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•Failure mode and effect analysis (FMEA)

– Model: from a local failure to its system effects / natural languages

•Fault tree analysis (FTA)

–Model: from a system failure

to its root causes / boolean formulae

–Computation: minimal cut sets / 

probability of occurrence of top event

•And also Markov chain ....

Classical failure propagation models and 
safety assessment techniques (cf ARP 4761)

Functional FMEA template



Drawbacks of the classical 
Safety Assessment Approaches

• Fault Tree, FMEA 

– Give failure propagation paths without referring explicitly to a commonly 

agreed system architecture / nominal behavior =>

– Misunderstanding between safety analysts and designers

– Potential discrepancies between working hypothesis

• Manual exhaustive consideration of all failure propagations become 

more and more difficult, due to:

– increased interconnection between systems, 

– integration of multiple functions in a same equipment

– dynamic system reconfiguration

Systems Specifications Models
Modeling

FMEA, Fault Trees, Markov Chains…

Requirements, 

Certification process



Model based safety assessment rationales

• Goals

– Propose formal failure propagation models closer to design models

– Develop tools to

• Assist model construction 

• Analyze automatically complex models

– For various purposes

• FTA, FMEA, Common Cause Analysis, Human Error Analysis, …

• since the earlier phases of the system development

• Approaches

Extend design models (Simulink, 

SysML, AADL...)

with failure modes

Build dedicated failure propagation 

models

(Figaro, AltaRica, Slim...)

Transform into analyzable 

formalisms (Boolean formulae, 

automata, ...)

Develop specialized 

analysis tools



What are the tools/languages supporting the MBSA 
approach? 

• AltaRica

• Simfia (EADS Apsys)

• Safety Designer (Dassault Systemes)

• Cecilia OCAS (Dassault Aviation)

• OpenAltaRica tools (IRT SystemX & AltaRica Association)

• ARC/AltaRica Studio (University of Bordeaux)

• Figaro (EDF)

• SAML (University of Magdeburg)

• AADL EMV2 (Software Engineering Institute (SEI))

• HiP-HOPS (to some extent) (University of Hull)

• SOPHIA (to some extent) (CEA-LIST)

• Petro (specific to Oil & Gas) (SATODEV)
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AltaRica language at a glance

• Language designed in late 90's at University of Bordeaux 

• for modelling both combinatorial and dynamic aspects of failure propagation

• in a structured (hierarchical and modular) way

• formally.

• AltaRica node: structural unit with a temporal behaviour

Input

flows

Output 

flows

fault occurrence event

Transitions

Assertion

output = f (inputs, states)

normal state error state

normal event



Case study: COM/MON Pattern

• Command/monitoring pattern of safety architecture to compute 
correct orders even if one fault occur

• Structure:
• Two numerical functions F1 and F2

• A comparator Cmp that checks the equality of two inputs

• A contactor Ct that is closed as long as the equality check is true. When it is 
closed, it transmits F1 output; else, it transmits no output. 

• The functions have two failure modes:
- they may produce an erroneous output;

- they may produce no output at all.

• The safety requirements of interest for this pattern are:
- FC_B1: an erroneous output is CAT. 

- FC_B2: the output loss is minor.

F1

F2

Cmp

Ct



Case study: the source block

• Let be a basic source function Source that
• produces data represented by

• An output O

• Source may fail. 
• In this case, the output O is lost.

• Source may produce errors.
• In this case the output O is erroneous.

• Initially, the source performs the nominal function

O

fail error



AltaRica basic component: a source function

• State variables are used to model the state of the systems. 

• Flow variables are used to model flows circulating through the model. 

• Variables can take their values into predefined domains (Boolean, Integer, Real)

or user defined domain (sets of symbolic constants).

St == OK

O = OK

St == LOST

O = LOST
fail_loss

St == ERR

O = ERR

fail_error

domain FailType = {OK, LOST, ERR};

node Source
flow

O:FailType:out;
state

St:FailType;
event 

fail_loss,
fail_err;

init 
St := OK;

trans 
(St = OK) |- fail_loss -> St := LOST;
(St = OK) |- fail_err -> St := ERR;

assert 
O = St;

extern 
law <event fail_loss> = exp(1.0E-4);
law <event fail_err> = exp(1.0E-5);

edon

O



AltaRica basic component: a source function

• Variables change their value when and only when an event occurs, i.e. when the transition it 

labels is fired.

• A transition is a triple <e, G, P>, where e is an event, G is a guard (pre-condition) and P is 

an action (post-condition).

• A transition is enabled only when its guard (pre-condition) is satisfied.

• State variables are modified only by actions of transitions.

St == OK

O = OK

St == LOST

O = LOST
fail_loss

St == ERR

O = ERR

fail_error

O

domain FailType = {OK, LOST, ERR};

node Source
flow

O:FailType:out;
state

St:FailType;
event 

fail_loss,
fail_err;

init 
St := OK;

trans 
(St = OK) |- fail_loss -> St := LOST;
(St = OK) |- fail_err -> St := ERR;

assert 
O = St;

extern 
law <event fail_loss> = exp(1.0E-4);
law <event fail_err> = exp(1.0E-5);

edon

Dynamic part



AltaRica basic component: a comparator

• Flow variables represent flows of information/matter/energy circulating in the 

system.

• Flow variables depend functionally on state variables: their value is entirely 

determined by the values of state variables.

• They are updated by means of the assertion after each transition firing.

node Comparator

flow 

In1:FailType:in;

In2:FailType:in;

Out:bool:out;

assert 

Out = case { 

(In1 = In2) : true,

else false

};

edon

In1

In2

Out

In1 In2 Out

OK OK true

LOST LOST true

ERR ERR true

OK LOST/ERR false

LOST OK/ERR false

ERR OK/LOST false

Combinatorial part



Use of AltaRica components

• AltaRica nodes are similar to classes in the object oriented programming languages.

• They represent reusable (« on-the-shelf ») components.

• They can be instantiated inside other nodes.

• Definitions of nodes cannot be recursive nor circular.

• The names of variables and events of instantiated nodes are prefixed by the 

name of the instance followed by a dot.

node Comparator
// body of the node Comparator
edon
node Source
// body of the node Source
edon
node main

sub 
Cmp:Comparator;
F1:Source;
F2:Source;

assert 
Cmp.In1 = F1.O,
Cmp.In2 = F2.O;

edon

F1

F2

Cmp



Connection of AltaRica components

• Connections of instances:

• Assertion linking inputs and outputs of two different instances.

node Comparator
// body of the node Comparator
edon
node Source
// body of the node Source
edon
node main

sub 
Cmp:Comparator;
F1:Source;
F2:Source;

assert 
Cmp.In1 = F1.O,
Cmp.In2 = F2.O;

edon

F1

F2

Cmp



Formal definitions

Guarded Transition Systems is a quintuple V,E,T,A,i, where:

 V is a set of variables. V is the disjoint union of the set S of state

variables and the set F of flow variables: V=S⊎F.

 E is a set of events.

 T is a set of transitions, i.e. of triples <e,G,P>, where 

 e is an event of E, 

 G is a Boolean expression built on variables of V 

 P is an instruction built on variables of V. 

 A is a set of assertions, i.e. data-flow instructions built on variables of V.

 i is an assignment of variables of V, so-called initial or default

assignment.

Initial 
assignment

Events

Transitions

Assertion

Variables



Formal definition: example

Source function

• The set of state variables: S = { St }

• The set of flow variables: F = { O }

• The set of events: 

E = { fail_error, fail_loss }

• The set of transitions: 

T = {<fail_error, St==OK, St :=ERR>,

<fail_loss, St==OK, St:=LOST}

• The assertion: A = { O=St }

• The initial assignment: i = { St=OK }

St == OK

O = OK

St == LOST

O = LOST
fail_loss

St == ERR

O = ERR

fail_error

O



Formal definitions: expressions

• The set of expressions is the smallest set such that

• A constant c is an expression (e.g. true, false, 1, 2, 0.5, OK, 

ERR)

• A variable is an expression (e.g. F1.st, F2.O, Cmp.Out) 

• op(exp1, …, expn), is an expression, where op is an operator of 

arity n and exp1, … expn are expressions.

• Examples of operators: 

• Boolean: and, or, not

• Arithmetic: +, -, *,/, ==, >, <

• Conditional :

• if exp1 then exp2 else exp3

• case { exp1: exp2, exp3: exp4, …, else expn }



Formal definitions: actions of transitions

• The set of actions is the smallest set such that:

 If v is a state variable and E is an expression, then “v := E” is an

instruction (Assignment).

 If C is a (Boolean) expression, I is an instruction, then “if C then I” is

an instruction (Conditional instruction).

 If I1 and I2 are instructions, then so is “I1 ; I2” (Composition).

 Examples

 F1.st := ERR;

 F2.st := LOST;



Formal definitions: Data-Flow instructions

• The set of instructions is the smallest set such that:

 If v is a flow variable and E is an expression, then “v = E” is an instruction

(Assignment).

 If C is a (Boolean) expression, I is an instruction, then “if C then I” is an

instruction (Conditional instruction).

 If I1 and I2 are instructions, then so is “I1 ; I2” (Composition).

 Each flow variable is assigned only once.

 There is no circular definitions.

• Examples: 

• Cmp.In1 = F1.O; Cmp.In2 = F2.O; Cmp.Out = case { (Cmp.In1 = Cmp.In2) : 

true, else false };

• {if c1 then I1; if not c1 then I2;} is equivalent to 

• if c1 then I1 else I2;



Formal definition: composition

• A composition of two (or more) Guarded Transition 

Systems is a Guarded Transition System.

• Let G1= V1,E1,T1,A1,i1 and G2= V2,E2,T2,A2,i2 be two

Guarded Transition Systems then

G =G1○G2 =V,E,T,A,i is a Guarded Transition System such

that

• V = V1 U V2

• E = E1 U E2

• T = T1 U T2

• A = A1; A2

• i = i1 ○ i2



Composition: example

• The composition of two (or more) GTS is a GTS. This latter GTS is obtained by 

flattening.

F1

F2

Cmp

node Comparator
// body of the node Comparator
edon
node Source
// body of the node Source
edon
node main

sub 
Cmp:Comparator;
F1:Source;
F2:Source;

assert 
Cmp.In1 = F1.O,
Cmp.In2 = F2.O;

edon

node main
state
F1.St, F2.St:FailType;

flow 
F1.O, F2.O, Cmp.Out: FailType: out;
Cmp.In1, Cmp.In2: FailType: in;

event
F1.fail_loss, F1.fail_error;
F2.fail_loss, F2.fail_error;

trans
(F1.St = OK) |- F1.fail_loss -> 

F1.St := LOST;
(F1.St = OK) |- F1.fail_err -> 

F1.St := ERR;
(F2.St = OK) |- F2.fail_loss -> 

F2.St := LOST;
(F2.St = OK) |- F2.fail_err -> 

F2.St := ERR;
init
F1.st = OK; F2.st = OK;  

assert 
F1.O = F1.St,
F2.O = F2.St,
Cmp.In1 = F1.O,
Cmp.In2 = F2.O,

Cmp.Out = case {(Cmp.In1 = Cmp.In2):

true,else false};
edon

Flattening



Formal semantics: reachability graph

• Configuration=

• Assignment σ of a value to all flow and state variables

• Kripke structure/ Reachability graph

• A graph <Σ,Θ>, where

• Σ is a set of nodes, labeled by model configurations σ

• Θ is a set of edges < σ1, e, σ2> labeled by the events

• The initial state σ0 is calculated as follows
• First, assign state variables to their initial values (init clause)

• Second, compute the value of flow variables according to the 

assertion A: σ0 = A(i)



Formal semantics: reachability graph

• Enabled transition = 

• transition whose guard is true in the current  model configuration

• Computation of the next model configurations
• For each enabled transition, build a next configuration

• In each  next configuration:
• Assign state variable values according to the selected transition action

• Compute the values of flows variables as in the initial configuration 
according to the laws in the assert clause

• If σ1 is in Σ and there is a transition t = <e,G,P> such that t is enabled
in σ1 then σ2 = A(P(σ1)) is in Σ and  < σ1, e, σ2> is in Θ.

• Iterate the computation until no new configuration is reached



Reachability graph: example

OK, OK

true

ERR, OK

false

OK, LOST

false

OK, ERR

false

ERR, LOST

false

LOST, ERR

false

LOST, OK

false

LOST, LOST

true

ERR, ERR

true

F1

F2

Cmp

ERR, LOST

true

F1.fail_err

F2.fail_err

F1.fail_loss

F2.fail_loss

F2.fail_errF2.fail_loss

F2.fail_errF2.fail_loss

F1.fail_err

F1.fail_loss

F1.fail_err

F1.fail_loss

F1.St F2.St

Cmp.Out

Initial 

configuration



Synchronization

• Parallel composition with event grouping: synchronized product of mode 

automata

• preserves all states, variables, transitions of ungrouped event, assertions

• Introduces new grouped transitions E: <e1, ...,en>

• Initially G1 |- e1-> P1 ,...,Gn |- en-> Pn;

• Replaced by

strong synchronisation: G1 and... and Gn |-E-> P1; ...;Pn;

broadcast: G1 or... or Gn |-E-> if G1 then P1; ...;if Gn then Pn;

• interleaving parallelism (only one atomic or a grouped transition at a time)

• Ex: modeling of common cause of failures not propagated by interfaces

• Explosion, fire, loss of power, ... of a zone 

• Comment: “common cause failure” grouping

• Equivalent to “broadcast” + initial events available



Synchronization: example

• Common cause failure: loss of power.

• Produces the loss of both functions.

• Is represented by a synchronization of type CCF.

F1

F2

Cmp node Comparator
// body of the node Comparator
edon
node Source
// body of the node Source
edon
node main
sub 
Cmp:Comparator;
F1:Source;
F2:Source;

sync
<power_loss, F1.fail_loss, F2.fail_loss>;

assert 
Cmp.In1 = F1.O,
Cmp.In2 = F2.O;

edon

CCF: loss of power



Synchronization: example

F1

F2

Cmp node main
state
F1.St, F2.St:FailType;

flow 
F1.O, F2.O, Cmp.Out: FailType: out;
Cmp.In1, Cmp.In2: FailType: in;

event
F1.fail_loss, F1.fail_error;
F2.fail_loss, F2.fail_error; 
power_loss;

trans
(F1.St = OK) |- F1.fail_loss -> 

F1.St := LOST;
(F1.St = OK) |- F1.fail_err -> 

F1.St := ERR;
(F2.St = OK) |- F2.fail_loss -> 

F2.St := LOST;
(F2.St = OK) |- F2.fail_err -> 

F2.St := ERR;

(F1.st=OK) or (F2.st=OK)|- power_loss
-> { if F1.st=OK then F1.st := LOST; 

if F2.st=OK then F2.st := LOST;}

assert 
…

edon

Flattening

node Comparator
// body of the node Comparator
edon
node Source
// body of the node Source
edon
node main
sub 
Cmp:Comparator;
F1:Source;
F2:Source;

sync
<power_loss, F1.fail_loss, 

F2.fail_loss>;

assert 
Cmp.In1 = F1.O,
Cmp.In2 = F2.O;

edon

The synchronized composition of two (or more) GTS is a GTS. This latter GTS 

is obtained by flattening.



Synchronization: example

F1

F2

Cmp

ERR, LOST

false

F1.St F2.St

Cmp.Out

Initial 

configuration

power_loss

OK, OK

true

ERR, OK

false

OK, LOST

false

OK, ERR

false

ERR, LOST

false

LOST, ERR

false

LOST, OK

false

LOST, LOST

true

ERR, ERR

true

F1.fail_err

F2.fail_err

F1.fail_loss

F2.fail_loss

F2.fail_errF2.fail_loss

F2.fail_errF2.fail_loss

F1.fail_err

F1.fail_loss

F1.fail_err

F1.fail_loss



Timed/Stochastic models

• Events are associated with “delay” functions.

• The “delay” functions are used to calculate firing dates for each 

enabled transition.

• If a transition remains enabled until the firing date, it is fired at 

this date.

• Deterministic transitions

• Delay function: Dirac(d), d≥0

• If a transition is enabled at time t, it SHALL be triggered at time t+d

• Stochastic transitions

• Probability distributions for delays: exponential, Weibull, etc… 

• If a transition is enabled at time t, its firing date is t + d,

where d is calculated randomly according to the probability

distribution.



Deterministic transitions

• Reconfigurations modeling

• Event open_ct is associated with

delay function Dirac(0).

• The transition labeled by 

open_ct shall be fired as soon as 

its guard becomes true.

node Contactor

flow 

In:FailType:in;

Check:bool:in;

Out:FailType:out;

state 

Open:bool;

event 

open_ct;

init open:= false; 

trans 

(Open=false) and (Check=false) 

|- open_ct -> Open := true;

assert 

Out = case { 

Open : LOST,

else In };

extern 

law <event open_ct> = Dirac(0);

edon

NOT

OPEN
OPEN

open_ct

OutIn

not Check

Example: a contactor



Stochastic transitions

• Events fail_loss and fail_err are stochastic.

• They are associated with exponential probability distributions.

• Their firing dates are calculated randomly. 

St == OK

O = OK

St == LOST

O = LOST
fail_loss

St == ERR

O = ERR

fail_error

O

domain FailType = {OK, LOST, ERR};

node Source
flow

O:FailType:out;
state

St:FailType;
event 

fail_loss,
fail_err;

init 
St := OK;

trans 
(St = OK) |- fail_loss -> St := LOST;
(St = OK) |- fail_err -> St := ERR;

assert 
O = St;

extern 
law <event fail_loss> = exp(1.0E-4);
law <event fail_err> = exp(1.0E-5);

edon

Example: a source function



Timed/stochastic models

• Run

where

• σi are configurations,

• di are current firing dates, 

• Γi are schedulers, functions that associate with each transition its firing date.

• ti are transitions.

• In the initial state

• σ0 is the initial configuration,

• d0=0,

• Γ0 is the initial scheduler. For each transition t it is calculated as follows:



Timed/stochastic models

• If the execution Λ is a valid execution then so is

if the following conditions hold:

• tn+1 is enabled in σn and its firing date is such that Γn(tn+1) ≤ Γn(t),

• σn+1 = A(P(σn)) is the next configuration,

• dn+1= Γn(tn+1),



AltaRica model of the case study

domain FailType = {OK, LOST, ERR};

node Source
flow
O:FailType:out;

state
St:FailType;

event 
fail_loss,
fail_err;

init 
St := OK;

trans 
(St = OK) |- fail_loss -> St := LOST;
(St = OK) |- fail_err -> St := ERR;

assert 
O = St;

extern 
law <event fail_loss> = exp(1.0E-4);
law <event fail_err> = exp(1.0E-5);

edon

node Comparator

flow 

In1:FailType:in;

In2:FailType:in;

Out:bool:out;

assert 

Out = case { 

(In1 = In2) : true,

else false

};

edon



AltaRica model of the case study

domain FailType = {OK, LOST, ERR};

node Source
flow
O:FailType:out;

state
St:FailType;

event 
fail_loss,
fail_err;

init 
St := OK;

trans 
(St = OK) |- fail_loss -> St := LOST;
(St = OK) |- fail_err -> St := ERR;

assert 
O = St;

extern 
law <event fail_loss> = exp(1.0E-4);
law <event fail_err> = exp(1.0E-5);

edon

node Comparator

flow 

In1:FailType:in;

In2:FailType:in;

Out:bool:out;

assert 

Out = case { 

(In1 = In2) : true,

else false

};

edon

node Contactor

flow 

In:FailType:in;

Check:bool:in;

Out:FailType:out;

state 

Open:bool;

event 

open_ct;

init Open:= false; 

trans 

(Open=false) and (Check=false) 

|- open_ct -> Open := true;

assert 

Out = case { 

Open : lost,

else In };

extern 

law <event open_ct> =Dirac(0);

edon



AltaRica model of the case study

node main
sub 
Ct:Contactor;
Cmp:Comparator;
F1:Source;
F2:Source;

assert 
Ct.In = F1.O,
Ct.Check = Cmp.Out,
Cmp.In1 = F1.O,
Cmp.In2 = F2.O;

edon

•Recall: The safety requirements of interest for this pattern are:
-FC_B1: an erroneous output is CAT. 
-FC_B2: the output loss is minor.

Observed variables:

Ct.Out = ERR => FC_B1 (CAT)

Ct.Out = LOST => FC_B2 (Minor)



Case study: reachability graph 

OK, OK, closed

OK

ERR, OK, closed

ERR

OK, LOST, closed

OK

OK, ERR, closed

OK

LOST, OK, open

LOST

LOST, ERR, open

LOST

LOST, OK, closed

LOST

LOST, LOST, open

LOST

ERR, ERR, open

LOST

ERR, LOST, open

LOST

F1.fail_err

F2.fail_err

F1.fail_loss

F2.fail_loss

F2.fail_loss

F2.fail_err

Ct.open_ct

F1.fail_err

F1.fail_loss

F1.fail_err

F1.fail_loss

F1.St F2.St

Ct.OutInitial 

configuration

ERR, OK, open

LOST

ERR, LOST, open

LOST

OK, ERR, open

LOST

OK, LOST, open

LOST

Ct.open_ct

Ct.open_ct Ct.open_ct

F2.fail_err

F2.fail_loss

Ct.open



Case study: execution

time, hours

F1.fail_err 4380

F1.fail_loss 6340

F2.fail_err 5150

F2.fail_loss 5300

Ct.open_ct +∞

Scheduler

Observed system state:

Ct.Out

F1

F2

Cmp

Ct

OK ERR LOST



Case study: execution

time, hours4380

F1.fail_err

state

F1.fail_err +∞

F1.fail_loss +∞

F2.fail_err 5150

F2.fail_loss 5300

Ct.open_ct 4380+0

Scheduler

Firing date
Observed state:

Ct.Out

F1

F2

Cmp

Ct

OK ERR LOST



Case study: execution

time, hours4380

F1.fail_err

state

F1.fail_err +∞

F1.fail_loss +∞

F2.fail_err 5150

F2.fail_loss 5300

Ct.open_ct +∞Ct_open_ct

F1

F2

Cmp

Ct

Scheduler

Firing date
Observed state:

Ct.Out

OK ERR LOST



Case study: execution

time, hours4380

F1.fail_err

state

F1.fail_err +∞

F1.fail_loss +∞

F2.fail_err +∞

F2.fail_loss +∞

Ct.open_ct +∞Ct_open_ct

F1

F2

Cmp

Ct

F2.fail_err

5150

Scheduler

Firing date

Observed state:

Ct.Out

OK ERR LOST



Guarded Transition Systems

• Guarded Transition Systems are a state/transition formalism 

dedicated to Safety Analyses

• GTS have many interesting modeling features:

• States/transitions

• Remote interactions thanks to flow variables and assertions

• Implicit representation, compositionality, ability to describe hierarchies

• Versatile synchronization mechanism

• They encompass

• Boolean formulae thanks to assertion part

• Labeled transition system (e.g. Petri Nets) thanks to the transition part



• Model Based Safety Assessment 

Rationals

• AltaRica Basics

• AltaRica DataFlow Language

• Assessment tools

• Exercises

Lecture outline



Complexity of Calculations

• Calculations of risk and safety related indicators are 

extremely resource consuming.

→ Models result always from a tradeoff between the 

accuracy of the description and the ability to perform 

calculations.



Guarded Transition Systems: assessment tools

Stochastic simulation

• Simulate histories

• Calculate statistics

Sequence generation

• Explore paths in the reachability graph

• Generate failure scenarios

Compilation to Fault Trees

AltaRica models: 

Hierarchical representation

Implicite representation of 

the reachability graph

• Minimal cut sets

• Probabilities

Stepwise simulation

• Validate the model

• Play scenarios

(Not always possible)



Tools for analyzing AltaRica Data-Flow models

• Industrial tools

• Cecilia OCAS from Dassault Aviation

• Used for the first time for certification of flight control system of Falcon 7X 

in 2004

• Tested by contributors of ARP 4761 (cf MBSA appendix)

• Simfia (EADS Apsys)

• Safety Designer (Dassault Systèmes)

• Research workbenchs compatible with AltaRica data flow 

• AltaRica free suite from Labri http://altarica.labri.fr/wp/

• Open AltaRica 3.0 from IRT SystemX https://www.openaltarica.fr/

http://altarica.labri.fr/wp/
https://www.openaltarica.fr/


Stepwise simulation: principle

• To validate/debug the model

• To play scenarios

• Principle

• Starts from the initial state: s0 = A(i)

• Calculates the next configuration

sk+1 = A(P(sk))

• Commands

• Fire transition

• Get enabled transitions

• Get state/flow variables values

• Back/Forward/Restart/History

• Textual or graphical

• Plays the same role as a debugger 

for programming languages



Compilation to Fault Trees: principle

• Several Fault Trees can be generated from the same AltaRica

model 

• Observers and their values are transformed to top events of the 

Fault Tree

• Events of nodes are transformed to basic events of the 

generated Fault Tree

AltaRica

model

Fault Tree

Compiler

Fault Tree

Calculation

engine

Minimal cut sets,

Probabilities



Compilation to Fault Trees: principle

To compute a fault-tree for FC from an AltaRica Model:

1. Generate the model reachability graph

2. Select the states where the FC holds

3. Compute event paths that lead from the initial state to the selected 

states

init

s1

s2

s3

s4f1

f2

f3

f4

f5
FC = F_S3 or F_S4

F_S3 = (f1 and f3) or (f2 and f5)

F_S4 = f2 and f4



Limitations of the compilation 

s0

s1

s2

s3

s4

a b

s0 s1

s3

b a

FC = F_S4

F_S4 = b and a = a and b

s2
b

b

a FC = F_S3

F_S3 = b and a  and b = a and b

2. Events having the same name

1. Order of occurrence



Compilation to Fault Trees: an optimized algorithm

A 3 steps algorithm:

Hierarchical Model

1

Flattening

2

Partitioning

Flattened Model

Independent automata

Independent assertion

4

Separate Compilation

of Assertion and

Reachability Graphs

into Fault Trees

3

Calculation

of augmented

Reachability Graphs

Property: if the GTS model is combinatorial, the compilation is efficient and does not loose 

information 



Sequence generation: principle

• Generate sequences of events that lead from the initial state to the 

state where FCs are hold

• Define targets

• Observers and their values

• Define stopping criteria:

• Max number of events in the sequence

AltaRica

model

Sequence

generator Sequences



Sequence generation: principle

To compute sequences of maximal size 
S for FC from an AltaRica Model:

• Set N=1

• While N is smaller than S

1. Generate a sequence of N events

2. Compute the state reached by the 
sequence

3. Check whether the reached state 
satisfies FC

4. Increase N

init

s1 s2

s3 s3'

f1 f2

f3 f4 f5

s4

f6

Order 1

Order 2

Order 3

Search options: 

-a b = b a => Event combination: explore a;b
-a b ≠ b a => Event permutation: explore a;b & b;a
-a a ≠ a    => Event repetition: explore a;a



Stochastic simulation: principle

The Monte-Carlo simulation consists in drawing at pseudo-random N 

possible evolutions, called runs, of the AltaRica model and to make 

statistics on these N runs.

1. Each run starts at time 0 and ends at time T. T is called the mission 

time.

2. Statistics are made not only at date T, but also at observation dates 0 

d1 < … < dk < T.

3. Making statistics means calculating moments (mean, standard

deviation, confidence ranges).

AltaRica

model

Stochastic

simulator Performance indicators



• Minimal cut sets

• Probabilities

Static and dynamic models

• Static model: the order of the 
events in the sequence has no 
influence on the current 
configuration

• Dynamic model: the last property 
is not verified => use sequence 
generation rather than fault tree 
generation

ok, idle

ok, started

ok,idle

go

fail

lost, started

ok, startedgo

fail Stochastic simulation

Sequence generation

Compilation to Fault Trees

Stepwise simulation



Conclusion

• Models result always from a tradeoff between the accuracy of the 

description and the ability to perform calculations.

• Static models

• Efficient assessment algorithms

• Stepwise simulation 

• Compilation to Fault Trees

• Dynamic models

• Sequence generation

• Stochastic simulation

• Stepwise simulation



• Model Based Safety Assessment 

Rationals

• AltaRica Basics

• AltaRica DataFlow Language

• Assessment tools

• Exercises

Lecture outline



Starting point: the leading example

F1

F2

Cmp

Ct



Exercise 1

• Add an activation to a source function

• If the function is not activated its output is lost

• Modify the following model to take into account the activation

O

failerror

domain FailType = {OK, LOST, ERR};

node Source
flow

O:FailType:out;
state

St:FailType;
event 

fail_loss,
fail_err;

init 
St := OK;

trans 
(St = OK) |- fail_loss -> St := LOST;
(St = OK) |- fail_err -> St := ERR;

assert 
O = St;

extern 
law <event fail_loss> = exp(1.0E-4);
law <event fail_err> = exp(1.0E-5);

edon

Activation



Exercise 1: correction

domain FailType = {OK, LOST, ERR};

node Source
flow

O:FailType:out;
A: bool: in;

state
St:FailType;

event 
fail_loss,
fail_err;

init 
St := OK;

trans 
(St = OK) |- fail_loss -> St := LOST;
(St = OK) |- fail_err -> St := ERR;

assert 
O = (if A then St else LOST);

extern 
law <event fail_loss> = exp(1.0E-4);
law <event fail_err> = exp(1.0E-5);

edon

O

failerrorActivation



Exercise 2:

• Write the AltaRica code of the functional block which

checks the data integrity

• Input: Data

• Output: Boolean

• true if the input data is OK, false otherwise

• Failures

• Stuck

• Always sends true

• Always sends false

? OK
OI



Exercise 2: correction

domain FailType = {OK, LOST, ERR};
domain CheckState = {OK, STUCK_TRUE, STUCK_FALSE};

node CheckOKFunction
flow

I:FailType:in;
O: bool: out;

state
St:CheckState;

event
stuck_on_true,
stuck_on_false;

trans
St=OK |- stuck_on_true -> St:= STUCK_TRUE;
St=OK |- stuck_on_false -> St := STUCK_FALSE;  

assert 
O = case {St=OK : (I=OK),

St=STUCK_TRUE : true,
else false };

edon

? OK
OI



Exercise 3:

• Build the reachability graph of the following model

? OK

Check1

F1
Observer



Exercise 3: correction

• The assertion is not DataFlow.

• The model is not correct.



Exercise 3 correction: flat model

domain FailType = {OK, LOST, ERR};

domain CheckState = {OK, STUCK_TRUE, STUCK_FALSE};

node Main

flow

F1.A: bool: in; F1.O:FailType:out;

Check.I:FailType:in; Check.O: bool: out;

state

F1.St:FailType; Check.St:CheckState;

event 

…

trans

…..

assert 

F1.A=Check.O;

F1.O = (if F1.A then F1.St else LOST);

Check.I = F1.O

Check.O = case {Check.St=OK : (Check.I=OK),

Check.St=STUCK_TRUE : true,

else false };

….

edon



Exercise 3 correction: assertion solving

1) F1.A=Check.O;

2) F1.O = (if F1.A then F1.St else LOST);

3) Check.I=F1.O

4) Check.O = case {Check.St=OK : (Check.I=OK),

Check.St=STUCK_TRUE : true,

else false };

=> Circular definition



Exercise 4: 

• Write the AltaRica code of the block « Pre » in order to 

delay the propagation of data

PRE
OI



Exercise 4: correction

domain FailType = {OK, LOST, ERR};

node PRE
flow

O:FailType:out;
I:FailType: in;

state
St:FailType;

event 
update;

init 
St := OK;

trans 
(St != I) |- update -> St := I;

assert 
O = St;

extern 
law <event update > = Dirac(0);

edon

PRE
OI

I=ERR 

& update

OK

OK

ERR

ERR

LOST

LOST

I=LOST 

& update

I=LOST 

& update

I=OK 

& update

I=OK 

&update

I=ERR 

& update



Exercise 5: 

• Build the reachability graph of the following model:

? OK

PRE

Observer

Check1

F1

Pre



Exercise 5: correction

OK, OK, OK

OK

OK, STUCK1, OK

OK

LOST, OK, OK

LOST

ERR, OK, OK

ERR

OK, STUCK0, LOST

LOST

LOST, STUCK0, LOST

LOST

OK, STUCK0, OK

LOST

LOST, STUCK1, LOST

LOST

ERR, OK, LOST

LOST

F1.fail_err

Check1.stuck_false

F1.fail_loss

Check1.stuck_true

F1.fail_err

F1.fail_err

F1.fail_loss

Initial 

configuration

ERR, STUCK1, OK

ERRERR, STUCK1, ERR

ERR

ERR, OK, ERR

LOST

LOST, OK, LOST

LOST

ERR, STUCK0, LOST

LOST

ERR, STUCK1, LOST

ERR

Check1.stuck_falseCheck1.stuck_true

Check1.stuck_false

Check1.stuck_true

LOST, STUCK1, OK

LOST

F1.fail_loss

ERR, OK, ERR

LOST

F1.St

Check1.St

Pre.St

F1.O

LOST, STUCK1, LOST

LOST

ERR, STUCK1, ERR

ERR

update



Cecilia OCAS workbench
• Stepwise simulation

• Sequence generation

• Fault Tree generation and assessment



Another version of the AltaRica model of the case 
study: comparator with loss failure mode

domain FailType = {OK, LOST, ERR};

node Source
flow
O:FailType:out;

state
St:FailType;

event 
fail_loss,
fail_err;

init 
St := OK;

trans 
(St = OK) |- fail_loss -> St := LOST;
(St = OK) |- fail_err -> St := ERR;

assert 
O = St;

extern 
law <event fail_loss> = exp(1.0E-4);
law <event fail_err> = exp(1.0E-5);

edon

node Comparator

flow 

In1:FailType:in;

In2:FailType:in;

Out:bool:out;

state

Working:bool;

event

fail_loss;

init Working := true;

trans

Working |-fail_loss -> 

Working := false;

assert 

Out = case { 

Working and (In1 = In2): false,

else true

};

edon



Another version of the AltaRica model of the case 
study : contactor without state

domain FailType = {OK, LOST, ERR};

node Source
flow
O:FailType:out;

state
St:FailType;

event 
fail_loss,
fail_err;

init 
St := OK;

trans 
(St = OK) |- fail_loss -> St := LOST;
(St = OK) |- fail_err -> St := ERR;

assert 
O = St;

extern 
law <event fail_loss> = exp(1.0E-4);
law <event fail_err> = exp(1.0E-5);

edon

node Contactor

flow 

In:FailType:in;

Check:bool:in;

Out:FailType:out;

assert 

Out = case { 

Check : In,

else lost };

edon

node Comparator

flow 

In1:FailType:in;

In2:FailType:in;

Out:bool:out;

state

Working:bool;

event

fail_loss;

init Working := true;

trans

Working |-fail_loss -> 

Working := false;

assert 

Out = case { 

Working and (In1 = In2): false,

else true

};

edon



AltaRica model of the case study

node main
sub 
Ct:Contactor;
Cmp:Comparator;
F1:Source;
F2:Source;

assert 
Ct.In = F1.O,
Ct.Alarm = Cmp.Out,
Cmp.In1 = F1.O,
Cmp.In2 = F2.O;

edon

Recall: The safety requirements of interest for this pattern are:
-FC_B1: an erroneous output is CAT. 
-FC_B2: the output loss is minor.

Observed variables:

Ct.Out = ERR => FC_B1 (CAT)

Ct.Out = LOST => FC_B2 (Minor)



Implementation of this model in Cecilia OCAS 
workbench

AltaRica models and 

libraries of reusable

components

 Graphical and textual edition of models

 Creation of libraries of reusable components

 Safety analyses

Drag & drop



Graphical stepwise simulation 

Interactive simulation = user driven exploration of the Kripke structure

→ play simple combination of failures (in the style of FMEA)



Define graphical simulation

• Two types of graphical animation of models

• Icons (to represent the state of nodes)

• Colored connections (to represent the value of flow variables)

• Define icons and how they change during the simulation

1. Define icons 2. Define how the icons change



Define graphical simulation

• Two types of graphical animation of models

• Icons (to represent the state of nodes)

• Colored connections (to represent the value of flow variables)

• Define colors for values of flows variables

1. Select a type

2. Select a color

for each value



Graphical stepwise simulation

Start the simulation



Graphical stepwise simulation



Graphical stepwise simulation

Enabled transitionsExecution history

Flow variables values
State variables value

To open simulation view



Graphical stepwise simulation

Fired transition Next enabled transitions

Observation



Graphical stepwise simulation

Fired transition Next enabled transitions

Observation



Graphical stepwise simulation

Start the simulation

Restart (back to the initial state)
Back

Forward Stop the simulation

Save as initial configuration

Open simulation view

Enabled transitions



Sequence generation

Menu MBSA > Sequence generation



Sequence generation

1. Define targets (Failure Conditions to observe) 1.2 Select the output file path

1.1 Select the 

failure condition

Several targets can be defined at

the same time



Sequence generation

2. Select the order for search

3. Select the type 

of exploration

a b = b a : combination

a b ≠b a  : permutation

a a ≠ a    : repetition

4. Launch the simulation



Sequence generation: results



Fault Tree generation and assessment

Menu MBSA > Fault Tree generation



Fault Tree generation and assessment

1. Select the target (top events, failure

conditions to observe) 

1.2 Select the output file path

1.1 Select the 

failure condition

Several targets can be defined at

the same time



Fault Tree generation and assessment

2. Select the algorithm

3. Launch the tool



Fault Tree generation: results



Fault Tree assessment

Import the generated Fault Tree back to Cecilia OCAS



Fault Tree assessment

Imported Fault Tree, graphical view



Fault Tree assessment

Perform calculations:

- Minimal cutsets,

- Probabilities

Results: minimal cutsets



100

Conclusion

• Model based safety assessment

• Has been widely tested with aeronautic systems: flight control, electrical, 

hydraulic, bleed, ... 

• Remain extensible for further researches (e.g. easier handling of a-

causal systems)


