Allez au contenu, Allez à la navigation

RSS

A la une

10.01.2012 - Aérodynamique numérique

Davantage de précision pour les jets de moteurs aéronautiques

Pour simuler avec une plus grande précision le développement des jets de moteurs aéronautiques, les ingénieurs de l'Onera ont mis au point un générateur de turbulence synthétique. Résultats en vidéo.

Des études conjointes numériques et expérimentales réalisées à l’Onera sur les moteurs aéronautiques avaient permis récemment de mettre en avant la forte influence de la turbulence issu du moteur sur le développement du jet.

Les modèles dits classiques ( RANS1) n’étant pas à même de reproduire cet effet, il a été nécessaire de développer un générateur de turbulence synthétique dédié aux simulations avancées ZDES2 / LES3. Ce développement réalisé dans le logiciel elsA permet maintenant de simuler avec une grande précision le développement des jets.

Les travaux sur la modélisation de la turbulence de jet sont d'une importance capitale car le bruit des avions trouve une grande partie de ses sources dans les jets turbulents, à l'arrière des moteurs.


Représentation des structures turbulentes dans des jets en configuration double flux

1RANS - Equations "Reynolds-averaged Navier–Stokes"
Ce sont les équations qui décrivent les écoulements turbulents , au prix d'hypothèses simplificatrices. En particulier, elles sont moyennées dans le temps et conviennent aux écoulement relativement stationnaires.

2ZDES - Zonal Detached Eddy Simulation
Méthode permettant de faire cohabiter dans une même simulation une modélisation de type RANS et une modélisation de type LES, localisée aux zones décollées. Cela signifie que le modèle plus performant (et plus couteux) n'est utilisé que là où il est vraiment nécessaire, ce qui autorise des temps de simulation acceptables. Cette méthode a été développée à l'Onera.

3LES - Large Eddy Simulation
[pour Simulation des Grandes Echelles] Technique de résolution des équations des écoulements turbulents, où les grandes échelles de mouvement sont résolues explicitement, alors que les petites échelles (taille inférieure aux mailles de calcul) sont modélisées par un terme de "viscosité tourbillonnaire".