Endommagement à l'échelle mésoscopique et son influence sur la tenue mécanique des matériaux composites tissés

Ja

Aurélien Doitrand (MAS/DMSC/MC²)

Directeur de thèse: Nicolas Carrère (LBMS puis Safran Composites)

Encadrants Onera: Martin Hirsekorn, Christian Fagiano

Séminaire de remise des prix des Doctorants 07/04/2016

retour sur innovation

Contexte et challenges

Introduction

Matériaux composites:

- Bonnes propriétés mécaniques
- Faible densité
- Flexibilité dans la conception

Besoin des industries aéronautique et automobile:

- Réduction des émissions de gaz à effets de serre
- Réduction des masses des structures

Structure en sandwich

Stratifié de pli d'unidirectionnels

Introduction

Contexte et challenges

Composites tissés

- Variété dans le choix du renfort
- Réduction des opérations d'assemblage fragilisant les structures

Challenge: exploiter le potentiel de ces matériaux

Architecture d'un renfort de fibres Taffetas

satin de 5 carbone-époxy

Introduction

Contexte et challenges

Identification des paramètres longue et coûteuse

[Hurmane 2015] [Elias 2015]

Composites tissés 2D [Hochard 2001] [Barbero 2005] [Tollon 2009]

Besoin de modèles prédictifs prenant en compte l'architecture du renfort Intérêt de l'échelle mésoscopique

Objectifs:

Caractérisation de l'endommagement à l'échelle mésoscopique

Modélisation des mécanismes d'endommagement observés expérimentalement

Effets de l'endommagement sur le comportement macroscopique des composites tissés

ONERA THE PERSON ADDRESS LAB

- Introduction
- Observations expérimentales
- Procédure de modélisation
 - Géométrie et maillage
 - Modélisation discrète de l'endommagement et effets sur le comportement macroscopique
 - Critère couplé pour l'amorçage de l'endommagement
- Conclusions et perspectives

Observations expérimentales

THE PERSON ATROSPACE LAB

Observations expérimentales

- Matériau étudié*:
- 4 couches de taffetas
- > Fibres de verre
- Matrice époxy

*Plaque réalisée à l'Onera avec R. Agogué et découpée par P. Nunez

*Essais réalisés par A. Mavel

Montage de traction

Détection de fissures par corrélation d'images

Observations expérimentales

Nombre de fissures?

Problématique : Détection de l'endommagement à partir d'observations au microscope

- Corrélation d'images pour la détection de l'endommagement (Correli RT3 - Collaboration avec F. Hild (LMT Cachan))
- Régularisation mécanique pour la mise en évidence de l'endommagement

- Introduction
- Observations expérimentales
- Procédure de modélisation
 - Géométrie et maillage
 - Modélisation discrète de l'endommagement et effets sur le comportement macroscopique
 - Critère couplé pour l'amorçage de l'endommagement
- Conclusions et perspectives

Maillage d'une cellule élémentaire représentative

Modèle numérique

THE PERSON APPORTUNE LAB

⁹ *Doitrand *et al.*, 2015 Composites part A.

Maillage d'une cellule élémentaire représentative

Modèle numérique

THE PERSON APPORTUNE LAB

10 *Doitrand et al., 2015 Composites part A.

CER adaptée à la modélisation de l'endommagement

Modèle numérique

Influence du décalage des couches sur les champs de déformation*

- Empilements idéaux
- Champs de déformation non satisfaisants

 Empilement réaliste

CER adaptée à la modélisation de l'endommagement

Modèle numérique

ONERA

THE PRENCH ATROSPACE LAR

Influence du décalage des couches sur les champs de déformation*

12 *Doitrand et al. 2016 Composites Structures

- Introduction
- Observations expérimentales
- Procédure de modélisation
 - Géométrie et maillage
 - Modélisation discrète de l'endommagement et effets sur le comportement macroscopique
 - Critère couplé pour l'amorçage de l'endommagement
- Conclusions et perspectives

Localisation de l'endommagement

Modèle numérique

THE PERSON ATROSPACE LAB

<u>2^{nde} étape: Localisation de l'endommagement dans la cellule élémentaire représentative</u>

Localisation de l'endommagement

Modèle numérique

THE PERSON ATROSPACE LAB

<u>2^{nde} étape: Localisation de l'endommagement dans la cellule élémentaire représentative</u>

Modélisation discrète de l'endommagement

Modèle numérique

THE PERSON APPROXPACE LAB

16 *Doitrand et al. 2015, Composites Science and Technology

- Introduction
- Observations expérimentales
- Procédure de modélisation
 - Géométrie et maillage
 - Modélisation discrète de l'endommagement et effets sur le comportement macroscopique
 - Critère couplé pour l'amorçage de l'endommagement
- Conclusions et perspectives

Critère couplé pour l'amorçage de l'endommagement

THE PERSON ATROSPACE LAB

Critère couplé pour l'amorçage de l'endommagement

Modèle numérique

Critère en contrainte

• Critère en contrainte atteint sur toute la surface de la fissure

Critère couplé pour l'amorçage de l'endommagement

Modèle numérique

Critère en contrainte

• Critère en contrainte atteint sur toute la surface de la fissure

Orientation de la fissure et décohésions

Modèle numérique Cohésions Critère en énergie pour plusieurs configurations : Prise en compte de l'inclinaison

ONERA

THE PERSON ATRONPACE LAB

- Introduction
- Observations expérimentales
- Procédure de modélisation
 - Géométrie et maillage
 - Modélisation discrète de l'endommagement
 - Effets de l'endommagement sur le comportement macroscopique
 - Critère couplé pour l'amorçage de l'endommagement

Conclusions et travaux de dernière année

Conclusions et perspectives

Conclusions

Évolution des propriétés mécaniques en fonction de l'endommagement en bon accord avec les résultats expérimentaux

ε^{energy} (-)

 $\boldsymbol{\epsilon}_{\min}$

- > Critère couplé permet de déterminer:
 - La localisation de la fissure
 - La configuration de la fissure
 - La longueur de la fissure
 - La déformation à l'amorçage

Travaux de dernière année

- Exploitation des essais de caractérisation de l'endommagement au cœur du matériau (Thermographie infrarouge, émission acoustique, tomographie)
- > Utilisation du critère couplé pour déterminer une cinétique d'endommagement
 - > Lien avec un modèle d'endommagement macroscopique
- Rédaction du manuscrit

Production scientifique

Communications :

- ODAS 2014, Cologne, "Experimental characterization and numerical modeling of damage at the mesoscopic scale of woven composites".
- JNC 19, Lyon 2015, "Modélisation discrète de l'endommagement des composites tissés à matrice organique à l'échelle mésoscopique".
- ICCS 18, Lisbonne 2015, "Numerical procedure for mesoscopic scale damage modeling of woven polymer matrix composites".
- MechComp 2, Porto 2016, "Damage analysis in woven composites at the mesoscopic scale".

Publications :

- A. Doitrand, C. Fagiano, FX. Irisarri, M. Hirsekorn. "Comparison between voxel and consistent meso-scale models of woven composites". Composite Part A 2015;73:143-54.
- A. Doitrand, C. Fagiano, V. Chiaruttini, FH. Leroy, A. Mavel, M. Hirsekorn. "Experimental characterization and numerical modeling of damage at the mesoscopic scale of woven polymer matrix composites". Composites Science and Technology 2015;119:1-11.
- A. Doitrand, C. Fagiano, FH. Leroy, A. Mavel, M. Hirsekorn. "On the influence of fabric layer shifts on the strain distributions in a multi-layer woven composite". Composite Structures. 2016;145:15-25.
- A. Doitrand, C. Fagiano, N. Carrère, V. Chiaruttini, M. Hirsekorn. "Damage onset modeling in woven composites based on a coupled stress and energy criterion". En cours de rédaction.

Merci pour votre attention!

Ja

Endommagement à l'échelle mésoscopique et son influence sur la tenue mécanique des matériaux composites tissés

Aurélien Doitrand

Directeur de thèse: Nicolas Carrère (LBMS puis Safran Composites) Encadrants Onera: Martin Hirsekorn, Christian Fagiano

> Séminaire de remise des prix des Doctorants 07/04/2016 ONERA

> > THE FRENCH AFROSPACE LAR

retour sur innovation