

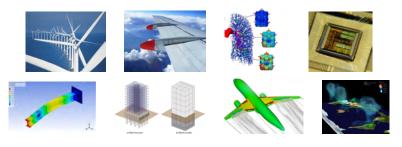
Large-scale and infinite dimensional dynamical systems approximation

Igor PONTES DUFF PEREIRA

Doctorant 3^{ème} année - ONERA/DCSD

Directeur de thèse: Charles POUSSOT-VASSAL

Co-encadrant: Cédric SEREN


retour sur innovation

- 1 What about model approximation?
 - Context
 - Objectives and problem formulation
- 2 My contributions
 - Theoretical contribution: model approximation with time-delay structure
 - Methodological contribution: stability regions for time-delay systems
 - Industrial applications: rhin flow system
- 3 Conclusions and perspectives
- 4 Academic outputs

Large-scale dynamical systems

Large-scale systems are present in many engineering fields: aerospace, computational biology, building structure, VLI circuits, automotive, weather forecasting, fluid flow...

- difficulties with simulation and memory management (e.g., ODE solvers);
- difficulties with analysis (e.g., frequency response, norms computation...);
- difficulties with controller design (e.g., robust, optimal, predictive, etc.);
- induce numerical burden;
- need for numerically robust and efficient tools.

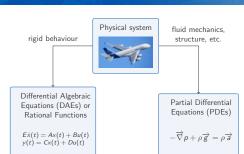
Context Large-scale dynamical models

- → Highly accurate and/or flexible A/C;
- Spacecraft, launcher, satellites;
- Fluid dynamics (Navier-Stokes);
- High fidelity models.

Large-scale dynamical models

fluid mechanics, structure, etc.

Partial Differential Equations (PDEs)

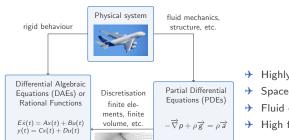

$$-\overrightarrow{\nabla}p+\rho\overrightarrow{g}=\rho\overrightarrow{a}$$

$$\frac{\partial \rho}{\partial t} + \overrightarrow{\nabla}.(\rho \overrightarrow{v}) = 0$$

- → Highly accurate and/or flexible A/C;
- Spacecraft, launcher, satellites;
- Fluid dynamics (Navier-Stokes);
- High fidelity models.

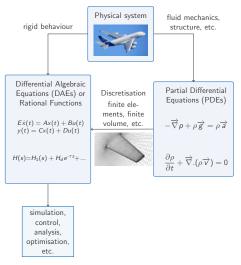
Large-scale dynamical models

 $H(s)=H_1(s)+H_de^{-\tau s}+...$

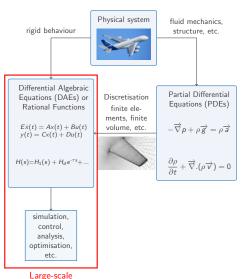


 $\frac{\partial \rho}{\partial t} + \overrightarrow{\nabla} \cdot (\rho \overrightarrow{v}) = 0$

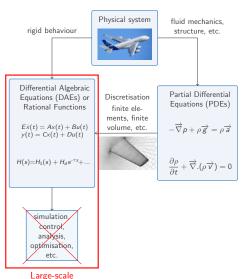
- → Highly accurate and/or flexible A/C;
- Spacecraft, launcher, satellites;
- Fluid dynamics (Navier-Stokes);
- > High fidelity models.

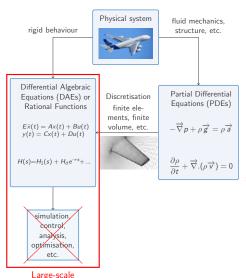

Large-scale dynamical models

 $H(s)=H_1(s)+H_de^{-\tau s}+...$



 $\frac{\partial \rho}{\partial t} + \overrightarrow{\nabla} \cdot (\rho \overrightarrow{v}) = 0$

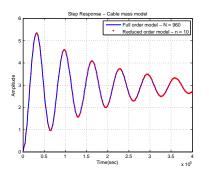

- Highly accurate and/or flexible A/C;
- Spacecraft, launcher, satellites;
- Fluid dynamics (Navier-Stokes);
- + High fidelity models.


- Highly accurate and/or flexible A/C;
- Spacecraft, launcher, satellites;
- Fluid dynamics (Navier-Stokes);
- + High fidelity models.

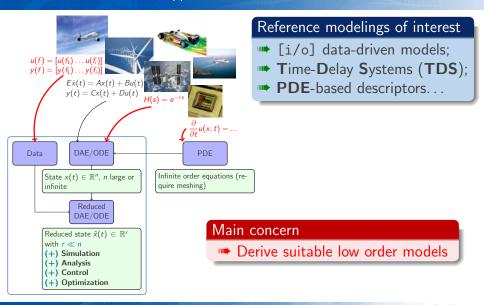
- Highly accurate and/or flexible A/C;
- Spacecraft, launcher, satellites;
- Fluid dynamics (Navier-Stokes);
- High fidelity models.

- Highly accurate and/or flexible A/C;
- Spacecraft, launcher, satellites;
- Fluid dynamics (Navier-Stokes);
- → High fidelity models.

- → Highly accurate and/or flexible A/C;
- Spacecraft, launcher, satellites;
- Fluid dynamics (Navier-Stokes);
- + High fidelity models.


- \Rightarrow **objective:** alleviate numerical burden
- allows to increase simulation speed while preserving precision.
- allows to apply modern analyses and control techniques.

Large-scale dynamical models


Example: Cable mass model simulation

- Full model $N = 960 \rightarrow \text{Simulation time} \approx 23.70\text{s}$.
- Reduced model $n = 10 \rightarrow \text{Simulation time} \approx 0.02\text{s}$.
- \blacksquare Approximation time \approx 4.03s.

Realization-less model approximation

Objectives and problem formulation Model approximation ~ mathematical optimization

Objectives

Find a reduced order modeling $\hat{\mathbf{H}}$ for which:

- ✓ the approximation error is small;
- ✓ the stability is preserved...
- ... from an efficient and computationally stable procedure.

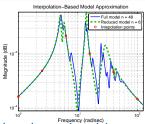
The quality of the approximation can be evaluated using some mathematical norms. Find

$$\hat{\mathbf{H}} := egin{cases} \hat{E}\dot{x}(t) = \hat{A}x(t) + \hat{B}u(t) \\ y(t) = \hat{C}x(t) \end{cases}$$

s.t.:

 $\|\mathbf{H} - \hat{\mathbf{H}}\|^2$ is minimum \rightarrow optimisation problem to solve

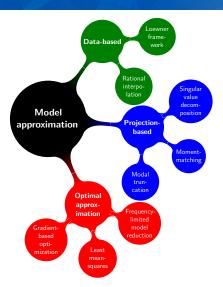
Objectives and problem formulation \mathcal{H}_2 model approximation problem

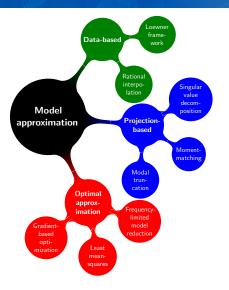

Mathematical formulation

Find $\hat{\mathbf{H}}$ of order r << n which minimizes^a:

$$\hat{\mathbf{H}} := \underset{\mathbf{G} \in \mathcal{H}_2^{n_y \times n_u}}{\operatorname{argmin}} ||\mathbf{H} - \mathbf{G}||_{\mathcal{H}_2}, \tag{1}$$

$$\underset{\dim(\mathbf{G}) = r \in \mathbb{N}^*}{\operatorname{Grid}}$$


 $^{a}\mathcal{H}_{2}$ -norm is the "system energy"


Tackle this problem by rational interpolation

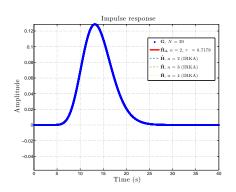
Overview of my contributions State of the art

Overview of my contributions State of the art

- Most of reduced order models considered are finite dimensional.
- But some natural phenomena have intrinsical delay behaviour, e.g., transport equation.
- Idea : Consider time-delay reduced order models.

$$\Delta(s) = e^{-\tau s}.$$

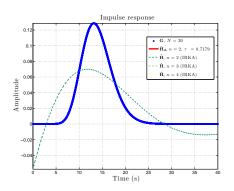
flow into quad-copter



Overview of my contributions List of examples

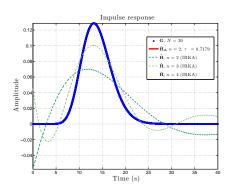
- **Example 1:** Approximation of transport phenomena by time-delay structure.
- **Example 2:** Time-delay system stability charts estimation.

Example 3: Hydroelectric EDF model (Rhin river).



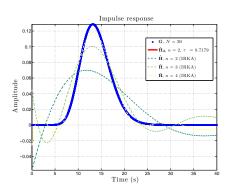
- Full order model has input-delay behavior.
- Finite dimensional reduced-order model not appropriate.
- Good input-delay approximation.

¹ Pontes Duff, I., Poussot-Vassal, C. and Seren, C. – "Optimal \mathcal{H}_2 model approximation based on multiple input/output delays systems." – [Submitted to Automatica].



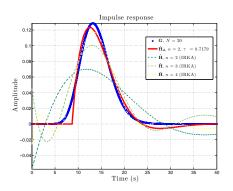
- Full order model has input-delay behavior.
- Finite dimensional reduced-order model not appropriate.
- Good input-delay approximation.

¹ Pontes Duff, I., Poussot-Vassal, C. and Seren, C. – "Optimal \mathcal{H}_2 model approximation based on multiple input/output delays systems." – [Submitted to Automatica].



- Full order model has input-delay behavior.
- Finite dimensional reduced-order model not appropriate.
- Good input-delay approximation.

¹ Pontes Duff, I., Poussot-Vassal, C. and Seren, C. – "Optimal ℋ₂ model approximation based on multiple input/output delays systems." – [Submitted to Automatica].

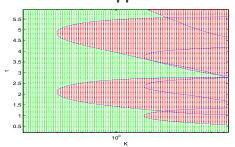


- Full order model has input-delay behavior.
- Finite dimensional reduced-order model not appropriate.
- Good input-delay approximation.

¹ Pontes Duff, I., Poussot-Vassal, C. and Seren, C. – "Optimal \mathcal{H}_2 model approximation based on multiple input/output delays systems." – [Submitted to Automatica].

- Full order model has input-delay behavior.
- Finite dimensional reduced-order model not appropriate.
- Good input-delay approximation.

¹ Pontes Duff, I., Poussot-Vassal, C. and Seren, C. – "Optimal ℋ₂ model approximation based on multiple input/output delays systems." – [Submitted to Automatica].

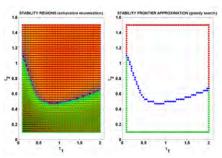


Stability regions for time-delay systems Example 2¹ (ETH Zürich collaboration)

Stability estimation

Exploit model reduction techniques to analyse the stability of **TDS** w.r.t. parameters.

Application to Robotics:



² № Pontes Duff, I., Vuillemin, P., Poussot-Vassal, C., Briat, C. and Seren, C. – "Approximation of stability regions for large-scale time-delay systems using model reduction techniques." – In Proceedings of the 2015 ECC.

Stability regions for time-delay systems Example 2 (ETH Zürich collaboration)

Perpectives:

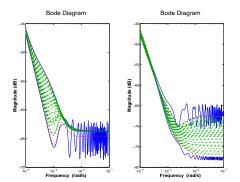
Implement research boundary algorithm using evolutionary methods (PR GENETIC)

Rhin flow system Example 3 ¹ (EDF collaboration)

→ PDE St-Venant fluid model

- Infinite dimensional linear parametric model;
- Modeling = relationship between outflow q_s and inflow q_e at any given nominal flow q_0 s.t.:

$$Z(q_0,s) = \begin{bmatrix} G_e(q_0,s) & -G_s(q_0,s) \end{bmatrix} \cdot \begin{bmatrix} q_e(s) \\ q_s(s) \end{bmatrix}$$


 G_e and G_s are rational functions of hyperbolic.

¹

 Dalmas, V., Robert, G., Poussot-Vassal, C., Pontes Duff, I. and Seren, C. −
 "Parameter dependent irrational and infinite dimensional modelling and approximation
 of an open-channel dynamics." − [Accepted to the 15th European Control Conference,
 2016.]

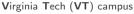
Rhin flow system Example 3 ¹ (EDF collaboration)

→ PDE St-Venant fluid model

⇒ Result: finite dimensional parametric reduced model

 $^{^1}$ $\ \ \,$ Dalmas, V., Robert, G., Poussot-Vassal, C., Pontes Duff, I. and Seren, C. - "Parameter dependent irrational and infinite dimensional modelling and approximation of an open-channel dynamics." - [Accepted to the 15^{th} European Control Conference, 2016.]

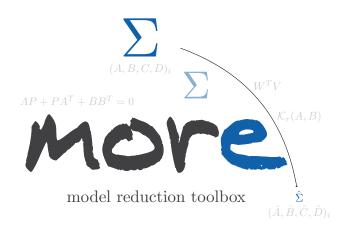
Conclusions and perspectives To sum up...


Main contributions

- Model approximation for reduced order modeling, timedelay structures: theoretical and algorithmic contributions.
- Methodological solutions for TDS stability charts estimation.
- Application to several representative industrial cases.
- Scientific collaborations:
 - 1 S. Gugercin/C. Beattie (Virginia Tech 3 months stay).
 - 2 C. Briat (ETH-Zürich).
 - **3** G. Robert/V. Dalmas (EDF).

Conclusions and perspectives Third (and last) year future works

Onera - Toulouse


- Methodologies extension
- Methods will be available in the MOdel REduction toolbox.

- Thesis defence planned in December 2016.
- New PhD position opened on model approximation.

That's all!

Thanks for your attention, any questions?

website link: http://w3.onera.fr/more/

Academic outputs Public communications

Workshops:

- 2nd Workshop on Delay Systems, October 2013 (CNRS-LAAS, Toulouse): "Model reduction for norm approximation."
- 3rd Workshop Delay Systems, October 2014 (GIPSA-Lab, Grenoble): "Model reduction of time-delay systems and stability charts."

Congresses/Seminars:

- GT MOSAR, November 2104 (ONERA, Toulouse): "Model reduction of infinite dimensional systems."
- Matrix Computation Seminar, October 2015 (Virginia Tech, USA):
 "H2 model approximation, interpolation and time-delay systems."
- SIAM Student Chapter, November 2015 (VirginiaTech, USA):
 "H₂ model approximation, stability charts and time-delay systems."
- 7th European Congress of Mathematics, July 2016, (TU Berlin): "ℋ₂ model approximation for time-delay reduced order systems." [invited]

Academic outputs Accepted papers

Book chapter:

Pontes Duff, I., Vuillemin, P., Poussot-Vassal, C., Briat, C. and Seren, C. Model reduction for norm approximation: an application to large-scale time-delay systems.

[To Appear] in Springer Series: Advances in Dynamics and Delays.

Conference papers:

Pontes Duff, I., Vuillemin, P., Poussot-Vassal, C., Briat, C. and Seren, C. Stability and performance analysis of a large-scale aircraft anti-vibration control subject to delays using model reduction techniques.

[Accepted] in the Proceedings of the 2015 EuroGNC Conference.

Pontes Duff, I., Vuillemin, P., Poussot-Vassal, C., Briat, C. and Seren, C. Approximation of stability regions for large-scale time-delay systems using model reduction techniques.

[Accepted] in the Proceedings of the 14th European Control Conference, 2015.

Pontes Duff, I., Poussot-Vassal, C. and Seren, C. Realization independent time-delay optimal interpolation framework. [Accepted] at the 54th IEEE Conference on Decision and Control, 2015.

Academic outputs Accepeted/Submitted papers

Journal papers:

Pontes Duff, I., Poussot-Vassal, C. and Seren, C. Optimal \mathcal{H}_2 model approximation based on multiple input/output delays systems. [Submitted] to Automatica journal, 2015.

Conference papers:

Dalmas, V., Robert, G., Poussot-Vassal, C., Pontes Duff, I. and Seren, C. Parameter dependent irrational and infinite dimensional modelling and approximation of an open-channel dynamics.

[Accepted] to the 15th European Control Conference, 2016.

Pontes Duff, I., Gugercin, S., Beattie, C., Poussot-Vassal, C. and Seren, C. \mathcal{H}_2 -optimality conditions for reduced time-delay systems of dimension one. [Accepted] to the 13^{th} IFAC Workshop on Time Delay Systems, 2016.

Academic outputs On going works

Journal papers:

Pontes Duff, I., Poussot-Vassal, C. and Seren, C. Model reduction and stability charts of time-delay systems. [On going work] → European Journal of Control (?)

Pontes Duff, I., Gugercin, S., Beattie, C., Poussot-Vassal, C. and Seren, C. \mathcal{H}_2 -optimality conditions for structured reduced order models. [On going work] \leadsto SIAM Journals on matrix analysis and applications (?).

Technical Report:

Pontes Duff, I., Gugercin, S. and Beattie, C. Stability and model reduction of family of TDS models. [On going work] → Event not identified.

