arrays . .. ... ... ...
3.2.1 Planar interfaces in linear elastic bicrystals . . . . ... ... ..........
3.2.2 Volterra dislocations in the referencestate . . . . . ... ... ... ... ...,
3.2.3 Crystallographic constraints on interface dislocations . . . . . ... ... ...
324 Solutionstrategy . . .. ... ... .. ...
3.2.5 Elastic fields of interface dislocation arrays . . . . ... ... ..........
3.2.6 Interface elastic strainenergy . . .. ... .. ... ... .. ... .. .. . ...

3.3 Symmetric example applications . . . ... ... ... o oL
3.3.1 Puretiltgrainboundary . . ... .. ... ... ... .. .. .. o L.
332 Twistgrainboundary . ... ................ ... ... ... ...
3.3.3 Puremisfitinterface . ... ... ... ... ... . o oL

3.4 Partitioning of elastic distortions at fcc/bcc interfaces . . . . . ... ... oL
3.4.1 Mapping between states in the Nishiyama-Wassermann orientations . . . . .
342 Far-field strainsand rotations . . . . . ... ... .. .. .. . 0oL
3.4.3 Spurious fields from incorrect reference states . . . . .. ... ... ...
3.4.4 Orientations differing from the Nishiyama-Wassermann relations . . . . . . .
3.45 Short-rangeelasticfields . . . . ... ... .. ... . o o o L

1ii

ii



iv

3.4.6 Comparison with atomistic simulations . . . . ... ............... 62
3.5 Application to the sink strength of semicoherent interfaces . . . . ... ... ... .. 66
3.5.1 Computational multi-model strategy . . . .. ... ............... 66
3.5.2 Kinetic Monte Carlo simulations with elastic interactions . . . . . . ... ... 68
3.5.3 Effect of elastic interactions on interface sink strength . . . . . ... ... ... 71
3.6 Elastic strain relaxation in interfacial dislocation patterns . . . . . ... ... ... .. 75
3.6.1 General considerations on hexagonal-shaped dislocation patterns . . . . . . . 75
3.6.2 Solution methodology for strain-relaxed rearrangements . . . . . .. ... .. 77
3.6.3 Parametric energy-based framework . . . . . ... ... . oo L 78
3.6.4 Boundary conditions with surface/interface constitutive relations . . . . . . . 81
3.6.5 Application to Au/Cu heterosystems . . .. .. ... .. ... ... . .... 87
3.6.6 Comparison with atomistic simulations . . . ... ... ... .......... 95
3.7 Interaction with extrinsic dislocations in bimaterials . . . . ... ... ... ... ... 100
3.7.1 Extrinsic dislocation arraysand loops . . . ... ... ... ........... 100
3.7.2 Internal forces on intrinsic and extrinsic dislocations . . . . . ... ... ... 105
3.7.3  On the piled-up dislocations in the (111)Cu/(011)Nb bimaterial . . . . . . . . 107
374 Limitations . .. ... ... ... ... ... e 114
3.8 Extension to non-singular fields in multilayered magneto-electro-elastic plates . . . 115
3.8.1 Boundary-value problem and singularity-free field solutions . . . . . ... .. 116
3.8.2 A primary case: 2D bilayered composites . . . ... ... ... 0oL 127
3.8.3 Energy-based criterion for interlayers in A/B/A trilayers . . . . . .. ... .. 129
3.8.4 Dislocation-induced response under applied external loading . . . . ... .. 138
Conclusion and future works 141
41 Concludingremarks . ... ... ... ... ... 141
42 Perspectives . . . . .. ... 143
421 Thermoelasticity of semicoherent interfaces . .. ... ... .......... 143
42.2 Distributed dislocations for periodic networks of cracks . . . ... ... ... 144

423 Towards a general treatment for {interfaces, dislocations, cracks} . . ... .. 145



Remerciements

Je tiens a remercier les membres du jury, qui ont accepté d’évaluer ce mémoire : Brigitte Bacroix,
Stéphane Berbenni, Renald Brenner, Marc Fivel et Ioan Ionescu. Je remercie plus particulierement
les rapporteurs d’avoir pris le temps si précieux de rapporter ce travail dans les moindres détails.
Merci pour vos retours positifs si encourageants !

Bien entendu, le contenu de ce travail aurait été réduit a une peau de chagrin sans les échanges
constants avec mes anciens collegues de la Direction des Applications Militaires du Commissariat
a 'Energie Atomique, Christophe Denoual, Jean-Lin Dequiedt, Yves-Patrick Pellegrini et Ronan
Madec. Outre-Atlantique, je mesure la chance d’avoir fait des rencontres inspirantes, en parti-
culier avec Robert Balluffi, David Barnett, Michael Demkowicz, John Hirth, Ernian Pan, et j'en
oublie, Niaz Abdorrahim, Tom Arsenlis, Sylvie Aubry, Nicolas Bertin, Wei Cai, Christian Brand],
Kedar Kolluri, Enrique Martinez, Ryan Sills, et j’en oublierai encore ! Je tiens aussi a remercier mes
collegues les plus proches de 1'Office, Christophe Bovet, Jean-Didier Garaud, Serge Kruch, Johann
Rannou, sans désir d’exhaustivité. Je remercie Anne Tanguy d’avoir régulierement soutenu cette
habilitation, et ce depuis le début de 1’aventure. Une attention particuliere et amicale se tourne
vers Vincent Chiaruttini, la seule personne disponible & 3h au mat’ pour discuter, en partie, des
correspondances théoriques et numériques entre une fissure et une dislocation... bienvenue dans
le monde de cette derniere, mais arrétons d’échanger si tard (quoique, continuons, mais n’en par-
lons ni a Aurélie, ni a Aurélie...). Je souhaite chaleureusement remercier toute 1'équipe du se-
crétariat du Département Matériaux et Structures : votre aide a résoudre quotidiennement des
problémes administratifs est précieuse.

Merci enfin a un groupe spécial A®> = { Achille (4 mois), Anton (2 ans), Aurélie } * pour le bon-
heur non borné qu’il m’apporte au quotidien. Cette habilitation, qui contient les « mille-feuilles »
et autres « Rubik’s cubes » déja contemplés, est aussi la votre !

*Solutions régularisées et anisotropes de la contrainte normale, de cisaillement et de la densité d’énergie
d’une boucle prismatique de dislocation simplement connexe, plongée dans un « mille-feuille »



Chapter 1

Introduction

Interfaces in polycrystalline as well as multiphase solids of natural and synthetic origin have
found their places in various applications, ranging from semiconductor devices to advanced mul-
tifunctional coatings in automobile and aeronautical industries. Remarkably, the behavior of poly-
crystalline materials is often reduced to the analysis of their inherent grain boundaries, while the
most recent roadmaps on photonics and phononics propose to design on-demand bandgaps by
tailoring the topological interface states in metamaterials. As claimed by Wolfgang Pauli, how-
ever, because "God made the bulk; the surface was invented by the devil!", the interface engineer-
ing of solid-state materials inevitably requires specific experimental and numerical contributions
to describe the physical and mechanical characteristics of these internal interfaces. Far from being
featureless dividing surfaces between neighboring crystals, the study of the structure and proper-
ties of homo- and hetero-phase interfaces has thus become as a central area in a broder field of the
materials science and engineering.

The manuscript is divided into two chapters, considering first the thermodynamics of diffuse
interfaces in chapter 2, which was developed more than a hundred years ago by Gibbs. The de-
scription of the structures and energetics of imperfect interfaces, namely semicoherent interfaces,
is then treated in chapter 3. These semicoherent interfaces are also described by misfit disloca-
tion networks that produce a lattice-invariant deformation which disrupts the uniformity of the
lattice correspondence across the interfaces and thereby reduces coherency. This topic has more
recently received considerable attention due to the development of high-resolution techniques
and increased computational resources in recent decades.

The first introductive chapter 2 is thus concerned with the internal interfaces emerging from
polymorphic structural (diffusionless) phase transformations. The formation of these solid-solid
interfaces during the pressure-driven phase transitions in iron is captured by a thermodynami-
cally consistent framework for combining nonlinear elastoplasticity and multivariant phase-field
approach at large strains. Treatments of thermodynamics and kinetic relations of the phase transi-
tions are formulated by the free energy landscape that involves the concept of reaction pathways
with respect to the point group symmetry properties of both low- (cubic) and high- (hexagonal)
pressure crystal lattices of iron. The phase-field formalism coupled with finite elastoplastic de-
formations is implemented into a three-dimensional finite element scheme and is applied to the
body-centered cubic into hexagonal close-packed phase transitions under high hydrostatic com-
pression and shock-wave conditions. The calculations exhibit the crucial role played by the plastic
deformation in the morphological and microstructure evolution processes. However, the coexis-
tence over a wide range of pressure of both cubic and hexagonal lattice structures in the interface-
dominated microstructure leads, in general, to the loss of lattice coherence at the interfaces, for
which the lattice correspondence across the grain boundaries and heterophase interfaces require
a fine dislocation-based description of internal interfaces. It is this last objective that is covered by
the main chapter 3.

Chapter 3 is therefore dedicated to the structures and energetics of heterophase interfaces. Al-
though the simplest interface is a single isolated planar interface separating two adjacent crystals,
also viewed as a planar interface in bimaterials, such an idealized interface between two dissimilar
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crystals provides the essential basis for understanding the properties of interface-dominated ma-
terials. For the past ten years, the constant effort has been devoted to combining the closely related
Frank-Bilby and O-lattice techniques with the Stroh sextic formalism for the anisotropic elasticity
theory of interfacial dislocation patterns. The key formalism is used by means of a Fourier series-
based analysis to determine the reference states of semicoherent interfaces that gives rise to dis-
location arrays whose far-field elastic fields meet the condition of vanishing far-field strains and
prescribed misorientations. In accordance with the quantized Frank-Bilby equation, these inter-
face dislocation structures, which are also viewed as Volterra dislocations that have been inserted
into the reference state, generate persistent short-range elastic stresses near the interfaces. The cor-
responding energetics have been quantified and used for rapid computational design of interfaces
with tailored misfit dislocation patterns. In particular, a coupled approach with an object kinetic
Monte Carlo code has revealed that elastic interactions between radiation-induced point defects
and semicoherent interfaces lead to significant increases in interface sink strength, compared to
the case with no defect-interface interactions. The original work has also been extended to bi-
layers of finite thickness terminated with free surfaces, layered superlattices with differing layer
thicknesses as well as multilayered magneto-electro-elastic plates for semicoherent interfaces with
relaxed dislocation patterns at semicoherent interfaces including core-spreading effects. Overall,
the elastic full-field solutions have been compared with atomistic calculations for many specific
lattice structures, which provide an opportunity for rigorous validation of the anisotropic elas-
ticity theory of interfacial dislocations as well as for collaborations with individuals outside the
home laboratory.

Although the reader may be disappointed (I understand it...) not to find the content of the two
chapters combined together in a unified formalism, chapter 4 provides concluding remarks and
further directions for near future developments.



Chapter 2

Crystalline interfaces during solid-solid
phase transitions in iron
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2.1 Motivation

The high-pressure and high-deformation states of iron (Fe) are of vital importance in many tech-
nological and sociological applications [33] as well as in geophysics due to the role of Fe prop-
erties in the Earth and telluric exoplanet internal structure [233]. Fundamental understanding of
the physical and mechanical properties of Fe under extreme conditions, where the deformation
state is caused by various irreversible processes (e.g. plasticity and polymorphic structural (dif-
fusionless) solid-solid phase transformations), is therefore crucial in both materials science and
condensed matter physics.

The first indirect evidence of polymorphic phase transitions in iron has been discovered by
[17] under shock compression. The authors reported a series of three discontinuous jumps in the
velocity of the free surface and postulated that the three shock-wave structure is produced by a
compressive elastic precursor (Ep wave) followed by a plastic wave (P wave), and, a third wave at-
tributed to a phase transformation (PT wave). Wave profile measurements indicate that the onset
of the phase transition occurred at a pressure of ~ 13 GPa and room temperature on the Hugo-
niot. Since the pioneering experiments, efforts succeeded in acquiring static high pressure X-ray
diffraction analysis, where the stable ferromagnetic body-centered cubic ground state (bcc a-Fe)
has shown a magnetic and structural transition to the nonmagnetic hexagonal close-packed phase
(hcp e-Fe) at about 13 GPa, revealing the same transition as in shock experiments. Therefore, both
bce and hep phases have been observed to coexist over a wide range of pressure, which captures
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the signature of a diffusionless solid-to-solid martensitic transition in iron. While the phase di-
agram of iron under hydrostatic pressure is well established [217], detailed in situ observations
via dynamic X-ray diffraction techniques during shock-loading have supported unambiguously
that the high pressure phase has hcp crystal structure [139, 287]. However, due to the consid-
erable experimental difficulties of quantifying plasticity with respect to the polymorphic phase
transformations during shock wave propagation in solids, the complete irreversible deformation
mechanism still remains poorly investigated.

The high pressure-induced transition in iron has been intensively described using ab-initio
electronic structure calculations, where some simulation results remain debated. Although the
broad outline of the transition has been settled by crystallographic considerations [49, 179, 23],
a major problem deals with the accuracy in determining the energy landscape for the bec-to-hcp
transition [84, 170]. Furthermore, ab-initio computational resources are limited to small system
sizes, for which plasticity-induced effects in iron cannot be captured by first-principles calcula-
tions. Alternative approaches are based on large-scale molecular dynamics simulations that give
insight into the motion of multi-million-atoms. Shock waves have also been simulated by em-
ploying embedded atom method potentials and varying initial shock strength [137, 138, 136]. For
low particle velocities, an elastic shock wave of uniaxially compressed bcc was observed. With
increasing shock strength, a two-wave shock structure was identified with an elastic precursor
followed by a slower phase-transition wave. No direct evidence of plastic wave profile was ob-
served, certainly due to the small time scale compared to experiments that exhibit a three-wave
structure at the nanosecond scale [17, 19]. While further work is needed to understand the de-
tailed mechanisms of plasticity under shock conditions, phase-field models provide a companion
approach to shock response of crystalline materials at higher time and length scales.

Various continuum mechanics approaches to simulate martensitic phase transitions in the con-
text of plasticity theory have been developed and can be categorized by the nature of the scale
description of the constitutive relations. A first micromechanical class of models aims to deliver
predictions of macroscopic observables, e.g. stress-strain curves, by including microstructural as-
pects via homogenization and averaging techniques. In a multiscale strategy, relevant approaches
track the volume fraction of martensite phase in the small [129, 215] and large [148, 177] strain
formulations. However, these models are generally unable to predict detailed microstructural
changes and spatial arrangements of parent—product interfaces during phase transformations at
the nanometer scale. A second class of models for displacive transformations has pushed to-
ward smaller scales in an effort to capture transformational processes by tracking the kinetics of
interface orientations and variants with respect to the associated configurational forces. Thus,
structural phase-field approaches have been successfully applied to model microstructure evo-
lution by formulating thermodynamic driving forces for martensitic transitions between stable
states [157, 10, 142, 77, 291]. Treatments of thermodynamics and kinetic relations in phase-field
approaches are related to the pioneering works by [50] and [3], within which a material system
tends to evolve towards a minimum state of free energy.

Chapter 2 introduces a thermodynamically consistent framework for combining nonlinear
elastoplasticity and multivariant phase-field approach at large strains [252]. In accordance with
the Clausius-Duhem inequality in section 2.2, the Helmholtz free energy and time-dependent con-
stitutive relations give rise to displacive driving forces for pressure-induced martensitic phase
transitions in materials. Inelastic forces are obtained by using a representation of the energy land-
scape that involves the concept of reaction pathways with respect to the point group symmetry
operations of crystal lattices [76]. Using the element-free Galerkin method with high-performance
computing resources, the finite deformation framework is used to analyze the polymorphic a- into
e-Fe iron phase transitions under high hydrostatic compression [252] and shock-wave [253] load-
ings, as detailed in sections 2.3 and 2.4, respectively, while a recent application to twinning and
retwinning in tantalum can be found in Ref. [44]. The three-dimensional nonlinear simulations
accurately reproduce observable characteristics reported by the experimental literature, for which
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the crucial role played by the plastic deformation is analyzed with respect to the peculiar forma-
tion of interface-dominated microstructure with a specific selection of high-pressure variants.

2.2 A phase-field model coupled with finite elastoplasticity

This section is concerned with a thermodynamically consistent phase-field formalism for solid-
state transitions. The model is formulated in a Lagrangian framework for finite strains, motivated
by obtaining isothermal driving forces and constitutive relations at a material point.

2.2.1 Kinematics

An arbitrary material point X is defined in a homogeneous reference configuration )y C RR?, for
which the motion of () is given by the mapping x = x (X, t) : Oy — Q C R® with respect to
time t. The total deformation gradient F is related to the following multiplicative decomposition
[158,159, 148, 161], i.e.,

F = % t = Vx =Fe-Ft-Fp, (2.1)
with V the material gradient with respect to X. Here, the reference configuration is associated
with the initial single-crystal bcc iron, and, the total deformation gradient is decomposed into
elastic Fe, plastic Fp, and, transformational Ft distortions, leading to the pressure-induced phase
transformation from the bcc to hep phases.

Similarly to classical crystal elastoplasticity theories [151, 156], the decomposition eq. (2.1) is
not uniquely defined and different ordering relations have been taken into account in the literature
[241]. Because the local irreversible plastic deformation Fp of the neighborhood of X, e.g. caused
by dislocation glides, does not alter the crystal orientation and structure of the lattice vectors, the
transformational component Ft occurs between Fp and Fe, where the elastic contribution accounts
for the lattice stretching Ue and rotation Re. The polar decomposition to Fe reads: Fe = Re -
Ue, with Ue? = Fe'- Fe, and, detFe = detUe = jo.. The superscript ¢ denotes the transpose
operation. Although the controversy regarding the decomposition is beyond the scope of this
paper, both tensors Fp and Ft describe here two intermediate configurations, Qp and Qt, as shown
in Fig. (2.1). For more justifications regarding the three-term multiplication decomposition eq. (2.1)
for nonlinear elasticity coupled to martensitic phase transformations and plasticity, the reader is
referred to the recent analysis on combined kinematics in Ref. [161]. It follows from eq. (2.1) that
the total spatial velocity gradient tensor L is given by

L=FF ! =Le+FeLtFe ! Fet-Lp-Fet™', (2.2)

with Fet = Fe-Ft. The superposed dot in eq. (2.2) denotes the time derivative. The elastic Le,
transformational Lt, and, plastic Lp velocity strain tensors are similarly defined by

Le = Fe-Fe™!, Lt = Ft-Ft !, and Lp = Fp-Fp ', (2.3)

which are related to the current and the intermediate configurations, i.e., (2, Ot and Qp, respec-
tively. Furthermore, two basic kinematic assumptions are considered in the present theory:

1. The measures of volume changes after each deformation processes satisfy:
je = detFe >0, jy = detFt > 0, and detFp =1, (2.4)

so that, Fe, Ft and Fp are invertible, and, the plastic flow preserves the volume.
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Fp

e

Qp

Q, F=Fe Ft Fp 4 Q

FIGURE 2.1: Schematics of the reference )y, intermediate, Qp and Qt, and, current Q) configurations, for
which the total deformation gradient tensor F is decomposed multiplicatively into plastic Fp, transforma-
tional Ft and elastic Fe distortions.

2. The model is restricted to isotropic plastic theories with irrotational plastic flows. Therefore,

Fp = Dp-Fp, with Dp = symLp = Lp, (2.5)
where sym Lp denotes the symmetric part of Lp.

Figure (2.1) illustrates the multiplicative split of the total deformation gradient tensor F. In
agreement with the conservation law of mass, the determinant of F gives the volume change
between the current (with a volume V) and the reference (V) configurations, i.e.,, j = detF =
po/p =V /V,, where p (pp with py = 0) is the current (reference) mass density.

2.2.2 Balance laws

During the different deformation processes, the equilibrium equations of force must be fulfilled.
In the Lagrangian description, the local form of the linear momentum balance is given by

where P is the first (non-symmetric) Piola-Kirchhoff stress tensor, b are external body forces per
unit mass, and, it = ¥ (X, t) is the acceleration of the material point X, with u the corresponding
displacement field, defined by u = x (X, t) — X.

An appropriate formulation of the constitutive relations for isothermal and irreversible pro-
cesses of deformation requires a thermodynamically consistent formalism, within which the bal-
ance law in eq. (2.6) holds at all points X in the domain of ().

2.2.3 The Clausius-Duhem inequality

The martensitic phase-field approach coupled with large elastoplastic deformations is derived
within a thermodynamic framework in which the second law of thermodynamics plays a cru-
cial role. When the thermal effects are ignored, the fundamental Clausius-Duhem inequality is
expressed in terms of stress power per unit reference volume [67] as

/(EF—W¢)M%20, 2.7)

(2%

where : denotes the double inner tensor product, and, ¢ the specific Helmholtz free energy. Equa-
tion (2.7) shows that the first Piola-Kirchhoff stress tensor P and the deformation gradient F are
work-conjugate variables, while P: F defines the mechanical stress power per unit volume in the
Lagrangian formulation.
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Within the model of the multiplicative decomposition in finite strains, it is conveniently pos-
tulated that the Helmholtz free energy can be written in the following form:

=y (Fe,Ft, VFt) , (2.8)

where VFt is a phenomenological third-order gradient term that acts as a penalty for spatial
nonuniformity to produce diffuse interfaces. Because the elastic response is not affected by the
plastic activities, the elastic part of the Helmholtz free energy is supposed to depend on the elastic
and transformational distortions only. Moreover, it is assumed that both transformational and
plastic works are not dependent on each other, so that the free energy may be additively decom-
posed into elastic ¢, transformational ¢, and, purely empirical gradient penalty 1., contributions.
With the aforementioned considerations, the Helmholtz free energy can thus be written as

P = e (Fe, Ft) + ¢ (Ft) + ¢, (VFt) (2.9)

which, in contrast with ab-initio electronic structure calculations, is not uniquely defined. How-
ever, such elastic/inelastic splitting, comparable to the classical phase-field models with elastic
and chemical potentials [278, 10], is fundamental for applications that exhibit a strong coupling
between acoustic waves and phase transformations, e.g. wave propagation influencing the early
stages of the phase transitions induced by shock loadings. Thus, egs. (2.1) and (2.9) yield to the
rates of the total deformation and free energy, i.e.,

F = Fe-Ft-Fp + Fe-Ft-Fp + Fe-Ft-Fp

_ O 99e MW iy

i ap. . (2.10)
Y= 3Fel, 9Ft |, F T AVE

. VFt,

F + Ft+

where .*. denotes the triple inner tensor product. Inserting eqgs. (2.10) into the global form of the
Clausius-Duhem inequality (2.7) and applying the chain rule, the non-negative requirement leads
therefore to

b Eit 9¢e T tp. LR .
[) {(PFp Ft' — po e ).Fe—i—(Fe P-Fp' — po aFt pant>.Ft+Z*.Dp
0 o (2.11)
_ v [ >
pOBVFt VF’[} dQ), >0,

where Z, is a work-conjugate stress measure related to the first Piola-Kirchhoff P, as follows
X, = Fet'-P-Fp'. (2.12)

Using the permutability of time and space differentiation in the reference configuration and
the Gauss theorem, the last right-hand side term in eq. (2.11) can be rewritten, i.e.,

a¢'v . [ _ alrbv / wv
[)O <—av - ,_VFt) dQ, = A <V o B) A0+ [ (FoZTon) dE, .
—— —

surface dissipation

where X is a boundary of () with unit outward normal n. Assuming that the surface dissipa-
tion is absent during the transformational process, additional boundary conditions as set of nine
equations for phase transitions may also be derived by

a¢v
= 2.14
VRt -n =0, with Ft #0atX,, (2.14)



2.2. A phase-field model coupled with finite elastoplasticity 9

corresponding to the orthogonality relations between VFt and the external surfaces ¥y. Thus,
eqs. (2.11-2.14) yield to a local formulation of the free energy imbalance in terms of dissipation
per unit reference volume of mechanical energy D, as follows

D= (P-Fpt-Ftt — po gzz

):Fe+Xt:Ft+Z*:Dp20, (2.15)
Ft

where the dissipative forces Xt, conjugated to dissipative rate Ft, are given by

d J
—pe b4y v (2.16)

o
— t. . t —_ €
Xt =Fe"-P-Fp" — po . ot NV

oFt

The relation (2.16) defines the thermodynamic displacive driving forces for change in Ft, act-
ing on a material point X under isothermal conditions. Although the plastic deformation is not
integrated as an internal state variable, e.g. via a defect-energy term as in Refs. [107, 2], but rather
as a kinematic variable, the plastic contribution may significantly alter the state of residual stress
and also play an important role in dictating the morphology of the microstructural changes and
in modeling the irreversibility of phase transitions.

2.2.4 Constitutive equations

Constitutive equations for reversible elastic deformations and irreversible processes of deformable
material bodies undergoing phase and plastic deformations are required to be consistent with the
Clausius-Duhem inequality.

Hyperelasticity

The standard assumption that the rate of dissipation is independent of Fe in eq. (2.15), i.e., elastic-
ity is a non-dissipative process, results in the hyperelasticity constitutive relation in terms of the
first Piola-Kirchhoff stress field, as follows

_ oY —t -t
P=p o FtFt Fp . (2.17)

A quadratic form for the strain energy density per unit reference volume is assumed, for which
a dependence of . on Fe and Ft manifests explicitly via the anisotropic elastic components:

potpe = 3Ee:ID (Cet) : Ee, (2.18)
where Ee is the elastic Green-Lagrange strain tensor, defined by
Ee=1(Ce—1I), (2.19)

with Ce = Fe' - Fe the right elastic Cauchy-Green deformation tensor, so that Cet = Ft'-Ce-Ft.
Inserting eq. (2.18) into the hyperelasticity condition (2.17), the nonlinear stress-elastic strain con-
stitutive relation is rewritten as follows

P = Fe-Se-Ft "Fp ' + Fet- (Ee: % : Ee) Fp~t, (2.20)

where Se = ID (Cet) : Ee is an elastic stress measure associated with Ee, and, dcetID is a sixth-order
tensor, i.e., the derivative of ID with respect of Cet. It is worth pointing out that the anisotropic
pressure-dependent elastic stiffness tensors of both bcc and hecp phases are explicitly taken into
account in the present formalism.
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With use of the non-dissipative properties of hyperelasticity, the local dissipation considered
in the Clausius-Duhem inequality (2.15) can also be conceptually divided into transformational
D and plastic D, dissipative rates per unit reference volume, i.e.,

D=D+D, >0, (2.21)

due to the onset of the phase transitions or the movements of interface during phase transitions,
and, to the plastic deformation in materials, respectively. For simplicity, it is assumed that both
transformational and plastic dissipative processes are thermodynamically uncoupled such that
the inequality (2.21) splits into two stronger non-negative inequalities, as follows

D, = Xt:Ft > 0 and, D, = Z.:Dp > 0. (2.22)

Kinetic constitutive relations that relate the rates Ft and Dp to the associated driving forces for
both dissipative processes in hyperelastic materials must also be defined such that the inequalities
in egs. (2.22) are satisfied. These steps are carried out in the two subsequent sections.

Kinetics of phase transitions

For solid-state structural transformations, a linear kinetic equation that relates the rate of the trans-
formational distortion Ft to the displacive driving forces Xt is suggested, i.e.,

vFt = Xt, (2.23)

where v > 0 is a viscosity-like parameter. For example, the case with v — 0 represents an in-
stantaneous relaxation. The evaluation of the kinetic equations for martensitic phase transitions
is still a subject of intense debates, within which the average transformational kinetics may be in-
fluenced by the nucleation processes, interface mobilities, collective dislocation behaviors, as well
as inertial effects. In the context of the time-dependent Ginzburg-Landau formalism, a detailed
modeling of the kinetics of phase transitions in iron is not the purpose of the present analysis.
However, the linear form of the driving forces Xt gives rise to thermodynamic consistency con-
ditions for phase transformations, so that the dissipation inequality in eq. (2.22) is unequivocally
satisfied, as follows

D, = v |Xt|*>0, (2.24)

with |Xt| the Frobenius norm of Xt. A nonequilibrium thermodynamic system is also characterized
when D; > 0, e.g. corresponding to mobile solid-solid interfaces when Xt > 0. Using egs. (2.16)
and (2.20), eq. (2.23) yields

, _ oYy Y
_ B ) . . t AV v
vFt = Xt = Ce-(ID (Cet) : Ee)-Ft Poap TPV SE (2.25)

transformational forces

forces due to elastic energy

including mechanical elastically and transformational inelastically induced driving forces, with
a gradient-related term for interface energy. Equation (2.25) shows competition between driving
forces due to elastic energy and the inelastic transformational forces related to microstructure
evolution processes in materials. In particular, the (meta)stable equilibrium configurations are
achieved when Xt = 0, exhibiting a force balance between the elastic and inelastic contributions.

A general quadratic form for the gradient energy penalty that is localized at the diffuse inter-
faces between two phases may be defined by

oo = sVFt - °A - VFt, (2.26)
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where °A is a positive definite symmetric (major symmetry) sixth-order tensor that takes into
account the gradient-energy interaction between different phases. Assuming an isotropic descrip-
tion of the interface energy and neglecting the interactions between all phases [160] such that
®A = A °I, with °I the sixth-rank identity tensor, eq. (2.26) reduces to

Pope = A VFt - °1 -  VFt= 1A VFt - VFt, (2.27)

where the positive scalar A controls phenomenologically the finite width of interfaces. The latter
distance may be correlated to the short-range elastic fields produced by discrete intrinsic dislo-
cation arrays between bcc/hcp semicoherent heterophase interfaces and also computed by using
a recent formalism linking the Frank-Bilby equation and anisotropic elasticity theory, as investi-
gated in chapter 3. Finally, the driving forces expressed in the Ginzburg-Landau formalism are
given by

vFt = Xt = Ce:(ID (Cet) : Ee)-Ft ' — po% + A V2E, (2.28)

with V? the Laplacian operator.

Plastic flow rule

Macroscopic quasi-perfectly plastic regimes have been observed in polycrystalline bce iron sam-
ples under high-strain rate compressions [132]. To go beyond the elastic limit, the large strain
perfectly plastic ], flow theory has also been incorporated in the present model. Accordingly,
the evolution of the plastic distortion Fp, given in terms of the plastic deformation rate Dp, is
determined by considering the postulate of maximum dissipation [118]. The space of admissible
stresses &, is written as

£r={o|¢(o) <0}, (2.29)

where the yield function ¢ is expressed in terms of the Cauchy stress ¢, defined by

o =j 'P-F' = j ! Fe-Se-Fe' + j ! Fet- (Ee: % : Ee)-Fett, (2.30)

according to eq. (2.20). The work-conjugate stress X in eq. (2.12) may also be related to the Cauchy
stress tensor o by
L, =jFet.c-Fet ' = R"“Z.Ft ", (2.31)

where X = jFe'-o-Fe~'. Thus, the rate of plastic deformation Dp is given by the associated flow
rule, as follows

Dp = 7 Fet_l-g—i-Fet =7 H, (2.32)

with 77 > 0 a non-negative scalar-valued factor, so-called the plastic multiplier, that is required to
satisfy the consistency relation: # ¢ = 0. The outward normal to the yield surface is given by H in
the stress space, for which the yield function ¢ in egs. (2.29) and (2.32) is described with the von
Mises yield criterion, i.e.,

¢(0)=1/3]2(0) —0p with, , =1deve:deve, (2.33)

where 0 > 0 is the yield stress measure, and, dev o denotes the deviatoric part of ¢. Finally,
including the direction of the plastic flow into the rate Dp, eq. (2.32) yields

evo

Dp =37 Fet_l-da -Fet, (2.34)
0
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for which the dissipation inequality for plastic flow in eq. (2.22) with (2.31) is satisfied, i.e.,

. |devel]?

According to egs. (2.24) and (2.35), the present formalism is also thermodynamically consistent
since the Clausius-Duhem inequality (2.21) is fulfilled.

2.2.5 Multiple reaction pathways and energy landscape

In what follows in section 2.2.5, focus is on the a <+ € phase transitions in iron, where the en-
ergy landscape is defined by reaction pathways for multivariants with respect to the point group
symmetry properties of the bcc and hcp lattices.

The bcc-to-hep transition mechanism

As illustrated in Fig. (2.2a), the considered crystallographic relations in the bec-to-hcp martensitic
phase transition are given by the Mao-Bassett-Takahashi mechanism [179], as follows

[001]cc || [2110]nep and, (110)pec || (0001)pep , (2.36)

which differs from the transformation path proposed in Ref. [49] by a rotation of ~ £5.2° around
the [0001]hcp axis [271]. The structural relations in eq. (2.36) are achieved by considering two
transformation operations, as shown in Fig. (2.2b). The hcp phase may be obtained by applying a
shear to a (110)pe plane, which consists of an elongation and a compression along the [110]p,. and
the [001],. directions, respectively. This transformation is required to form a regular hexagon (in
red in Fig. 2.2b) and may be related to a homogeneous linear mapping U, i.e.,

TR PYRE T W D
4\/5 1\ 7 “/a 4\/2 a\/ 2 “/a

0 0

ol, (2.37)
V3

2
where ¢/, = c /a is the lattice ratio for the pure e-Fe phase [55], while the volume change accom-
panying the phase transition is determined by detU = 9c,, /16. Then, the mechanism involves
a shuffle #, which corresponds to atomic displacements of every other deformed (110)p,. plane in
one of the two possible opposite [110]p. directions. The close-packed structure of hcp is also ob-
tained, where a ratio ¢/, of 1.603 4= 0.001 has been experimentally determined along this bec-to-hep
path in iron [179, 78], reflecting a ~ 10% volume reduction.

In the described case, the transformations U and t are illustrated separately but can occur si-
multaneously, as discussed by using first-principles simulations [81]. For both scenarios, the shuf-
fle does not induce any lattice-distortion transformations and has therefore no direct coupling
with the overall stress in the deforming materials. Although not visible for a given deformation
state at the macroscopic scale, the shuffling modes, however, may have important implications
on the free energy along the reaction pathways as well as the kinetics of phase transitions, which
are not taken into account in the present formalism. Assuming to take place at a smaller time
scale compared to the lattice-distortion transformations, additional variables of state (also, addi-
tional associated kinetic equations) should therefore be introduced to characterize such atomistic
displacements. With the aforementioned considerations, and because of the required number of fi-
nite element meshes for three-dimensional calculations, the example applications to high-pressure
compression in sections 2.3 and 2.4 focus on the first cycle of forward and reverse martensitic tran-
sitions only, for which the shuffle does not modify the point group symmetries. For higher-order
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cycles, this mechanism may be responsible for the generation of an unbounded set of variants. The
notion of transformation cycles has been addressed in Ref. [76], where a two-dimensional simula-
tion has shown that variants could hierarchically nucleate into previously created ones over up to
five levels of transformations for the square to hexagonal martensitic phase transitions.

When ¢/, is experimentally chosen to determine eq. (2.37), the corresponding homogeneous
mapping U contains obviously and inseparably both elastic and irreversible part of the defor-
mation in samples. A homogeneous distortion Ut is therefore introduced to identify the pure
transformational component of the total deformation provided by experimental data under high
hydrostatic pressure, i.e.,

Ut =«U, (2.38)

where « is a elastic correction factor, as discussed in Ref. [252].

(a) ©on
(110) bee/hep structural
correspondences

bee hep
[001] — [2110]

(o101 (110) — (0001)

[110]

© (110) // (0001)

FIGURE 2.2: Crystallographic relations in the bcc-to-hcp martensitic phase transition established in

Refs. [179, 23]. (a) Red atoms in a bce atomic-side unit cell are located at a (110)pe. layer and the blue

atoms at the adjacent layers. (b) The transition path consists of two transformations. First, a shear deforma-

tion U leads to an elongation and a compression along the [110],.. and the [001]p,. directions, respectively.

The deformation transforms a polygon in blue into a regular hexagon in red, corresponding to the (0001)y,p,

hcp basal plane. Then, a shuffle t is applied to the entire plane that contains the blue atoms, e.g. by shifting
all these atoms in the [110]p. direction.

Multiple symmetry-related variants

During the forward & — € and the reverse € — o’ martensitic transformations, significant differ-
ences in orientation from the initial x-Fe phase may exist. To make the clear distinction in phase
orientation between variant formation and selection, &’ denotes here the reversed « phase, as de-
picted by the two-dimensional schematic network in Fig. (2.3a).

A rigorous link between the standard crystallographic concepts of holohedry with group-
subgroup relationships, crystal system and Bravais lattice type (cubic and hexagonal), is explicitly
included into the phase-field formalism. For the forward & — € transition, the generation of all
hep variants € Ut from the linear mapping Ut is described by

10t = Ri.-Ut-Rpec, (2.39)
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where Ry, is a rotation matrix in the point group of cubic lattice "Hyp. and n the number of hep
variants [206]. Because of the high symmetry of the considered phase, a total number of 6 hcp
variants are generated, i.e., n = 1,...,6, within which 18 operations in the basic group of 24
rotations for cubic lattices are redundant. To complete the phase transformations with the reverse

€ — o transitions, the bee variants %" Ut are deduced by performing the following operation:

“"Ut = Rie'Riep Ut Ry Ut-Rpe, (2.40)

where Ry, is a rotation matrix in the point group of hexagonal lattice "H},., and m the number of
bcee variants [206]. Equation (2.40) consists in generating 12 bee variants, i.e., m = 1,...,12, so that
a total of 19 variants (including the identity as the 19* variant) are identified to describe the com-
plete bce-hep-bec transition in terms of multiple symmetry-related variant structures. Figure (2.3a)
depicts the forward transition of the initial bcc phase, leading to six equivalent hcp phases, and,
the reverse transition from each hcp phase that leads to three bcc phases.

All tabulated hcp and bec variants with the corresponding holohedral subgroups "Hp. and
thCp are given in Tab. 1 from Ref. [252], where the rotation axes are expressed in the hcp and bec
lattice basis, respectively. For clarity, the matrices defined by egs. (2.39) and (2.40) are written in
the following as KUt with k = 1,...,18, i.e,

. Ut 1<k<6
Ut=<¢ (2.41)
Ut 7<k<18,
which are associated with the variant of interest Vj for the forward (1 < k < 6) and the reverse
(7 < k < 18) transformations.

Reaction pathways in strain spaces

Instead of introducing the Landau thermodynamic potential [162], where the classical Landau-
type approach with polynomials is not convenient to apply for reconstructive transitions due to
the large numbers of potential energy wells [28], the concept of reaction pathways [77, 76] is used
to describe the phase transitions in iron. In particular, the minimum inelastic energy density
profile between two different pure phases is represented by a single reaction pathway, along which
the associated function i, is assumed to possess the same symmetries as all symmetry-related
variants V}, and, to satisfy the principle of material objectivity [27], e.g.,

Pe = P ("Ct), (2.42)
where ¥Ct are the transformational Cauchy-Green strain measures for all pure phases, given by
kCt = kutt - Fu, (2.43)

as listed in Appendix A from Ref. [252], with the aid of egs. (2.39—-2.41). Here and in the following,
the superimposed caret will be used to indicate quantities strictly defined along the pathways. To
model continuous forward and the reverse transformations, each transition pathway k is repre-
sented by linear interpolation between starting kCtytart and ending ¥Ctong strain states, as follows

két (Sk) = (1 - Sk) kétstart =+ Sk kétend ’ (2.44)

with s, € [0,1] the curvilinear coordinates along k. For instance, hcp variants Vj are parameter-
ized by: kCtytart = I and kCtend = kU, with1 < k < 6. Generating the reaction pathways with
egs. (2.37—2.44) and using projection matrices C;, C; and C3, an example of three-dimensional
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ICt(T)

FIGURE 2.3: (a) Schematic illustration of the multiple symmetry-related variants for the forward a — €

(in red) and the reverse € — &’ (blue) phase transitions in iron. (b) The corresponding reaction pathway

network in a specific {Cy, Cp, C3} strain space, within which the transformational Cauchy-Green tensor
Ct = Ft' - Ft as well as some quantities described in the text, are defined.

representation of the network is shown in Fig. (2.3b), within which each pathway connects con-
tinuously and linearly with two pure bec/hep variants Vj in the {Cy, Cp, C3} strain space. The
projection is not unique and the specific strain space in Fig. (2.3b) is characterized by using the
following matrices:

1 10 00 0 3 0 1
CG=1|1 30/,CG=1l01 1/,C =| 00 0. (2.45)
0 00 01 -3 101

The reaction pathway network describes also a six-dimensional energy landscape, for which
each straight segment represents a minimum-energy reaction pathway that connects two sta-
ble/(meta)stable states with possible (if any) saddle points [28].

Inelastic energy landscape

In order to define the total inelastic energy landscape ¢; in a whole strain space, e.g. not only
restricted along the pathways as i, the partition of unity approach is used as a weighted sum of
the contribution ¢, of each individual pathway k. Thus, the overall inelastic energy density ; is
formally defined by introducing the weighting functions wy (Ct), i.e.,

18

e (Ct) = ) we (Ct) 9y (CH) (2.46)

k=1

for any transformational Cauchy-Green tensor Ct = Ft'-Ft. Without loss of generality, for any
given tensor A, e.g. Ct and Cet, these functions wy (A) satisfy the partition of unity condition,
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namely:

18 d —h A

Y wi(A) =1 with, wi(A) = % (2.47)

k=1 Y1 di " (A)
where / is a positive parameter that controls the weighted average of all pathways. The quantities
dx (A) correspond to the minimum Euclidean distances in the strain space between A and the
pathways k, defined by

A (A) = ["TL(A)|= min |A = A (G|, (248)
ng[O,l]

where A ({;) are also mapped onto the reaction pathways with i (A) the corresponding reac-
tion coordinates. For example, when A = Ct: Fig. (2.3b) shows the projected tensor 'Ct (1) onto
the forward pathway 1, between the initial single-crystal bcc phase and the hcp variant V;. In-
troducing the convenient curvilinear coordinates ¢° (A) for fictitious unbounded pathways, as

follows kA PR
A A Ctog — FCt A
0 k . k o d tart | k
Z(A)="D: (A — Ctstart) = |kCt::d — kétzt:itl : (A — Ctstart) , (2.49)

where ¥D defines the normalized direction of the pathway k, the argmin {j in eq. (2.48) is also
determined by solving d;, di (A) = 0 for a given Ct, leading to

e (A) if: &7 (A) € [01]
Ck(A)=1<¢0 if: <0 (2.50)
1 if: ¢ >1,
so that the distance measure di (A) in eq. (2.48) with (2.50) represents the minimum distance from
A to a given segment in R®.
On the other hand, it is assumed that each potential ¢y, in eq. (2.46) is related to the minimum
energy density ¢y, combining with an additional out-of-path component, i.e.,
P (Ct) = P (Tk (CH)) + 0 die(Ct) + 71 [t FIT(C)] (2.51)

out-of-path component

such that ¢ tr ¥TIT (Ct) and ¥D are orthogonal to each other, i.e., dc; tr *IT (Ct) : kD = 0. Here, tr A
denotes the trace of A. The parameters ¢ and 77 in eq. (2.51) scale two different out-of-path energy
barriers: one component is linearly proportional to the Euclidean distance from the pathways with
o, while the second coefficient 77 is used to distinguish different force magnitudes for isochoric and
volumetric transformational deformations, when 7t # 0.

Figure (2.4) illustrates the construction of the overall inelastic energy landscape ¢ defined by
eq. (2.46) with eq. (2.51), for all Ct of the neighborhood of the associated reaction pathway network
in Fig. (2.3b). In accordance with the model parameters discussed in section 2.3.1, Fig. (2.4a)
shows the given (invariant) minimum energy density §, along all reaction coordinates { (Ct) of
the individual pathways k. Then, the weighting functions wy (Ct) are used to extrapolate each
contribution into the whole space: Fig. (2.4b) depicts a 5 x 108 J.m3-iso-surface of the extended
inelastic energy part wy (Ct) §r, in the {C;,Cy, C3} strain space. As illustrated by arrows, the
iso-surface is perpendicular to the reaction pathways and the energy profile is "sombrero-shaped"
along the axis C; + Cy + Cz. Figure (2.4c) shows a 10° J.m 3-iso-volume related to the out-of-
path contribution odj (Ct) only, i.e., with 1 = 0 in eq. (2.51). For sake of clarity, this additional
energy potential is depicted in Fig. (2.4d) onto two planes passing by variants V; and V3 (upper
plane) and variants V5 and Vg (lower plane). It is also shown that the energy profile is exclusively
controlled by the iso-distances around the paths, as illustrated by the cylinders around the paths
and by the half-spheres at their ends. Finally, Fig. (2.4e) gives the same 10° J.m3-iso-volume of
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Energy (x10° J.m?)

(@) 1 s

(d)

FIGURE 2.4: Construction of the total inelastic energy landscape i associated with the multiple reaction
pathways Vj in iron. (a) Invariant and minimum energy profile along the individual reaction pathways k
from 0O (in dark red, for the pure bcc phases) to ~ 8 x 10% J.m 3 (in white, for hcp phases). (b) Extrapolation
of the minimum energy potential in the whole {Cy, C, C3} strain space, e.g. 5 x 108 J.m~3-iso-surface. (c)
shows a 10 J.m3-iso-volume of the out-of-path contribution od; with 7 = 0, whereas (d) illustrates the
energy profile onto two planes passing by variants V; and V3 (upper plane) and variants V5 and V4 (lower
plane). (e) and (f) are similar to (d) and (e) for the total inelastic energy ¢ landscape, respectively.

the total inelastic energy ¢ landscape, within which the volume in (c) is plotted with transparency
as well, for comparison. In contrast with Figs. (2.4c) and (d), it is shown that the total energy has a
"cone-shaped" profile, exhibiting the directional character of the transformations toward the pure
hcp phases, as distinctly depicted onto both planes in Fig. (2.4f).

Transformational inelastic forces

The calculation of the inelastic driving forces for phase transformations in eq. (2.28) is deduced by
computing the derivative of i, with respect to Ft, which can be expressed as follows

Ot _ 5 gy 0% (CY 2.52
aFt U act (2.52)
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According to eq. (2.46), the derivative of the energy function in the right-hand side of eq. (2.52)
yields

d d C 0 C
¢§ék EZlmk (Ct) “gé 2 a%<c1)—f§é;fl, (2.53)

where the derivative of the weighting functions wy (A) with respect to A is given, without loss of
generality, by

awk 18 (A i
Z T k (A) — i) 'N(A), (2.54)
with 6j; the Kronecker delta, i.e., 6 = 1if i = k and = 0, otherwise, and, ‘N (A) represents the
normal tensor to the pathway i in the direction of A, obtained in the following form:

od; (A) _ 'TI(A)

0A  di(A)’ (255

N(A) =

such that |'N (A)| = 1, and, ‘N (A) :'D = 0 when {° (A) € [0, 1]. Moreover, the derivative of y;
with respect to Ct in eq. (2.53) leads to

9Py (CH) _ 9Py (Ck (Ct))kf) + 05N (Ct) + msgn( tr FTT(CE)) (1—*D tr*D) | (2.56)
oCt 9l
Substituting egs. (2.54) and (2.56) into eq. (2.53), and, then into eq. (2.52), it is also shown
that two directions are included in the transformational inelastic forces: one component is related
to the longitudinal directions KD along the reaction pathways, while the second component is
associated with the normal directions ¥N (Ct) towards Ct.

Mechanical elastic forces

Since the phase-field model aims at modeling high-pressure phase transitions in iron, particular
attention is paid to the configuration within which the nonlinear elastic stiffness tensor is ex-
pressed. The out-of-path elasticity tensor ID (Cet) in eq. (2.28), which depends on the elastic and
transformational deformation states, is given in the whole strain space by

D (Cet) = ﬁwk (Cet) KD (¢ (Cet)) , (2.57)
k=1

where ¥ID are the elasticity tensors associated with the reaction pathways k, and, g (Cet) are the
reaction coordinates that minimize the Euclidean distance dj (Cet) between Cet and the individual
paths k. The weighting functions wy (Cet) are also defined by eq. (2.47), where the partition of
unity is written as a function of Cet. The projected tensors ¥Cet are also mapped onto the reaction
pathways (as well as ¥Ct) and the corresponding reaction coordinates are consistently determined
by solving 9d;, dj (Cet) = 0. Imposing dceID (Cet) = 0 for all pure (meta)stable phases (i.e., at the
ends of all reaction pathways k, when {; = 0 and {; = 1) with Cet = ¥Cet, the elasticity tensors
D in eq. (2.57) may be represented by a cubic interpolation function to ensure numerical stability,
ie,

“D (Zk (Cet)) = (1337 +24,°) D* + (3, — 2°) DF, (2.58)

with ID* and ID€ the elastic stiffness tensors of the pure bcc and hep iron phases, respectively. In
particular, if {2 (Cet) < 0 (> 1), also “ID (s (Cet)) = D* (= ID¢). For instance, for such pure hcp
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e-Fe phases, the finite hyperelasticity condition from eq. (2.18) leads therefore to

0?1e
JEe 0Ee

_ase
. OFe

D€ = pq (2.59)

€
where D€ is defined in the reference configuration )y and obeys the left and right minor sym-

metries. However, the elastic tensor differs from experimental or computed (e.g. using atomistic
simulations) elasticity tensors b€, expressed in the current and deformed Q) by

_dJdo

be = —
de

(2.60)

€
with & the Eulerian strain tensor [269, 232, 66]. In the present work, the relevant tensor b® for
a pure hydrostatic compression is obtained by considering the following two-step deformation
state along the reaction pathways: first, a material is subjected to a volumetric deformation F,
from initial volume V; to the final volume V = jV; with F,, = ]'1/ 31, and then, to a small and
symmetric shear isochoric deformation Fis, = I+ & with |¢|< 1, such as it is commonly performed
using density functional theory calculations [163, 143]. Without plasticity, the total deformation
gradient is also given by F = j/3 (I + ¢). Using eq. (2.60) with the aid of eq. (2.30) and considering
o = pI with the Cauchy pressure p < 0, the relation between the elasticity tensors D¢ and the
incremental tangent modulus b® is reduced to

ik = i3 Gk + P (040 — ikl — Gudik)) s (2.61)

exhibiting the same symmetries as in eq. (2.59). Thus, the elasticity tensors ID¢ is obtained by iden-
tifying the values of b® as well as the corresponding equilibrium pressures p€ from experiments
or atomistic calculations. Inserting eq. (2.61) into eq. (2.58) with D* = b* (here, the bcc a-Fe phase
is thermodynamically stable at zero pressure and zero temperature), and, then into eq. (2.57), the
mechanical elastic driving forces in eq. (2.25) may therefore be determined in a computational
Lagrangian framework.

2.2.6 Computational framework

The present model is implemented in a three-dimensional Lagrangian code using an element-free
Galerkin least-squares formulation [25] with explicit time integration that handles acoustic wave
propagation and rapid phase changes. The objective is to obtain solutions of the 12 unknown
primary solution variables (i.e., degrees of freedom (DoFs) at integration nodes) namely, the dis-
placement field u (3 DoFs) and the non-symmetric transformational distortion Ft (9 DoFs) at each
reference point X in (), by solving the system of partial differential equations, as follows

Po il = i V. {wk (Cet) Fe-(*ID (g (Cet)) : Ee)-Ft "-Fp~*
k=1

+ wg (Cet) (Be:*ID' (g (Cet)) : Be) Fet-*D-Fp~* + (Ee: DD ({x (Cet)) : Ee) Fet-%ectet) -Fp_t}

18
vFt = Y wy (Cet) Ce-(*D (gi (Cet)) : Ee)-Ft '+ A V7t
k=1

_ Zpo(lﬁ’tk (Ck (Ct)) + adk(Ct) +T | tr F11 (Ct)l) Ft. oWy (Ct)

oCt
— 200 wi (Ct) (lﬁt; (Cx (C)) Ft-*D + o Ft-FN (Ct) + mrsgn(tr “II (Ct)) (Ft — Ft-*D trkﬁ)> ,
(2.62)
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where ' denotes the derivative with respect to the reaction coordinates i, while the derivatives
of the weighting functions wy with respect to Ct and Cet are determined by using eq. (2.54). The
calculation of the first Piola-Kirchhoff stress tensor in the linear momentum balance in egs. (2.62)
is given in Appendix B from Ref. [252].

2.3 Pure hydrostatic compression

The phase-field formalism coupled with finite elastoplastic deformations is applied to analyze the
«-Fe into e-Fe phase transitions under high hydrostatic compression. The simulations exhibit the
major role played by the plastic deformation in the morphological and microstructure evolution
processes.

2.3.1 Material and model inputs

Tables (2) and (3) in Ref. [252] list the values for the material and model parameters for iron under
high pressure compression, respectively, which have been collected from a variety of sources.

In the present phase-field model, the elastic pressure-dependent properties of iron are defined
by four pressures: {p*, p¢}, for which the crystalline phases are fully bcc, and, fully converted to
hep, respectively; and: {p*~¢, p°7*}, which characterize the transition states where the forward
and reverse transformations start, respectively. Here, the equilibrium pressures {p* = 0,p° =
—20} GPa, with the corresponding atomic volumes {v* = 11.75,v¢ = 10.20} A3 /at, are selected
from Ref. [78]. In accordance with these experimental measures, the associated elastic components
b* and b® for both pure bee and hep phases are given in Ref. [163], while the stiffness tensor ID€ is
expressed in the current configuration by using eq. (2.61), and, D* = b" at zero pressure.

The ratio ¢/, = 1.603 of the hcp close-packed structure has been experimentally determined
in Ref. [179], so that detU = 9c,, /16 = 0.902. However, U corresponds to the complete phase
transformation into the hcp iron sample at p¢ = —20 GPa, for which the experimental measure-
ments contain indistinctly elastic and transformational distortions. According to eq. (2.38) and
following the procedure in Appendix C from Ref. [252], the transformational part Ut is related to
U as follows

Y 6—1/2
Ut:xU:\/E<1+ 1+§]°“DLf> U, (2.63)

where D€ is the hcp bulk modulus, and, jexp = v°/0" is the experimental volume change from the
initial pure bec sample, at p* = 0 GPa, to the final pure polycrystalline hep iron, at p© = —20 GPa.

In the present perfect plasticity theory, a constant yield stress is chosen to analyze the crucial
role of plasticity on nucleation and selection of variants during phase transformations, i.e., 0y =
0.25 GPa, which is fairly of the same order of magnitude with Hugoniot elastic limits in Ref. [214].

The positive parameter /1 of the weighting functions controls the energetic part of the phase
transition during a possible jump from one reaction pathway to the neighboring branches. The
energy variation for such transition may be determined using molecular dynamics simulations
[77], for which the exponent can be tuned to reproduce the atomistic results. However, without
relevant information about the bce-bee and hep-hep phase transitions in iron, it is therefore as-
sumed that all reaction pathways are mainly controlled by their immediate surroundings. This
consideration may be achieved by imposing large magnitudes for 1, e.g. h = 10, as well as large
values for the energy barrier parameters o and 7t. The relation 77 = 10¢ (in GPa) is used in the
energy penalty part of eq. (2.51) to consider higher pull-back forces onto the pathways for the
volumetric than the isochoric phase transformations, which are conveniently applied to non-zero
strain states that are out of the transition pathways, i.e., for any Ct with “IT (Ct) # 0.

The onset of a new crystalline phase can be viewed as the product of a morphological insta-
bility involving elastic energy, interfacial energy, inelastic energy, transformational dissipation,
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plastic dissipation, additional energies due to the long-range elastic interactions between vari-
ants, etc. Because of the complexity in modeling such phase instability, a phenomenological form
is adopted to define the minimum energy density i, as a function of the reaction coordinate
along each individual pathway k, i.e.,

Py (Cx (Ct)) = 182 + 2 G, (2.64)

with ¢1 and ¢; (inJ.m2) two parameters that may be calibrated to experimental data. As described
in Appendix D from Ref. [252], these parameters are given by

=17 ufD, and, ¢ = 37t (FUED) — oo, (2.65)
with j*7€
pure bcc sample to the Hugoniot states where the forward and reverse transitions occur, at p
and p* 7%, respectively. According to the recent experimental results from Ref. [78], the forward
transition starts at p*~¢ = —14.9 GPa, with the corresponding volume v* ¢ = 11.0 A3/at, and,
the reverse at p°* = —12.0 GPa, with v°7* = 10.6 A3/at. The minimum energy density profile
along the individual reaction pathways from eq. (2.64) with eq. (2.65), for which the values of ¢;
and c; are provided in Tab. 3 from Ref. [252], is depicted in Fig. (2.4a).

The parameter v in the relaxation eq. (2.23) is akin to viscosity in classical viscoplastic ap-
proaches. For the face-centered cubic (fcc) to bee phase transitions in FezNi, an attempt to fit the
magnitude v = 14 mPa.s, comparable to the viscosity of liquid metals, has been investigated by
using molecular dynamics simulations [77]. Such quantitative data analysis is not available for
the bec-hep transformations in iron, but it is assumed that the amount of stress state due to the
viscosity is lower than the yield stress, i.e., vé; < 0y, where &; is a measure of the transformational
strain rate. This measure can be estimated by ¢; = &;/At = 3|Ct — I| /At during a time interval
At awaited for the transformation, with &, the norm of the transformational Green-Lagrange de-
formation tensor. Thus, it follows that v < oty /&, with tr the final simulation time. According
to the mentioned material inputs and time characteristics discussed in the following section, it is
also considered that v ~ oytf /et ~ 2.6 kPas.

Finally, the Laplacian operator in eq. (2.28) can be approximated using the mesh discretiza-
tion in the finite element framework, such that A = A*/¢%, where A* = 0.5 GPa is a mesh-size
parameter and / is an average element size of the simulation grid.

= v*7¢/v* and 7% = v°7% /0" the experimental volume changes from the initial
K—€

2.3.2 Analysis of the pressure-volume responses

The simulated material is a cube containing 1 million finite elements with full periodic boundary
conditions, within which each element volume is V, = ¢3> = 1 um3. In the present dynamic
continuum mechanics framework, the final simulation time # is related to the physical time £,
needed for acoustic waves to travel through the samples. Assuming that {f = 100£, the latter
relation also means that the acoustic waves run over 100 times during the entire simulations for
each sample, which ensures the quasi-static loading conditions. Thus, t. = L/cy, with L = 100¢ =
0.1 mm, the initial box length, and c;, the longitudinal wave celerity in iron, i.e., ¢, = |/bf; /po- It
therefore follows that: ¢; = 5850 m.s~!, and, tr ~ 1.7 ps, corresponding to the duration of the all
performed calculations. Here and in the following, the subscript ; will denote the final state.

The initial single-crystal bcc iron is subjected to a three-step loading, as follows. First, all
edges are continuously and proportionally decreased to a global volume reduction imposed by
j = V/Vy = 0.86, for which the volume change is achieved within a time step from #, to t = 0.4 ;.
Then, a constant volume is maintained from ¢ = 0.4 tr to 0.6 1, and, finally the volume is released
back to the initial volume, so that j = Vf/ Vo=1,att =t

Figure (2.5) illustrates the volume change j as a function of the pressure p in GPa. Although
different in shape and magnitude, both hysteresis loops characterize martensitic transitions over
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a wide range of pressure, involving an important stored elastic strain energy caused by the coex-
istence of numerous solid-state phases. The difference in both phase transformation hysteresis is
due to plastic deformation in samples, which exhibits a larger width for the case with plasticity
than without. When increased pressure, the appearance of the high pressure hcp phase is reached
at —25.6 GPa, followed by a sudden drop to —23.1 GPa (without) and —19.7 GPa (with plasticity),
due to dissipative effects during the forward &« — € transitions. However, the reverse e — «
transition without plasticity is characterized by a slow martensitic transformation, compared to
an instantaneous volume change that occurs between —7.4 and —2.1 GPa with plasticity. Sig-
nificantly, the forward transformation pressures predicted by the present model are higher than
the experimental values for bcc samples that have been fully converted to hcp phases, within the
range of —18.4 GPa [78] and —23.0 GPa [239] at room temperature. The experimental measure-
ments from Refs. [100, 78] have been plotted in Fig. (2.5) with symbols, where the more recent data
in Ref. [78] for high-purity Fe single crystals in helium pressure medium (shown by the oriented
blue arrows) can be compared to the simulated hysteresis widths. Within the pressure range of
coexistence of both phases, the experimental bcc (open symbols) and hep (solid symbols) atomic
volumes are separately deduced from X-ray diffraction measurements of lattice parameters at each
applied pressure step. On the other hand, the computed results (solid lines) are obtained using
the average pressure and volume states over the simulation samples. In addition, the pressure
discrepancies are possibly due to the approximations/presumptions in the present coupled for-
malism and, more precisely, to the absence of free boundaries in the prescribed simulation setups.
For instance, simulations in a helium pressure media, which is a fluid with a very low viscos-
ity, together with a dislocation density-based crystal plasticity model, should give rise to a better
description of the nonhydrostatic effects and anisotropic stresses in the transition pressures, and
also of the hysteresis widths of iron. In accordance with the present calculations with periodic
boundary conditions, classical molecular dynamics simulations using an embedded atom method
potential have shown that the simulated transition pressure of the hcp and face-centered cubic
(fcc) phases is significantly higher for uniform (31 — 33 GPa) than uniaxial (14 GPa) compression
[270]. Although the simulated coexistence domain is larger than the experimental domain under
quasi-hydrostatic conditions, the present P-V equation-of-state curves behave in good agreement
with experimental responses when increasing (from 0 to —18 GPa) and decreasing (from —23 to
—7 GPa) pressures [100, 78].

Figure (2.6) illustrates the partitioning of the total energy ¢ in terms of elastic ./ (in blue)
and inelastic (¢ + 1, ) /¢ (green) energy ratios as a function of the dimensionless simulation time
t* = t/tf, for calculations without and with plasticity. It is also shown that the total energy is
mainly composed by the elastic strain energy until the nucleation of the first hcp phases in iron
occurs at t* ~ 0.28, as depicted by the two vertical arrows. When the volume is maintained con-
stant, Fig. (2.6a) shows that the dissipative transformational process leads to 38% decrease in the
amount of elastic energy, while the latter represents 54% of the total energy. During the early
stages of the pressure release (as shown by a double-headed arrow), the stress state decreases, but
the pressure remains sufficiently high to maintain the newly formed phases, as depicted by * in
Fig. (2.6a) when the internal elastic stored energy increases then to t* = 0.90, before completely
releasing back to zero. However, plastic deformation allows for a considerably higher stress re-
laxation between variants when phase transformations occur at large volume change states, as
shown in Fig. (2.6b), where the upper thin curve for the elastic energy ratio without plasticity has
been included for comparison. It also emphasizes the reduction of the stored elastic energy due
to the plastic dissipation, for which the elastic strain energy falls down to 42% (compared to 54%
without plasticity) of the total energy and remains constant during the second loading step. When
the volume increases back to the initial volume, the elastic energy is then dramatically reduced to
zero, significantly dissipated by plastic deformation.
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FIGURE 2.5: Volume change j as a function of the pressure p in GPa, for calculations without (black dotted

line) and with (red full line) plasticity, with oy = 0.25 GPa. The experimental bcc (open symbols) and

hcep (solid symbols) atomic volumes are separately deduced from X-ray diffraction measurements of lattice

parameters at each applied pressure step, while the computed results (solid lines) are obtained using the
average pressure and volume states over the simulation samples.

2.3.3 Microstructure and variant selection

Figure (2.7a) illustrates the microstructure texture variation of transition-induced volume change
j versus the dimensionless time t* in the form of histograms. These histograms are obtained by
splitting the simulation volume change (ranging from j = 0.80 to 1) into 100 bins of constant
width, within which the phase fraction of materials is computed for all time steps. Coexistence
of a-Fe and e-Fe phases with different equilibrium volumes therefore leads to a multimodal his-
togram in the large range of pressure, where the grayscale represents the volume fractions of
phases. For both simulations, the single-crystal volume is homogeneously decreased with respect
to the prescribed hydrostatic conditions, as depicted by the points A. Without plasticity, Fig. (2.7a)
shows a single-mode histogram: the volume change is slightly spread out over a large time inter-
val, starting from the first forward phase transitions at t* = 0.28 (point B). This spreading regime
is spatially correlated to the strong elastic interactions between numerous variants that have par-
tially been reversed into hcp phases only, from point B to D. However, continued pressure release
results in a decrease in the proportion of the hcp phase compensated by an increase of the bec
phase between C and D. When the simulated iron is transformed back to the initial single-crystal
material (point D), the volume exhibits no spatial variation, corresponding to a sharp single-mode
histogram. With plasticity, the volume spreading is dramatically reduced after a brief fluctua-
tion (point B) and remains a single mode until the first reverse phase transitions occur. Between
t* ~ 0.75 and 0.90, a mixed-mode regime can be pointed out, which exhibits the structural texture
formation of heterogeneous microstructure. The higher volume (point C’) is greater in magnitude
than the average prescribed volume, until all reversions are achieved (point D’). The second mode
(point C) corresponds to a volume that remains constant and slightly increases during the rever-
sions (point D). According to these different modes, a particular microstructure texture evolution
in iron associated with preferential variant selection during the phase transitions is also expected.

Figure (2.7b) shows the volume fractions of each variant V} as a function of the simulation time
t*. Without plasticity, Fig. (2.7b) illustrates that the initial phase is partially transformed into the
6 possible hcp variants with comparable phase fractions, within which a residual amount of bcc
phase persists in the microstructure, even for a large pressure range up to —25 GPa. When the
compression is released to the original volume, all hcp variants are transformed back to the initial
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FIGURE 2.6: Partitioning of the total energy into the elastic and inelastic components as a function of the
dimensionless simulation time t*, for calculations (a) without and (b) with plasticity.

single-crystal bee iron, behaving partially as a shape-memory alloy. For this case, most of transfor-
mations to e-Fe phases are partial only. These pseudo-hcp structures break the symmetries of fully
formed hcp lattice, and, cannot lead to the formation of reversed a’-Fe phases. Because the mis-
match between bce and hep phases is not taken into account in the present formalism, the elastic
strain state due to the interaction between variants is mainly responsible for the incomplete poly-
morphic phase transformations without plasticity. Therefore, when numerous hcp nucleus are
considered, the long-range elastic interactions between variants dramatically increase the over-
all elastic energy, which in turn hinder the forward & — € phase transitions. Because plasticity
dissipates considerably the stored elastic strain energy, the onset of plasticity screens the elastic
interactions between variants and thus decreases the energy cost to form the hcp variants. It also
appears as an essential mechanism to enhance phase transformations by relaxing stresses due to
elastic interactions, so that the complete formation of a polycrystalline iron formed by the 6 hcp
variants is energetically favorable, as shown in Fig. (2.7b). In addition, a sudden burst of reversed
o«’-Fe nucleation of variants occurs at t* = 0.90, with ~2% volume fraction for each { Vi, Vi3, Vi5},
~1% for each {Vy1, V14, Vis}, and, ~0.5% for each of the 6 other bcc variants. Thus, both initial
a-Fe and reversed a’-Fe phases coexist at t* = 1.0, without any retained hcp phases. However,
the initial a-Fe phase orientation largely dominates the forward and reverse transitions, while the
volume fraction of &’ inclusions is ~ 12.3% in the final microstructure.

To summarize, Fig. (2.8) illustrates the microstructure evolution under hydrostatic pressure at
t* = 0.6 and t* = 1.0, defined in both strain and current mesh spaces. As shown in Fig. (2.8a), the
non-flat sample surfaces capture the signature of the local unconstrained deviatoric stress com-
ponent of the externally applied hydrostatic conditions. For the simulation without plasticity, the
initial bcc a-Fe phase (in gray) is not completely converted into hcp e-Fe phases, with a retained
~26.6% volume fraction of bcc phase at t* = 0.6. However, the calculation with plasticity ex-
hibits a polycrystalline iron that has been entirely transformed into 6 hcp e-Fe grain variants (red
gradient). Such close-packed grains have been observed by performing large-scale molecular dy-
namics simulations under shock loading [137]. It is worth mentioning that various morphologies
of hcp phases have been observed for structural phase transformations in iron, e.g. needle-like
e-Fe phases [276], lath-like e-Fe regions [55], and, ellipsoidal e-Fe particles [202], for which the
« <+ w martensitic transitions exhibit similar discrepancies in zirconium [18]. On the release of
hydrostatic pressure, the calculation without plasticity transforms back to the initial single-crystal
bec iron at t* = 1.0, while the calculation with plasticity leads to 12 reversed bcc a’-Fe, heteroge-
neously nucleated in pairs (e.g. { V41, V12 }, in light and dark green) from one single e-Fe variant.



2.4. Shock wave propagation 25

~
=Y
'
o

T
with

1.00 without : '
" . >
;? ‘."... plasticity D - ""-._ plasticity € _|—|"H"
B 095 b, ""{ - *, 20%
S ", g ",
) A AN
o 09 | ‘-..\ /—'- D
= e
= 10%
= B B
o 0‘85 IIIIIIIIIII ‘ ﬁ'_ d
= I C
0.80 . . . . " . : 0%
00 02 04 06 08 10 00 02 04 06 08 10
100%
(b) i T T T
18 without with
16 plasticity plasticity :

o'-Fe

Variant 7y

H4 1%

— 0%

0.0 0.2 04 0.6 08 1.0 0.0 02 0.4 0.6 08 1.0

Dimensionless time 7* Dimensionless time 7*
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the dimensionless simulation time t*, for calculations without and with plasticity.

2.4 Shock wave propagation

The numerical shock wave calculations accurately describe some important features reported by
the experimental literature, and strongly complement our understanding of the phase-change dy-
namics in iron at larger time and length scales than hitherto explored by molecular dynamics sim-
ulations in the last two decades. The numerical model is able to reproduce unstable shock waves
(which break up into elastic, plastic and phase-transition waves), providing new stress-informed
insights into the coupling between the high strain-rate plasticity and microstructure evolution
during the displacive phase transitions.

2.4.1 The internal structure of shock waves

In the following dynamical analyses, the three-dimensional iron samples are oriented along the
[100] directions, and the shock waves are generated along the z || [001],. direction, using 80 x 80 x
1280 element-free Galerkin nodes (~ 8.2 millions), with periodic boundary conditions transverse
to the direction of shock front propagation, i.e., to x || [100]pe and y || [010]pee. The initial shock
compression is induced by imposing a velocity of 850 m.s~! on the rear face along z || [001]pcc,
while the free surface is located at the extremity of the rectangular parallelepiped-shaped samples,
as depicted in Fig. (2.9a). The unshocked material is at rest at t = #; = 0, while the final simulation
time #; is related to the physical time f. for acoustic waves to travel through the sample. The
dynamical loading conditions are controlled by assuming that {; = 2.5, such that the acoustic
waves run over 2.5 times the samples during the entire simulations. Thus, . = L./cr, where
L, is the initial box length in the [001],.. shock direction, with L, = 16L, = 16L, = 1.28 mm,
and cy, is the longitudinal wave celerity in iron, defined by ¢, = \/ b%,/po, with bf; = 271 GPa
the corresponding low-pressure elastic component of the pure bec iron [163]. It therefore follows
that: ¢; = 5850 m.s !, so that tr ~ 0.55 s, which corresponds to the duration of all calculations.
For convenience, a dimensionless time t* is defined as t* = t/1;, while the dimensionless length
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FIGURE 2.8: Transformational states defined in both strain and current mesh spaces at (a) t* = 0.6 and
(b) t* = 1.0, for calculations without and with plasticity. Each black dot in the strain space represents the
current transformational strain Ct for all mesh elements, while the colors along the pathways are associated
with the corresponding phases and variants in the 3D simulated microstructures. Without plasticity, the
initial bcc a-Fe phase remains in a large fraction (~26.6%, in gray) at t* = 0.6, whereas the calculation
with plasticity exhibits a polycrystalline iron formed by the 6 hcp e-Fe variants only (red gradient). On
the release of hydrostatic pressure, the former is transformed back to the initial single-crystal bcc iron at
t* = 1.0, while the latter shows the presence of 12 reversed bcc a’-Fe with ~12.3% volume fraction.

L* along z is given by L* = z/L,, so that both quantities t* and L* are ranged between 0 and
1. Moreover, the classical sign convention in continuum mechanics is used, so that compressive
(extensive) volumetric stresses have negative (positive) signs.

The capability of the continuum element-free Galerkin model to reproduce the experimental
multiple split-wave structure is illustrated in Fig. (2.9) by displaying the spatial heterogeneous dis-
tribution of the pressure behind the incident compressive wave. Figures (2.9c) and (2.9d) show the
corresponding two- and three-wave structures for representative simulations without and with
plasticity at t* = 0.35, respectively. Different regions, namely, the initial unshocked, the elastically
compressed bcc iron, and the transformed regions with high-pressure hcp Fe multivariants are
also depicted. Furthermore, the plastically deformed bcc iron can be displayed for the calculation
with plasticity in Fig. (2.9d). A sharp PT wave front is exhibited without plasticity, while a more
complex rough PT front (see inset in Fig. (2.9d)) is shown to generate multiple planar pulses (as
depicted by the vertical double-headed arrows) that propagate toward the leading plastic front.
These localized traveling-wave fronts are suddenly produced by the dynamical phase transitions
with high velocity in the compressed bcc region with high-pressure elastic properties. The con-
sequences of the complex three-wave structure and competing wave interactions in the evolving
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FIGURE 2.9: (a) Schematics of the finite deformation framework that combines nonlinear elasto-
viscoplasticity and multivariant phase-field theory to model the shock-induced response of single-crystal
iron along the [001]p. direction. (b) Distribution of the pressure resulting from three-dimensional sim-
ulation without plasticity. The unstable shock wave breaks up into the elastic precursor and the phase-
transition wave, which leads to different internal deformation states at material points. (c) Similar calcu-
lation with plasticity, within which an intermediate plastic wave front propagates between the elastic and
phase-transition wave fronts. The inset shows a rough phase-transition front, leaving behind a complex
high-pressure microstructure with preferred selection and evolution of hcp variants.

deformation microstructure are elucidated in the following sections.

The shocked-induced microstructure during the martensitic phase transitions (also, the PT
front) is analyzed in the six-dimensional Cauchy-Green strain space, as illustrated in Fig. (2.10).
Thus, the deformation states that are mapped and visualized by colored points correspond to the
local transformational distortions experienced by the iron samples. Each color is associated with
the index of the nearest first-rank variant V}. Figures (2.10a) and (2.10b) depict the corresponding
states that are captured when the elastic fronts reach the free surfaces for calculations without
plasticity and with plasticity, respectively. The former shows that two hcp variants are nucleated
without plasticity, denoted by V; and V,. These two preferential e-Fe variants are formed with
different volume fractions, i.e., 62% for V; and 35% for V;, and are thoroughly promoted by the
[001]p direction of the shock. On the other hand, although the calculations with plasticity ini-
tiate the early formation of the same two variants, the four companion hcp variants are rapidly
nucleated behind the PT wave front with comparable volume fractions. This microstructural fin-
gerprint exhibits a crucial role played by the plastic deformation in nucleating and selecting all six
energetically equivalent hcp variants in Fig. (2.10b). According to the previous simulations un-
der high-pressure hydrostatic compression, the single-crystal iron has been transformed at high
pressure into a polycrystalline microstructure that consists of the same six hcp variants, without
any retained initial bcc phase. It is therefore suggested that the present high strain-rate plastic
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FIGURE 2.10: (a) The three-rank network of reaction pathways is projected in a {Cy, C;, C3} strain space,
within which the local transformational Cauchy-Green Ct strain states at all material points are displayed
with different colors (each color is associated with a specific hcp variant from the first-rank group symme-
try operation). The results are related to the simulation without plasticity, captured at the instant when the
elastic front reaches the free surface, revealing the nucleation of two (from amongst six possible variants)
preferred hcp variants. (b) Similar simulation with plasticity at the same time instant as in (a), where the
other four energetically equivalent hcp variants are activated in the transformed polymorphic microstruc-
ture. Such structural features indicate that the high strain-rate plastic deformation is locally capable of
producing a nearly relaxed hydrostatic state from the uniaxial strain state produced by the shock-wave
compression.

deformation can locally achieve a similar nearly relaxed three-dimensional hydrostatic state from
the uniaxial strain state produced by the shock-wave compression. The nucleation of all (also, six)
high-pressure hcp variants have never been described by atomistic calculations of shock-loaded
iron, certainly because of the small dimensions that hinder plastic relaxation needed to nucleate
these four companion hcp variants. For instance, two twinned hcp variants, separated by nonco-
herent grain boundaries (GBs), are observed in Refs. [137, 138].

2.4.2 Effect of plasticity in shock-loaded iron

Because the deformation processes act as distinctive signatures in shock-compressed samples, re-
flecting the history the solid experienced (in terms of velocity, shock pressure, etc.), three averaged
quantities over the computational samples are plotted in Fig. (2.11). Slice-averaged quantities
within spatial planar bins (of one element width) are also used to quantify the role of plasticity
in tailoring the complex microstructure from the uniaxial strain deformation, namely the free-
surface velocity v, in Fig. (2.11a), the pressure p = —(0xx + oy + 02)/3 in Fig. (2.11b), and the
von Mises stress oy in Fig. (2.11c) with respect to t*, obtained without (gray curves) and with
(black curves) plasticity. Both averaged quantities p and oy are displayed with respect to L*
along the z || [001],. loading direction of the samples.

Figure (2.11a) shows the presence of two distinct plateaus for the free-surface velocity profile
without plasticity (gray curve), supporting by the split two-wave structure into the noticeable
fastest elastic and the phase-transition (denoted by PT, see arrow) waves. The elastic wave is
characterized by the elastic precursor Ep with v, = 255 m.s™!, while the phase-transition front
produces a considerable increase of the velocity at free surface, up to v, = 1660 m.s~!. On the
other hand, the simulation with plasticity shows a much more complex velocity profile, where
the multiple-wave structure consists inter alia of the elastic precursor Ep with the same velocity
as the case without plasticity, the plastic (P wave) front, and the elastic wave reverberation with
the on-going PT wave, i.e., the rEp wave. This wave profile is comparable to those reported in
experimental works with distinct three-wave structures [19, 130]. The instants when both P and
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FIGURE 2.11: (a) Free surface velocity histories from shock-loaded iron samples without (gray curve) and
with (black curve) plasticity. The former is caused by the arrival of the elastic precursor (denoted by Ep)
and of the phase-transition (PT) wave. The latter is decomposed by Ep, the plastic (P) wave front, and rEp
that results from the interaction between the reflected Ep front at the free surface and the on-coming PT
wave. (b) The representative profiles of pressure in GPa along the [001]p,. direction for both calculations
without and with plasticity. The slice-averaged values within spatial planar bins of one finite element width
correspond to the three-dimensional microstructures in Figs. (2.9c) and (2.9d). (c) The von Mises stress in
GPa for both calculations without and with plasticity.

rEp waves reach the free surface are displayed by the double-headed arrows in Fig. (2.11a), cor-
responding to v, = 880 m.s! and v, = 1170 m.s™}, respectively. It is worth noting that both
reflected Ep and P waves that propagate back in the elastically compressed and plastically de-
formed bcc iron (thus, along the [001],.. direction) produce a residual stress state that does not
favor the mandatory forward a — € phase transitions. The interaction in releasing the stresses
between the reflected Ep and P waves with the PT wave encourages therefore the reverse € — a
phase transitions, without retaining any e-Fe hcp phase nor without forming any a’-Fe bec vari-
ants. Interestingly, this feature differs from the pure hydrostatic compression loading, for which
a significant residual volume fraction (~ 12%) of &’ bcc inclusions has been obtained in the mi-
crostructure after the reverse phase transformations. Consequently, the incident PT wave cannot
reach the free surface for calculations with plasticity, in contrast to the simulation case without
plasticity. Additionally, it is worth mentioning that the amplitude of the steady-state free-surface
velocity with plasticity is close to the one without plasticity, i.e., v, = 1707 m.s~!, which is roughly
twice the particle velocity of 850 m.s~! imposed on the rear face behind the incident shock as a
loading condition, consistently with the traction-free conditions at free surfaces.

Both calculations without and with plasticity in Fig. (2.11b) exhibit a similar elastic state where
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compression remains uniaxial in the [001],. direction, characterized by a pressure pg = 3.9 GPa
in the elastically compressed bcc phase. By considering this threshold pressure as the Hugoniot
elastic limit for the plasticity-free case, the value of 3.9 GPa is defined between two reference exper-
imental data in polycrystalline iron samples, i.e., ~ 2.1 GPa [292] and ~ 5.5 GPa [230]. It is worth
mentioning that the similar computed values for both uniaxial elastic limits without and with
plasticity are fortuitous since the former corresponds to the transformational front (accompanied
by both hydrostatic and deviatoric stresses), while the latter is related to the plastic front (mainly
controlled by deviatoric stresses). In practice, once the phase transformation operated by one spe-
cific variant is initiated, the excess free energy between both bcc and hep iron phase promotes
a partially-to-complete shock-induced transition that behaves differently than pure pressure, as
quantified by eq. (2.37). The corresponding released stress state after this phase transformation
is much more complex than the stress state behind the deviatoric stress-driven plastic front. The
changes from the uniaxial shock compression to a complex stress state after phase transitions
in the plastically deformed iron cannot therefore be captured by a usual pressure-shock velocity
(e.g. represented by a Rayleigh line), yielding an important distinction between the shock physics
described at the macroscopic scale and ones described at the grain scale. Behind the traveling
Ep wave front, the pressure profile depicts the presence of one (two) plateaus for calculations
without (with) plasticity. The former exhibits the presence of the PT wave front as the pressure
dramatically increases up to ppr = 37.7 GPa. The latter profile shows an intermediate pressure
plateau that characterizes the plastically deformed bcc region, within which the forward a — €
phase transitions start roughly at the onset pressure ppr = 18.2 GPa, as indicated by the dotted
line in Fig. (2.11b). This value is on the range of experimental values for single-crystal iron under
hydrostatic pressure [78], and in excellent agreement with large-scale molecular dynamics sim-
ulations in single-crystal iron as well, i.e., 18 GPa along the same [001]p.. shock direction [274].
Here, the value deviates from the conventional macroscopic threshold from experiments on poly-
crystalline Fe samples (occurring at 13 GPa [17, 19]), for which the GBs with pre-existing intrinsic
defects reduce the amplitude of the forward transition pressure [105, 275, 297]. Achieved after the
complete phase transformation of the bcc into hep variants, the upper plateau is governed by the
load intensity and is reached at p = 44.1 GPa, slightly higher than the pressure without plasticity.
This value is in very good agreement with recent results from molecular dynamics simulations in
shocked iron [4], where a maximum mean pressure of ~ 40 GPa has been measured by applying
a comparable piston velocity of 800 m.s~!.

Figure (2.11c) shows the corresponding values for the von Mises stress, with oy = 2.7 GPa
for both simulations in the elastically compressed bec iron. Then, the large von Mises stress profile
increases inhomogeneously in the sample without plasticity, which is due to a heterogeneous dis-
tribution of both hcp variants V; and V; in the microstructure with lamellar arrangements along
the shock direction (not shown here). The maximum value is oy = 18.1 GPa. With plasticity,
however, the volume-preserving plastic deformation relaxes significantly the internal von Mises
stress to reach an averaged von Mises stress of oy = 1.1 GPa (< 3.9 GPa, at the peak Hugo-
niot elastic state) in the shocked-induced hcp multivariant region. This difference asserts the role
played by plasticity to release the shear stress state produced by the uniaxial strain compression to
obtain a roughly hydrostatic state with 6 high-pressure hcp variants (instead of 2 variants without
plasticity) in the transformed heterogeneous microstructure.

Figures (2.12a) and (2.12b) capture the evolution of the longitudinal stress component in the
shock direction 03, in the Lagrangian adimensional position-time (L*,t*) diagrams, without and
with plasticity, respectively. The non-steady-state regimes of the present elastic precursor (Ep,
solid lines), plastic (P, dashed), and phase-transition (PT, dotted) waves —moving with different
average speed so that net distances between the respective fronts increase with time— exhibit a
more complicated picture for the three-wave structure with the high strain-rate plasticity than
the corresponding diagram without plasticity. The reflection of the incident fronts from the free
surfaces are depicted as well.
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FIGURE 2.12: (a) Slice-averaged maps of the longitudinal stress component ¢, in the Lagrangian adimen-
sional position-time (L*, t*) diagram from simulation without plasticity. The two-wave (composed of the
elastic Ep and phase-transition PT waves) structure with the reflection of both waves at the free surface are
shown using different line types. (b) The three-wave structure with the presence of the intermediate plastic
wave (P wave) front illustrates a considerably more complicated scenario of nonlinear wave interaction.
As depicted by the arrows, this calculation with plasticity reveals two nucleation events at t* = 0.10 and
t* = 0.27, which result in the inhomogeneous propagation of the the trailing PT wave and in the presence
of a stress-release envelope. The latter travels faster than the leading shock and is characterized by a lower
longitudinal stress in magnitude.

The leading E wave front, traveling at 5412 m.s~! (5541 m.s!) for calculation with (without)
plasticity, leaves the iron system in an elastically compressed state with high-pressure proper-
ties. The former value is in excellent agreement with the computed shock velocity of 5409 m.s~!
using atomistics simulations in single-crystal iron without pre-existing defects [137], which is
consistent with the present calculations. Without plasticity, the trailing PT front travels homo-
geneously in the sample at 4655 m.s~!. For the three-wave structure, the nearly over-driven P
front (but not over-run, i.e., characterized by a finite separation between the E and P waves) prop-
agates at 5059 m.s!, while the slower heterogeneous PT front travels with intermittent regimes
at 3002 + 99 m.s~!, which is much lower than the homogeneous PT front without plasticity. In
contrast to the case without plasticity, the intermittent propagation of the PT front with plasticity
reveals the presence of i) sudden nucleation events of hcp variants (as depicted by the arrows in
Fig. (2.12b)), and consequently of ii) a so-called traveling release-stress envelope. This envelope
propagates by reflection between the rear surface on the left-hand side of the sample and the PT
wave before interacting the (unloading) reflected Ep wave with the free surface, as displayed by
the asterisk * in Fig. (2.12b). It precedes always the slower wave, i.e., the PT wave, but travels
faster than the elastic wave at 8312 m.s™! in the transformed high-pressure regions of iron (i.e.,
with high pressure-induced stiffness and density). These distinct nucleation sites of hcp variants
are not experienced for calculations without plasticity, exhibiting again the specific role played by
the plastic deformation in governing such microstructural features. Analogous distinct nucleation
events in position-time diagrams have been observed in shocked crystalline 1,3,5-triamino-2,4,6-
trinitrobenzene using large values for the input parameter ¢ in molecular dynamics simulations
[152].

2.4.3 Residual stresses in the plastically-deformed microstructure

Figures (2.13a) display three shock-induced microstructures M;, M, and M3 in Fig. (2.12b) that are
associated with t* = 0.21, t* = 0.27, and t* = 0.44, respectively, for the calculation with plasticity
only. For these microstructures, various stress-related quantities, i.e., the longitudinal Cauchy
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FIGURE 2.13: (a) Three-dimensional time snapshots of shock-induced microstructures, designated M; at
t* = 0.21, (b) My at t* = 0.27, and (c) M3 at t* = 0.44, from the position-time diagram in Fig. (2.12b) for
simulation with plasticity. From top to the bottom, each panel captures the heterogeneous distribution of
various stress quantities, namely, the longitudinal Cauchy stress o, the shear stress T, the stress-related
quantities s, and ss to the second invariant ], using eq. (2.66), as well as the polycrystalline high-pressure
domains composed of six hcp variants. These variants are colored using the same code as in Fig. (2.10b),
while the transparent zones are associated with the initial unshocked bec iron. As displayed by *, a dynamic
instability in the polymorphic phase transitions is observed in M, leading to the nucleation of a large
monovariant with columnar growth in the microstructure that is still visible (x*) after the propagation of
the incident phase-transition wave front. (b) The color legends associated with the stress-related quantities.

stress tensor component in the shock direction ¢, the shear stress T = ((Tzz — ((Txx + (Tyy) / 2) /2,
sy, and s;, as well as the corresponding hcp variant selection, are displayed. Both stress quantities
s and s, are related to the second invariant of the stress deviator J, and the von Mises stress oy
by

3 = U‘%M = %devcr: deveo = %sn + 6s;, (2.66)

where dev ¢ is the deviatoric part of o, so that s, and s, are defined by

Sn = (Uxx — ‘Tyy)z + (Uyy — Uzz)z + (Uxx — Uzz)z

2.67
55:0§y+(7§z+02 @67)

Xz 7/

with 0y, 0y, and 0y, being the orthogonal shear stresses. As a signed quantity, the shear stress
7, which equals to the von Mises stress if the off-diagonal terms are neglected, can also have
positive (in red) or negative (green) values depending on the magnitude of ¢,, with respect to
(0xx + 0yy) /2. All color legends for the stress-related quantities are displayed in Fig. (2.13b).

At instant t* = 0.21, the split three-wave structure into the Ep, P, and PT wave fronts is clearly
distinguishable by the change in magnitude of ¢, in Fig. (2.13a). Close to the phase-transition
front, the transformed region with 6 high-pressure hcp variants is characterized by positive val-
ues of the shear stress T (values in red). Between the PT and P wave fronts, the shear stress T
is negative (green), the stress field s is zero, while the quantity s,, exhibits the presence planar
surfaces as pulses generated by the PT front that dynamically nucleates the hcp variants. These
six variants are pictured with the same colors as in Fig. (2.10b). Behind the complex rough PT
front, some hcp grains grow preferentially into flaky morphology with (110)pe. and (110)pe. habit
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FIGURE 2.14: (a) Slice-averaged magnitude of the plastic Green-Lagrange strain tensor Ep in the Lagrangian

adimensional position-time (L*, t*) diagram from simulation with plasticity. The elastic and plastic wave

fronts with constant velocities are shown using different line types as well as two (primary and secondary)

phase-transition zones that are associated with specific nucleation of release and reload variants (see text

for details). (b) The corresponding selection of hcp variants, categorized into two groups, so-called G; =
{V1+ V,} (inblue) and Gy = {V5 + V4 + V5 + Vs } (red).

planes of the bcc iron, which are transformed into the (0001)q, close-packed planes after the
phase transition.

At t* = 0.27, the presence of a dynamical instability in the compressed and plastically de-
formed microstructure is shown. This occurs under a complex stress state that is responsible to
an extremely rapid nucleation of a large single-crystal hcp variant V; (in orange, as depicted by
* in My in Fig. (2.13a)) with columnar growth in the direction of the shock loading. This sponta-
neous nucleation is characterized by a notable change in sign of the shear stress T from negative
(green) to positive (red) values. The ideal volume-reducing transition path of the strain-free mono-
variant V; requires a compression of ~ 12.5% along the z || [001], direction, as defined by the zz
component in eq. (2.37). This sudden nucleation event gives rise to the aforementioned traveling
release-stress envelop in Fig. (2.12b), which is also characterized by a finite domain with positive
shear stress values, as depicted by white double-sided arrows in M, and M3. Surrounded by the
initial bcc phase, the variant V; is able to grow in the shock direction, whereas the confined region
between the PT front and V; in M, becomes an unstable zone for nucleation of high-pressure vari-
ants. Similar shock-driven regions of instabilities, within which local nucleation of hcp embryos
occur, have been observed by Wang et co-workers using atomistic simulations [273].

Although V; is still visible at instant t* = 0.44, the phase-transition wave front continues to
propagate in the shock direction, exhibiting the coalescence of the hcp variants and also a specific
morphological fingerprint of shock-induced hcp variants with large transformed bands (due to
the periodic boundary conditions) at high pressure. A thickness of ~ 77 ym for V; is found in
the z || [001]pe direction, which also depends on the shock velocity (results not shown here).
Overall, s, exhibits large values in the elastically compressed zones, which significantly decrease
as soon as the nucleation of growth of hcp variants take place during the polymorphic phase
transitions. In turn, because both quantities s,, and s; quantities play a complementary role in the
present |, plasticity theory, ss gives rise to large values in the phase-transformed hcp regions. The
aforementioned transformed bands are therefore considered here as an important mechanism of
stress relaxation under shock compression at high strain rate, thus providing novel guidelines for
future experimental diagnostics of shock wave propagation in iron.
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FIGURE 2.15: Schematics of the presence of internal dislocation structures at solid-solid interfaces.

2.44 Dynamical instability in structural phase transitions

Figure (2.14a) illustrates the shock-induced instability in the structural phase transitions by means
of the magnitude of the plastic Green-Lagrange deformation Ep, defined by |Ep| = |Fp'- Fp —1|/2.
This quantity is plotted in the Lagrangian adimensional position-time (L*,t*) diagram, where t*
is restricted between 0 and 0.5 for clarity, so that the multiple reflections of incident waves from
the free surface are conveniently omitted in the following discussion. It is shown that the propa-
gation of the PT front gives rise to a spatially (not temporally) heterogeneous distribution of |Ep|
with local values up to 0.25. This localization of plastic deformation is therefore strongly corre-
lated with the specific selection of shock-induced hcp variants, which can be separated into two
pertinent groups, so-called G; = {V; + V2 } and G, = {V5 + V4 + V5 + Vi }, each set involving dif-
ferent features of the microstructural fingerprints in shock-loaded iron. Thus, Fig. (2.14b) displays
the variant selection during the shock wave propagation using a linear interpolation of color to
distinguish the presence of both groups G; (blue) and G, (red) in the microstructure. As already
mentioned, both V; and V, variants (from amongst six available variants) of G; are promoted by
the shock direction in the first instants of the shock wave propagation. Since the two-phase mix-
ture induces a large contraction along the loading z || [001],. direction, the corresponding group
G is composed of variants designated by "release variants". However, the second group G,
which consists of a mixture of the complementary four variants with identical volume fractions,
experiences an expansive reaction in the shock direction. In contrast to G1, these newly-formed
variants of G; are also expected to generate an expansion (or reloading) wave, which are therefore
not promoted by the initial compressive (or loading) wave. In the following, the four variants of
G, are denoted by "reload variants", for which the nucleation is accompanied by severe plastic
deformation with large values of |Ep|, as indicated by Fig. (2.14a).

2.5 Limitations

While the present phase-field approach is capable of considering the elastic mismatch between
low- and high-pressure variants during the pure pressure- and shock-induced phase transfor-
mations in iron, the coexistence of both solid-state phases with different crystal structures (e.g.
lattice parameters) yields to the loss of lattice coherence at the interfaces. This also means that the
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perfect lattice correspondence across the bec/hcp interfaces as well as the misoriented hep /hep
grain boundaries obtained in Fig. (2.8) becomes an implausible model assumption, and that the
current description of the crystalline interfaces during solid-solid phase transitions remains obvi-
ously incomplete. In fact, experimental observations of such interfaces show that coherent inter-
faces break down through the formations of misfit dislocation structures, as sketched in Fig. (2.15)
with internal hexagonal dislocation patterns. The resulting "semicoherent interfaces" consist of
coherent regions separated by these interfacial dislocation structures. Since the earliest observa-
tions of dislocation arrangements into periodic patterns along solid-state interfaces in a variety
of conditions [6, 54, 5, 65], the advantages/inconveniences introduced by the presence of such
crystal defects in high-technology applications have been addressed in interdisciplinary materials
science and engineering [237, 95], involving chemistry, physics, electronics, metallurgy, mechan-
ics, etc. Extensive investigations have indicated that the interfacial dislocation patterns at grain
and interphase boundaries may, however, be designed to increase the unprecedented levels of
high strength [7], ductility [300], and radiation-induced damage tolerances [26] in nanocrystalline
polycrystals, nanolayered laminated composites, precipitation-strengthened alloys, and epitaxial
free-standing thin films. In part, the fundamental problem of characterizing the dislocation struc-
tures and energetics at heterophase interfaces is treated in the following chapter 3.
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Chapter 3

Dislocation structures and energetics at
heterophase interfaces
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3.1 Motivation

Far from being featureless dividing surfaces between neighboring crystals, interfaces in homo-
and hetero-phase solids have internal structures of their own. These structures depend on in-
terface crystallographic character (misorientation and interface plane orientation) and affect the
physical properties of interfaces, such as interface energy [73], resistivity [42], permeability [125],
mechanical properties [141], morphology and variant selection of precipitates [210], point defect
sink efficiencies [225], and mobilities [147]. To better understand and control the properties of
interfaces, it is desirable to be able to predict their internal structures. The first part of this chap-
ter 3 presents a method for predicting a specific interface structural feature: the Burgers vectors
of intrinsic dislocations in semicoherent homophase and heterophase interfaces. This informa-
tion is then used to compute the interface elastic strain energies in standard tilt and twist GBs as
well as the partition of elastic distortions at complex heterophase interfaces. An application to
the sink strength of semicoherent interfaces is described in section 3.5, for which the non-random
walk diffusion of radiation-induced defects is highly sensitive to the detailed character of inter-
facial stresses. The follow-up extensions to the elastic strain relaxation in interfacial dislocation
patterns and to the elastic interaction with extrinsic dislocation arrays and loops are investigated
in sections 3.6 and 3.7, respectively.

One way of studying interface structure is through atomistic simulations, which explicitly ac-
count for all the atoms that make up an interface. However, this approach is not always practical
or efficient: it can be very resource-intensive because it requires a separate simulation for each in-
dividual interface. Thus, it does not lend itself to rapidly scanning over many different interfaces,
for example if one were searching for trends in interface structures or for tailored interfaces with
a specific structure. Low-cost, analytical techniques for predicting interface structure would be
preferable in such situations.

One widely used analytical approach applies to semicoherent interfaces and describes inter-
face structures in terms of intrinsic dislocations using the closely related Frank-Bilby [93, 30] and
O-lattice [32, 296, 237] techniques. Both procedures require the selection of a reference state, within
which the Burgers vectors of individual interface dislocations are defined. Because this choice
does not affect the calculated spacing and line directions of interface dislocations, it has some-
times been viewed as if it were arbitrary. In practice, one of the adjacent crystals [145, 110, 289] or
a "median lattice" [91] have often been used as the reference state.

However, the choice of reference state does influence the values of far-field stresses, strains,
and rotations associated with interface dislocations. These, in turn, are usually subject to con-
straints, namely that the far-field stresses be zero and that the far-field rotations be consistent
with a prescribed misorientation. Thus, the choice of reference state is in fact not arbitrary. As
discussed by Hirth and co-workers [119, 122, 123], the importance of selecting proper reference
states has often been overlooked in part because the best-known applications of interface dislo-
cation models are to interfaces of relatively high symmetry, such as symmetric tilt or twist GBs,
for which correct reference states are easy to guess. Furthermore, many analyses assume uniform
isotropic elasticity, which leads to equal partitioning of interface dislocation elastic fields between
the neighboring crystals. In general, however, interfaces need not have high symmetry and the



38 Chapter 3. Dislocation structures and energetics at heterophase interfaces

neighboring crystals may have unlike, anisotropic elastic constants. By use of heterogeneous and
anisotropic elasticity theory, the correct selection of reference states in such general cases is far
more challenging.

Elasticity theory for analyzing semicoherent interfaces and determining the field solutions pro-
duced by interface dislocations has been initiated by van der Merwe [244]. The concept of misfit
dislocations, which act as stress annihilators to free the total stress fields far from the interfaces,
has been introduced using the Peierls-Nabarro model to formulate a misfit dislocation theory for
critical thicknesses of strained and layer systems during epitaxial growth of structures with two
isotropic semi-infinite solids [245, 243]. The problem of single straight screw and edge disloca-
tions and dislocation arrays situated at the interface between two anisotropic elastic half-spaces
has received special attention in the literature [282, 60, 21, 34, 283, 277, 260, 146], for which the
dislocation-based calculations and also mechanisms may be significantly altered when isotropic
elastic approximation is considered.

By means of the Stroh sextic formalism [234, 235] with a Fourier series-based technique, the
geometry of interface dislocation patterns as well as the corresponding Burgers vectors have been
solved using anisotropic elasticity theory in bicrystals with two sets of dislocations [260, 258, 261].
This computational method for structural and energetic properties of individual heterophase in-
terfaces has been extended by taking into account the presence of free surfaces in bi- and tri-
layered materials [247, 248] and the local reactions between planar and crossing dislocation arrays
to form new dislocation arrangements [249, 250]. Application examples have revealed the signifi-
cant influence played by elastic anisotropy in the interactions between the semicoherent interfaces
and radiation-induced point defects [255] as well as extrinsinc dislocation loops [256].

3.2 Determining the Burgers vectors of interface dislocation arrays

The notion of introducing Volterra dislocations into a reference state for constrained interfaces is
consistently defined with the Frank-Bilby equation that are free of far-field stresses.

3.2.1 Planar interfaces in linear elastic bicrystals

In the present analysis, planar interfaces are considered formed by joining two semi-infinite linear
elastic crystals, for which the crystallography of the interfaces has been specified completely. For a
GB, this requires five parameters: three to describe the relative misorientation between neighbor-
ing crystals and two to describe the orientation of the GB plane [237]. For a heterophase interface,
the number of crystallographic DoFs may be higher. For example, an interface between two fcc
crystals such as Al and Ni would require the lattice parameters of the two neighboring metals to
be given in addition to the five parameters needed for a GB. Interfaces between materials with
differing crystal structures may require further parameters.

To describe completely the crystallography of a heterophase interface between elements A and
B, the notion of a "reference" state for the interface is adopted: in the reference state, the interface is
coherent, i.e. the two separate crystals that meet at the interface are rotated and strained [131, 237]
such that they are in perfect registry with each other across the interface plane after bonding.
Thus, the reference state has the interface structure of a single perfect crystal.

Starting from the reference state, materials A and B are mapped separately into new configura-
tions that yield an interface with the required crystallographic character and zero far-field stresses,
as shown in Fig. (3.1). Following Hirth, Pond, and co-workers [123], the state of the interface after
this mapping is referred as the "natural” state. For a GB, the maps applied to materials A and B are
proper rotations while for a pure misfit interface they are pure strains. To account for both cases
as well as for heterophase interfaces between misoriented crystals, the maps are described as uni-
form displacement gradients ,F and 3F. In the reference state, the neighboring crystals might not
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Reference state Natural state

Volterra dislocations Coherency stresses »F Equilibrium interface dislocations in
with far-field stresses — a far-field stress-free bicrystal
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FIGURE 3.1: Mapping from a coherent reference state to the natural state using displacement gradients ,F
and sF. Volterra dislocations introduced into the reference state remove coherency stresses and may change
the misorientation of the neighboring crystals.

be stress free, but the interface is coherent. In the natural state, the interface is not coherent, but
the neighboring crystals are both free of far-field stresses.

This framework is sufficiently general to describe the crystallography of many commonly
studied heterophase interfaces, e.g. ones formed by fcc and bce metals [73, 75], but not all. For
example, mapping from a common reference state to an interface between a cubic and hcp crystal
cannot directly be accomplished by a displacement gradient alone and requires an internal shuffle
rearrangement, as mentioned in section 2.2.5. The present chapter 3 is also focused on materials
that may be mapped to a common reference state using displacement gradients alone.

The crystallographic considerations described above do not require a single, unique reference
state. On the contrary, an infinite number of new reference states may be generated from an
original one by applying to it any uniform displacement gradient zF. If the original reference
state may be mapped to the natural state with ,F and ;F, then the new reference state may be
mapped to the same natural state using ,F <F~1and zF:F~1. However, a consistent description of
the elastic fields of a discrete dislocation network in an interface of specified crystallography and
free of far-field stresses does require a single specific reference state.

3.2.2 Volterra dislocations in the reference state

The atomic structures of real interfaces are not like those generated by the linear mappings from a
reference state. Instead, for any given interface crystallography, the atomic structure may undergo
a variety of local relaxations or reconstructions that lower its energy. In many low-misorientation
GBs and low-misfit heterophase interfaces, these changes lead to formation of regions of co-
herency (which generally have low energies) separated by networks of intrinsic dislocations.
Many such interface dislocation networks have been imaged using transmission electron mi-
croscopy [5].

There are two common ways of describing interface dislocations. In one, they are viewed not
as conventional Volterra dislocations, but rather as special kinds of interface defects with short-
range elastic fields that are formed when the interface atomic structure in the natural state relaxes
[120, 37]. The superimposed elastic fields of all such defects residing within an interface decay
away to zero at long range and therefore do not alter the far-field stress state or the crystallography
of the natural interface state.

Another description—the one adopted here—views interface dislocations as genuine Volterra
dislocations with resultant elastic stress fields that need not decay to zero at long range. For
example, the structure of some pure misfit heterophase interfaces may be described as an array of
equally spaced edge dislocations residing on the same glide plane [181]. Such an array of Volterra
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dislocations has a non-zero far-field stress [7]. Certain symmetric tilt GBs may be described as
arrays of edge dislocations lying directly one above the other on separate glide planes. These
Volterra dislocation arrays have zero far-field strains (hence, also zero stresses [7]), but possess
non-zero rotations at long range [213, 164]. In general, arrays of Volterra dislocations may have
non-zero far-field strains, rotations, or both.

In the work described here, interface dislocations are viewed as Volterra dislocations that have
been introduced into the reference state, as shown in Fig. (3.1). Therefore, the far-field stresses
due to these dislocations 503, and g0y, are equal and opposite to the coherency stresses ,o. and
0. in the reference state respectively, leading to the removal of all far-field stresses in the natural
state:

A0c+ 403 =0, and, poc+3og =0. (3.1)

Although free of long-range stresses, interface dislocation networks in the natural state have non-
zero short-range elastic fields as a result of the superposition of the non-uniform stress fields
of the Volterra dislocation networks and the uniform coherency stresses in the reference state.
Additionally, the far-field rotations due to the Volterra dislocations are required to conform to
the given interface crystallographic character. These requirements restrict the choice of reference
states to a single specific one.

The notion of introducing Volterra dislocations into the reference state primarily is treated
as a hypothetical operation. However, this operation may be a physically meaningful analog of
processes occurring at some real interfaces. For example, the transformation of certain coherent
heterophase interfaces into ones that are not coherent, but free of far-field stresses, occurs by the
deposition on the interface of Volterra dislocations that glide through the neighboring crystalline
layers [181, 182]. Similarly, subgrain boundaries are thought to assemble from glide dislocations
formed during plastic deformation of polycrystals [8].

3.2.3 Crystallographic constraints on interface dislocations

A variety of shapes of interface dislocation networks have been observed [5], such that the ones
that may be represented by j < 2 arrays of parallel dislocations with Burgers vectors b;, line
directions ;‘j, and inter-dislocation spacings dj. Following previous investigators [93, 30, 237],
these quantities are related to the density of admissible Volterra dislocations in the reference state
and interface crystallography as

j .
Bzg(%ig’-p) bi=(F'—F )p=Tp, (3.2)

where #n is a unit vector normal to the interface and the so-called probe vector p is any vector
contained within the interface plane. Equation (3.2) is known as the quantized Frank-Bilby equa-
tion [237, 289], where T corresponds to an average operation that maps p to the resultant Burgers
vector B of interface dislocations intersected by p.

The individual Burgers vectors b; of interface dislocations are assumed to be related to the
crystal structure of the reference state. For example, if the reference state is an fcc crystal of lattice
parameter a, values of b; may be drawn from a set of §(110)-type glide or (112)-type Shockley
partial dislocation Burgers vectors. Once the set of admissible Burgers vectors is known, well-
studied methods stemming from Bollmann’s O-lattice theory [32] may be used to compute n, ¢;,
and d; [145, 289] from the O-lattice vectors p?, defined by

b =Tp°. (3.3)

The O-lattice vectors p{ —and therefore both ¢; and d;—do not depend on the choice of reference
state. If an original reference state is mapped to a new one using displacement gradient yF, then b;
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is mapped to b; = xF b;. Here and in the following, the superimposed inverse caret will be used to
indicate trial values of variables. The new reference state may also be mapped to the natural state
using AF = \FrF1and ;F = ;FF 1, as discussed in section 3.2.1. Assuming that rank T = 3, the
O-lattice vectors computed from the original and new reference states are identical:

P =T b= (\F ' —F 1) by =P (3.4)

This conclusion may also be shown for matrix T of rank 2 or 1. Thus, for a given set of Burgers
vectors b;, interface crystallography uniquely determines interface dislocation line directions ¢;
and spacings d;, but not the reference state. Based on this result, some authors have argued that
the choice of reference state is truly arbitrary [32]. However, in different reference states, b; will
clearly have different magnitudes and directions, both of which influence the magnitudes of the
elastic fields generated by interface dislocations (the latter by altering their characters).

3.2.4 Solution strategy

Determining the elastic fields of semicoherent interfaces requires finding the correct interface dis-
location Burgers vectors, which are defined in the coherent reference state. The following five-step
strategy is applied to determine the specific reference state that meets the constraints of interface
crystallographic character and zero far-field stresses.

Step 1: Solving for geometry of dislocation networks

As shown in section 3.2.3, the geometry of interface dislocations (their line directions and spac-
ings) is independent of the choice of reference state. Thus, a reference state is chosen identical
to one of the crystals adjacent to the interface in its natural state. This choice provides an initial
guess of the interface dislocation Burgers vectors. Then, the interface dislocation geometry is de-
termined by using standard methods [31, 145, 110]. Multiple dislocation geometries are possible
in some interfaces, but attention is restricted in this section to interfaces with unique geometries.

Step 2: Solving for interface dislocation elastic fields

The complete elastic fields, produced by the arrays of dislocations found in step 1, are determined
using anisotropic linear elasticity theory in bicrystals. The elastic fields are assumed to follow the
periodicity of the two-dimensional dislocation structures predicted in step 1 and must also satisfy
specific boundary conditions at the interfaces.

Step 3: Solving for far-field distortions

The far-field distortions associated with each set of parallel dislocations are computed separately
and then superimposed to obtain the resultant far-field distortions of the interface dislocation
network as a whole. These elastic distortions are key for determining the correct reference state
for the interfaces of interest. Far-field strains, stresses, and rotations may also be deduced.

Step 4: Solving for the reference state

The correct reference state is the one in which the superposition of the strains produced by inter-
face dislocation arrays eliminate the coherency strains, giving a bicrystal that is free of far-field
stresses and has far-field rotations that agree with the given interface crystallographic character.
This condition is met by continuously adjusting the reference state along a specified transforma-
tion pathway, starting with the initial guess selected in step 1.
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FIGURE 3.2: (a) Schematic illustration of a planar interface dislocation network formed by bonding mate-

rials A and B. (b) The geometry of an interface containing two sets of dislocations described by O-lattice

vectors p7 and p5. Open circles represent O-lattice points and filled circles illustrate atoms with nearly
matching positions in materials A and B.

Step 5: Solving for the interface elastic strain energy

Incomplete cancellation of the coherency and Volterra fields near the interface gives rise to short-
range stresses and strains. These stresses and strains are used to compute the elastic energies of
semicoherent interfaces.

3.2.5 Elastic fields of interface dislocation arrays

This section is focused on interfaces containing up to two arrays of infinitely long straight, and
uniformly spaced parallel dislocations at equilibrium, as illustrated in Fig. (3.2a). The Stroh for-
malism of anisotropic linear elasticity [234, 235, 59] and a Fourier series-based solution technique
are used to compute the elastic fields outside the cores of interface dislocations [22, 68, 34]. For
clarity in this section, the pre-subscripts A and B in the field expressions will be omitted if no
distinction between materials is required.

Problem formulation

The geometry of a dislocation network consisting of two arrays of straight parallel dislocations
may be described by two O-lattice vectors p? # p9 in the interface of interest using a Cartesian
coordinate system with basis vectors (x1, x2, x3), as shown in Fig. (3.2b). An interface containing
only one array of straight parallel dislocations is a special case of this more general geometrical
description. The unit vector normal to the interface is n || x», with the interface located at x, = 0 :
x, > 0 for material A, and x, < 0 for material B. The dislocation line direction ¢ is parallel to p§
and ¢, || p{, as illustrated in previous studies [110, 237, 289].

A representative interface unit cell of the dislocation pattern is illustrated in Fig. (3.2b). Trans-
lations of the unit cell by the basis vectors p{ and p5 tessellate the interface plane. It is also
convenient to identify a non-orthogonal (oblique) frame with basis vectors (x], x2, x;), where
xp || p9 |l & and x5 || x3 || p9 || &;- The oriented angle between ¢, and ¢, is denoted by ¢, so
that x| = xj csc¢ and x5 = x3 — x; ctg ¢. Thus, any position vector in this non-orthogonal frame
may be expressed as r = x| p§ + x5 p9.
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Due to the periodicity of the interface dislocation structure, it is useful to seek a complete set
of wavevectors k such that the elastic fields in the interface may be analyzed using plane waves
e’27k-rThe set of all k is conveniently written as k = np; + m p; with respect to the reciprocal
vectors p; and p;’, defined by the orthogonality conditions p* - pg = Jup, where n, m are integers.

The complete elastic distortion field D is the superposition of the uniform coherency and the
Volterra dislocation distortions, D. and Dy, as discussed in section 3.2.2. Following the seminal
work of Bonnet [34, 35, 36], outside of dislocation cores, D may be expressed as the biperiodic
Fourier series, i.e.

D (x) = D¢ + Dgjs (x) = Dc +Re Y 2™ " DF (xy) , (3.5)
k£0

with i = 1/—1, while Re stands for the real part of a complex quantity and the sum spans over
all non-zero wavevectors k. The Fourier amplitudes of the complete distortion waves D* (x,) are
required to converge (not necessary to zero) in the far-field, i.e. x, — *co. The components k; and
ks of the wavevector k satisfy

ncsc mctgc}‘)) m
— X +_
I I

The complete displacement field # may be found by integrating eq. (3.5) as

k-r:k1x1+k3x3:( X3 . (3.6)

u(x) = o + D.x +Re Z e 27T 4k (x5) = wage (x) + ugss (x)

o (3.7)

affine part

where uy is an arbitrary constant displacement. The complete displacement field # may be decom-
posed into an affine part u,¢ corresponding to D. and a biperiodic Fourier series representation of
displacement fields u4;5 generated by the Volterra dislocations.

The Fourier amplitudes in eqgs. (3.5) and (3.7) are determined from linear elasticity in the ab-
sence of body forces and subject to boundary conditions associated with interface dislocations.
The complete displacement gradients D (x) = grad u (x) in crystals A and B must fulfill the par-
tial differential equations of mechanical equilibrium

div(C:gradu(x)) =0, (3.8)
where : denotes the double inner product and C is a fourth-order anisotropic elasticity tensor.

Complete field solutions

Substituting the displacement field eq. (3.7) into eq. (3.8), the second-order differential equation
applied to both half-spaces is obtained as follows

duk (x 9% uk (x
w1 Wq uk (X2) + wy (WZ + W;) ( 2) + W3 (2 2) =0. (3.9)
d Xy x5
with w; = —47% and w, = i27r. Here, t denotes the matrix transpose and Wy, Wy, and W3 are

3 x 3 real matrices related to the wavevectors (i.e. interface geometry) and the stiffness constants
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(i.e. elasticity) indexed in Voigt notation:

t
W, =W; = Kicse + kiks(c3e + ca5) + K3ca4 Kices + 2kikscag + K5cas

[k%cn +2kiksers +K5es5  Keie + kika(c1a + 0s6) +Kicas  Kiers + kiks(cas + cs5) + Keas
sym k%C55 + 2k1kzcas + k§C33

kicie +kscse  kic1o +kacos  kicis + k3C45] (3.10)

W, = [leeé +kacas  kicog +kacos  kicas +kacas
kicse +kacze  kicos +kacas  kicas +kacas

¢ Ce6 C26 Ca6
W3 = W3 == Cyp  Co4

sym Caq

As demonstrated in Appendix A from Ref. [260], the complete displacement field (3.7) is written
as follows

1 , 3 o o
u(x) =up+ D.x+ Re e 2 ei27tk- 2 Al e go 4 g“elzm’*"z as, (3.11)
LETC kZo a=1

where the eigenvalues p* and eigenvectors a* are calculated by solving the sextic algebraic equa-
tion of the Stroh formalism [234, 235] for each material A and B. The asterisk indicates complex
conjugates of solutions with positive imaginary parts, i.e. p*™3 = p* and a**3 = a%, indexed by
« =1, 2, 3. The complete elastic strains and stresses are also deduced from eq. (3.11) by

E(x) = {D(x)} = 1 (grad u (x) + grad u* (x)) (3.12)

c(x)=C:E(x), '
respectively. Equation (3.12a) gives the strain-displacement relationship, where {D (x)} denotes
the symmetric component of the distortion field, while eq. (3.12b) is the Hooke’s law for small
strains that determines the stress field. The general solutions of elastic fields of egs. (3.11—-3.12)
are expressed as linear combinations of the eigenfunctions given by eq. (3.76), and include A*
and ¢* as complex unknown quantities that are to be determined by the boundary conditions, as
follows.

Boundary condition 1: Convergence of far-field solutions

In accordance with Saint Venant’s principle, the convergence of the Fourier amplitudes #* (x,)
when x, — *£oo leads to the requirement that ,{* = 0 and sA* = 0. This condition applies to
infinite bicrystals and would not be appropriate for bicrystals terminated with free-surfaces.

Boundary condition 2: Absence of far-field strains

The elimination of the coherency strains E. by the far-field strains of the interface Volterra dislo-
cations EJ is taken into account by requiring the total elastic strain field E to decay to zero when
Xy — +oo,ie.

lei}rgwE (x) =E* =E.+E3, =0, (3.13)
where E. = {D.} and E3, = {D} is the far-field strain produced by the interface dislocations.
Equation (3.13) is equivalent to egs. (3.1) expressed using strains rather than stresses. As detailed
in Appendix B from Ref. [260], the far-field distortions, calculated individually for each set of
dislocations, i = 1 and 2, and then superposed, are given as follows

2 3
D3, = —sgn(x2) Re Y d 'Y AGI + {'GY,. (3.14)

i=1 a=1
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Here, ,(f = {5 = 0 and A} = sA% = 0 for the reasons described in boundary condition 1.
Superimposed bars are used to indicate quantities related to the far-field boundary conditions,
while the complex constants ,4A% and ,{* are determined by solving a specific system of equations,
as described in Ref. [260].

Boundary condition 3: Disregistry due to interface Volterra dislocations

Disregistry is the discontinuity of displacements across an interface [7], expressed in terms of the
relative displacements between neighboring atomic planes. Each dislocation produces a stepwise
change in disregistry at its core with magnitude equals its Burgers vector. The disregistry atx, = 0
of a network of two sets of dislocations may be represented by the staircase functions

csch x x3 — ct X
Au(x1, x3) = au (x1, x3) — st (x1, X3) = —by “’%1—‘ — by M—fl(l)l-‘ , (3.15)
1 2

as illustrated in Fig. (3.3), where only one set has been displayed for clarity, for which the complete
displacement discontinuity at the interface can therefore be expressed as

Au (xl, X3) = Ay (.X1, .X3) + Augis (xl, x3) . (3.16)

The left-hand side of eq. (3.16) gives the relative displacement field A u,¢ at the interface generated
by the uniform macroscopic distortions ,D. and gD, in the affine form

A g (X1, X3) =Auy+ II(ADC — BDC) x]]xZ:O , (3.17)

where Auy = —3 (b1 + by) is chosen, without loss of generality. As shown in Fig. (3.3), eq. (3.17)
may be interpreted as a continuous distribution of (fictitious) Volterra dislocations with infinitesi-
mal Burgers vectors and spacing [30, 195].

The right-hand side of eq. (3.16) is the displacement discontinuity A ug;s produced by equilib-
rium interface dislocations in the natural state, shown as A in Fig. (3.1). According to egs. (3.7)
and (3.11), the quantity A ug;s is given in Ref. [260]

A tgis (X1, X3) Z el27tker Z AN a® — [ 0%a”, (3.18)
k7é0 a=1

which may be represented by sawtooth functions [87, 34, 90], as illustrated in Fig. (3.3). Using the
Fourier sine series analysis and superposing the sawtooth-shaped functions associated with the
two sets of dislocations, eq. (3.18) can be expressed as

> b . csc (p x1 ctgdp xq
Augs (x1, x3) = ——=sin 277 + — sm 27‘[711— .
’ El nm Z 3] (3.19)

set1 set 2

Thus, the boundary condition in eq. (3.19) for equilibrium interface dislocations, combined with
eq. (3.18), leads a set of 6 linear equations:

3
Re Z AAIXAa“ - BgaBai‘ = 19
P ! (3.20)
Im Z A)\“Aua - BéwBai‘ - 0/

a=1
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where Im stands for the imaginary part of a complex quantity and ¢ is given by

—% if m=0 (n>1)
¥ = _% =0 (m > 1) (3.21)
0 it nm#0 (n,m>1).
Boundary condition 4: No net tractions along the interfaces
The solution must satisfy the traction-free boundary condition along the interfaces:
a0 (x1,0,x3)n =50 (x1,0, x3) 1, (3.22)

where o (x1, 0, x3) is reduced to the short-range stress field produced by the interface equilibrium
dislocations when egs. (3.1) are satisfied. In that case, the tractions at the interface read

' 3
o (x1,0,x3)n=sgn(xz) Y " Y A*K* + "hS, (3.23)
k#0 a=1

where the subsidiary complex vectors h* are related to the vectors a* by
K = (WE+p* Wa) a® = —p* | (Wy +p* W) a®, (3.24)

with h{ = Hj,. Boundary condition in eq. (3.22) together with eq. (3.23) leads the additional
system of 6 linear equations:

3
Re Z A)\aAh[X — Bgthi’k{ =0
Y u S 1 (3.25)
Im Z A)LDLAhDC - Bgthi = 0 .
a=1
The two latter conditions 3. and 4. may be rewritten in a eigenvalue problem for equilib-
rium interface dislocation arrays. Indeed, the elastic fields of these dislocations in an anisotropic
bicrystal free of far-field strains are given in terms of the 12 eigenvalues Eval and 12 corresponding
eigenvectors Evec witha =1, 2, 3, i.e.

Eval = {Re ,p", Im ,p", Re ;p", Im p* }

B N, (3.26)
Evec—{Au , BA ,Ah ,Bh }

All these quantities are determined by solving a 6-dimensional eigenvalue problem that may be
recast with the aid of egs. (3.24) into the form

a® a®
X
IN | = p ” (3.27)
where the real nonsymmetric 6 x 6 matrices IN depend on the wavevectors and the stiffness con-
stants for crystals A and B through the W matrices given by egs. (3.10), i.e.

~W;lwi w3l
N:[ ;w3 ; ]

1 eart 1 (3.28)
Wi +Wr W" W, —W, W,
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FIGURE 3.3: The disregistry A u due to interface Volterra dislocations is a staircase function. It may be de-

composed into an affine part A u,4 generated by a uniform distortion (represented by a continuous distribu-

tion of fictitious infinitesimal dislocations) and a sawtooth function A ug;, associated with the equilibrium
interface dislocations in the natural state.

Properties Materials

Symbol  Unit Cu Nb Fe Al Ni
a Al 3615 3301 2866 4.050 3.524
ci1 GPa || 1684 246.0 2420 1082 246.5
cip GPa || 1214 1340 1465 613 1473
cag GPa || 754 287 1120 285 1247

TABLE 3.1: Material properties for copper, niobium, iron, aluminium, and nickel. The values of lattice
parameters a for all materials are those listed by Gray [104] and elastic components c11, ¢1p, and cg4 by
Hirth and Lothe [7].

Finally, the linear systems X; and X, are solved numerically to determine the 12 real constants
Ecst, i.e.
Ecst = { ReaA", Im zAY, Re %, Im ;" }, (3.29)

completing the solutions of the elastic fields.

3.2.6 Interface elastic strain energy

Using the divergence theorem, the elastic strain energy <. of equilibrium interface dislocation ar-
rays may be expressed as a surface integral over a unit cell A of the interface dislocation network,
ie.

1 n e
7 () =51 ] ) 03 s (1, 33) S, (3.30)
ro

where o (x1, 0, x3) n is the total traction vector produced at the interface of interest. Stress fields at
dislocation cores diverge, so regions near the cores must be excluded from the integral in eq. (3.30).
Following standard practice [7], the domain of integration is limited to parts of the interface unit
cell that are not within a pre-determined cutoff distance r of the dislocation cores.

3.3 Symmetric example applications

The model described in the forgoing sections is applied to simple example interfaces: symmetric
tilt and twist GBs as well as a pure misfit heterophase interface. The materials properties used in
these examples are listed in Table 3.1.
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3.3.1 Pure tilt grain boundary

Tilt boundaries that contain one set of interfacial dislocations have been discussed extensively
[237]. To illustrate and validate the present method, a symmetrical tilt boundary with [001] tilt
axis and tilt angle 6 = 2° is analyzed in detail. The calculations are carried out for Cu, which has
a moderately high anisotropy ratio, Ac, = 2cs4/(c11 — c12) = 3.21. The boundary consists of one
set of straight parallel dislocations with Burgers vector content B, expressed as

_(nx¢ -1 1\ 4 — 9
B_( y .p>b_(R+ —RZ) p=2sin0/2 px w. (3.31)

Here, the "median lattice" is used as the obvious reference state: the mapping matrices F have been
replaced by rotation matrices R, with R, representing a rotation of the upper crystal by angle 6. =
/2 about the tilt axis and R_ the rotation 6_ = —60/2 of the adjacent lower crystal. Equation (3.31)
is known as Frank’s formula [91, 48], which gives the density of interface dislocations needed to
create the tilt boundary. Selecting b = ac, [010] || n, eq. (3.31) shows that { = [001] and d =
10.3567 nm.

As expected, the far-field stresses vanish for this choice of reference lattice, and only non-
zero stresses are short-ranged. Figure (3.4) plots interface stresses as a function of x; and x; (the
stresses are invariant along the dislocation line direction, x3). The red contour illustrates where the
stresses fall to zero when |x;| > 7 — 10 nm (depending on the stress components), showing that
their range is comparable to the dislocation spacing. The far-field rotations may be calculated from
the antisymmetric part of the far-field distortions, i.e. O* =}Dg {. They satisfy QF —Q* =T
and yield a net non-vanishing rotation about the tilt axis, as excepted [180, 121]:

s s 0 X1 X b
@ =0F -0 = — 0 =g - (3.32)
0.03490

The disregistry A u, and the displacement discontinuity A u; 4is associated with the Volterra and
equilibrium tilt boundary dislocations are plotted in Fig. (3.5a). They are in good quantitative
agreement with the applied boundary conditions, represented by staircase and sawtooth curves.

The average elastic energy per unit interface area <y, is determined for several values of the
core cutoff parameter ry. Following eq. (3.30), 7. may be written as

1 d—ro
5g) 02(x1,0,0) Atrgis (x1, 0) dxy . (3.33)
ro

W

Ye (10) =

The variation of stress component 07, at x, = 0 with x; is plotted as a black line in Fig. (3.5b). The
core region is shaded in grey. Local contributions to the interface elastic energy W (values of the
integrand in eq. (3.33)) are plotted in red. The average elastic energy per unit interface area will
depend on the choice of 7. For example, 7. = 142.8 m].m 2 with 7y = b/2 and 7. = 167.8 m].m 2
with ry = b/3, where b is the magnitude of b. An appropriate r, value is selected by comparing the
interface elastic energies computed with the present dislocation-based method to experimentally
measured energies of small angle [001] tilt boundaries [102], plotted as solid triangles in Fig. (3.6).
The calculations using vy = b/2 are in good agreement with the experiments up to ~ 5° while
ro = b/3 fits better in the range of ~ 5 — 12°. The classical energy per unit area given by Read and
Shockley [213], Egs (8) = 1450 6 (—3 — In 8) mJ.m 2, is also shown in Fig. (3.6). It compares well
with the calculations for ry = b/3.
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FIGURE 3.4: Contour plots of stress components (a) o7; and (b) o2, for the 2° symmetric tilt boundary

described in the text. The negative values (compression) are plotted in light grey, and the positive values

(extension) in dark grey. The stresses decay away over distances comparable to the interface dislocation
spacing. In red, the stress field values are equal to zero.

3.3.2 Twist grain boundary

As shown in Fig. (3.7a), small-angle (010) twist GBs contain two sets of dislocations, so their
dislocation content B is expressed as

B_ (%151 .p) by + <%fz .,,) b= (R7' —R7)p. (3.34)

The twist boundaries of angle 6 = 2° is considered in Cu, where the rotation axis is perpendicular
to the boundary, w = x; = [010]. As in the case of the tilt boundary, the obvious reference state
for twist boundaries is the "median lattice" suggested by Frank [92]. In this state, the total rotation
across the boundary is equally partitioned between the two grains. However, to illustrate the im-
portance of selecting the correct reference state, other possible reference states are considered. A
common choice is to use of the adjacent crystal grains as the reference state. There is a continuum
of other possible reference states between these two extremes, and the angle 6. = —« 6 is intro-
duced to define the rotation of the reference state from the case where the upper crystal above
the boundary has been chosen as the reference lattice. Here, x is a dimensionless parameter that
varies from 0 to 1. Equipartitioning of rotations between the adjacent crystals (i.e. the "median
lattice") occurs when x = 1/2.

Section 3.2.3 demonstrated that interface dislocation geometry is independent of reference
state. In this example, the twist boundary contains an orthogonal grid of dislocations with line
directions & = 1/+/2[101] and & = 1/+/2[101]. The spacings between successive parallel dis-
locations are d; = d> = d = 7.3233 nm. Because of the pure twist misorientations, the coherency
stress fields are zero for all possible reference states. Figure (3.7b) plots the dependence of non-
vanishing far-field stress components on «. If a reference state with x = 0 is chosen, then the in-
terface dislocations deviate by 1° from pure screw character and possess non-zero far-field stress
components 07y, = 033, and 07} _ = 033 _. This demonstrates that x = 0 does not represent the
correct reference state since egs. (3.1) (and egs. (3.13) via eq. (3.12b)) are not satisfied. Furthermore,
the far-field rotation with x = 0 does not equal 2°, but discrepancies on the order of 0.001° between
the rotation vector component and the prescribed misorientation are found. As « increases, the
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FIGURE 3.5: (a) Disregistries Auy (staircase function) and A u, 4;s (sawtooth function) computed using 100
harmonics for the 2° symmetric tilt boundary described in the text. (b) Stress distribution o2 and local
elastic energy density 7. at the GB.

far-field stresses decrease and eventually reach zero at x = 1/2, as expected. The interface dislo-
cations have perfect screw characters for this reference state, where non-zero far-field stresses are
again obtained when « is increased beyond x = 1/2.

Taking x = 1/2, the elastic strain energy per unit area 7. is calculated for the twist GB using
the expression:

1 d*l’o
Ye (7’0) = A // (W(l) + W(z) + W(l—Z)) dxq dxs, (3.35)
o
with A = |p{ x pS| the area of the interface unit cell. Equation (3.35) is decomposed into self-

energy densities W1y and Wy for each set of parallel dislocations and the interaction energy den-
sity W(;_2) between the two sets. These energies are obtained from the separate elasticity solutions
for each set of dislocations:

Way + W) = 0230y (x1, 0, 0) Auizais1)(x1, 0) +0122)(0, 0, X3) Attrais (0, x3) (3:36)
Wa—2) = 0231y(x1, 0, 0) Att14is2)(0, X3) + 012(2)(0, 0, x3) Auzgis1y(x1, 0) .

The local self- and interaction energies are shown in Figs. (3.8a) and (b), respectively. The integral
of the interaction energy W(;_») over area A is zero for any value r;, in agreement with the classical
dislocation theory result that orthogonal screw dislocations do not exert any forces on each other
[7]. The total elastic energy is plotted in Fig. (3.9) as a function of the twist angle up to 12° for three
core cutoff parameters: 1y = b1 /2, ro = b1/3, and ry = b1 /4.

3.3.3 Pure misfit interface

Lastly, the model is illustrated on an Al/Ni heterophase interface. The terminal planes of both
adjacent crystals are fcc (010) planes. The [100] and [001] directions of both crystals are parallel in
the interface plane. Thus, the interface is in the cube-on-cube orientation and contains two sets of
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parallel dislocations. Following eq. (3.2), the Burgers vector content B is written as
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The reference state for this interface is a crystal oriented identically to the Al and Ni in their
natural state, but strained such that its lattice constant in the interface plane is a., with ay; < a. <
a,. Only strains within the interface are necessary to ensure coherency: normal strains are not
required. Thus, the matrix T in eq. (3.37) is composed of two equibiaxial stretch matrices (no
rotations), S ' = AE.+Tand S ! = Ec + I, where I represents the identity matrix. These
mapping matrices depend on the ratios of lattice parameters between Al and Ni in their natural
and reference states, 7y = a5 /a. > 1 and ry = an; /4. < 1. The matrix T in eq. (3.37) may also be
rewritten as the difference between the coherency strains prescribed in Al and Ni:

alEc — nEc =T, (338)

Following the procedure described in section 3.2.4, Ni is initially chosen as the reference lattice, so
that 7, = a, /ay; and 1y = 1, and identify by = ani/ V2 [101] and by = aNi/\/ﬁ [101]. Then, using
eq. (3.3), an interface that consists of an orthogonal grid of edge dislocations with & = 1/+/2 [101]
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and & = 1/+/2[101] is found, and the corresponding dislocation spacings d; = d» = 1.902 nm.
Using this choice of reference state, the far-field strains produced by the interface dislocations
are:

0.10133 0 O —0.03243 0 O
AlEg;s = 0 00 ¥ and, NiE?jC;S = 0 0 0 P (339)
0 0 0.10133 0 0 —0.03243
such that the matrices in egs. (3.39) satisfy
— (aEgis —niEg) =T (3.40)

Combining egs. (3.38) and (3.40), it follows

—-0.03243 0 0
alEc + AIE?;;S = niEc +N1E§§s = 0 0 0
=5 0 0 —0.03243

£0 (& JE°=nE®), (341
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interface. The red dotted line gives the unique reference state, for which the far-field decay to zero and

the coherent parameter a. is defined. The lattice parameter @ = 2a, an; / (aa + an;), which is a good ap-

proximation for an interface between crystals of different lattice parameters but identical elastic constants
[93, 131], is marked by a grey cross symbol.

with E. = 0 here, because Ni has been chosen as the reference lattice. However, according to
eq. (3.41b), condition 2. given by eq. (3.13) is not satisfied since the total far-field strains in each
individual material do not decay to zero when x, — £oco. This demonstrates that the initial choice
of reference state is not correct.
To find the correct reference state, a variable 6, with 0 < § < 1 that interpolates a. between a,
and ay; is introduced as follows
ac = 0an+ (1 —9)an. (3.42)

It is shown that the far-field strains in Al and Ni are equal for all 4, so that eq. (3.41a) is always
satisfied, i.e. NE® = E™ with Ec = 0if 6 = 0, and ,E. = 0if 6 = 1. However, only one
unique reference state (corresponding to an unique value of §) gives vanishing far-field strains in
the bicrystal in its natural state by satisfying eq. (3.13) as well. The pure misfit interface example
serves to show that eq. (3.41a) is a necessary, but not sufficient condition for determining the
reference state.

The total far-field strain component 4 EJ] in Al is plotted in Fig. (3.10) as a function of ¢ and is
identical to the component 4 E33, according to the interface symmetry (all other strain components
are zero). Because eq. (3.41a) is verified for all §, the same components in Ni give the same plot
as in Fig. (3.10). The far-field strains vary linearly with § and become zero when § = 0.21787, so
that a. = 0.36386 nm. This value of a. is the unique coherent reference state for which the pure
misfit Al/Ni interface of interest is consistent with the Frank-Bilby equation. It is closer to ay; than
to a, because Ni is the stiffer of these two materials and so carries a lower coherency strain in the
reference state. The far-field rotations are zero for all values of ¢, as excepted.

To demonstrate the errors that come about from ignoring the unequal partitioning of elastic
fields and to validate the current calculation, a. is recomputed under the assumption that both
sides of the interface have the same stiffness (equal to that of Al or Ni), but different natural
lattice parameters (a, and ay;, as the original calculation). For this case, the calculated value for
ac is in very good agreement with the well-known approximate result & = 2a,,ay; / (4 + axi) =
0.37687 nm [93, 131], corresponding to 6 = 0.46521. This value, however, is far from the correct
lattice parameter of the reference state when the differing stiffnesses of Al and Ni are taken into
account, as illustrated by cross symbols in Fig. (3.10). It is also shown that 7 deviates from the
prediction and is not consistent with the Frank-Bilby equation when the heterogeneous distortions
of bicrystals are explicitly described at equilibrium.
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and ,..F. (b) The correspondence between a closed right-handed circuit enclosing the probe vector p in the
natural state and its corresponding path with closure failure B in the reference state.

3.4 Partitioning of elastic distortions at fcc/bcc interfaces

In this section, the study is focused on semicoherent heterophase interfaces comprised of two
sets of dislocations and formed along closest-packed planes in fcc/bcc bimetals, especially for
fce{111} /bec{110} (Cu/Nb, Ag/V, and Cu/Mo) interfaces in the Nishiyama-Wassermann (NW)
orientation relations (OR) [279, 192] as well as in ORs that differ from the NW by an in-plane
twist rotation. It is showed that elastic distortions, i.e. strains as well as tilt and twist rotations,
are in general unequally partitioned at such interfaces. The correct partitioning of these fields
determines the coherent reference state for which the bicrystal of interest is free of far-field strains.
Using these results, the stress fields generated by misfit dislocation patterns are computed and
analyzed for the Cu/Nb system in the NW and Kurdjumov-Sachs (KS) [154] ORs. The dislocation
structure (i.e. the Burgers vectors, spacings, and line directions) is also determined in lowest strain
energy solutions of the Frank-Bilby equation along a specific transformation pathway between the
NW and KS ORs.

Similarly to Fig. (3.1), the concept of reference and natural states of an interface is depicted
in Fig. (3.11). The natural state contains an interface formed by joining two crystals with pre-
scribed misorientation and interface planes as well as vanishing far-field strains. This state is also
related to a single crystal, coherent reference state by uniform displacement gradients ,F = (.F
and sF = ,..F, which map the reference state to the natural state, as shown in Fig. (3.11a). In the
reference state, the two adjacent materials that meet at the interface are rotated and strained such
that they are in perfect registry with each other across the X — Z interface plane after bonding. In
general, these displacement gradients entail interface misorientations that have both tilt and twist
components [7, 237, 123]. Again, the interface along the & — £ plane is not coherent in the natural
state, but rather semicoherent due to the presence of misfit dislocations.

The atomically sharp fcc{111}/bcc{110} interfaces in NW and in-plane twisted-NW ORs con-
tain two periodic arrays of infinitely long, straight, and uniformly spaced dislocations. In the NW
OR, one of the (110) directions in a fcc {111} plane lies parallel to the (100) direction in a bcc
{110} plane [279, 192]. The in-plane twisted-NW ORs considered here differ from the NW OR
only by a twist rotation of one crystal (here, the bcc material) with respect to the adjacent (fcc)
crystal about the axis normal to the interface. The procedure described in section 3.2.4 is adopted
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| Systems | &1 (GPa) ¢35 (GPa) ¢4 (GPa) | a (A) |

Cu 178.8 122.6 81.03 3.615
Nb 245.6 133.7 28.8 3.3008
Ag 124.2 93.9 46.1 4.090
v 220.15 130.7 42.8 3.039
Cu 187.8 125.7 70.6 3.615
Mo 545.9 219.3 108.8 3.147

TABLE 3.2: Material properties for copper (Cu), niobium (Nb), silver (Ag), vanadium (V), and molybdenum
(Mo). The values of stiffness constants ¢11, ¢12, 44, and lattice parameters a for all materials are those listed
in Ref. [258].

to determine the unique reference states that meet the condition of vanishing far-field strains and
prescribed misorientation for such interfaces. Thus, the dislocation content B of an interface, in-
tersected by a probe vector p contained within the interface plane as illustrated in Fig. (3.11b), is
described by the Frank-Bilby equation in eq. (3.2). For interfaces in the NW OR, a transformation
pathway is defined by continuously adjusting the reference state from the strain-free state of the
fcc crystal present at the interface to that of the adjacent bec crystal. For all reference states along
this path, the method described in section 3.2 is used to compute the superposition of the uniform
coherency strains, E., needed to maintain perfect registry and the far-field strain fields produced
by the Volterra dislocation arrays, EJ;;. In the correct reference state, these quantities cancel and
the total far-field strain field E vanishes in both upper fcc (i > 0) and lower bcc (7 < 0) materials,
as defined by egs. (3.13), as

{chE: = fecBe + chEgzis =0 (3.43)

bec B = becEe +oecEgis = 0,

for which the far-field rotation state in the NW OR is consistent with the given crystallographic
character (interface plane and misorientation).

To find the reference state for interfaces differing from those in the NW ORs by an in-plane
twist angle 6, a second pathway is defined by rotating the previously determined reference state in
the NW OR from 0 to 6. Along this second path, the rotated reference state, for which egs. (3.43) are
satisfied, also yields far-field rotations that must be consistent with the in-plane prescribed twist
misorientations. Using the correct reference states for all ORs, the short-range interface strains
and stresses that arise from the incomplete cancellation of the coherency and Volterra dislocation
tields near the interfaces are also computed as well as the interface elastic energy . from eq. (3.30)
as a surface integral over a unit cell. The domain of integration is related to a pre-determined
cutoff distance ry of the dislocation cores to determine the likeliest interface misfit dislocation
configurations whenever the Frank-Bilby equation (eq. (3.2)) admits multiple solutions.

In this section, a detailed discussion of partitioning of distortions at Cu/Nb interfaces is pre-
sented, while analogous results for Ag/V and Cu/Mo interfaces are shown, albeit without going
into detail. The material properties (elastic constants and lattice parameters) used in all calcula-
tions for these three interface types are listed in Table 3.2.

3.4.1 Mapping between states in the Nishiyama-Wassermann orientations

Without loss of generality, the following specific relation is used among 12 possible equivalent
variants of the NW OR [106] to construct the mapping from the fcc to the bec crystal:

=

” xfcc = [112]fcc || beC = [O]‘i]bcc

” yfcc = [111]fcc || ybcc = [Oll]bcc (344)
| zee = [110],. || Zbee = [100]

NW: ¢ n|

N D

bec *
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Dislocation structures in NW Cu/Nb
* solutions by selecting the fcc Burgers vectors
Cases dy(nm) dy(nm) | ¢° | ¢1° ¢ °
cl:{bf, b5} | 11234 1.1234 | 15.03 | 37.51 37.51
2:{bf, b5} | 42953  1.1234 | 82.49 | 60.00 82.49
3:{b5, b5} | 42953  1.1234 | 82.49 | 60.00 82.49

* solutions by selecting the proper reference Burgers vectors
Cases di (nm) dy(nm) | ¢° ¢1° ¢ °

~ref o~ref

cl:{by", by'} | 11234 11234 | 1503 | 39.62  39.62
c2:{by", by} | 42953 11234 | 8249 | 57.89  82.49

~ref  pref

3:{b5", b5} | 42953 11234 | 8249 | 57.89  82.49

TABLE 3.3: Dislocation spacings d;, angle between the two sets of dislocations ¢, and characters ¢; for three
solutions, namely c1, ¢2, and ¢3, for which the fcc (here, Cu) and the proper Burgers vectors have been
selected as the reference state in NW Cu/Nb interface.

Here and in the following, the superimposed hat will indicate quantities expressed in a frame with
basis vectors, & = [100], # = [010], and 2 = [001]. A schematic representation of a Cu/Nb interface
in the NW OR is shown in Fig. (3.12a). Labeling of Burgers vectors for the other fcc/bcc systems
of interest here follows the same pattern as shown for NW Cu/Nb in Figs. (3.12a) and (b).

If the fcc Cu material is used as the reference state, then three trial Burgers vectors may be
selected in the interface plane:

bl = % [101], b = ‘% 0T1], and, b% = % 110] . (3.45)
The transformation matrix Ty,—c, that represents the transformation of the bcc Nb material to the
fcc Cu material may be written as

Tawsca = I—F2 ., (3.46)

where I is the identity matrix and Fc,_, —the mapping that transforms the fcc Cu to the bec Nb
crystal—is written in the fcc reference system (X, Y., Zic) as:

1.281998 —0.009298 0.109180
Foomsno = | —0.009298  1.281998 0.109180 | . (3.47)
—0.154404 —0.154404 0.899935

For this interface, the Frank-Bilby equation has three different solutions, namely c1, which uses
the pair {bf, b5}, 2 with {b}, b5}, and 3 with {b5°, b5°}. Due to the crystal symmetry along 2
in the NW OR, which exhibits the p2/m11 layer space group, two of the three solutions (c2 and
c3) are mirror images. Analysis of dislocation structures for all three cases are given in Table 3.3,
with ¢ the angle between the two sets of dislocations and ¢; their individual characters. The
dislocation line directions and spacings are schematically depicted in Fig. (3.12c), where the filled
circles represent the O-lattice points [32, 237].

If the bee Nb lattice is used as the reference state, then corresponding expressions for Fy,—.c.
and T, may also be obtained. In this case, Burgers vectors are equivalently expressed in the
bce crystal structure and the same dislocation geometries are found. Neither the fcc nor the bee
reference states satisfy the condition of vanishing far-field strains and stresses [123, 260] because
neither accounts for the required partitioning of strains and rotations between the adjacent crystals
[119].

There is a continuum of other possible reference states between these two extreme cases. To
find the correct reference state, a dimensionless variable ¢ that interpolates linearly between the
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FIGURE 3.12: (a) Representation of the NW OR between fcc {111} (blue atoms) and bec {110} (red atoms)
close packed planes in Cu/Nb interfaces. (b) The reference state is depicted by the dashed black polyhe-
dron, within which the Burgers vectors (corresponding to the sides of each polyhedron) are defined. The
difference between the positions of the fcc and bcc atoms have been exaggerated for clarity. (c) Schematic
illustrations of two admissible dislocation structures (solutions c1 and c2) with O-lattice points (black cir-
cles) and the local elastic energy densities stored in a representative unit cell of the dislocation patterns.
The colors of the dislocations are associated with the Burgers vectors that are colored in (b). Contour values
(from the center of the patterns to the dislocation lines): {0,0.2,0.6,1.2,2.0,3.2,5.2} Jm 2.

pure Cu and Nb materials is introduced as follows

(3.48)

CuF: (1_5)I+(5FNb~>Cu
awF =014 (1 —06)Feumnp -

Foré =0, T = Txyscwand for 6 = 1, T = Te,—n- Along the transformation pathway characterized
by 4, the elastic distortions (strain and rotation fields) in the NW ORs can also be computed.

3.4.2 Far-field strains and rotations

As shown in Refs. [126, 123, 260], and illustrated in Fig. (3.11b) the natural state of semi-infinite
bicrystals is homogeneously transformed into a reference state by biaxial distortions parallel to
the plane with normal # || §, so that the removal of the strains é;,, = *, with j = 1,2,3 [126, 123].
Thus, only six components (three for strains and three for rotations) of the distortion matrices are
needed to meet the condition of vanishing total far-field strains and prescribed misorientations.

In the linear-elastic approximation, the distortion matrices D may also be separated into sym-
metric E and antisymmetric () parts:

€n €13 0 -1 w3
D= | * x|+ wip 0 —wy | . (3.49)
€13 €33 —w13 @3 0
h v ~
E a

The coherency strain fields E. on both sides of the interface are given by

cuBe = sym wF1—1, and, E. = sym wE -1, (3.50)
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where ¢, F~! and ,F ! are obtained from egs. (3.48). Superposing the elastic strains produced by
the interface dislocations in Cu and Nb, i.e. ¢ Ej;, and \,EJ;,, the total far-field strain state in the
entire bicrystal may be calculated [260].

Figure (3.13) shows the total strain component ,é5; in Cu as a function of § (black line). This
strain vanishes, i.e. c,€55 = 0, for éc,np = 0.429103. All other elastic components are consistent
with the absence of strains in the far-field and the total far-field strain in Nb vanishes at the same
¢ as in Cu. Thus, the reference state is closer to Cu than to Nb, i.e. dc,/np < 0.5. This result cannot
be easily predicted from inspection of the stiffness constants alone (see Table 3.2). Figure (3.13)
also shows that J,,,v = 0.623359 and Jc,/m, = 0.701109, i.e. the reference state is closer to the bcc
material (V and Mo) in both cases.

Knowing the ¢ value at which far-field stresses vanish, the crystal structure of the reference
state is given by the uniform displacement gradients, obtained using egs. (3.48) and (3.50):

0.022615 0.072664 0
coBe = —c.Eqe = | 0.072664 0.047550 0
0 0 0.107173

0.030089 0.096675 0
—whe = wEp. = | 0.096675 0.063262 0
0 0.154414 0.142588

(3.51)

The Burgers vectors of the interfacial misfit dislocations are to be drawn from this reference state.
The correct reference state of the NW OR is depicted by the dashed polyhedron in Fig. (3.12b),
within which the Burgers vectors are defined by:

b = —0.226379 & — 0.141507 2 (nm)
Saw { by = —0.226379 & + 0.141507 2 (nm) (3.52)

~ref

by = by — b, = —0.283015 £ (nm).
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strains tilt rotations °

0 fec é33 C bee é33 c 19fcc l9bcc
Cu/Nb | 0.429103 | 0.107173 —0.142588 | —4.17 5.55

Ag/V | 0.623359 | 0.031076 —0.018777 | —6.03 3.68
Cu/Mo | 0.701109 | 0.152295 —0.064925 | —6.91 2.88

Systems

TABLE 3.4: Partitioning of strains and rotations for various fcc/bcc bicrystals.

In addition to completely accommodating the coherency strains, interface dislocations also give
rise to unequally partitioned rotation fields, given in the case of Cu/Nb in the NW OR by

Qs = —0.072664 (—2 @ + § @ %) 553
Wi = —0.096675 (k2§ — 2 &) , '
yielding a net non-vanishing rotation vector, i.e.
W = @™ — @0~ = (—0.072664 — 0.096675) 2 = —0.169339 %, (3.54)

about the % tilt axis. The unequal partition of far-field rotations given by egs. (3.53) shows that,
to achieve the NW OR, the upper material in the reference state must be rotated by a rigid-body
rotation through a tilt angle 9, ~ —4.17° about the tilt axis 2 || z,. = [110],_ to the Cu material in
the natural state. In addition, the lower material must be rotated through a tilt angle ¢y, ~ 5.55°
about the tilt axis 2 || z,.. = [100],_ to form the Nb material. Thus, the net rotation angle is
~ 9.72° about %, as discussed in Ref. [106]. This result can be shown by computing the polar
decomposition of eq. (3.47) such that Fe,n, = R(~ 9.72°,[110],_) - B, i.e.

0.992799 —0.007201 0.119573 1.291296 0 0
R=| —0.007201 0992799 0.119573 | , and, B = 0 1.29129 01,
—0.119573 —0.119573 0.985599 0 0 0.913084
(3.55)

with Bj; = By = V2/A, Bz = 1/A and the lattice parameter ratio A = ac,/an,. In egs. (3.55),
the matrix R corresponds to a rigid-body rotation matrix of angle ~ 9.72° about [110],_ and B is
the Bain strain matrix [16, 295]. The compression axis for the Bain strain is [110],_ || £, because
Bsz < 1.

Table 3.4 summarizes the main results of unequal partitioning of elastic strains and tilt rota-
tions between the adjacent materials of Cu/Nb, Ag/V and Cu/Mo systems in the NW OR.

3.4.3 Spurious fields from incorrect reference states

As indicated in Table 3.3, the correct dislocation Burgers vectors for the Cu/Nb interface in the NW
OR differ from what they would have been had the fcc crystal (Cu) been selected as the coherent
reference state. Their directions differ by ~ 2.11°, which affect the character of the interface dis-
locations. The magnitudes of the Burgers vectors in the fcc crystal and the correct reference state
also differ, with |b;~“| : |b;~ef| = 0.90. The consequences of these deviations in character and mag-
nitude may be seen in Fig. (3.14): a residual stress state in Cu persists with 05335 = —20.01 GPa,
corresponding to a residual strain state ,é55 = —0.10, as shown in Fig. (3.13). A residual stress
field exists in Nb as well, with \,0335 = 16.67 GPa. Figure (3.14) illustrates the variations of the
spurious stress field component ¢33 in the neighboring materials as a function of 4. This elastic
tield arises when an incorrect reference state is selected.

To emphasize the need for accounting for the unequal partitioning of elastic distortions, the
coherency strain matrices is recomputed under the assumption that both sides of the interface
have the same stiffness (i.e. homogeneous elasticity problem), equal to that of Cu, but with their
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FIGURE 3.14: Dependence of the total far-field stress component ¢33 on ¢ in the fcc and beec materials for
the Cu/Nb, Ag/V and Cu/Mo interfaces.

natural (unequal) lattice parameters, as in the original calculation for the Cu/Nb interface. The
results are in agreement with the well-known approximate calculation for equally partitioned
strains due to simple geometrical considerations [123], i.e.

0.026451 0.085660 0O

QB = B = | 0085660 0.055845 0 , (3.56)
0 0 0.127132
with c.é35. = méaye = (A — e/ V2)/(ax + ac./V/2) and a net rotation vector @ = —2 x

0.085660 %, corresponding to equipartitioning of rotations with tilt angles —8¢, = Oy, ~ 4.91°.

In the nomenclature given by egs. (3.48), the homogeneous anisotropic (or isotropic) case is
associated with § = 0.5, as depicted by the vertical dotted lines in Figs. (3.13) and (3.14). The ver-
tical dotted line in Fig. (3.14) shows a (non-zero) excess far-field stress state with 0335 = 3.69 GPa
in Cu and 033 = —3.09 GPa in Nb in the NW Cu/Nb interface or 033 = —7.36 GPa and
Mo033 = 19.08 GPa in the NW Cu/Mo interface. Thus, even if the choice of equipartitioning of
strains and (tilt) rotations is better than selecting the fcc material as the reference state, a spurious
far-field stress field still remains. As a consequence, the associated dislocation structures for the
homogeneous anisotropic (or isotropic) elasticity case of the Cu/Nb bicrystal are designated as
non-equilibrium structures.

3.4.4 Orientations differing from the Nishiyama-Wassermann relations

Another commonly studied misorientation of interfaces between close-packed planes of neigh-
boring {111} fcc and {110} bec solids is the KS OR [154]. In the KS OR, one of the (110) directions
in a fcc {111} plane lies parallel to one of the (111) directions in a bec {110} plane. A schematic
representation of a Cu/Nb interface in the KS OR is shown in Fig. (3.15a), where the bcc atoms
have been rotated by 5.26° from their positions in the NW OR. The geometrical characteristics
(line directions and spacings) of dislocation structures in the KS OR for the three cases are given
in Table 3.5 and depicted in Fig. (3.15c).

To treat the KS OR and other ORs related to the NW by an in-plane twist, the rigid-body
rotation matrix R () that rotates all bcc atoms in the natural state is introduced with respect to the
fixed fcc atoms by angle 6 about the interface normal n. The NW OR corresponds to 6 = 0°. The
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FIGURE 3.15: Similar illustration as in Fig. (3.12), but for a Cu/Nb interface in the KS OR. Contour values
(from the center of the patterns to the dislocation lines): {0,0.2,0.4,0.6,1.0,1.4,2.8,4.8} ].m_z.

KS OR differs from the original NW OR by a twist rotation of angle 8 ~ 5.26° about the interface
normal axis n.

To describe the relation between the natural and reference states for fcc/bcc in the in-plane
twisted ORs, F~! and ,..F ! in eq. (3.2) are replaced by ¢.R (« 0) Fr,} and R (k 0) pecFryh, where
 is a dimensionless parameter that varies from 0 to 1, such that R (x 0) is the rotation matrix
that continuously adjusts the reference state in the KS OR from the one determined in the NW
OR. This rotation matrix is expressed in the fcc (¥, ¥, Ziee) and bec (Yoo, Y, Zbec) Systems by
R (x0) and R (x 0) in the Cu/Nb bicrystal, respectively. Equipartitioning of twist between the
adjacent crystals occurs when x = 0.5 [193, 123].

The condition that determines « is that the far-field rotations produced by the interface disloca-
tions must be in accordance with the prescribed twist misorientation. The « value that satisfies this
condition for Cu/Nb in the KS OR is x = 0.570897, yielding unequal partitioning of the twist rota-
tions 6, ~ 3.20° and 6y, ~ —2.06°. The correct Burgers vectors associated with this reference state
are illustrated in Fig. (3.15b). If the approximation of equipartitioning of distortions is considered,
i.e. ¥ = 0.5, the partitioning of rotations gives rise to 6., = 6\, = 2.63°, such that the dislocation
characters differ by ~ 0.57° from the results obtained with the unequally partitioned distortions.
This difference is not large because 6 ~ 5.26° is small, but the elastic (short- and long-range) fields
may be significantly affected by deviations associated with larger twist rotations [123].

3.4.5 Short-range elastic fields

Although the far-field strains vanish when the correct reference state for ORs differing from the
NW by an in-plane twist is used, the dislocation structures depicted in Figs. (3.12b) and (3.15b)
nevertheless generate non-zero short-range strains and stresses. For instance, Fig. (3.16) plots
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Dislocation structures in KS Cu/Nb
* solutions by selecting the proper reference Burgers vectors
Cases di(mm) dy(mm) | ¢° ¢$1° ¢2°

c1:{by", by'} | 09073 1.2394 | 22.04 | 21.06  65.00
~ref aref

c2:{by, by} 2.1457  1.2394 | 62.54 | 61.57 57.02

~ref  pref

3:{by, by} | 21457 09073 | 4051 | 245  79.05

TABLE 3.5: Dislocation structures associated with Cu/Nb in the KS OR. See the caption of Table 3.3 for
definitions of notation.

stress components 0»1 and 02, for set 1 only and for both sets of dislocations of c1 for the Cu/Nb
interface in the NW OR, as a function of X’ (x L &;) and y (i || n), with z = 0. Negative values
(compression) are plotted in light grey and the positive values (extension) in dark grey. The thick
black lines show the locations where the stresses are equal to zero. The fields are asymmetric due
to the material elastic anisotropy and the characters of the dislocation arrays.

Using these short-range fields at the interface, i.e. ¥ = 0, the local self- and interaction energy
densities are computed as a function of x and z, as shown in Figs. (3.12c) and (3.15c¢) for all potential
solutions predicted by the Frank-Bilby equation in the Cu/Nb NW and KS ORs, respectively. The
unique solution of the Frank-Bilby equation is predicted by integrating the strain energy densities
over each candidate solution and choosing the dislocation pattern with lowest elastic energy [258].
It is illustrated in the next section 3.4.6 that the present formalism predicts that c3 is in near perfect
quantitative agreement with atomistic simulations for § > 1°. For instance, both approaches
predict that Cu/Nb interface energy is minimized at 6 = 2°. The insets of Fig. (3.17) illustrates a
qualitative comparison between the elasticity and atomistic calculations.

Using the minimum strain energy criterion for finding the likeliest dislocation structures,
Fig. (3.17) plots the geometrical characteristics in terms of dislocation spacings, d; (in black), and
characters, ¢; (light grey), for both sets of dislocations as a function of 6 (between the NW and KS
ORs). The geometry (i.e. dislocation spacing and character) of set 2 does not vary significantly as
a function of 6. In particular, the low spacing between misfit dislocations of set 2 is d ~ 1 nm
and is almost perfectly edge for 6 = 2°. On the other hand, the dislocation spacing and character
of set 1 change markedly with 6, e.g. from mixed dislocation character to almost perfectly screw
character, and the dislocation spacing decreases almost by a factor 2. Set 1 is almost perfectly
screw for 6 = 4.75°. The vertical line in Fig. (3.17) shows the lowest interface energy reported in
Ref. [258] with the corresponding geometrical characteristics, i.e. dislocation spacings and char-
acters. Surprisingly, this interface does not correspond to the interface with the largest dislocation
spacings or nearly perfectly screw dislocation characters, contrary to what may be expected based
on the theory of dislocations in uniform isotropic solids [7]. However, the approach predicts a
dislocation structure with d; = 3.5856 nm, ¢; = 24.37°, dy = 1.0426 nm, ¢ = 89.61°, which is in
agreement with the atomistic calculations [258] .

3.4.6 Comparison with atomistic simulations

The present approach to interface design is to construct a mesoscale (as opposed to atomic-level)
model that predicts misfit dislocation patterns with accuracy comparable to atomistic simulations,
but at a fraction of the cost. The model is a reduced order model because it replaces the millions of
variables associated with atomic positions with < 15 variables needed to describe misfit disloca-
tions. The misfit dislocations are viewed as Volterra dislocations that have been inserted into the
coherent reference state, suggesting that the total interface energies y be expressed as

Y = Ye (r0) + Y core + Vrelax + -+ - - (3.57)
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FIGURE 3.16: Contour plots of short-range stress component 0>1 and o, for the Cu/Nb interface in the NW

OR of c1, related to (a) the set 1, L, only and (b) both sets, L and _L, of interface dislocations. Contours

with negative values (compression) are plotted in light gray while positive values (extension) are shown in
dark gray. The thick black lines show the locations where stresses are zero.

with 7. the elastic strain energy due to misfit dislocations from eq. (3.30), ¥ core the core energy,
7 relax the energy part due to relaxations of the misfit dislocation network, and perhaps additional
terms that have not yet been recognized. For the present purposes, it is not necessary to calculate
the absolute value of -, but rather only differences in 7y between the candidate solutions of the
Frank-Bilby equation.

The outputs of the elasticity-based model are compared with atomistic calculations, which
provide an opportunity for rigorous validation of the elasticity theory of dislocations. They are
also convenient for atomistic simulations because embedded atom method potentials are available
for several fcc/bcc binaries. The elasticity-based model is validated against the interface compo-
sitions: Cu/Nb [72], Ag/V [281], Cu/Fe [174], and Cu/Mo [103]. These choices fix the elastic
constants, crystal structures, and lattice parameters of the adjoining constituents. Because atten-
tion is restricted to interfaces along fcc (111) and bee (110) planes, only one crystallographic DoF
remains to be specified: the twist angle 6 describing the relative rotation of the crystals parallel
to the interface plane. The 6 is measured with respect to the NW OR, where a bee (100) direction
is parallel to a fcc (110) direction, such that § = 77/3 — cos~'(1/v/3) ~ 5.26° yields the KS OR.
Due to the symmetry of the interface planes, all crystallographically distinct interfaces fall within
0° < 0 < 15°. However, the analysis limited to 0° < 6 < 10° because for greater twists, misfit
dislocations are too closely spaced to characterize reliably in atomic models.

For any composition and 6, the Frank-Bilby equation has three distinct candidate solutions, as
illustrated in Fig. (3.15b), which corresponds to one of three combinations of interfacial Burgers
vectors, as described in the previous sections . The first candidate, termed "case 1" (= c1), uses
Burgers vectors by and b,. "Case 2" (= ¢2) and "case 3" (= ¢3) use Burgers vectors by, bs, and
by, b3, respectively. Using the elasticity-based model, . of all three cases is computed for each
composition and 6 of interest. For all interfaces, the atomic-scale models are also constructed
by joining cylindrical fcc and bcc blocks following the required interface crystallography. The
models are large enough to contain a representative area of the misfit dislocation pattern and to
avoid elastic images from free surfaces.

Figure (3.18a) compares ‘e from the elasticity-based model with < from atomistic simulations
for Cu/Nb interfaces. Because the relative energies of the three cases are the key quantities for
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FIGURE 3.17: Dislocation spacings and characters predicted by the Frank-Bilby equation for both sets of

dislocations in the Cu/Nb interface as a function of 6 (from the NW, i.e. 6 = 0° to the KS, i.e. 8 ~ 5.26°,

ORs). The red line corresponds to the lowest energy interface for 6 = 2°, reported in Ref. [258]. In insets:

comparison of the dislocation geometries in the minimum energy state computed by the elasticity and
atomistic approaches.

comparison, both the elasticity-based model and atomistic data are shifted so that their energy
minima occur at 0J/m?. The elasticity-based model predicts that case 3 has lowest 7y for all 0. Fur-
thermore, . for case 3 is in near perfect quantitative agreement with 7 for 8 > 1°. Figure (3.18b)
shows a similar comparison for Ag/V interfaces. Here, the elasticity-based model predicts that
case 1 has lowest 7, for all 6 outside 4.25° < 6 < 5.25°, where 7, is lowest for case 2. 7. and 7y
are in qualitative agreement over the entire twist angle range and in quantitative agreement for
6 > 5°. As described in the Supplementary Note from Ref. [258], it is found comparable agree-
ment between the elasticity-based model and atomistic interface energies for the remaining two
compositions. Agreement between . and -y is not sufficient to validate the present formalism.
For that, it must be determined whether the lowest energy cases predicted by the elasticity-based
model match the misfit dislocation patterns in atomistic simulations. Each of the three Frank-Bilby
solutions predicts a different misfit dislocation pattern and therefore also a different disregistry.
The present goal is to compare the disregistries of all three cases with that found in atomistic sim-
ulations. The model is validated if the case with lowest 7, has the best match with the atomistic
disregistry. As shown in Figs. (3.18a) and (b), and detailed in Ref. [258], the disregistry analysis
is in agreement with the elastic predictions for all Cu/Nb and Ag/V interfaces (circle filled with
light grey) except Cu/Nb at 6 = 0°. The disagreement is attributed to the reconstruction of the
misfit dislocation network that is known to occur at that interface [272], which can be treated by
further extensions from section 3.6. One further case of disagreement where dislocation network
reconstruction occurs is found for Cu/Mo at 6 = 0° (see Supplementary Note). However, the
agreement between the elasticity-based model and the atomistic models is excellent, overall.
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The general approach may be compared with several ad hoc parameters proposed previously
to determine which of the cases predicted by the Frank-Bilby equation is likeliest. Bollmann sug-
gested that the likeliest case minimizes [32]

b7
P:Z:ﬁ’

1

(3.58)

which is analogous to the Frank rule for predicting dislocation reactions [7]. Similarly, Ecob and
Ralph propose two parameters [82] to distinguish between cases, defined by Q and R, as follows

bib;
d

Q=YX and, R=Y Y/,
i jdidj i did;

(3.59)
using geometrical arguments for the energy of semicoherent interfaces. Figures (3.18c) and (d) plot
these parameters for Cu/Nb and Ag/V interfaces. Comparing with Figs. (3.18a) and (b), none of
them predicts the misfit dislocation patterns seen in atomistic models. For example, for Cu/Nb,

all three parameters favor case 2, while the true interface structure is case 3. The elasticity-based
model is therefore viewed as superior to these parameters and as validated for the purpose of
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computational design of patterned interfaces.

3.5 Application to the sink strength of semicoherent interfaces

Clean, safe, and economical nuclear energy requires new materials capable of withstanding severe
radiation damage. One way of removing radiation-induced defects is to provide a high density of
sinks, such as GBs or heterophase interfaces [227] that continually absorb defects as they are cre-
ated. This motivation underlies ongoing exploration of the radiation response of nanocomposite
materials [74, 57], due to the large total interface area per unit volume they contain. These inves-
tigations have demonstrated wide variations in sink behavior of different interfaces. Some easily
absorb defects, preventing damage in neighbouring material, but become damaged themselves
[111]. Others are poor sinks for isolated defects, but excellent sinks for defect clusters [75]. The
sink behavior of yet others changes with radiation dose [15, 14]. This wide variety of radiation
responses prompts the physicists to ask:

* Are some specific interfaces best suited to mitigate radiation damage?

* Is it possible to identify them without resorting to resource-intensive irradiation experi-
ments?

Here it is demonstrated that elastic interactions between point defects and semicoherent in-
terfaces lead to a marked enhancement in interface sink strength. The conclusions stem from
simulations that integrate first principles, object kinetic Monte Carlo, and anisotropic elasticity
calculations. Surprisingly, the enhancement in sink strength is not due primarily to increased
thermodynamic driving forces [144, 133], but rather to reduced defect migration barriers, which
induce a preferential drift of defects towards interfaces. The sink strength enhancement is highly
sensitive to the detailed character of interfacial stresses, suggesting that "super-sink" interfaces
may be designed by optimizing interface stress fields. These findings motivate a computational
search for "super-sink" interfaces: ones that optimally attract, absorb, and annihilate radiation-
induced defects.

3.5.1 Computational multi-model strategy

To answer the aforementioned questions, an improved computational method for rapidly assess-
ing the vacancy and interstitial sink strength of semicoherent interfaces is proposed. This method
builds on the interfacial dislocation-based model for elastic fields of heterophase bicrystals, pre-
viously described. Such interfaces are of particular interest because many of them contain a high
density of defect trapping sites [73, 220]. Moreover, semicoherent interfaces generate elastic fields
that interact directly with radiation-induced defects [255]. These elastic fields have an unexpect-
edly large influence on interface sink strength, as quantified by the following computational multi-
model approach.

Elastic dipole tensor calculation

Defect P-tensors are calculated using VASP [149], a plane wave-based, first principles density
functional theory code. A fcc supercell containing 256 + 1 atoms (+1 and —1 for interstitial and
vacancy, respectively) is used. Calculations are also performed LAMMPS [207] classical potential
simulations using embedded atom method potentials for Ag [88] and Cu [187] to study the conver-
gence of the elastic dipole tensors up to supercell sizes of 2048 atoms. The discrepancy in the elas-
tic P-tensor components between the 256-atom supercell and that of 2048-atom supercell is found
lower than 4%. This supercell size ensures the convergence of defect formation energies to within
few meV, as detailed in the Supplementary Note from Ref. [255]. The 256-atom density functional
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theory simulations is therefore viewed as well converged with respect to model size. A3 x 3 x 3
shifted Monkhorst-Pack K-point grid mesh, a Hermite-Gaussian broadening of 0.25 eV [184], and
a plane wave cutoff energy of 400 eV are used. The change of the elastic dipole tensors is less
than 0.5% compared to tighter settings. The Perdew-Burke-Ernzerhof [205] exchange-correlation
functional is conveniently used within the projector-augmented-wave approach [150]. The struc-
tures are internally relaxed with a force convergence criterion of 10~ eV/A. The climbing image
nudged elastic band method [117] is employed to find the saddle points for defect migration.

Object kinetic Monte Carlo algorithm

The defect diffusion is investigated by using an object kinetic Monte Carlo code with a residence
time algorithm to advance the simulation clock [38, 101]. At time ¢, the time step is chosen ac-
cording to At = —(Inry)/wior, where r1 is a random number with r; €]0, 1] and wio is the sum
of frequencies of all events that may occur at ¢, i.e. Wit = ZZN w;. The chosen event j is such that
2;_1 w; < Wit < Zf w;, where r; is another random number with r, €]0,1].

Three kinds of events are considered in the simulations: the jump of a point defect from one
stable point to a neighbouring one, the absorption of a defect by an interface, and the creation of
a new point defect through irradiation. Jump frequencies are given by w; = vexp(—AE;/(kT)),
where v is an attempt frequency and AE; = E$d — E513 is the energy difference between the saddle
position and the initial stable position of the jump considered. The stable point energy is

B =~ DR i) (3.60)

while the saddle point energy is

Epd = ,f;*;i ent(rad), (3.61)

with E™ the migration energy in the absence of elastic interactions. Here, P*? and P5¢ are the
defect P-tensors in the ground state and saddle point configurations, respectively. For simplicity,
the position of the saddle point 75 is taken mid-way between the two stable points explored by
the jump [236].

The defect is considered to have been absorbed by an interface if it reaches the nearest atomic
row to the interface. It is then simply removed from the simulation. This absorption condition is
used to obtain a first estimate of sink strength, without taking into account the diffusion of point
defects along interfaces or their possible reemission. The irradiation rate is fixed at the beginning
of each simulation to keep the average number of point defects equal to 200 in the material where
the measurements are performed, if no elastic interactions are considered. The actual number
of point defects in the system, averaged over the simulation time when steady state is reached,
constitutes the basis for the sink strength calculation.

The concentration of defects is recorded every 10* iterations, after the concentration has be-
come stationary. At the end of the simulation, an estimate of the average defect concentration C is
computed by averaging over the values C;, with j = 1,..., 7, as follows

— 14
Ci=)G. (3.62)

The final time is adjusted to obtain sufficient accuracy on C and thus on the associated sink
strength k? in accordance with the mean field rate theory formalism [301]. For this purpose, the
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FIGURE 3.19: Schematic illustration of the diffusion of radiation-induced point defects (illustrated by ovals)
to interfaces under the influence of interface elastic fields. In general, materials A and B may be any two
crystalline solids. In the present work, they are chosen to be either Cu or Ag.

estimation of the error on the concentration is given by the standard error of the mean value, i.e.

On

0Cp = —,
ton

(3.63)

where

1 & = \2
aﬁ:n_lj;(c,-—c,,) ; (3.64)

The final time for each system is chosen so that the relative error on C and k? is less than 0.5%.

3.5.2 Kinetic Monte Carlo simulations with elastic interactions

Modelling the removal of radiation-induced point defects at sinks is a challenging task: on one
hand, the variety and complexity of defect behaviors call for the flexibility of atomistic modelling.
On the other, the relatively slow, thermally activated mechanisms of defect motion require longer
simulation times than may be reached using conventional atomistic techniques, such as molecular
dynamics. The object kinetic Monte Carlo (OKMC) method [38, 101, 56, 135] is employed, which
is well suited to modeling long-time, thermally activated processes yet is also able to account for
nuances of defect behavior uncovered through atomistic modeling.

Figure (3.19) illustrates the setup of the simulations containing two crystalline layers—A and
B—separated by semicoherent interfaces. Periodic boundary conditions are applied in all direc-
tions, so each model contains two A-B interfaces. Due to their inherent internal structure, the
interfaces create characteristic stress fields in the neighbouring crystalline layers. These stress
fields interact with radiation-induced point defects, modifying their diffusion.

The interface stress fields is computed by the approach discussed in section 3.2. For illustra-
tion, two specific interfaces are treated in the present work: a low-angle twist GB on a (001) plane
in Ag and a pure misfit (zero misorientation) heterophase interface between (001) planes of Ag and
Cu. Figure (3.20a) shows a plan view of the Ag twist GB, where the adjacent GB planes have been
rotated by +60/2 (0: twist angle). The boundary plane contains two sets of parallel, pure screw
dislocations: one aligned with the x = [110] direction and the other with the y = [110] direction.
For a relative twist angle of @ = 7.5°, the spacing between dislocations within each set is ~ 2.2 nm.
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FIGURE 3.20: Planar semicoherent interfaces with identical misfit dislocation arrangements in (a) Ag twist
GB with pure screw dislocations and (b) a Ag/Cu misfit interface with pure edge dislocations.

Figure (3.20b) shows the interface plane of the Ag/Cu pure misfit interface. Similar to the twist
boundary in Fig. (3.20a), this interface also contains two sets of parallel dislocations aligned with
the x = [110] and y = [110] directions. Furthermore, the spacing between dislocations in the
Ag/Cu interface is the same as in the twist boundary of Fig. (3.20a): ~ 2.2 nm. However, unlike
in the twist boundary, both sets of dislocations in the misfit interface are of pure edge type.

The two interfaces in Fig. (3.20) have identical dislocation arrangements, but different disloca-
tion characters. Thus, they contain identical dislocation densities, but have differing stress fields.
For instance, all normal stress components for the twist GB are zero throughout the entire bicrys-
tal. This stress field is therefore purely deviatoric. By contrast, due to symmetry, the shear stress
012 is everywhere zero for the Ag/Cu interface, but all of its other stress components are in general
non-zero. In particular, this interface generates significant hydrostatic stresses. These differences
have important implications for interface-defect interactions and defect migration pathways.

The force dipole moment approximation is used to compute elastic interaction energies be-

tween point defects and interfaces, EFPD/int 1140, 226, 71]:

EPP/nt — Pyl (x,y,2) . (3.65)

Here, s};‘t (x,¥,2z) = Ejj(x,y,z) are the short-range components of the previously calculated
interface strain field, given by eq. (3.12a). On the other hand, P;; are the components of the elastic
dipole tensor (the "P-tensor"), which describes the elastic fields generated by a point defect. EPP/int
values are used to compute stress-dependent energy barriers for defect migration at each location
in the simulation cell. A similar approach has been adopted in previous OKMC studies to describe
point defect interactions with dislocations [228, 236].

The density functional theory is used to calculate P-tensors for two types of point defects in
Ag and Cu: vacancies and self-interstitials of lowest formation energy, namely (100)-split dumb-
bells [242]. The P-tensor values for these defects are obtained in their ground states as well as
at their saddle point configurations during migration (found using the climbing image nudged
elastic band method [117]). Starting from a simulation cell containing a perfect, stress-free crystal,
the point defect of interest is inserted in the desired location and relax the atom positions while
keeping the simulation cell shape fixed. The point defect induces stresses, 0j;, in the simulation

cell. They are related to the defect P-tensor through

Py =V = Pi;i +phéy, (3.66)
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Interstitial Vacancy
Element . .
Ground state Saddle point Ground state Saddle point
26.80 0 0 26.69 259 0 —3.04 0 0 264 —-039 0
Ag 0 26.86 0 259  26.69 0 0 —3.04 0 -039 -264 O
0 0 26.86 0 0 27.74 0 0 —3.04 0 0 2.15
(1746 0 o1 (1801 178 0 1| [-319 o0 o] [-361 -037 0]
Cu 0 17.66 0 178 18.01 0 0 -3.19 0 -037 361 0
0 0 17.66 0 0 18.46 0 0 -3.19 0 0 212

TABLE 3.6: Elastic dipole tensors P-tensors (in eV) of point defects from first principles for a (100)-split

dumbbell self-interstitial and a vacancy in Ag and Cu at both the ground state and saddle point configura-

tions. The ground state interstitial is oriented in the [100] direction. Its saddle point configuration is for a
[100]-to-[010] migration path. The vacancy saddle point is for migration along the [110] direction.

e ——

@ ®

Ag

FIGURE 3.21: Elastic interaction energy between (a) an interstitial with the Ag twist GB (EPP/int <

—0.002 eV in the blue isovolume), and between the Ag/Cu misfit interface with (b) an interstitial and

(c) a vacancy (EPP/int < —0.06 eV in the blue isovolume; EPP/I"t > .06 eV in the red; gray contours are
locations with zero interaction energy).

where V is the simulation cell volume. Pi]c-1 and p! are the deviatoric and hydrostatic (isotropic)
P-tensor components, respectively. The former is associated with a pure shear (no volume change)
while the latter is related to isotropic tension (interstitials) or compression (vacancies), which leads
to a volume change.

Table 3.6 lists the P-tensors used in the present study. All of them are expressed in the Nye
frame, where the X-, Y-, and Z-axes are aligned with the [100], [010], and [001] Miller index di-
rections, respectively. The form of the P-tensor reflects the symmetry of the corresponding defect.
Thus, the P-tensor for a vacancy in its ground state is isotropic while that of an interstitial is tetrag-
onal. P-tensors for defect orientations other than those given in Table 3.6 may be calculated using
coordinate system rotations. The P-tensors for (100)-split dumbbell self-interstitials and vacan-
cies in Cu agree with experimental data [114, 242, 285]. Furthermore, the present calculations of
relaxation volumes of a vacancy in Ag and Cu are in very good agreement with recent ab-initio
predictions [191].

Figure (3.21) shows the distribution of ground state interstitial and vacancy interaction en-
ergies with the Ag twist GB and the Ag/Cu misfit interface. A (100)-split dumbbell interstitial
may take on three different orientations. Figure (3.21) uses the orientation with lowest EPP/int,
For the Ag twist GB, interstitial interaction energies are negative at all locations, as shown in
Fig. (3.21a). Thus, all interstitials in the vicinity of this GB experience a thermodynamic driving
force to migrate towards the boundary. The interstitials, however, have nearly isotropic P-tensors
(see Table 3.6), so their interaction energies with the Ag twist GB are very small. The interaction
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energy of vacancies with the Ag twist GB is everywhere zero due to the absence of hydrostatic
stresses near this interface. However, the anisotropy of the vacancy saddle point configuration
leads to non-zero interaction energies of migrating vacancies with the GB.

Interstitial interaction energies near the Ag/Cu misfit interface, shown in Fig. (3.21b), may
be attractive or repulsive, depending on the location of the defect. Thus, interstitials in Ag are
expected to migrate towards the center of the dislocation pattern while those in Cu are expected
to migrate to dislocation cores. Figure (3.21c) shows the interaction energy between vacancies and
the Ag/Cu misfit interface. The spatial variation of this interaction energy is similar to that of the
interstitials, but with opposite sign.

The OKMC simulations assume a constant, uniform defect creation rate, G. Defects diffuse
until they are absorbed by an interface. Only individual interstitials or vacancies are tracked in
the simulations: defect reactions, such as clustering or recombination, are not considered. After
a certain simulation time, defect distributions reach a steady state, whereupon the defect concen-
tration is computed as a function of position along the z-direction (normal to the interface plane)
based on the time spent by each defect on a given atomic site.

3.5.3 Effect of elastic interactions on interface sink strength

Figure (3.22) shows steady-state vacancy and interstitial concentrations for the two types of inter-
faces described above for models with 10 nm-thick Ag and Cu layers. In the absence of elastic
interactions between defects and interfaces, steady-state defect concentrations may be computed
analytically, which are successfully compared with the simulation results.

Elastic interactions have a dramatic effect on defect concentration profiles. In all cases shown in
Fig. (3.22) except vacancies near Ag/Cu interfaces, there are nearly no defects within ~ 2 nm-wide
zones adjacent to the interfaces. By contrast, without elastic interactions, defect concentrations are
zero only at the interfaces themselves. Moreover, even though defect-interface elastic interaction
energies are negligible beyond ~ 2 nm, the zones depleted of defects near the interfaces have a
pronounced effect on defect concentrations throughout the entire layer, markedly reducing the
average defect concentration. For the simulations in Fig. (3.22), elastic interactions reduce defect
concentrations by about a factor of two even in the middle of the layers. This effect is even more
pronounced for thinner layers. For vacancies in Ag/Cu, local traps are responsible for the sharp
increase in concentration near the interface.

The simulations account for numerous aspects of defect-interface elastic interactions, such as
defect anisotropy or differences in defect ground state and saddle point properties. To discover
which ones are primarily responsible for the defect concentrations shown in Fig. (3.22), some
of these characteristics are artificially "switched off" and repeated the OKMC simulations to see
whether doing so changes the steady-state defect concentrations. These calculations demonstrate
that the anisotropy of the P-tensor in the saddle point configurations is primarily responsible for
the reduced defect concentrations in Figs. (3.22a) and (3.22b).

The saddle point anisotropy is "switched off" by replacing the saddle point P-tensor with
Psd = ph T, where I is the identity matrix and pQ ; is one third of the trace of the true saddle
point P-tensor. This assumption is tantamount to modelling defects at saddle points as misfitting
spherical inclusions in isotropic media. Concentration profiles obtained with this approximation
are markedly different from the anisotropic case, as shown in Fig. (3.22). In the case of the Ag
twist GB (Figs. (3.22c) and (3.22d)), isotropic saddle points yield the same defect concentrations as
when there are no defect-interface interactions at all. Indeed, since the twist interface generates no
hydrostatic strain field, only the deviatoric components of defect P-tensors may interact with these
interfaces. Ground state vacancies have zero deviatoric P-tensor components, so the interaction
energy with the Ag twist GB vanishes, similar to ground state interstitials with nearly isotropic
P-tensors (Table 3.6). The same conclusions hold at saddle positions if saddle point anisotropy
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FIGURE 3.22: Steady-state point defect concentrations as a function of location normal to interface planes.
The black vertical lines represent the interface planes, while the continuous gray lines denote the refer-
ence case with no elastic interactions, computed analytically. OKMC results for both isotropic (orange)
and anisotropic (blue) saddle point configurations are shown. (a) Vacancy and (b) interstitial profiles near
Ag/Cu pure misfit interfaces. (c) Vacancy and (d) interstitial profiles near Ag twist GBs. Concentrations are
normalized by the average concentration C obtained when no elastic interactions are taken into account.

is "switched off", as describe above. Elastic interactions then do not affect migration energies,
explaining why defect concentrations are identical to the case without elastic interactions.

For the Ag/Cu interface, concentration profiles computed without saddle point anisotropy lie
between the non-interacting and fully anisotropic cases, as shown in Figs. (3.22a) and (3.22b).
Vacancy concentrations are only marginally lower than the non-interacting case (Fig. (3.22a)),
demonstrating the overriding importance of saddle point anisotropy in their behavior. Interstitial
concentrations obtained without saddle anisotropy lie approximately mid-way between the fully
anisotropic and non-interacting cases (Fig. (3.22b)), demonstrating that saddle point anisotropy is
at least as important to their behavior as are p AV interactions, which are more commonly inves-
tigated.

Figure (3.23) gives a more detailed view of defect concentrations at different locations in the
Ag layer of the Ag/Cu interface and in the Ag twist GB. Close to these interfaces, concentrations
vary as a function of location parallel to the interface plane, following the strain field pattern cre-
ated by the interfaces. Indeed, the strain field creates preferential paths for defect migration, as
shown by the gray trajectories in Fig. (3.23). These paths are in general different for interstitials
and vacancies. For both the Ag/Cu interface and Ag twist GB, vacancies preferentially migrate to
the dislocation lines, while interstitials are mostly absorbed between dislocations. This preferen-
tial, non-random walk drift of point defects to specific locations is responsible for the enhanced
interface sink strengths. Knowing the steady-state defect concentrations obtained by OKMC, sink
strengths are derived for the two interfaces considered above. In the mean field rate theory for-
malism [41], "sink strengths" quantify the ability of sinks, such as interfaces, to absorb defects.
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FIGURE 3.23: Preferential migration paths and local concentrations of (a) vacancies and (b) interstitials on

the Ag side of the Ag/Cu interface and of (c) vacancies and (d) interstitials in the Ag twist GB. Migration

paths are shown as gray lines originating from 1 nm away from the interface. The square grid of black lines

represents interface dislocations. Concentrations are plotted in a plane located two atomic distances away

from the interface. The concentrations are normalized by C: the average concentration when no interactions
are considered. Any normalized concentration values higher than 0.015 are shown as equal to 0.015.

Within this formalism, the evolution equation for the average defect concentration, C, follows

ic_ G —¥DC, (3.67)
dt

where G is the defect creation rate and D is bulk defect diffusivity. The second term on the right

hand side is related to the loss of defects at sinks with associated sink strength, k?. At steady state,

the sink strength may be computed from the average concentration:

g (3.68)
DC

Using the average of the concentration profile computed for defect removal at interfaces in the
absence of elastic interactions, the interface sink strength is analytically found to be k* = 12/d?
[46]. When interactions between interfaces and defects are present, the sink strength is numeri-
cally determined through eq. (3.68), by using the average steady-state concentration obtained by
OKMC simulations and the diffusion coefficient without elastic interactions. The resulting va-
cancy and interstitial sink strengths for both interfaces are shown in Fig. (3.24a—f) as a function of
layer thickness.

In all cases, the sink strength increases significantly when elastic interactions are taken into
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FIGURE 3.24: Enhancement in sink strength of Ag/Cu interfaces and Ag twist GBs for (a—c) vacancies

(k) and (d—f) interstitials (k?) in a given layer (Ag or Cu), as a function of layer thickness, d. (g—i) Bias

factors of Ag/Cu interface and Ag twist GB. The gray line corresponds to the analytical solution when

no interaction is present (k* = 12/d%). Orange and blue lines correspond to OKMC calculations without
saddle point anisotropy and with the fully anisotropic interaction model, respectively.

account. This effect is especially pronounced for thinner layers, as defects undergo elastic inter-
actions with interfaces over a larger fraction of the layer. It is particularly strong for interstitials,
whatever the interface type, and for vacancies for the twist interface. These results also confirm the
importance of saddle point anisotropy: by comparing with OKMC simulations that use isotropic
saddle-point P-tensors, it yields order-of-magnitude increases in sink strength, in some cases.

Another quantity of interest for radiation response is the bias factor, B, which expresses the
propensity of a given sink to absorb more interstitials than vacancies. It is defined as

B:kf—zkﬁ
ki

(3.69)

where k% and k? are the sink strengths for vacancies and interstitials, respectively. For example,
small interstitial clusters and dislocations exhibit positive bias factors (typically between 0.01 and
0.3 [47, 116]) and thus absorb more interstitials than vacancies. The preferential absorption of
interstitials by biased sinks leads to an excess of remaining vacancies, which cluster and eventually
aggregate into voids [47, 178].

Bias factors for the semicoherent interfaces are shown in Fig. (3.24g—i). Values larger than 0.2
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are obtained for the fully anisotropic interaction model in the case of the Ag/Cu interface. Such
interfaces would compete for interstitials with dislocations. The presence of two sinks of differing
bias magnitude has been given as a possible cause for void swelling suppression in ferritic steels
[168]. Interestingly, for the Ag twist GB the bias factor is negative, meaning that these interfaces
tend to absorb more vacancies than interstitials. Similar observations have been made in Ref. [229],
where the bias factor for single screw dislocations is negative when using anisotropic elasticity
theory and zero in the isotropic approximation. Such GBs may therefore deplete excess vacancy
concentrations sufficiently to inhibit void nucleation.

3.6 Elastic strain relaxation in interfacial dislocation patterns

The interfacial dislocation-based model described in section 3.2 has been extended to investigate
the equilibrium relaxed dislocation microstructures with specified constraints on semicoherent
interfaces [249, 250]. The present parametric energy-based framework includes surface/interface
stress and elasticity effects as additional constitutive relations, which are viewed as infinitely thin
membranes in contact with each individual material, give rise to non-classical boundary condi-
tions. The elastic field solutions are used to compute the corresponding strain energy landscapes
for planar hexagonal-shaped configurations containing three sets of misfit dislocations with un-
extended three-fold nodes.

3.6.1 General considerations on hexagonal-shaped dislocation patterns

The mechanical dislocation-based problem for determining the elastic strain relaxation of inter-
facial patterns formed by joining two linear anisotropic elastic materials A and B is described
by adopting specific notations and conventions in Fig. (3.25). In the global coordinate system
(O, 19", x9", x9"), corresponding to the orientation relations along fixed crystal directions of the
system of interest, the semicoherent interface is located at the coordinate x9* = 0, with x3* > 0
for material A, and x9" < 0 for material B. Such directions are not necessary related to high sym-
metry directions, so that the anisotropic elastic constants may be displayed in the most general
form. In the present work, the unit vector normal to the interface is # || x9", and a coplanar free
surface to the semicoherent interface is potentially introduced at x3" = ha, whereas B is always a
semi-infinite linear elastic crystal.

The crystallography of all interfaces is completely specified between close-packed planes of
neighboring materials, so that both orientation relations of crystals A and B with relative misori-
entations (tilt and twist) and differing lattice parameters (misfit) are described using the previous
concept of reference/natural states, as defined in section 3.2. As an example, the 2.5° Ta (tanta-
lum) twist boundary is illustrated in Fig. (3.25a). In the reference state, the interface is coherent,
but the interface is not coherent in the natural state, and the atomic structures of interfaces lead
to the formation of periodic networks of misfit dislocations that may undergo local relaxations or
reconstructions [94].

The closely related quantized Frank-Bilby equation [93, 30, 29] and the O-lattice theory [32] are
crystallographic approaches used to describe intrinsic dislocation structures at semicoherent inter-
faces, which provide the interfacial dislocation geometries in terms of line directions and spacings
for one, two, or three independent, planar, and uniformly spaced parallel sets of infinitely long
straight dislocations. As illustrated in the previous sections, however, such purely geometrical
approaches are not able to characterize local reactions of crossing dislocations to form dislocation
segments with different Burgers vectors in mesh networks that are energetically favorable.

The extended formalism for predicting the interface dislocations arrays linking the quantized
Frank-Bilby equation and anisotropic elasticity theory under the condition of vanishing the far-
tield stresses is used to identify the periodicity of the structures with two sets of dislocations from
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(b)

x2||x3 || n xir

FIGURE 3.25: Geometry of a hexagonal-shaped dislocation pattern containing three sets of interface disloca-
tions with the associated individual Burgers vectors. (a) The orientation relationships between the adjacent
linear materials are defined with respect to the global coordinate system (O, x‘l’r, x5, xgr), within which
the semicoherent interface is located at x5" = 0. For illustration, the current intrinsic dislocation structure
is associated with a planar {011} || n twist GB between two bcc crystals with a 2.5° rotation angle. (b)
Anisotropic elasticity calculations are performed in the non-orthogonal (O, ) || p9, x2 || n, x5 || p9) frame
with fixed basis vectors, where p{ and p9 # p{ are the O-lattice vectors that describe the periodicity of the
dislocation structures. The fixed red and blue points characterize the initial lozenge-shaped unit cell and
the pivot points for elastic strain relaxations, respectively. The grey points are related to the O-lattice points,
separated by the networks of interfacial dislocations with three-fold dislocation junction nodes where the
conservation law of Burgers vectors is satisfied, e.g. at the specific orange node J; that is parametrized by
the dimensionless coordinates (771,17,). For convex hexagonal-shaped dislocation configurations, J; may
move within the shaded triangular domain Tagc in dark grey.

the pre-determined O-lattice vectors p? and p§ # p?, as illustrated in Fig. (3.25b). These two vec-
tors characterize the initial lozenge-shaped unit cell of crossing dislocation sets (red points), for
which the translations of the unit cell by the basis vectors p{ and p? tessellate the entire interface
plane. In the following, the superscript """ will be used to indicate quantities related to the unre-
laxed dislocation configurations, e.g. &i" || p9 and ;" || p9 correspond to the initial dislocation
directions of the two sets that consist of the lozenge-shaped patterns, with Burgers vectors by and
by, respectively, as stated in section 3.2. Planar energetically favorable interactions may lead to the
formation of dislocation junctions with coplanar Burgers vector b3, i.e.

b1 +by — b3, (3.70)

such that the current semicoherent interfaces contain infinite, planar, and periodic dislocation
structures with three sets of misfit dislocations. As illustrated in Fig. (3.25b), the third newly
formed set (in black) is associated with the junction formation due to the local rearrangements
between two initial crossing dislocation arrays, shown by the blue and red dashed lines. The
current directions of the three sets of misfit dislocations are denoted by ¢, ¢,, and ¢; for which
the latter is associated with the direction of the in-plane dislocation junctions.

The present reactions yield to hexagonal-shaped patterns with three-fold dislocation nodes,
where the centers of the parent dislocation segments from the lozenge-shaped unit cells consist
of pinning pivot points (blue points) for glissile planar dislocations. An useful triangular domain
Tasc for performing parametric energy-based analyses, is represented by two blue pivot points (B
and C) and the red intersection point A in which dislocation reactions occur, as shaded in dark
grey in Fig. (3.25b). On the other hand, the newly formed representative hexagonal-shaped unit
cell (light grey domain), which contains six vertices (dislocation nodes), indexed and ordered by
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J1, J2, J3, Ju, J5, and Jg, is denoted by H y,y,5.),555,- The determination of such infinitely repeated
dislocation nodes with the type of rearrangement defined by eq. (3.70) produces neither orien-
tation nor magnitude changes in the O-lattice vectors. Thus, the two-dimensional periodicity of
the dislocation networks containing three families of straight parallel dislocation segments in the
local Cartesian frame (O, x1, x2, x3) with xy || x3" || #, remains unchanged during the elastic strain
relaxation processes.

In the previous non-orthogonal (oblique and fixed) frame with basis vectors (O, x{, x2, %),
where x] || p? || 3" and x4 || x3 || p9 || £i", the oriented angle between ;" and &}" is denoted
by ¢, so that x| = xjcsc¢"™ and ¥} = x3 — x; ctg¢"". Thus, any position vector in this non-
orthogonal frame may be expressed as: r = x p + x5 pS = (x1 cscp™) pf + (x3 — x1 ctg ™) ps.
In particular, the mobile dislocation three-fold node of interest J;, which is parametrized by the
dimensionless coordinates (771, #72) in the first quadrant of the (O, x}, x», x}) frame, is also defined
by: j; = 11 p$ + 12 p9, with (171, 172) € 10, 1/2[?, excluding 0 and 1/2 to describe convex hexagonal-
shaped patterns with six distinct dislocation edges. For example, the limiting case of equilibrium
arrays with two sets of orthogonal misfit dislocations is given by: ¢*4 = 7/2, ;% — 1/2, and
1751 — 1/2,s0 thatJ, ~ J3 and J5 ~ J4, as the (010) twist GBs in fcc materials. On the other hand,
the regular equilibrium hexagonal network corresponds to the particular case where: ¢*1 = 71/3,
and 77 = 1751 = 1/3, as the (111) twist GBs in fcc crystals.

3.6.2 Solution methodology for strain-relaxed rearrangements

During the non-random elastic strain relaxations without externally applied stresses, misfit dis-
locations are rearranged into hexagonal-shaped networks due to local reactions that lower the
elastic strain energy at semicoherent interfaces [94, 7]. Such strain-relaxed rearrangements of in-
terfacial dislocation patterns also involve the mechanical problem of finding the minimum-energy
paths from a given initial non-equilibrium lozenge-shaped microstructure with two sets of par-
ent misfit dislocations to new unique or multiple (with the same strain energy) stable equilibrium
hexagonal-shaped dislocation patterns of lowest energies with possible metastable configurations.

Without changing the interface crystallographic characters upon the relaxation processes, the
prescribed displacement jumps for each periodic hexagonal unit cell are also assumed to vary
linearly with the (algebraic) directed distance between the O-lattice points (displayed by the grey
points in Fig. (3.25b)) and the nearest neighbor interfacial dislocation segments. At the positions
of the dislocation segments, the relative displacements are completely described by the directions
and constant magnitudes of the associated individual Burgers vectors. Furthermore, the non-
classical boundary conditions due to the free surface excess stress and the semicoherent interface
excess stress contributions are therefore applied at: x3" = h and x3" = 0, respectively. Thus, the
minimum-energy paths are entirely obtained by measuring the removal of the short-range elastic
strain energy with respect to the coordinates (#1,%2) of J;, along which the long-range elastic
strain-free state is not altered by spurious non-zero far-field strains.

For a given crystallographic orientation relationship between materials A and B, the method-
ology for determining the equilibrium dislocation configurations for elastic strain relaxation pro-
cesses along minimum-energy paths is described below. The two first items summarize the strat-
egy procedure for computing the Burgers vectors of interface dislocations using anisotropic elas-
ticity theory, which have been introduced in section 3.2.

1. The geometries in terms of dislocation spacings and line directions, i.e. £} and ¢,", related
to the initial lozenge-shaped patterns are found by using the quantized Frank-Bilby equa-
tion. For such networks containing two sets of straight, parallel, and infinite misfit disloca-
tions, the periodicity of the dislocation structures is also obtained by mapping the O-lattice
points at the interfaces. The corresponding computed O-lattice vectors p{ and pS # p? are
conveniently associated with the fixed and non-orthogonal basis vectors of the (O, x}, x2, x})
frame for elasticity analyses, where x} || p || &5, x2 || n, and x5 || p9 || &7
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2. The reference state, within which the individual Burgers vectors of both dislocation sets
are defined, i.e. b; and by, is determined by combining the Frank-Bilby equation with
anisotropic elasticity theory that meets the constraints of interface crystallographic charac-
ter and zero long-range strains (or stresses) for infinite bicrystals. Because the latter far-field
condition is still fulfilled during the elastic strain relaxation processes, the third Burgers
vector b3 for the newly formed dislocation junctions is also obtained from the conservation
eq. (3.70) of the Burgers vector content at the three-fold node J;. In the limiting case where
a coplanar free surface is located in material A, the reference state (and therefore also, the
three Burgers vectors) is fully associated with material B, e.g. the case of a thin film on a
semi-infinite substrate.

3. The specific triangular region 7agc in the representative lozenge-shaped unit cell, formed
by the three fixed points A, B, and C in Fig. (3.25b), is discretized into four-node quadri-
lateral elements with respect to the i nodal points with coordinates (1%,15), such that
{1,475} €10, 1/2[% This discretization allows to represent any convex hexagonal-shaped
dislocation patterns in the non-orthogonal (O, x}, x», x3) frame for mechanics-based calcu-
lations of elastic field solutions, e.g. displacements, stresses, traction forces, etc.

4. The elastic strain energy stored at semicoherent interfaces is computed at any mesh point
(171, 15), by using the persistent short-range stress and strain field solutions for convex and
irregular hexagonal-shaped dislocation configurations. Furthermore, the complete elastic
energy landscape ‘. (11, 72) is interpolated for any (11,72) € |0, 1/2[? with the aid of stan-
dard finite element bilinear shape functions for four-node elements.

5. For energetically favorable reactions, the minimum-energy dislocation configurations are
numerically obtained by using the conjugate gradient algorithm on the pre-computed en-
ergy landscapes with a given prescribed tolerance. Then, the nudged elastic band method
[117,222] is used to provide access to the minimum-energy paths between the initial (non-
equilibrium) lozenge-shaped structures and the determined elastically relaxed dislocation

patterns with the aid of the elastic forces: f, = —V.(11,72). In practice, all elastic field
solutions are recomputed along the curvilinear reaction coordinates of the minimum-energy
paths.

3.6.3 Parametric energy-based framework

This section is concerned with the complete expressions of elastic fields for hexagonal-shaped dis-
location patterns located at heterophase interfaces between two dissimilar anisotropic materials.
The Stroh sextic formalism of anisotropic linear elasticity combined with the surface/interface
treatment in Ref. [108] and a Fourier series-based solution technique is therefore used to compute
the elastic fields outside the cores of dislocations. In the general case, all surfaces of interest (i.e.
semicoherent interfaces and free surfaces) are distinctly considered as infinitely thin membranes
with different, separate, and appropriate constitutive equations than the relations for both (bulk)
materials A and B.

Again, the pre-subscripts A and B in the elastic properties and also the field expressions will
be omitted for clarity in the following if no distinction between materials is required.

Elastic field equations and solutions in bulk materials

In the fixed Cartesian coordinate system (O, x1, x2, x3), the three-dimensional stress field o (x) =
0ij(x1,%2,%3) and the displacement field u(x) = u;(x1,x2,x3) in both crystals A and B are related
by the Hooke’s law in index form from Eq. (3.12b), as follows

0ij(x1,%2,X3) = Cijua g1 (x1,%2,%3), (3.71)
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where a comma stands for differentiation, with repeated indices denoting summation convention
ranging from 1 to 3, unless stipulated otherwise. The anisotropic elastic constants of the fourth-
order stiffness tensor C are fully symmetric, i.e. c;jir = Cjixr = Cijix = Cuij, and the classical partial
differential eq. (3.8) of mechanical equilibrium that is fulfilled in both crystals in terms of the
displacement fields is given by

03, (%1, X2, X3) = Cijiy Up,j1(x1,%2,%3) = 0. (3.72)

According to eq. (3.7), the complete displacement field is expressed as the superposition of
the linear displacement contribution from the proper selection of reference states for constrained
interfaces and the total displacement fields produced by the arrays of interfacial Volterra dislo-
cations. The latter dislocation displacement fields are also given as a biperiodic Fourier series,
ie.

U (x1,x0,x3) =Re Y 2™ 7 uf(xy) =2Re ) ™™ " uf(xy), (3.73)
k#0 D
where the Fourier series expansion involves the harmonics (1, m) that belong to the upper two-
dimensional half-plane domain, defined by D = {{n € N*} U {m € Z*, n = 0} }. For clarity, the
subscript 45 in eq. (3.7) has been changed to superscript in eq. (3.73). The components ki (n, m)
and k3 (m) of the wavevectors k are given by eq. (3.6) as follows

un un
k-r=£ox'1+ﬂox§,= <ncscocp —mCt%(P )xl—l—ﬁoxg:kl(n,m) x1+k3(m) xz, (3.74)
Pi 2 P P2 P2
with p = |p?| and p§ = |p?|. On the other hand, the far-field components are computed for

two dislocation sets to determine the correct reference state [260], within which the Burgers vec-
tors by and b, (and also b3, by virtue of eq. (3.70)) are defined. Because the elastic (short-range)
strain relaxations do not alter the long-range strain state during the junction formation of the third
dislocation sets, the removal of the far-field strains (or stresses) in the natural state is fulfilled by
solving the tensorial far-field egs. (3.1), exhibiting non-zero and heterogeneous short-range elastic
fields for interfacial dislocation patterns, only. Thus, substituting the displacement field eq. (3.73)
into eq. (3.71), the second-order differential equation applied to both materials is obtained in index
form as follows

—4m? W, i1 (x2) + 1270 (Way + Wo,,) fif5 (x2) + Wi, i1 (x2) =0, (3.75)

where W1, Wy, and W3 are 3 x 3 real matrices defined in egs. (3.10). In eq. (3.75), the superimposed
tilde to any quantities will be used to indicate that the corresponding field solutions are consistent
with the Frank-Bilby equation under the condition of vanishing far-field strains (or stresses) for
any dislocation patterns. For non-zero wavevectors k, the standard solutions satisfying eq. (3.75)
can be written in the following form [64]

if (xp) = e gk (3.76)

where p¥ = p and a* = a; become the complex scalar and vectorial unknowns of the boundary
value problems, respectively, for which the superscripts k are omitted, for clarity. Introducing
eq. (3.76) into eq. (3.75), the vector a is found to satisfy the homogeneous linear system

[Wlik +p (W, + Wa,,) + P2 ngk] ap = Ijar =0, (3.77)

which corresponds to the standard eigenvalue problem in anisotropic elasticity theory [234, 240].
A non-zero (non-trivial) solution can be found only if the determinant of II is zero, i.e.

det Hik =0, (378)
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leading to a sextic equation for p. As mentioned in section 3.6.3, the solutions of eq. (3.78) have
six imaginary roots, which are arranged such that the three first eigenvalue solutions p* have
positive imaginary parts, indexed by superscripts « = 1, 2, 3. The remaining three solutions have
negative imaginary parts, so that p*™> = p%. The corresponding eigenvectors a* = a? are also
complex conjugates with a*™ = g% = @, so that the general solution may be rewritten as a linear
combination of the three eigenfunctions, i.e.

3
i1 (x1,02,x3) = 2Re ) 2™ 7 Y A% gt 4 [N gt (3.79)
D a=1

which differs from eq. (3.11) by a multiplicative i27r term, without loss of generality. It also follows
from eq. (3.71) that

ijy’

3
G5 (x1, %2, x3) = 47w Re ) i@ Y AR HE - (¥ HE (3.80)
D

a=1

where the 3 x 3 complex matrices H* are related to the eigenvectors a* by
H?} = (kl Cijkl + k3 Ci]'kg + PaCi]'kz) ag , (381)

from selected elastic constants of materials A and B. In particular, the surface tractions at the
semicoherent interfaces, i.e. xo = 0, are reduced to

. . / 3
B (x1,05) = 0% (1, 0,03) m; = 4mrRe ) i ™7 Y7 AYHY, + (" HY, (3.82)
D

a=1

as well as the tractions at the free surface, i.e. x = ha, to

3
B (x1,x3) = 08 (x1, ha, x3) 1 = 4t Re Y i@ 7 Y Ae2Wn HE) 4 gte2WiIA 1) | (3.83)
D a=1

Free surface and semicoherent interface elasticity contributions

Combined with the surface tractions in egs. (3.82) and (3.83), the additional surface/interface
stress contributions, due to the work required by applying in-plane forces to elastically stretch
the pre-existing free surfaces and interfaces neighboring both materials A and B into the correct
reference states, are introduced as follows

d
Txp(X1,%3) = 7 Oy + #
X9

, 3.84
X1,X3) (3:84)

where Ty, (x1,x3) and e;(l,(xb x3) are the 2 x 2 surface stress and strain tensors, and 1 is the surface
free energy [224, 53]. Because eq. (3.84) is derived for the plane stresses acting in the surface area,
the stress and strain fields have only in-plane components, and Greek indices take values 1 and 3,
only. In order to solve the elasticity problems with appropriate constitutive relations between the
surface stress and strain components, a linear constitutive equation analogous to eq. (3.71) is used
[221], i.e.
— -0 s
Tyo(X1,X3) = Ty + dygyy €5, (%1,X3), (3.85)

where T)(() is the surface/interface residual stress tensor and dy ¢, is the fourth-order stiffness
tensor of surface/interface elastic constants. When the surface/interface entities are considered
as elastic isotropic media, the elasticity tensor contains also two independent constants, known as
surface/interface Lamé constants [53].
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In the case of realistic semicoherent interfaces, the atomic structures are not exactly like those
generated by the linear mappings from a reference state, as idealized and illustrated in Fig. (3.25a)
with no atomic relaxations. Indeed, electron microscopy and atomistic calculations have revealed
that such boundaries consist of coherent patches separated by networks of interfacial dislocations.
The coherency and bounding conditions between such boundaries and the adjacent bulk materials
yield therefore to the expression for the surface stresses in terms of the derivatives of the bulk
displacement fields, i.e.

2e5, (x1,x3) = 2&0°(x1,0,x3) = fIg (x1,0,x3) + 1155 (x1,0,%3) , (3.86)

for all in-plane strain components, at x = 0. Similarly to the model for interface stresses with
application to misfit dislocations in Ref. [52], this interface/bulk conversion of strain fields in
eq. (3.86) depends strongly on the presence of the misfit dislocations (and, therefore, on the non-
arbitrary coherent reference states), which in the present case, gives rise to unequally partitioned
distortion states, in terms of strains as well as tilt and twist rotations.

The elastic field solutions of the displacements, stresses and tractions of egs. (3.79), (3.80),
and (3.82—3.83) respectively, with respect to surface/interface effects defined by egs. (3.85—3.86),
are also written as linear combinations of the eigenfunctions, within which {A%,{*} are complex
unknown quantities that are to be determined by the boundary conditions. For hexagonal-shaped
dislocation patterns, these specific required conditions are expressed in terms of the discontinu-
ities of displacement and stress components across the semicoherent interfaces in bimaterials in
presence (if any) of a free surface in the upper material.

3.6.4 Boundary conditions with surface/interface constitutive relations

In what follows in section 3.6.4, expressions of displacements, strains, and stresses, and also all
related quantities that are needed to compute these field solutions (e.g., the elastic constants,
Burgers vectors by, by, and b3, eigenvectors a*, etc.), are expressed in the local oblique and fixed
(O, x1, x, x5) frame. In particular, the boundary conditions are written with respect to the geome-
try of the dislocation patterns, i.e. to the canonical coordinates (#1, 772) of the three-fold dislocation
node J;, as well as the magnitudes and directions of the individual Burgers vectors for three sets
of dislocations.

Convergence of the elastic field solutions

For all constrained interfaces that are consistent with the Frank-Bilby equation, i.e. when egs. (3.1)
are fulfilled with respect to the correct reference state, the corresponding semi-infinite linear crys-
tal (here, material B) is also necessary free of all far-field stress components. The elastic stress
solution in eq. (3.80) is therefore required to converge to zero at long range, i.e. when x, — —oco.
Hence, gA* = 0, independently of interfacial boundary conditions. For infinite bicrystals of in-
terest, the convergence conditions in both materials A and B yield to: gA* = A{* = 0, when
Xy — %00, as already defined in section 3.2.5.

Relative displacement due to the interfacial dislocation patterns

In accordance with eq. (3.15), the prescribed relative displacement field u”(x1, x3) for any (irregu-
lar) hexagonal-shaped dislocation patterns at the interface, i.e. x, = 0, is obtained by superposing
the contributions of both Burgers vectors by and by, i.e.

X1 ¢csc U X3 — x1 ctg o™
1 O¢ b+ 3 1Og<P

up(xl,xg) =
1 P>

by = z(x1) by +z2(x1,x3) b2, (3.87)
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where z; = z1(x1) and z = z2(x1,x3) are dimensionless linear functions. Assuming that the
displacement jumps are zero at all positions of the O-lattice points, e.g. at O in the representative
unit cell in Fig. (3.25b), the prescribed displacement field is also an odd function with respect to r
in the oblique (O, x|, x2, x%) frame. According to the linear elasticity theory, these displacement
jumps produced by each hexagonal-shaped dislocation cell can therefore be formally expressed as
double Fourier series for any dislocation configurations with respect to (11, %2), i.e.

uf(xy,x3) =Im ) ek T 4P (11, 112) = —Rei ) ei2mk-r (@] (11, 12) + a5 (1, m2)) (3.88)
k#0 k#0

where all real-valued expansion coefficients #t”(11,72) in eq. (3.88) are additionally decomposed
into the individual contributions i (1, 72) and i} (171, 172), associated with by and by, respectively.
In particular, the vector quantity # (1, 772) for by is deduced by solving the double integral with
respect to z; and z, as follows

z1(m) D(zmm) .
flf(m,ﬂz) _ Re [Z/ 1(m (Zl / 2(z1.1,12 e,,zn(nzﬁmzz) d22> dzl] by, (3.89)
z1(m) Z2(z1,111172)

for any (71,72) € Hy,p1s1050,- Moreover, eq. (3.89) may be integrated over three separate unit
domains, e.g. the parallelogram Py, y,;,;, and both triangles 77,,;, and 73,5, i.e.

ﬁf(’h/ ’72) = ﬁf(i’]l, 172)|7'l]1]2]3]4]5]6 = ﬁf(ﬂll 772)|77]1]3]4]6 + ﬁf(ﬂl, 172)|T]1]2]3 + ﬁf(ﬂll 172)|T]4]5]6 ’
(3.90)
as illustrated by the different vertices in Fig. (3.25b). Because the boundaries of the hexagonal-
shaped unit cells are composed of straight dislocation segments, the integral eq. (3.89) is neces-
sarily bounded by affine functions with respect to the coordinates 7; and #,. The first quantity
il (171,172)|73]1 Iyl I the right-hand side of eq. (3.90) is also computed by using the following
bounds, i.e.

2221, 12) = — 5Bz —
. _ 202,11, 12) = ==, — 21— 5
V{n,m} € Prye {?Em; B ™ and ) . _772117 : (3.91)
W) =1 Za(z1,1m,12) = — 21 221+ 2"

Similarly, the two quantities &} (171, 772) 73,1,5, and al (111, 1m2) 17,13, i €. (3.90) are determined
by considering

(1-2p)z1—1+m+m

_ _ ZZ(er 11, ;72) = _
V{m,m} € Ty : {;EZB _ ’171_ p Y, ( ) = 23 —V/lz "
22z, 11, 2) = _1+217 s
: ! (3.92)
_ 1221+ 12
_ 22(21,171,172) = 1.
o JE(m) =m -1 Sl
V{ﬂl, 772} € 7—14]516 : {21(;71) =—mn ' and 52 (2 " 172) _ (1-2mp)z1+1—1mp—m
7oLy 1-2m ’

respectively. Thus, after integrating eq. (3.90) analytically with respect to egs. (3.91) and (3.92), it
can also be found that

—1+2m,
22 (m+n—2(mmy+nn)) muna+n(=1+211))

by,
(3.93)

it} (171,12) = sin 27 (maz +nny))
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for any given (171,72). Analogously to eq. (3.89), the vector quantity &} (171,72) for by is written in

the form

D . 21(m) 22(z21m012) —i27t(nzy+mzp)

(g1, m2) =Re |i [ ( 20 2T 42 ) gz | by, (3.94)
z1(m) Za(z171,772)

for which the same integral bounds defined by egs. (3.91) and (3.92) are used to calculate eq. (3.94)
over the hexagonal-shaped dislocation patterns. Hence, it follows

—1+ 21,
22 (m4+n—2(mny+nny)) (m(=1+2m)+2nmn)

by,

(3.95)
for any (11,12). Combining eq. (3.93) with eq. (3.95), the complete vectorial solution for @” (11, 12)
is given by

it} (1,12) = sin (27 (mn2 +nmy))

AP (i, 12) = sin (27t (mun, +n1ny)) —142m ) —14 21

’ 22 (m+n—2(muyy+nmy)) [ 2mny +n(—1+21) m(—1+2172)+2n171(3%)
which closely corresponds to the same expression given in Ref. [39], after minor corrections. It is
worth noting that three singular values for n and m give rise to null denominators in eq. (3.96), so
that three cases must be distinguished, i.e. cl: m+n —2(my +nmn) #0,c2:n—2(myy+nn) #
0,and c3: m —2(mny +n 1) # 0. By defining the function z(n, m) = nz; + m z; in the exponential
terms of both egs. (3.89) and (3.94), all corresponding real-valued expansion coefficients are also
obtained by replacing m with m* in z(n, m) for all different cases, i.e.

4

1-2 1-2 2
n c2:mt=n n ,and 3: m* =n n

cl: m* = —n , ,
1-— 2772 2172 1-— 2172

(3.97)

for which the expressions for these three cases are given in Appendix A from Ref. [249]. Finally,
to exhibit the discontinuity condition in displacement, the prescribed jump in eq. (3.87) with the
aid of the egs. (3.96) may finally be related to the displacement fields generated by the interface
dislocation patterns, i.e.

uf (x1,x3) = [ (x1,0, ). = AT (x1,0,x3) — IS (1,0, x3) (3.98)
where the complete elastic field solutions in both materials A and B are given by eq. (3.79). The
symbol [y, ]. . = Ay, = Ay, — BY; corresponds to the vectorial jump of the quantity y across
the interface at x, = 0. Although all physical displacement fields in eq. (3.98) are defined as the
real quantities of complex Fourier series-based expressions, the real part designation in egs. (3.79)
and (3.88) are conveniently omitted to express the complex equality, as follows

3
—idf (1, m2) = Y aA“aaf 4+ al"aqf, — "}, (3.99)

a=1

so that both real and imaginary parts of eq. (3.99) lead to the equivalent homogeneous linear
system ¥; of six real equations, i.e.

3
0=Re Z A)\"‘Aaﬁ + AC"‘Aaﬁ* - BC“Baﬁ*
(%) Vk e {1,2,3}: “?1 (3.100)
—if (1, 12) = Im Y AA“aaf + AT a0} — BC"BAE,
a=1

where #t¥ (171, 72) is defined in eq. (3.96), for any given (11, 12) € ]0, 1/2[? and for all {n,m} € D.
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Stress conditions at the semicoherent interfaces

Due to the presence of the interfacial excess energy close to grain and interphase boundaries,
the discontinuity of the tangential stress components is introduced using the generalized Young-
Laplace equation [108, 209, 80], as an equilibrium boundary condition to solve the present boundary-
value problem with interface stress effects, i.e.

T (x1,0,%3) il + Toxx =0, (3.101)

together with the stress discontinuity in normal direction of the boundaries, as follows

f}‘s(x1,0, x3) il = Ty Ky (3.102)
with x,, the curvature tensor of the solid-state interface of interest. Substituting the linear con-
stitutive relation of eq. (3.85) into egs. (3.101) and (3.102) respectively, the governing non-classical
boundary equations lead to

0= [[E(;nt(xl,m)]]im + gy 55y (1,0, 33)

. , (3.103)
~ t ~
0= [&" (x1,%3)] , — (Thg + dxom u% (x1,0,%3)) (K3 + K?(p) /

where K?W and K?q, are the deformation-independent curvature and curvature change tensors, re-
spectively. In the classical theory of initially flat and infinitely thin membranes with small out-of-
plane deflections [40], as the considered (and interpreted as surface stresses) elastically stretched
membranes in Refs. [108, 109], the curvature change tensor may be approximated by

Ky = —il55,(%1,0,%3), (3.104)
without internal moments. Under the treatment of such specific boundary conditions normal
to the initially flat (but, stretched) membranes, the distortion response caused by the presence of
interface dislocations may elastically warp the semicoherent interfaces with radii defined by r,, =
1/ Kﬁq). Thus, the right-hand side of the second equation in egs. (3.103) is deduced by subsequently
imposing no initial curvature and neglecting the second-order effects compared with unity, as

follows

(T + dypyy 77(x1,0 x3)) (K?((P + K%P) ~ T)?(P ugliq,(xl,(),xg) , (3.105)

thus, imposing KX =0and udls (xl, 0,x3) ugl)sw)(xl, 0,x3) < 1. According to eq. (3.82), both discon-

tinuous stress boundary CODdlthl’lS in egs. (3.103) can also be recast in matrix form, i.e.
[ (1, x3)],,, — 4782 Vig ™ (x1,0,x3) = 0, (3.106)

where the 3 x 3 real matrix V is expressed as

kidiy + 2kiksdys + K3dss 0 K3d,5 + kyks (dvs + dss) + Bdas
Vi = Vi = 0 KT + 2k ksl + 38 0 ,
Kidis + kiks (di3 + dss) + K5dss 0 K3dss + 2kik3dss + kadss
(3.107)

within which the surface/interface elastic constants are indexed using standard contracted nota-
tions. Mechanically balanced by the interface stress effects, eq. (3.106) shows that the infinitesimal
in-plane strain fields in the membranes may influence the stresses in both bulk materials due to
the elasticity contributions at the interphase boundaries. In contrast to the classical continuum
elasticity, the tractions across the interface and the displacement fields are related to each other by
the interface elasticity properties as well the interface geometries through the wavevector compo-
nents.
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Because the materials A and B are mapped separately from the reference state, the coherent re-
gions at the interfaces (separated by the networks of interfacial dislocations) can also be viewed as
infinitely thin membranes separately in contact with each individual bulk material. Furthermore,
the determination of the reference states yielding (in general) to unequal partitioning of elastic
distortions, the tractions that act on each individual upper and lower materials bonded by these
coherent interfacial regions are consequently assumed to be different in both magnitude and direc-
tion. Using the concept of interface zone by in Ref. [146], the specific traction vector cont ™ (xq, x3),
acting on both neighboring crystals with fictitious infinitely thin inter-layered coherent patches
at xp = 0, is introduced to transfer traction forces from the upper material to the adjacent lower
material. The equilibrium condition between the interface coherent regions and material A also
reads )

A (21, %3) — contf™ (31, X3) — 477 AV ATLSS(x1,0,23) =0, (3.108)

by use of the boundary condition in eq. (3.106), while the equilibrium condition between the in-
terface coherent regions and material B is given by

conti™ (x1, x3) —B E™ (31, x3) — 4722 VIRt S (x1,0,x3) = 0, (3.109)

where AV and g™ depend on the elastic properties of the interfaces with respect to each mate-
rial A and B, respectively. Summing both egs. (3.108) and (3.109), it also follows that

AB (e, 05) = T (1, x3) — 4707 (VI AT (1, 0,39) + VI 81 (x1,0,3)) =0, (3.110)
which yields to the non-classical stress discontinuity conditions at the mismatched interfaces. Us-

ing egs. (3.79) and (3.82), eq. (3.110) gives rise to the additional linear system X, of six equations,
i.e.

0= Re[ Z AN ARG+ AZ AR, + 1270 (VI (aA"a0] + AC“Aﬂ‘i‘*) + AVEY (aA*a05 + a0"ad3 )
a=1
— B0 (s, — 27t (VI paf, + Vi Bag*))] — Re Z o
a=1
3 .
0= Re[ ZA/\"‘Ah —I— AZ“Ahz + 127'[( Vlnt(AAfoag +AC“BQ%*)) e (Bhozc* — 278 ‘z‘EtBai‘*)}
a=1
(X2) : = Re Z v5
3 a=1
0= Re| Yo AN + AC A5, + 270 (VY (AA" A0S + AZ%A0T,) + AVEE (AA“ A0S + A" A0t ))
=1 . 3
_ Bg“ (Bl’lg* — i27r(BV‘1 Bal* + BV13 Bu3 ] = Re Z v%
a=1
3
0= Im[ Evg] , Vk e {1,2,3},

a=1

(3.111)
with i = H},, for any given (111, 72) € ]0, 1/2[? and for all {n,m} € D.

Stress conditions at the free surfaces

Similarly to the semicoherent interface treatment, the free surfaces experience excess energy and
excess energy due to different energy profiles close to such singular membrane-like boundaries.
Thus, additional non-classical boundary conditions as eq. (3.110) are introduced on the outer free
surface, at x9" = ha, ie.

AES (1, x3) + 472 \VE A8 (xy, hip, x3) = 0, (3.112)
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where AV depends on the elastic constants of the free surfaces. It also yields to the following
system 23 of six other equations, i.e.

3 -
0= Re[ Z A)\aezZHp ha (Ahlf — z'27t(AV§sl Alllf + AV{% AIZ%))
a=1

3
gtx 2mpiha (Al’lm 127T(AV11 Aa] +AV{S3 Aag*))] =Re Z wi‘

3 5 & 5 g
0= Re[ Z A2 A (ah5 —i27 V5 Aly) + Al 27PN (al5, —i2m V5 Ay )]

a=1
(5) : =Re ) wj
a=1
0=Re| Z AT (1 — 27 (VI adh + AVE, Aa3))
a=1 3
gzx i2rpiha (Ahg* — i27‘[(AV{S3 Alllf* +AVgs3 Aﬂg*))] = Re 2 wg‘

a=1

3
= m[ ng] , Vke{1,2,3},
a=1

(3.113)
for any given (11,72) € ]0, 1/2[? and for all {n,m} € D.

Determination of the minimum-energy paths

When the linear systems in eqs. (3.100) with (3.111) and (3.113) are combined, the set Ecst of all
eighteen real unknowns (twelve and six for A and B, respectively) are also solved with respect to
the prescribed boundary conditions, i.e.

3
Ecst = ) {ReaA", Im oA, ReaZ", Im A", Repl”, Impl* }, (3.114)

a=1

completing the solutions of the elastic displacement and stress fields, given by egs. (3.79) and (3.80),
respectively. Following the procedure described in section 3.6.2, the upper triangular domain
Tasc in the representative unit dislocation cell, denoted by ABC in Fig. (3.25b), is discretized into
four-node quadrilateral elements with respect to the i nodal point coordinates (i, 715%), such that
{ni, 15} €10, 1/2[? for convex hexagonal-shaped dislocation patterns. Thus, for any dislocation
pattern that is geometrically characterized by the given coordinates (7}, #5), the corresponding
elastic strain energy can be computed as a volume integral over the heterostructure of interest,
ie.

’71/’72 =5A /// dls (x1,x2,%3) f;s(xl,xz,xg) dv, (3.115)

where all persistent short-range field solutions of the integrand depend specifically on (17, 75) by
the treatment of boundary conditions, described in section 3.6.4. For far-field stress-free bicrystals
at equilibrium, the standard volume integral eq. (3.115) may be reduced to a surface integral by
the use of integration by parts, together with the divergence theorem without any body forces
[223, 260], as follows

’Ye ’71/’72 =24 //A( xl,xs [[ﬁ?is(xl,O,xg)]]im ds, (3.116)
)

where A(r) is the hexagonal-shaped unit cell. In egs. (3.115) and (3.116), the expressions of elas-
tic strain energy are conveniently expressed per unit area, for which A = A(r, = 0), and account
for several different contributions, i.e. interaction between Volterra-type dislocations against the



3.6. Elastic strain relaxation in interfacial dislocation patterns 87

misfit strain state, self-energy induced by individual hexagonal-shaped dislocation configura-
tions, as well as the interaction between the hexagonal-shaped unit cell with all infinitely re-
peated cells. Finally, the complete elastic strain energy landscape 7.(#1,2) is interpolated for
any (111,12) € 10, 1/2[?, as follows

4 . . .
Ye(m1,m2) = Y Ni(71,1m12) ve (11, 175) (3.117)
i=1

where Nj(71,172) are the standard finite element bilinear shape functions for four-node elements.
For elastic strain landscapes that favor the formation of dislocation junctions, the minimum-
energy configurations are determined by computing the conjugate gradient algorithm, while the
nudged elastic band method is used to find the corresponding minimum-energy paths. The
nudged elastic band method is a chain-of-states method in which a string of images is used to
describe the reaction pathways. These configurations are connected by spring forces to ensure
equal spacing along the paths of interest. The ensemble of the configurations is then relax through
a force projection scheme to converge to the most energetically favorable pathways [117, 222]. To
identify the minimum-energy paths between the initial (non-equilibrium) lozenge-shaped pattern
and the final elastically relaxed configurations (previously computed by the conjugate gradient
algorithm), all images are simultaneously evolved to equilibrium under a nudged elastic band
force (on image indexed by s;) that contains two independent components on all images s, i.e.

NEB _ 1
R = (3.118)
where fqt is the component of the elastic force acting normal to the tangent of the elastic landscape,
as follows

foy = = Vel m) + (Vre(pm) - ,) %, , (3.119)

with %;, the unit tangent to the elastic energy landscape. In addition, the spring force ﬂ!, in
eq. (3.118), acting parallel to the energy landscape [117, 222] is defined by

fs|,‘7 = k(’”s”Jrl - 115,7| - |11s,7 - ”sqfll) s (3120)

where s, = 1151](171,172) is the position of the snth image and k the spring constant. The spring
interaction between adjacent images is added to ensure continuity of the chain.

The present numerical procedure is identical to nudged elastic band calculations recently per-
formed to analyze the calculation of attempt frequency for a dislocation bypassing an obstacle
[231] using a nodal dislocation dynamics simulation with non-singular treatments for isotropic
elastic fields [51].

3.6.5 Application to Au/Cu heterosystems

The section gives applications to two examples of the general parametric energy-based frame-
work. The first simple and limiting case is concerned with two dislocation sets in pure misfit
(010) Au/Cu interfaces, for which the strain energy landscape for formation of dislocation junc-
tions is unfavorable. The subsequent investigation of the effects of surface/interface stress and
elasticity properties with different boundary conditions in (010) Au/Cu interfaces can be found
in Ref. [249]. On the other hand, the second case deals with the minimum-energy reaction path-
way of the pre-computed (111) Au/Cu elastic energy landscape, where the initial and unrelaxed
dislocation pattern solution is described by the Frank-Bilby equation. The materials properties
used in these examples are listed in Table 3.7.
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Symbols Au (material A) Cu (Material B) Units References
Lattice parameters

a 0.4078 0.3615 nm [104]
Elastic components (Voigt notation)

11 187.0 168.4 GPa [7]

c12 157.0 121.4 GPa [7]

i 43.6 75.4 GPa [7]

Elasticity properties for the semicoherent interfaces (Voigt notation)
x Interface stress

1 —0.0465 0.645 N/m [146]
T3 0 0 N/m [146]
33 —0.0465 0.645 N/m [146]
* Interface modulus

dip —6.84 —5.99 N/m [146]
di3 —3.47 0.6540 N/m [146]
dss —6.84 —5.99 N/m [146]
dis 0.0042 0.0032 N/m [146]
dss 0.0042 0.0032 N/m [146]
dss —-1.91 —3.67 N/m [146]

Elasticity properties for the free surface (Voigt notation)
* Surface stress

T11 1.49 — N/m [185]
713 0 — N/m [185]
T33 1.49 — N/m [] 85]
* Surface modulus

dll —7.10 - N/m [185]
d13 —5.67 - N/m [] 85]
d33 —-3.17 - N/m [185]

TABLE 3.7: Lattice parameters a of Au and Cu crystals, material properties c;; of both bulk materials, surface
stress Ty, and surface modulus dy, of the semicoherent Au/Cu heterophase interface and the (010) free
surface in Au.
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FIGURE 3.26: Dependence of the total far-field stress component 0§ + aﬁ‘” on ¢ in the Au and Cu materials
for the (010) and (111) Au/Cu semicoherent interfaces.

Case 1: The (010) Au/Cu interface with two sets of dislocations

As a limiting case, the atomically sharp (010) Au/Cu misfit interface contains two sets of orthog-
onal dislocations in cube-cube orientation relationship, i.e. x{* = [10I], " = n = [010], and
x§" = [101]. Similar to eq. (3.37), the net Burgers vectors are expressed by using the quantized
Frank-Bilby equation [93, 30, 29], as follows

nx&m nx & _ _
( i "’)bl+( - "")bz:”lbl+”2bz=(FAi—Fc&)p, (3.121)
2

where di™ and d;" are the regularly spaced inter-dislocation spacings, and the interface Burgers
vectors by || [101] and by || [101] are both parallel to x;- and x3-axis, respectively. As a result of
arbitrarily selecting the reference state identical to the Au (or Cu) natural state, for which the ge-
ometry of interface dislocations (line directions and spacings) is independent of the choice of ref-
erence state, the line directions are defined by & || [101] and &" || [101], and the inter-dislocation
spacings are given by di"" = d;"" = p{ = p§ = 2.25144 nm. Thus, the Frank-Bilby equation pre-
dicts that an orthogonal network of straight parallel dislocations with pure edge characters is also
needed to accommodate the pure misfit (010) Au/Cu interface.

The geometry of such orthogonal grid of dislocations can also be characterized by ; — 1/2
and 7 — 1/2 in the general parametric framework, because ¢"" = /2. According to the bi-
linear function u?(y; — 1/2,12 — 1/2) for the prescribed displacement field in eq. (3.87), the
corresponding real-valued expansion functions in eq. (3.88) for the individual set 1 can be com-
puted by imposing m = 0, as follows

) A . . -1 n+1
nllin}/z ity (11, 12) = 77215111/2 ity (1, 172) = 27'211 by
Nl (3.122)
lim  lim  o#f(7,72) = lim (D" (=1+212) b, =0,
n—1/2 m—1/2 1 —1/2 271tn

exhibiting that @t? (5, — 1/2,170 — 1/2) = &f (;1 — 1/2,12 — 1/2) is evidently written as a
function of by, for set 1. By superposing the similar contribution of set 2 with n = 0, the final
prescribed displacement field produced by an orthogonal network of dislocations in eq. (3.88)
is therefore written in the form of two distinct one-dimensional sawtooth-shaped functions with
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FIGURE 3.27: Elastic strain energy landscapes -y, in J.m 2 of the hexagonal-shaped patterns with three-fold
dislocation nodes as a function of 77 and 1, for the (a) (010) and (b) (111) Au/Cu heterophase interface
cases. The large points at 17; = 7, = 1/2 correspond to the initial lozenge-shaped patterns, for which the
two crossing dislocation sets are related to equilibrium and non-equilibrium dislocation configurations for
the (010) and (111) interface planes, respectively. The latter case gives rise to the presence of a minimum-
energy path (in black) between the initial pattern and the fully elastically strain-relaxed dislocation struc-
ture (magenta point) at stable equilibrium state. An intermediate state is displayed by the orange point.

Fourier sine series, as follows

u”(x1,x3) = — Z ( ~—2sin (27tk1 (n,0) x1) by —

in (27tks (m) x3) b2, (3 123)

II |V
I\/II

where kq(1,0) and k3(m) are defined in eq. (3.74), with ¢"" = 71/2. Here, the sawtooth-shaped
functions in eq. (3.123) differ from eq. (3.19) by individual translations of magnitude d;"" /2. Sim-
ilarly to ¥ and X in egs. (3.20) and (3.25), the simplest limiting case of bicrystals without any
surface/interface elasticity effects leads to a set of twelve real and linear equations, i.e.

3
Re ) aA%aa” —p("gal =0
a=1
_1\n
—(7_;1) b, if m=0 n € N*
3
Y N N S . _ _1\m
ImaglA}L aa® —pl*pay =9, with: 9 =< ( 1) by ifn=0 mc N*
3 0 if nm#0 nelN,meN*
Re ) aA“ah" —pl"gHS =0
a=1
3
Im 2 A}\D‘Ahu - Bgthﬂf =0,
\ =1
(3.124)

with respect to the six associated complex unknown quantities, i.e. AA* and g*.
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Following the procedure described in section 3.3.3, the two deformation gradients Fglll and Fall
in eq. (3.121) (also, the magnitudes of both b; and b;) are determined by ensuring the condition of
vanishing far-field stresses along a transformation pathway between both materials Au and Cu.
For cube-cube orientation relation, this condition is met by continuously adjusting the reference
lattice parameter a,. along a specified reaction pathway coordinate é, starting with the pure lattice
parameter of Au to Cu, i.e.

Aref = (1 —0) aau + dacuy, (3.125)

where 0 < § < 1is a dimensionless variable that interpolates linearly between a4, and acy.

According to the far-field eq. (3.1), the dependence of the total large-range stress components
o+ Ulil” in Au (black line with symbols) and Cu (red line with symbols) on the transformation
pathway coordinate J is plotted in Fig. (3.26). For the (010) misfit case, both far-field stress com-
ponents vanish for d(g;9) = 0.60392, so that the corresponding reference state is closer to Cu than
to Au, ie. J(p9) > 0.5, where cycy; < auCnn and cuCiz < AuC12, but cuCsys > auCss. All other
elastic components are consistent with the absence of strains in the long range and no rotations
are induced along the transformation path. Thus, it gives rise to the reference lattice parameter
aref = 0.37984 nm, and also the magnitudes of correct Burgers vectors, i.e. by = by = 0.26859 nm,
selected by the coherent reference state. When an incorrect reference state is arbitrary chosen,
the corresponding Burgers vectors deviate in magnitude and non-zero spurious stress fields exist
in the microstructure. For instance, a residual stress state in Au persists with o0} + Auafl"" ~
6.29 GPa and ~ —3.66 GPa, for §(y;9) = 0 and 1, respectively. A larger residual stress field exists
in Cu as well, where cy0{) + cu0;” =~ —8.77 GPa, for (919) = 0, and ~ 5.09 GPa, for §(g19) = 1.

For the following calculations in interfacial hexagonal-shaped dislocation patterns, the upper
half-plane domain D = {{0 < 11 < fiyax } U {|1] < #imax }} \ {m < 0, n = 0} } is defined by setting
Nmax = 50, which is large enough to ensure accurate solutions in truncated elastic stress fields with
three sets of dislocations.

Figure (3.27a) shows the elastic strain energy landscape for the (010) Au/Cu misfit interface
with classical boundary conditions between both neighboring semi-infinite Au and Cu crystals,
for simplicity. To determine such energy landscape, the triangular domain 7ypc is first discretized
into 121 nodal points with coordinates (17},75), such that {75} € ]0, 1/2[?, as depicted by
the gray dots in Fig. (3.27a). Using the persistent short-range elastic fields, the finite (guaran-
teed by the zero far-field stresses) stored elastic energy per unit area is computed for any (77, 75)
using eq. (3.116) with ry = b;/4. Following the standard interpolation procedure of eq. (3.117),
the elastic strain energy for any given (171,72) € ]0, 1/2[* shows a smooth and symmetric land-
scape with respect to the median (177 = 72) of the triangular domain, within which the unique
strain energy minima is obtained at 771 — 1/2 and 7, — 1/2, with Y™ = 7. (51 — 1/2,172 —
1/2) ~ 0.57344 J.m 2. Planar dislocation reactions and junctions for (010) misfit interfaces are
also shown to be energetically unfavorable. It is therefore demonstrated that the initial orthogo-
nal grid of uniformly spaced edge dislocations corresponds to the equilibrium structures for the
(010)-type misfit interfaces, which satisfies the condition of vanishing far-field stresses as well as
the minimum-energy criterion for predicting the most favorable dislocation structures.

Near the unreacted state of the (010) Au/Cu system, the present energy landscape shows
concave slope profiles at #; >~ 1, ~ 1/2. For calculations with other fcc/fcc heterosystems in
the (010) cube-cube orientation relationship (not shown here), the corresponding unreacted state
can exhibit convex energy profiles, which suggest different bound crossed states of dislocation
reactions for the (010) twist GBs. Thus, the parent dislocations could also exhibit strong repulsive
interactions or crossed states where local bend and twist of dislocations may locally occur at the
short-range distances, as observed in non-coplanar dislocations [176].
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FIGURE 3.28: (a) Dependence on #; = 1, of the elastic energy -y, in Jm~2ie. along the bisecting lines of the
admissible triangular domains 7agc, as displayed in Figs. (3.27). The blue and the red curves correspond to
the mismatched (010) and (111) Au/Cu interfaces, respectively. The latter exhibits black dots, indexed by
sy = 1,...,16, which represent the minimum-energy path from Fig. (3.27b). The large points at 171 = 172 =
1/2 are related to the initial lozenge-shaped patterns with two crossing sets of dislocations, whereas the
vertical arrow shows the minimum-energy configuration associated with the (111) semicoherent interface.
(b) Dependence on s, of the dislocation characters ¢; for the three sets and the angle ¢ between the two
parent dislocations for the corresponding (111) Au/Cu case. All these quantities are expressed in °.

Case 2: The (111) Au/Cu interface with three sets of dislocations

In contrast to the (010) Au/Cu case, the (111)-oriented habit interface planes exhibit different
arrangements of atoms, which yield to more complex interface dislocation patterns and also to
general elastic states where both constituent strains and rotations are unequally partitioned be-
tween the crystals [123].

The present orientation relations associated with the (111) Au/Cu misfit case are defined by
2 = [112], 2" = [111] || n, and x§" = [110], within which the fcc {111} close-packed planes
contain a.¢/2(110)-type Burgers vectors. Similarly to the (010) case, such Burgers vectors must
be defined in the proper reference state under the condition of vanishing far-field stresses in the
(111) Au/Cu bicrystal. By arbitrarily choosing by = aa,/2[101] and by = aa,/2[011] as the
reference Burgers vectors, the quantized Frank-Bilby eq. (3.121) gives rise to the lozenge-shaped
dislocation structure that is specifically comprised of two arrays of parallel dislocations (with no
local reactions at nodes): the initial line directions are defined by &™ || [011] and &y || [101], so
that the individual characters are ¢i™ = ¢y = 60°, and the angle between these two unrelaxed
sets of dislocations is ¢"" = 60°. In addition, p{ = p§ = 2.25144 nm, so that the inter-dislocation
spacings are given here by di"" = d;"™ = 1.94980 nm.

As illustrated in Fig. (3.26), the dependence of the total far-field stress components in the (111)
system, i.e. in both Au (black line) and Cu (red line) on §, yields to a predicted reference state for
O111) = 0.57962, so that a,.s = 0.38096 nm, and also to the magnitudes of correct Burgers vectors
are defined by b; = b, = 0.26938 nm. Moreover, Fig. (3.26) shows stronger spurious stress values
for the (111) than (010) system cases, by a factor of 2.33 (2.15) in Au (Cu) when ¢ = 0, i.e. when
Au is improperly selected as the reference state. The same qualitative conclusion regarding the
spurious stress state can be drawn for § = 1.

Using the aforementioned Frank-Bilby solution as the initial dislocation structure for possible
elastic strain relaxation, Fig. (3.27b) shows the pre-computed elastic landscape as function of 7,
and 1, associated with the (111) misfit interface case. The symmetric landscape has been com-
puted using the same number of nodal points than in Fig. (3.27a), for which the orientations of
both plots are different for clarity. The elastic energy per unit interface area for the unrelaxed
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lozenge-shaped dislocation pattern is given by 7e(1 — 1/2,172 — 1/2) ~ 0.49568 J.m 2, with
1o = b1/4, which is slightly lower than the stored energy for the (111) Au/Cu system fory; — 1/2
and 17, — 1/2. Here, the landscape for the (111) system is qualitatively and quantitatively differ-
ent than the (010) case, since the former gives rise to the existence of a unique minimum-energy
dislocation configuration with three sets of dislocations resulting from junction reactions.

The energy minimization procedure that involves the conjugate gradient algorithm is per-
formed by using a prescribed convergence criterion in the pre-computed energy landscape. The
interface dislocation structures with the lowest elastic energy are considered to be found when the
difference between the values of the stored elastic energy for two subsequent iterations is less than
10~*J.m~2. The corresponding minimum-energy path is determined by using the nudged elastic
band method between the initial non-equilibrium and the minimum-energy states, for which the
spring constant k in eq. (3.120) has been varied over several orders of amplitude without notice-
able effects on the computed path. The obtained minimum-energy path is displayed in Fig. (3.27b)
by the black curved chain with equidistantly positioned images (i.e. intermediate states), where
the final configuration state is designated as the final elastically strain-relaxed dislocation pattern.
Here, the smooth path has no energy barrier (therefore also, no saddle point) and 15 intermedi-
ate states, which connect the initial and final states, are constructed. The minimum strain energy
related to the relaxed dislocation pattern is given by y™" = (177 — 0.31981,77, — 0.31981) =
0.44733 J.m~2, which corresponds to a significant decrease in strain energy of 9.75%.

The variations of strain energy along the median (#; = #2) of the two (010) and (111) Au/Cu
landscapes, as displayed by the blue and red dotted lines in the insets of Fig. (3.28a), start from
their initial corresponding lozenge-shaped dislocation structures at 771 = 1, = 1/2 with different
stored energy values. The red (blue) line illustrates the (un)favorable elastic energy profile for
junction formation that continuously decreases (increases) with decreasing both values of 7; and
12 from 1/2 at the (111) ((010)) Au/Cu heterophase interface. The intermediate states between
the lozenge-shaped and the relaxed hexagonal-shaped dislocation configurations for the (111)
case are indexed by s, = 1,...,15. Such considerable saving in strain energy along s, is related to
the change in dislocation structures, e.g. dislocation characters ¢; and the angle ¢ between ¢, and
1, which can be examined along the determined minimum-energy path. Figure (3.28b) plots these
geometrical characteristics in terms of ¢ (in green), ¢ (blue), ¢, (red), and ¢3 (black, for the newly
formed set of dislocation junction) as a function of s;. It is also found that the geometrical equilib-
rium configuration of the minimum-energy dislocation pattern is characterized by ¢°1 ~ 128.4°,
$11 = 31 ~ 85.8°, and ¢ = 90°. Both sets 1 and 2 deviate by 4.2° from pure edge characters, and
the dislocation structure deviates by 8.4° from regular hexagonal-shaped configuration. Such dis-
location arrangement is in agreement with atomistic analysis in iron, where deviations from pure
screw dislocations in (110) bec twist GBs with comparable order of dislocation spacings have been
reported using molecular statics simulations [290].

Figures (3.29) illustrate the strain-relaxed rearrangements of the interfacial dislocations from
the lozenge-shaped configurations on the (111) heterophase interface using different elastic quan-
tities, which can, for example, be used to analyze the likely regions for nucleating interface dis-
locations or absorbing and annihilating point defects (interstitials and vacancies). All contour
plots are displayed at x, = 3aa, with respect to the three dislocation configurations shown in
Figs. (3.29a), i.e. the "initial"! at sy = 1, intermediate (s, = 8), and the final relaxed (s;, = 16) states,
for which the specific intermediate case is located exactly halfway between both initial and final
states, as depicted by the orange point along the computed minimum-energy path in Fig. (3.27b).
A schematic representation of the atomically sharp (111) Au/Cu interface with current periodic
dislocation lines is shown in Figs. (3.29a), where the Au (Cu) atoms are plotted by white (gray)

1Here, "initial" means the first admissible configuration with three sets of dislocations, where an initially small
dislocation segment for the junction has been introduced (in the direction of the steepest descent between the two
parent sets) to solve the corresponding solutions for hexagonal-shaped dislocation patterns.
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dots. The three corresponding Burgers vectors on the (111) close-packed plane are represented as
well.

Figures (3.29b) and (c) illustrate the normal displacement component 1, = ﬂgis(x1,3a Aw X3)
and the displacement norm u = [i#4(x1,3aay, x3)|, respectively. Figures (3.29b) show that the
minimum values of u = —0.01 nm are located in the centers of the dislocation patterns, while
the maximum values yield close to the dislocation junctions for the initial unrelaxed pattern. In
the final relaxed dislocation configuration, the maximum values are unequally distributed at the
three-fold dislocation nodes, e.g. J; = {J1, J3, Js} versus J; = {J», J4, J¢}, for which the set of
junction nodes J; gives rise to larger amplitudes of u, than J;;. Figures (3.29¢) display the complex
relief of displacement norm u with the largest magnitudes at J;, for illustration.

3.6.6 Comparison with atomistic simulations

The model interfaces for the present comparisons with atomistic simulations are selected accord-
ing to the following criteria:

1. The structure of the interface is describable as a dislocation network. The present study is
concerned with dislocation-based models of interface structure. Thus, interfaces to which
these models do not apply are not suitable.

2. This dislocation network undergoes a relaxation through the dissociation of four-fold junc-
tions into three-fold junctions. Some interfacial dislocation networks are not suitable for the
study because they contain stable four-fold junctions that do not undergo any relaxation.

3. The interface dislocation network is initially periodic and remains so as it relaxes. Moreover,
the dislocations in the network do not dissociate into partials. These choices are necessitated
by current limitations in modeling capabilities [249, 250]. The requirement of periodicity is
met by selecting special interfaces that may be modeled by two overlapping sets of misfit
dislocations, whereas general interfaces involve three overlapping dislocation sets [1]. The
requirement of no dissociation excludes from consideration GBs in low stacking fault energy
materials.

4. The final structure of the relaxed interface is not the outcome of any inherent symmetry that
the interface possesses. For example, while twist boundaries on {111} planes in aluminum
meet all the foregoing conditions, they are excluded from consideration because the relaxed
dislocation structure in these interfaces has the same p6m symmetry as the underlying, un-
relaxed dichromatic pattern [69, 70]. Such a symmetry-driven relaxation does not constitute
a stringent test of the elasticity-based relaxation model.

5. Differences between the relaxed and unrelaxed dislocation network must be discernable in
atomistic simulations. Thus, the dislocations should not be so closely spaced that they are
difficult to distinguish yet not so far apart that they would require very large atomistic mod-
els. This criterion is met through judicious selection of the interface crystallographic charac-
ter (misorientation, misfit, and plane orientation).

All of the foregoing criteria are met by the two classes of model interfaces selected for the
present comparison: low-angle twist GBs on {110}-type planes in niobium (Nb t-GBs) as well as
heterophase interfaces between {111}-type planes of silver and {110}-type planes of vanadium
(Ag/V interfaces). For both interface types, a series of structures is considered by varying twist
angle, 6, i.e. 0° < 0 < 10° for both interface types. When 6 = 0°, the Nb t-GB reduces to a perfect
single crystal while the Ag/V interface is in the NW OR [279, 192], where (110),.. and (100), .. are
parallel within the interface plane.

Ag/V interfaces formed in magnetron sputtered multilayers have been characterized exten-
sively [280]. They are observed in a variety of ORs and with a wide range of interface planes.

fcc
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FIGURE 3.30: Nb-t GB energies computed as a function of 6 using the dislocation-based model and atom-
istic modeling.

Among the structures reported are Ag/V interfaces in the KS and NW ORs, both along Ag {111}
and V {110} planes. They have been previously modeled using elasticity theory, albeit without
accounting for network relaxations, as well us using classical potential [172]. Comparisons with
atomistic simulations revealed discrepancies that were hypothesized to arise from nodal recon-
structions of the kind investigated here. The dislocation-based model is presented in details in
section 3.6, while the embedded atom method potentials are used to model atomic interactions in
both Nb [294] and Ag/V [281].

No experimental investigations of Nb {110} t-GBs have been reported. Nevertheless, these
interfaces were previously investigated by atomistic simulations [173], by anisotropic linear elas-
ticity theory, and most recently using phase field models [211]. However, no quantitative com-
parison between structures predicted by the elasticity theory and atomistic modeling has been
previously conducted.

Nb {110} t-GBs

Figure (3.30) compares the energy of Nb t-GBs computed from atomistic models with values ob-
tained using the dislocation-based model, the latter using two different core cutoff radii. Both
atomistics and the elasticity theory reveal similar trends, with energies increasing monotonically
as a function of 6 within the range of twist angles investigated. Comparison of elastic results be-
fore and after relaxation of the dislocation network shows that this step in the calculation yields
a relatively modest reduction in elastic energies. For example, for § = 2°, the reduction is ap-
proximately 8% of the initial energy. Energies computed from atomistic models are higher than
those obtained from the elasticity theory. This difference is due to dislocation core energies, which
are inherently captured in the atomistic calculation, but are not accounted for in the dislocation
approach. The larger the core cutoff, the lower the energy computed by the present calculations.
Interestingly, regardless of the cutoff radius, the values are smaller than the atomistic ones by
an apparently 6-independent factor, consistent with both the elastic and core energies scaling in
proportion to the total length of dislocation segments in the network, to a first approximation.
Figure (3.31) compares the structure of Nb t-GB dislocation networks determined from atom-
istic modeling to ones found with the elasticity theory, using 6 = 2° as an example. Other twist
angles give rise to qualitatively similar structures. The atomistic structure in Fig. (3.31a) consists of
a 2-D tiling of hexagonal regions separated by a connected network of misfit dislocation segments
of predominantly screw character. Two types of segments are present: ones with 3 (111)-type
Burgers vectors as well as ones with (100)-type Burgers vectors. As shown in Fig. (3.31a), the for-
mer are approximately twice as long as the latter. Consistent with previous studies in bcc Nb [173]



