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Context
Large-scale dynamical systems

Large-scale systems are present in many engineering fields: aerospace, computational
biology, building structure, VLI circuits, automotive, weather forecasting, fluid flow. . .

à difficulties with simulation and memory management (e.g., ODE solvers);

à difficulties with analysis (e.g., frequency response, norms computation. . . );

à difficulties with controller design (e.g., robust, optimal, predictive, etc.);

à . . . induce numerical burden;

à . . . need for numerically robust and efficient tools.
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Context
Large-scale dynamical models

Physical system

Partial Differential
Equations (PDEs)

−−→∇p + ρ−→g = ρ−→a

∂ρ

∂t
+
−→∇.(ρ−→v ) = 0

fluid mechanics,
structure, etc.

Differential Algebraic
Equations (DAEs) or
Rational Functions

Eẋ(t) = Ax(t) + Bu(t)
y(t) = Cx(t) + Du(t)

H(s)=H1(s) + Hde
-τs+ ...

rigid behaviour

Discretisation

finite ele-
ments, finite
volume, etc.

simulation,
control,
analysis,

optimisation,
etc.

Large-scale

( Highly accurate and/or flexible A/C;

( Spacecraft, launcher, satellites;

( Fluid dynamics (Navier-Stokes);

( High fidelity models.
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Eẋ(t) = Ax(t) + Bu(t)
y(t) = Cx(t) + Du(t)

H(s)=H1(s) + Hde
-τs+ ...

rigid behaviour

Discretisation

finite ele-
ments, finite
volume, etc.

simulation,
control,
analysis,

optimisation,
etc.

Large-scale

( Highly accurate and/or flexible A/C;

( Spacecraft, launcher, satellites;

( Fluid dynamics (Navier-Stokes);

( High fidelity models.

4/21



Context
Large-scale dynamical models

Physical system

Partial Differential
Equations (PDEs)

−−→∇p + ρ−→g = ρ−→a

∂ρ

∂t
+
−→∇.(ρ−→v ) = 0

fluid mechanics,
structure, etc.

Differential Algebraic
Equations (DAEs) or
Rational Functions
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Large-scale

( Highly accurate and/or flexible A/C;

( Spacecraft, launcher, satellites;

( Fluid dynamics (Navier-Stokes);

( High fidelity models.

⇒ objective: alleviate numerical burden

à allows to increase simulation speed
while preserving precision.

à allows to apply modern analyses and
control techniques.
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Context
Large-scale dynamical models

Example: Cable mass model simulation

à Full model N = 960 Þ Simulation time ≈ 23.70s.

à Reduced model n = 10 Þ Simulation time ≈ 0.02s.

à Approximation time ≈ 4.03s.
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Full order model − N = 960
Reduced order model − n = 10
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Context
Realization-less model approximation

6/21

DAE/ODE

State x(t) ∈ Rn, n large or
infinite

Data PDE

Infinite order equations (re-
quire meshing)

Reduced
DAE/ODE

Reduced state x̂(t) ∈ Rr

with r � n
(+) Simulation
(+) Analysis
(+) Control
(+) Optimization

u(f ) = [u(f1) . . . u(fi)]
y(f ) = [y(f1) . . . y(fi)]

Eẋ(t) = Ax(t) + Bu(t)
y(t) = Cx(t) + Du(t)

H(s) = e−τs

∂

∂t
u(x , t) = ...

Reference modelings of interest

à [i/o] data-driven models;
à Time-Delay Systems (TDS);
à PDE-based descriptors. . .

Main concern

à Derive suitable low order models



Objectives and problem formulation
Model approximation ∼ mathematical optimization

Objectives

Find a reduced order modeling Ĥ for which:

4 the approximation error is small;

4 the stability is preserved. . .

. . . from an efficient and computationally stable procedure.

The quality of the approximation can be evaluated using some
mathematical norms. Find

Ĥ :=

{
Ê ẋ(t) = Âx(t) + B̂u(t)

y(t) = Ĉ x(t)

s.t.:

‖H− Ĥ‖2 is minimum→ optimisation problem to solve
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Objectives and problem formulation
H2 model approximation problem

Mathematical formulation

Find Ĥ of order r << n which minimizesa :

Ĥ := argmin
G ∈ Hny×nu

2
dim(G) = r ∈ N?

||H− G||H2 , (1)

aH2-norm is the ”system energy”

10
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Frequency (rad/sec)

M
ag

ni
tu

de
 (

dB
)

Interpolation−Based Model Approximation

 

 

Full model n = 48
Reduced model n = 6
Intepolation points

à Tackle this problem by rational interpolation
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Overview of my contributions
State of the art

Model
approximation

Data-based

Loewner
frame-
work

Rational
interpo-
lation

Projection-
based

Singular
value

decom-
position

Moment-
matching

Modal
trun-
cation

Optimal
approx-
imation Frequency-

limited
model

reduction

Least
mean-
squares

Gradient-
based
opti-

mization
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Overview of my contributions
State of the art

Model
approximation

Data-based

Loewner
frame-
work

Rational
interpo-
lation

Projection-
based

Singular
value

decom-
position

Moment-
matching

Modal
trun-
cation

Optimal
approx-
imation Frequency-

limited
model

reduction

Least
mean-
squares

Gradient-
based
opti-

mization

à Most of reduced order models
considered are finite dimensional.

à But some natural phenomena have
intrinsical delay behaviour, e.g.,
transport equation.

à Idea : Consider time-delay reduced
order models.

∆(s) = e−τs .

flow into quad-copter
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Overview of my contributions
List of examples

à Example 1: Approximation of transport phenomena by
time-delay structure.

à Example 2: Time-delay system stability charts estimation.

à Example 3: Hydroelectric EDF model (Rhin river).

10/21



Model approximation with time-delay structure
Example 1 (Transport equation)1
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G , N = 20

Ĥd, n = 2, τ = 8.7179

Ĥ, n = 2 (IRKA)

Ĥ, n = 3 (IRKA)

Ĥ, n = 4 (IRKA)

à Full order model has input-delay behavior.

à Finite dimensional reduced-order model not appropriate.

à Good input-delay approximation.
1 Pontes Duff, I., Poussot-Vassal, C. and Seren, C. − ”OptimalH2 model approx-

imation based on multiple input/output delays systems.” − [Submitted to Automatica].
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Ĥ, n = 2 (IRKA)
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Stability regions for time-delay systems
Example 21 (ETH Zürich collaboration)

Stability estimation

Exploit model reduction techniques to analyse the stability of
TDS w.r.t. parameters.

Application to Robotics:

10
0
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1.5
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2.5

3

3.5

4

4.5

5

5.5

K

τ

2 Pontes Duff, I., Vuillemin, P., Poussot-Vassal, C., Briat, C. and Seren, C.
− ”Approximation of stability regions for large-scale time-delay systems using model
reduction techniques.” − In Proceedings of the 2015 ECC.
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Stability regions for time-delay systems
Example 2 (ETH Zürich collaboration)

Perpectives:

Implement research boundary algorithm using evolutionary
methods (PR GENETIC)

13/21



Rhin flow system
Example 3 1 (EDF collaboration)

 PDE St-Venant fluid model

Infinite dimensional linear parametric model;
Modeling = relationship between outflow qs and inflow qe
at any given nominal flow q0 s.t.:

Z (q0, s) = [Ge(q0, s) − Gs(q0, s)] ·
[
qe(s)
qs(s)

]
Ge and Gs are rational functions of hyperbolic.

1 Dalmas, V., Robert, G., Poussot-Vassal, C., Pontes Duff, I. and Seren, C. −
”Parameter dependent irrational and infinite dimensional modelling and approximation
of an open-channel dynamics.” − [Accepted to the 15th European Control Conference,
2016.]
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Rhin flow system
Example 3 1 (EDF collaboration)

 PDE St-Venant fluid model

10
−4

10
−3

10
−2

10
−1

−70

−65

−60

−55

−50

−45

M
ag

ni
tu

de
 (d

B
)

10
−4

10
−3

10
−2

10
−1

−80

−75

−70

−65

−60

−55

−50

−45

M
ag

ni
tu

de
 (d

B
)

Bode Diagram

Frequency  (rad/s)

Bode Diagram

Frequency  (rad/s)

⇒ Result: finite dimensional parametric reduced model
1 Dalmas, V., Robert, G., Poussot-Vassal, C., Pontes Duff, I. and Seren, C. −

”Parameter dependent irrational and infinite dimensional modelling and approximation
of an open-channel dynamics.” − [Accepted to the 15th European Control Conference,
2016.]
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Conclusions and perspectives
To sum up. . .

Main contributions

à Model approximation for reduced order modeling, time-
delay structures: theoretical and algorithmic contributions.

à Methodological solutions for TDS stability charts estima-
tion.

à Application to several representative industrial cases.

à Scientific collaborations:

1 S. Gugercin/C. Beattie (Virginia Tech - 3 months stay).
2 C. Briat (ETH-Zürich).
3 G. Robert/V. Dalmas (EDF).
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Conclusions and perspectives
Third (and last) year future works

Virginia Tech (VT) campus Onera - Toulouse

I Methodologies extension

I Methods will be available in the MOdel REduction toolbox.

moremore
Σ

(A,B,C,D)i

Σ

Σ̂

(Â, B̂, Ĉ, D̂)i

model reduction toolbox

Kr(A,B)

AP + PAT + BBT = 0

WTV

Thesis defence planned in December 2016.

New PhD position opened on model approximation.
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That’s all !
Thanks for your attention, any questions ?

moremore
Σ

(A,B,C,D)i

Σ

Σ̂

(Â, B̂, Ĉ, D̂)i

model reduction toolbox

Kr(A,B)

AP + PAT + BBT = 0

WTV

à website link: http://w3.onera.fr/more/
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Academic outputs
Public communications

Workshops:

2nd Workshop on Delay Systems, October 2013 (CNRS-LAAS, Toulouse):
”Model reduction for norm approximation.”

3rd Workshop Delay Systems, October 2014 (GIPSA-Lab, Grenoble):
”Model reduction of time-delay systems and stability charts.”

Congresses/Seminars:

GT MOSAR, November 2104 (ONERA, Toulouse):
”Model reduction of infinite dimensional systems.”

Matrix Computation Seminar, October 2015 (Virginia Tech, USA):
”H2 model approximation, interpolation and time-delay systems.”

SIAM Student Chapter, November 2015 (VirginiaTech, USA):
”H2 model approximation, stability charts and time-delay systems.”

7th European Congress of Mathematics, July 2016, (TU Berlin):
”H2 model approximation for time-delay reduced order systems.” [invited]
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Academic outputs
Accepted papers

Book chapter:

Pontes Duff, I., Vuillemin, P., Poussot-Vassal, C., Briat, C. and Seren, C.
Model reduction for norm approximation: an application to large-scale time-delay
systems.
[To Appear] in Springer Series: Advances in Dynamics and Delays.

Conference papers:

Pontes Duff, I., Vuillemin, P., Poussot-Vassal, C., Briat, C. and Seren, C.
Stability and performance analysis of a large-scale aircraft anti-vibration control
subject to delays using model reduction techniques.
[Accepted] in the Proceedings of the 2015 EuroGNC Conference.

Pontes Duff, I., Vuillemin, P., Poussot-Vassal, C., Briat, C. and Seren, C.
Approximation of stability regions for large-scale time-delay systems using model
reduction techniques.
[Accepted] in the Proceedings of the 14th European Control Conference, 2015.

Pontes Duff, I., Poussot-Vassal, C. and Seren, C.
Realization independent time-delay optimal interpolation framework.
[Accepted] at the 54th IEEE Conference on Decision and Control, 2015.
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Academic outputs
Accepeted/Submitted papers

Journal papers:

Pontes Duff, I., Poussot-Vassal, C. and Seren, C.
Optimal H2 model approximation based on multiple input/output delays systems.
[Submitted] to Automatica journal, 2015.

Conference papers:

Dalmas, V., Robert, G., Poussot-Vassal, C., Pontes Duff, I. and Seren, C.
Parameter dependent irrational and infinite dimensional modelling and approxi-
mation of an open-channel dynamics.
[Accepted] to the 15th European Control Conference, 2016.

Pontes Duff, I., Gugercin, S., Beattie, C., Poussot-Vassal, C. and Seren, C.
H2-optimality conditions for reduced time-delay systems of dimension one.
[Accepted] to the 13th IFAC Workshop on Time Delay Systems, 2016.
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Academic outputs
On going works

Journal papers:

Pontes Duff, I., Poussot-Vassal, C. and Seren, C.
Model reduction and stability charts of time-delay systems.
[On going work]  European Journal of Control (?)

Pontes Duff, I., Gugercin, S., Beattie, C., Poussot-Vassal, C. and Seren, C.
H2-optimality conditions for structured reduced order models.
[On going work]  SIAM Journals on matrix analysis and applications (?).

Technical Report:

Pontes Duff, I., Gugercin, S. and Beattie, C.
Stability and model reduction of family of TDS models.
[On going work]  Event not identified.
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