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Decision-Making Support with Belief Functions

Classical decision-making methods with belief functions
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Decision-making methods from a BBA (1)

Decision-making problem (DMP) FoD Θ “ tθ1, . . . , θnu “ set of possible solutions
Knowing a BBA mp¨q over 2Θ, how should I make my decision δ based on mp¨q?
In the classical DMP, we restrict δ P Θ, i.e. the best decision θ̂ is a singleton of 2Θ.

Classical DM methods
Pessimistic Decision-Making attitude: Maximum of belief strategy

mp¨q Ñ Belp¨q and δ “ θ̂ “ arg max
θiPΘ

Belpθiq

Optimistic Decision-Making attitude: Maximum of plausibility strategy

mp¨q Ñ Plp¨q and δ “ θ̂ “ arg max
θiPΘ

Plpθiq

Compromise Decision-Making attitude: Maximum of probability strategy

mp¨q Ñ Pp¨q and δ “ θ̂ “ arg max
θiPΘ

Ppθiq

where Pp¨q P rBelp¨q,Plp¨qs is a (subjective) proba measure approximated from the
BBA mp¨q, typically obtained with a lossy transformation, typically BetP, or DSmP
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Popular transformations of BBA to probability

Many methods exist, we only present the most popular – see [DSmT books] (Vol. 3)

Simplest method
Take the mass of each element of Θ and
normalize, but it does not take into account
partial ignorances

PmpAq “
mpAq

ř

BPΘmpBq

Method based on plausibility [Cobb Shenoy 2006]
Take the plausibility of each element of Θ
and normalize, but it is inconsistent with
belief interval

PPlpAq “
PlpAq

ř

BPΘ PlpBq

Pignistic probability [Smets 1990]
Redistribute the mass of partial ignorances
equally to singletons included in them
ñ higher entropy obtained with BetPp¨q

BetPpAq “
ÿ

XP2Θ

|XXA|

|A|
mpXq

DSmP probability [Dezert Smarandache 2008]
Redistribute mass of partial ignorances
proportionally to masses of singletons
included in them. ε ą 0 is a small
parameter to prevent division by zero in
some cases.
ñ smaller entropy obtained with DSmPp¨q

DSmPεpAq “
ÿ

YP2Θ

ÿ

ZĎAXY
|Z|“1

mpZq ` ε|AX Y|

ÿ

ZĎY
|Z|“1

mpZq ` ε|Y|
mpYq
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Example 1 of probabilistic transformations

Consider Θ “ tA,B,Cu, and the BBA
#

mpAq “ 0.2

mpBYCq “ 0.8
ñ

$

’

&

’

%

rBelpAq,PlpAqs “ r0.2, 0.2s

rBelpBq,PlpBqs “ r0, 0.8s

rBelpCq,PlpCqs “ r0, 0.8s

With simplest transformation Ñ inconsistency with Belief Interval

PmpAq “
mpAq

mpAq `mpBq `mpCq
“

0.2

0.2` 0` 0
“ 1ą PlpAq and PmpBq “ PmpCq “ 0

With plausibility transformation Ñ inconsistency with Belief Interval

PPlpAq “
0.2

0.2` 0.8` 0.8
« 0.112ă BelpAq and PPlpBq “ PPlpCq « 0.444

With BetP transformation

BetPpAq “mpAq “ 0.2 BetPpBq “ BetPpCq “
1

2
mpBYCq “ 0.4

With DSmP transformation - same as BetP for this example for any ε ą 0

DSmPpAq “mpAq “ 0.2 DSmPpBq “DSmPpCq “
1

2
mpBYCq “ 0.4
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Example 2 of probabilistic transformations

Consider Θ “ tA,Bu, and mpAq “ 0.3, mpBq “ 0.1, mpAY Bq “ 0.6
$

’

&

’

%

mpAq “ 0.3

mpBq “ 0.1

mpAYBq “ 0.6

ñ

#

rBelpAq,PlpAqs “ r0.3, 0.9s

rBelpBq,PlpBqs “ r0.1, 0.7s

With simplest transformation PmpAq “ mpAq
mpAq`mpBq

“ 0.3
0.3`0.1 “ 0.75 and PmpBq “ 0.25

With plausibility transformation PPlpAq “ 0.9
0.9`0.7 “ 0.5625 and PPlpBq “ 0.4375

With BetP transformation
#

BetPpAq “mpAq ` 1
2mpAYBq “ 0.3` p0.6{2q “ 0.6

BetPpBq “mpBq ` 1
2mpAYBq “ 0.1` p0.6{2q “ 0.4

With DSmP transformation
#

DSmPε“0pAq “mpAq `
mpAq

mpAq`mpBq
¨mpAYBq “ 0.75

DSmPε“0pBq “mpBq `
mpBq

mpAq`mpBq
¨mpAYBq “ 0.25

Shannon entropy (measure of randomness): HpPq “ ´
ř

i pi log pi

HpDSmPq “ HpPmq “ 0.8113 bits ă HpBetPq “ 0.9710 bits ă HpPPlq “ 0.9887 bits

Decision-making is made easier with DSmP (and Pm here) because the randomness is
reduced
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Decision-making methods from a BBA (2)

Decision-making based on distances [Han Dezert Yang 2014, Dezert et al. 2016]

A better theoretical approach for decision-making is to use a strict distance metric
dp¨, ¨q between two BBAs and to make the decision by

δ “ X̂ “ argmin
XPX

dpm,mXq

X “ tadmissibleX,X P 2Θu is the set of possible admissible decisions we consider. For
instance, if δ must be a singleton, then X “ Θ “ tθ1, . . . , θnu.
mX is the BBA focused on X defined by mXpYq “ 0 if Y ‰ X, and mXpYq “ 1 if Y “ X
Few strict distance metrics are possible

Jousselme distance: dJpm1,m2q fi

b

0.5 ¨ pm1 ´m2q
TJac pm1 ´m2q

Euclidean dBI distance: dEBIpm1,m2q fi

b

1
2|Θ|´1 ¨

ř

AP2Θ d
IpBI1pAq,BI2pAqq

2

Chebyshev dBI distance: dCBI pm1,m2q fi max
AP2Θ

 

dI pBI1pAq,BI2pAqq
(

dI is Wasserstein distance of interval numbers. In practice, we recommend to use
dEBIpm1,m2q [Han Dezert Yang 2017]

Quality of the decision qpX̂q “ 1´
dBIpm,mX̂q

ř

XPX dBIpm,mXq
P r0, 1s

Higher is qpX̂q more trustable is the decision δ “ X̂
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Decision-Making Support with Belief Functions

General mono-criterion decision-making problem
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General mono-criterion decision-making problem

How to make a decision among several possible choices, based on some contexts ?

Problem modeling
q ě 2 alternatives (choices) A “ tA1, . . . ,Aqu
n ě 1 states of nature (contexts) S “ tS1, . . . ,Snu

C fi

»

—

—

—

—

—

—

–

S1 . . . Sj . . . Sn

A1 C11 . . . C1j . . . C1n

...
...

Ai Ci1 . . . Cij . . . Sin
...

...
Aq Cq1 . . . Cqj . . . Cqn

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

C is the benefit (payoff) matrix of the problem under consideration

Investment company example

An investment company wants to invest a given amount of money in the best option
A˚ P A “ tA1,A2,A3u, where A1 “ car company, A2 “ food company, and
A3 “ computer company. Several scenarios (states of nature) Si are identified
depending on national economical situation predictions, which provide the elements of
the payoff matrix C according to a given criteria (growth analysis criterion by example).
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General mono-criterion decision-making problem

Several decision-making frameworks are possible

Decision under certainty
If we know the true state of nature is Sj, take as decision δ “ A˚ with

A˚ “ Ai˚ with i˚ “ arg max
i
tCiju

Decision under risk
If we know all probabilities pj “ PpSjq of the states of nature, compute the
expected benefit ErCis “

ř

j pjCij of each Ai and take as decision δ “ A˚ with

A˚ “ Ai˚ with i˚ “ arg max
i
tErCisu

Decision under ignorance
If we don’t know the probabilities pj “ PpSjq of the states of nature, use OWA
(Ordered Weighted Averaging) approach [Yager 1988], or Cautious-OWA
[Tacnet Dezert 2011], or Fuzzy-Cautious-OWA [Han Dezert Tacnet Han 2012]

Decision under uncertainty
If we have only a BBA over the states of the nature S “ tS1, . . . ,Snu defined on
the power set 2S, we can use Yager extended OWA approach.
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Decision under risk Ñ we know probabilities pj

C fi

»

—

—

—

—

—

—

—

–

S1,p1 . . . Sj,pj . . . Sn,pn

A1 C11 . . . C1j . . . C1n

...
...

Ai Ci1 . . . Cij . . . Cin

...
...

Aq Cq1 . . . Cqj . . . Cqn

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

ñ ErCs “

»

—

—

—

—

—

—

—

—

–

ErC1s “
ř

j pjC1j

...
ErCis “

ř

j pjCij

...
ErCqs “

ř

j pjCqj

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

Decision: A˚ is the chosen alternative corresponding to highest expected benefit.

Example

C “

»

—

–

S1,p1 “ 1{4 S2,p2 “ 1{4 S3,p3 “ 1{2

A1 16 12 20
A2 32 4 6
A3 12 20 4
A4 40 4 8

fi

ffi

fl
ñ

»

—

–

ErC1s “ p1{4q16` p1{4q12` p1{2q20 “ 17
ErC2s “ p1{4q32` p1{4q4` p1{2q6 “ 12
ErC3s “ p1{4q12` p1{4q20` p1{2q4 “ 10
ErC4s “ p1{4q40` p1{4q4` p1{2q8 “ 15

fi

ffi

fl

Sorting the expected benefits by their decreasing values gives the ranking

A1 ą A4 ą A2 ą A3

The decision to take is A˚ “ A1

Jean Dezert 5th BFAS School, Siena, Italy October 31, 2019 12 / 66



Example of decision under ignorance with OWA

The probabilities pj “ PpSjq of the states of the nature are unknown

C “

»

–

S1,p1 “? S2,p2 “? S3,p3 “? S4,p4 “?

A1 10 0 20 30
A2 1 10 20 30
A3 30 10 2 5

fi

fl

OWA result with optimistic attitude w “ r1 0 0 0s Ñ we take the max by row
$

’

&

’

%

V1 “OWAp10, 0, 20, 30q “ w ¨ r30 20 10 0s1 “ 30

V2 “OWAp1, 10, 20, 30q “ w ¨ r30 20 10 1s1 “ 30

V3 “OWAp30, 10, 2, 5q “ w ¨ r30 10 5 2s1 “ 30

ñ No best choice exists

OWA result with Hurwicz attitude with α “ 0.5 ñ w “ rp1{2q 0 0 p1{2qs
$

’

&

’

%

V1 “OWAp10, 0, 20, 30q “ w ¨ r30 20 10 0s1 “ p30{2q ` p0{2q “ 15

V2 “OWAp1, 10, 20, 30q “ w ¨ r30 20 10 1s1 “ p30{2q ` p1{2q “ 15.5

V3 “OWAp30, 10, 2, 5q “ w ¨ r30 10 5 2s1 “ p30{2q ` p2{2q “ 16

ñA3 is the best choice

OWA result with normative attitude w “ rp1{4q p1{4q p1{4q p1{4qs
$

’

&

’

%

V1 “OWAp10, 0, 20, 30q “ w ¨ r30 20 10 0s1 “ 60{4 “ 15

V2 “OWAp1, 10, 20, 30q “ w ¨ r30 20 10 1s1 “ 61{4

V3 “OWAp30, 10, 2, 5q “ w ¨ r30 10 5 2s1 “ 47{4

ñA2 is the best choice

OWA result with pessimistic attitude w “ r0 0 0 1s Ñ we take the min by row
$

’

&

’

%

V1 “OWAp10, 0, 20, 30q “ w ¨ r30 20 10 0s1 “ 0

V2 “OWAp1, 10, 20, 30q “ w ¨ r30 20 10 1s1 “ 1

V3 “OWAp30, 10, 2, 5q “ w ¨ r30 10 5 2s1 “ 2

ñA3 is the best choice
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Decision under uncertainty using OWA

Probas pj “ PpSjq of the states Sj are unknown, but we know a BBA mp¨q : 2S ÞÑ r0, 1s

C“ rc1 . . . cj . . . cnsfi

»

—

—

—

—

—

—

—

—

—

—

—

—

–

S1,p1 “? . . . Sj ,pj “? . . . Sn ,pn “?

A1 C11 . . . C1j . . . C1n

.

.

.

.

.

.
Ai Ci1 . . . Cij . . . Cin

.

.

.

.

.

.
Aq Cq1 . . . Cqj . . . Cqn

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

Method 1: Approximate mp¨q by a proba measure ñ decison-making under risk

Method 2: Extended OWA method [Yager 1988]

1 Decisional attitude: choose the decisional attitude (optimistic,pessimistic, etc)
2 Apply OWA on each sub-matrix CpXkq of benefits associated with the focal

element Xk, k “ 1, . . . , r of mp¨q to get valuations VipXkq, i “ 1, . . . ,q

CpXkq “ rcj|Sj Ď Xks

3 Compute the generalized expected benefits for i “ 1, . . . ,q

ErCis “

r
ÿ

k“1

mpXkqVipXkq

4 Decision: take the decision δ “ A˚ “ Ai˚ with i˚ “ arg maxitErCisu
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Example of decision under uncertainty using OWA

Probas pj “ PpSjq of the states Sj are unknown, but we know a BBA mp¨q : 2S ÞÑ r0, 1s

C “

»

—

—

–

S1,p1 “? S2,p2 “? S3,p3 “? S4,p4 “? S5,p5 “?

A1 7 5 12 13 6
A2 12 10 5 11 2
A3 9 13 3 10 9
A4 6 9 11 15 4

fi

ffi

ffi

fl

The uncertainty is modeled by a BBA with 3 focal elements as follows

BBA\FE X1 fi S1 Y S3 Y S4 X2 fi S2 Y S5 X3 fi S1 Y S2 Y S3 Y S4 Y S5

mp¨q 0.6 0.3 0.1

Construction of benefit sub-matrices for each focal element of mp¨q

CpX1q “

»

—

–

S1 S3 S4

A1 7 12 13
A2 12 5 11
A3 9 3 10
A4 6 11 15

fi

ffi

fl
CpX2q “

»

—

–

S2 S5

A1 5 6
A2 10 2
A3 13 9
A4 9 4

fi

ffi

fl
CpX3q “

»

—

–

S1 S2 S3 S4 S5

A1 7 5 12 13 6
A2 12 10 5 11 2
A3 9 13 3 10 9
A4 6 9 11 15 4

fi

ffi

fl
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Example of (pessimistic) decision under uncertainty using OWA

Using pessimistic decisional attitude

Apply OWA for each sub-matrix CpXkq, k “ 1, 2, 3

CpX1q “

»

—

—

–

S1 S3 S4

A1 7 12 13
A2 12 5 11
A3 9 3 10
A4 6 11 15

fi

ffi

ffi

fl

ñ

$

’

’

’

&

’

’

’

%

V1pX1q “OWAp7, 12, 13q “ r0 0 1s ¨ r13 12 7s1 “ 7

V2pX1q “OWAp12, 5, 11q “ r0 0 1s ¨ r12 11 5s1 “ 5

V3pX1q “OWAp9, 3, 10q “ r0 0 1s ¨ r10 9 3s1 “ 3

V4pX1q “OWAp6, 11, 15q “ r0 0 1s ¨ r15 11 6s1 “ 6

CpX2q “

»

—

—

–

S2 S5

A1 5 6
A2 10 2
A3 13 9
A4 9 4

fi

ffi

ffi

fl

ñ

$

’

’

’

&

’

’

’

%

V1pX2q “OWAp5, 6q “ r0 1s ¨ r6 5s1 “ 5

V2pX2q “OWAp10, 2q “ r0 1s ¨ r10 2s1 “ 2

V3pX2q “OWAp13, 9q “ r0 1s ¨ r13 9s1 “ 9

V4pX2q “OWAp9, 4q “ r0 1s ¨ r9 4s1 “ 4

CpX3q “

»

—

—

–

S1 S2 S3 S4 S5

A1 7 5 12 13 6
A2 12 10 5 11 2
A3 9 13 3 10 9
A4 6 9 11 15 4

fi

ffi

ffi

fl

ñ

$

’

’

’

&

’

’

’

%

V1pX3q “OWAp7, 5, 12, 13, 6q “ r0 0 0 0 1s ¨ r13 12 7 6 5s1 “ 5

V2pX3q “OWAp12, 10, 5, 11, 2q “ r0 0 0 0 1s ¨ r12 11 10 5 2s1 “ 2

V3pX3q “OWAp9, 13, 3, 10, 9q “ r0 0 0 0 1s ¨ r13 10 9 9 3s1 “ 3

V4pX3q “OWAp6, 9, 11, 15, 4q “ r0 0 0 0 1s ¨ r15 11 9 6 4s1 “ 4

Compute generalized expected benefits ErCis “
ř

kmpXkqVipXkq

with mpX1q “ 0.6, mpX2q “ 0.3 and mpX3q “ 0.1

ErC1s “ 0.6 ¨ 7` 0.3 ¨ 5` 0.1 ¨ 5 “ 6.2

ErC2s “ 0.6 ¨ 5` 0.3 ¨ 2` 0.1 ¨ 2 “ 3.8

ErC3s “ 0.6 ¨ 3` 0.3 ¨ 9` 0.1 ¨ 3 “ 4.8

ErC4s “ 0.6 ¨ 6` 0.3 ¨ 4` 0.1 ¨ 4 “ 5.2

Take final decision with alternative having highest expected benefit Ñ A˚ “ A1
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Example of (optimistic) decision under uncertainty using OWA

Using optimistic decisional attitude

Apply OWA for each sub-matrix CpX3q, k “ 1, 2, 3

CpX1q “

»

—

—

–

S1 S3 S4

A1 7 12 13
A2 12 5 11
A3 9 3 10
A4 6 11 15

fi

ffi

ffi

fl

ñ

$

’

’

’

&

’

’

’

%

V1pX1q “OWAp7, 12, 13q “ r1 0 0s ¨ r13 12 7s1 “ 13

V2pX1q “OWAp12, 5, 11q “ r1 0 0s ¨ r12 11 5s1 “ 12

V3pX1q “OWAp9, 3, 10q “ r1 0 0s ¨ r10 9 3s1 “ 10

V4pX1q “OWAp6, 11, 15q “ r1 0 0s ¨ r15 11 6s1 “ 15

CpX2q “

»

—

—

–

S2 S5

A1 5 6
A2 10 2
A3 13 9
A4 9 4

fi

ffi

ffi

fl

ñ

$

’

’

’

&

’

’

’

%

V1pX2q “OWAp5, 6q “ r1 0s ¨ r6 5s1 “ 6

V2pX2q “OWAp10, 2q “ r1 0s ¨ r10 2s1 “ 10

V3pX2q “OWAp13, 9q “ r1 0s ¨ r13 9s1 “ 13

V4pX2q “OWAp9, 4q “ r1 0s ¨ r9 4s1 “ 9

CpX3q “

»

—

—

–

S1 S2 S3 S4 S5

A1 7 5 12 13 6
A2 12 10 5 11 2
A3 9 13 3 10 9
A4 6 9 11 15 4

fi

ffi

ffi

fl

ñ

$

’

’

’

&

’

’

’

%

V1pX3q “OWAp7, 5, 12, 13, 6q “ r1 0 0 0 0s ¨ r13 12 7 6 5s1 “ 13

V2pX3q “OWAp12, 10, 5, 11, 2q “ r1 0 0 0 0s ¨ r12 11 10 5 2s1 “ 12

V3pX3q “OWAp9, 13, 3, 10, 9q “ r1 0 0 0 0s ¨ r13 10 9 9 3s1 “ 13

V4pX3q “OWAp6, 9, 11, 15, 4q “ r1 0 0 0 0s ¨ r15 11 9 6 4s1 “ 15

Compute generalized expected benefits ErCis “
ř

kmpXkqVipXkq

with mpX1q “ 0.6, mpX2q “ 0.3 and mpX3q “ 0.1

ErC1s “ 0.6 ¨ 13` 0.3 ¨ 6` 0.1 ¨ 13 “ 10.9

ErC2s “ 0.6 ¨ 12` 0.3 ¨ 10` 0.1 ¨ 12 “ 11.4

ErC3s “ 0.6 ¨ 10` 0.3 ¨ 13` 0.1 ¨ 13 “ 11.2

ErC4s “ 0.6 ¨ 15` 0.3 ¨ 9` 0.1 ¨ 15 “ 13.2

Take final decision with alternative having highest expected benefit Ñ A˚ “ A4
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Advantage, limitation and improvement of OWA

Advantage of OWA

Very simple to apply

Limitation of OWA

The result strongly depends on the decisional attitude chosen when applying OWA
How to avoid this? Ñ complicate methods exist to select weights (using entropy)

Improvements of OWA

Use jointly the two most extreme decisional attitudes (pessimistic and optimistic) to be
more cautious, which can be done as follows

1 Applying OWA using Hurwicz attitude by taking α “ 1{2
Ñ a balance only between min and max benefit values

2 Applying modified OWA based on belief functions
Ñ we use all benefit values between min and max

§ Cautious OWA (COWA) [Tacnet Dezert 2011]
Pessimistic and optimistic generalized expected benefits allow to build belief intervals,
and to get BBAs that are combined with PCR6 to get combined BBA from which the
final decision is taken.

§ Fuzzy Cautious OWA (FCOWA) [Han Dezert Tacnet Han 2012]
A version of COWA more efficient and more simple to implement
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Fuzzy Cautious OWA method

At first, apply OWA with pessimistic and optimistic attitudes to get bounds
rEminrCis,E

maxrCiss of expected benefits of each alternative Ai
Main steps of Fuzzy Cautious OWA (FCOWA) [Han Dezert Tacnet Han 2012]

1 Normalize each column EminrCs and EmaxrCs separately to obtain EFuzzypCq

2 Conversion of the two normalized columns, i.e. two Fuzzy Membership Functions
(FMF), into two pessimistic and optimistic BBAs mPessp¨q and mOptip¨q

3 Combination of mPessp¨q and mOptip¨q to get a fused BBA mp¨q
4 Final decision drawn from mp¨q by a chosen decision rule, for example by max of

BetP, DSmP, or by min of dBI

Advantages of FCOWA

only 2 BBAs are involved in the combination ñ only one fusion step is needed
the BBAs in FCOWA (built by using alpha-cuts) are consonant support (FE are
nested), which brings less computational complexity than with COWA
good performances of FCOWA w.r.t. COWA
good robustness of FCOWA to scoring errors w.r.t. COWA

Physical meaning

In FCOWA, the 2 SoE are pessimistic OWA and optimistic OWA. The combination
result can be regarded as a tradeoff between these two attitudes.
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Detailed FCOWA principle applied to previous example

The uncertainty of the states is modeled by the following BBA (previous example)

BBA\FE X1 fi S1 Y S3 Y S4 X2 fi S2 Y S5 X3 fi S1 Y S2 Y S3 Y S4 Y S5

mp¨q 0.6 0.3 0.1

From the benefit matrix, we get the expected pessimistic and optimistic benefits
(previous example)

C “

»

—

–

S1 S2 S3 S4 S5

A1 7 5 12 13 6
A2 12 10 5 11 2
A3 9 13 3 10 9
A4 6 9 11 15 4

fi

ffi

fl
ñ ErCs “

»

—

—

–

EminrC1s “ 6.2 EmaxrC1s “ 10.9
EminrC2s “ 3.8 EmaxrC2s “ 11.4s
EminrC3s “ 4.8 EmaxrC3s “ 11.2
EminrC4s “ 5.2 EmaxrC4s “ 13.2

fi

ffi

ffi

fl

Step 1 of FCOWA: Normalization of each column of expected benefit matrix ErCs

EFuzzypCq “

»

—

–

6.2{6.2 10.9{13.2
3.8{6.2 11.4{13.2
4.8{6..2 11.2{13.2
5.2{6.2 13.2{13.2

fi

ffi

fl
«

»

—

–

FMF1µ1p¨q FMF2µ2p¨q

1 0.8258
0.6129 0.8636
0.7742 0.8485
0.8387 1

fi

ffi

fl
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Detailed FCOWA principle applied to previous example (cont’d)

Step 2 of FCOWA: Construction of mPess from µ1, and mOpti from µ2

based on α-cut method [Orlov 1978, Goodman 1982, Florea et al. 2003, Yi et al. 2016]
We sort µ values in increasing order 0 “ α0 ă α1 ă . . . ă αM ď 1

From the FMF µ we compute mass mpBjq “
αj´αj´1

αM
where focal element Bj is defined

by Bj “ tAi P Θ|µpAiq ě αju.

Example: From the FMF µ1, one has
α1 “ µ1pA2q “ 0.6129 ă α2 “ µ1pA3q “ 0.7742 ă α3 “ µ1pA4q “ 0.8387 ă α4 “ µ1pA1q “ 1

Focal element B3 “ tAi P Θ|µpAiq ě α3u “ tA1,A4u because µ1pA1q ą α3 and
µ1pA4q ą α3. Hence

mPesspB3q “mPesspA1 YA4q “
α3 ´α2

α4
“

0.8387´ 0.7742

1
“ 0.0645

Finally, we get

Focal Element mPessp.q Focal Element mOptip.q
A1 YA2 YA3 YA4 0.6129 A1 YA2 YA3 YA4 0.8257
A1 YA3 YA4 0.1613 A2 YA3 YA4 0.0227
A1 YA4 0.0645 A2 YA4 0.0152
A1 0.1613 A4 0.1364

Step 3 of FCOWA: Combination of BBAs mPess and mOpti to get the fused BBA mp¨q
Step 4 of FCOWA: Decision-making from mp¨q
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Decision-Making Support with Belief Functions

Methods for Multi-Criteria Decision-Making support
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Classical Multi-Criteria Decision-Making (MCDM) problem

How to make a choice among several alternatives based on different criteria?

Problem modeling 1 ñ using pairwise comparison matrices Ñ AHP methods
We consider a set of criteria C1, . . . , CN with preferences of importance established
from a pairwise comparison matrix (PCM) M. For each criteria Cj, a set of preferences
of the alternatives is established from a given pairwise comparison matrix Mj.

Problem modeling 2 ñ using directly the score matrix Ñ TOPSIS methods

A set of M ě 2 alternatives A fi tA1, . . . ,AMu

A set of N ą 1 Criteria C fi tC1, . . . ,CNu

A set of N ą 1 criteria importance weights W “ tw1, . . . ,wNu, with wj P r0, 1s
and

ř

jwj “ 1

S fi

»

—

—

—

—

—

—

—

–

C1,w1 . . . Cj,wj . . . CN,wN

A1 S11 . . . S1j . . . S1N

...
...

Ai Si1 . . . Sij . . . SiN

...
...

AM SM1 . . . SMj . . . SMN

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

S is the score matrix of the MCDM problem under consideration
Car example: How to buy a car based on some criteria (i.e. cost, safety, etc.)?
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Methods for solving classical MCDM problem

Important remarks
All methods developed so far suffer from rank reversal problem [Wang Luo 2009],
which means that the rank is changed by adding (or deleting) an alternative in the
problem. We consider rank reversal as very serious drawback.
Most of existing methods require score normalization at first, except for ERV
(Estimator Ranking Vector) method [Yin et al. 2013]. Normalization has been
identified as one of the origins of rank reversal problem.
There is no MCDM method which makes consensus among users, . . . but some
are very popular

§ AHP (Analytic Hierarchy Process) method is very popular in operational research
community but not exempt of problems

§ TOPSIS (Technique for Order Preference by Similarity to Ideal Solution) method is very
popular but the choice of normalization is disputed

What is presented in this course
Belief-Function-based TOPSIS methods called BF-TOPSIS to solve classical and
non-classical MCDM problems [Dezert Han Yin 2016, Carladous et al. 2016]

What is not presented
AHP method and its extension DSm-AHP using belief functions
[Saaty 1980, Dezert et al. 2010, Dezert Tacnet 2011]
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Classical TOPSIS method for MCDM

TOPSIS = Technique for Order Preference by Similarity to Ideal Solution

Classical TOPSIS method [Hwang Yoon 1981]

1 Build the normalized score matrix R “ rRijs “ rSij{
b

ř

i S
2
ijs

2 Calculate the weighted normalized decision matrix D “ rwj ¨ Rijs
3 Determine the positive (best) ideal solution Abest by taking the best/max value in

each column of D
4 Determine the negative (worst) ideal solution Aworst by taking the worst/min

value in each column of D
5 Compute L2-distances dpAi,Abestq of Ai, (i=1,. . . ,M) to Abest, and dpAi,Aworstq

of Ai to Aworst
6 Calculate the relative closeness of Ai to best ideal solution Abest by

CpAi,A
bestq fi

dpAi,A
worstq

dpAi,Aworstq ` dpAi,Abestq

When CpAi,Abestq “ 1, its means thatAi “Abest because dpAi,Abestq “ 0

When CpAi,Abestq “ 0, its means thatAi “Aworst because dpAi,Aworstq “ 0

7 Rank alternatives Ai according to CpAi,Abestq in descending order, and select
the highest preferred solution
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Example for classical TOPSIS method

A very simple example for TOPSIS S “

»

–

C1,w1 “ 1{2 C2,w2 “ 1{2

A1 6 2
A2 3 5
A3 4 4

fi

fl

1 Step 1 & 2 (normalization & columns weighting):

R “ rSij{

d

ÿ

i

S2
ij
s ñ R “

»

–

C1, 1{2 C2, 1{2

0.7682 0.2981
0.3841 0.7454
0.5121 0.5963

fi

flñ D “

»

–

0.3841 0.1491
0.1921 0.3727
0.2561 0.2981

fi

fl

2 Step 3 & 4 (best and worst solutions) Abest “ r0.3841 0.3727s, Aworst “ r0.1921 0.1491s

3 Step 5 (L2-distance of Ai to Abest and to Aworst):

»

–

Abest “ r0.3841 0.3727s Aworst “ r0.1921 0.1491s

A1 “ r0.3841 0.1491s dpA1,Abestq “ 0.2236 dpA1,Aworstq “ 0.1921
A2 “ r0.1921 0.3727s dpA2,Abestq “ 0.1921 dpA2,Aworstq “ 0.2236
A3 “ r0.2561 0.2981s dpA3,Abestq “ 0.1482 dpA3,Aworstq “ 0.1622

fi

fl

4 Step 6 (relative closeness of Ai to Abest): CpAi,Abestq fi
dpAi ,Aworstq

dpAi ,Aworstq`dpAi ,Abestq

CpA1,Abestq “ 0.4620 CpA2,Abestq “ 0.5380 CpA3,Abestq “ 0.5227

5 Step 7 (ranking by decreasing order of CpAi,Abestq): A2 ą A3 ą A1

Based on TOPSIS, the decision δ to make is δ “ A2
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BF-TOPSIS method for MCDM

BF-TOPSIS is a TOPSIS-alike method based on belief functions [Dezert Han Yin 2016]

Advantages of BF-TOPSIS
no need for ad-hoc choice of scores normalization
relatively simple to implement
more robust to rank reversal phenomena (although not exempt)

Main problem to overcome

Working with belief functions requires the construction of BBAs.
How to build efficiently BBAs from the score values?

Solution Ñ see next slides

Four BF-TOPSIS methods available with different complexities

1 BF-TOPSIS1: smallest complexity
2 BF-TOPSIS2: medium complexity
3 BF-TOPSIS3: high complexity (because of PCR6 fusion rule)
4 BF-TOPSIS4: high complexity (because of ZPCR6 fusion rule)

BF-TOPSIS for working with imprecise scores is presented in
[Dezert Han Tacnet 2017], with implementation improvement in [Mahato et al. 2018].
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BBA construction for BF-TOPSIS (1)

Positive support of Ai based on all scores values of a criteria Cj

SupjpAiq fi
ÿ

kPt1,...Mu|SkjďSij

|Sij ´ Skj|

SupjpAiq measures how much Ai is better (higher) than other alternatives

Negative support of Ai based on all scores values of a criteria Cj

InfjpAiq fi ´
ÿ

kPt1,...Mu|SkjěSij

|Sij ´ Skj|

InfjpAiq measures how much Ai is worse (lower) than other alternatives

Important inequality see proof in [Dezert Han Yin 2016]

SupjpAiq

Ajmax

ď 1´
InfjpAiq

Ajmin

iff Ajmax fi maxi SupjpAiq and Ajmin fi mini InfjpAiq are different from zero.
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BBA construction for BF-TOPSIS (2)

Reminder SupjpAiq

A
j
max

ď 1´
InfjpAiq

A
j
min

Belief function modeling

BelijpAiq fi
SupjpAiq

Ajmax

and BelijpĀiq fi
InfjpAiq

Ajmin

If Ajmax “ 0, we set BelijpXiq “ 0
If Ajmin “ 0, we set PlijpAiq “ 1 so that BelijpĀiq “ 0

By construction, 0 ď BelijpAiq ď pPlijpAiq “ 1´ BelijpĀiqq ď 1

BBA construction from Belief Interval

From rBelijpAiq,PlijpAiqs, one gets the MˆN BBAs matrix M “ rmijp¨qs by taking

mijpAiq “ BelijpAiq

mijpĀiq “ BelijpĀiq “ 1´ PlijpAiq

mijpAi Y Āiq “ PlijpAiq ´ BelijpAiq
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BBA construction for BF-TOPSIS (3)

Advantages of this BBA construction

1 if all Sij are the same for a given column, we get @Ai, SupjpAiq “ InfjpAiq “ 0
and therefore mijpAi Y Āiq “ 1 which is the vacuous BBA, which makes sense.

2 it is invariant to the bias and scaling effects of score values. Indeed, if Sij are
replaced by S 1ij “ a ¨ Sij ` b, with a scale factor a ą 0 and a bias b P R, then
mijp¨q and m 1

ijp¨q remain equal.

3 if a numerical value Sij is missing or indeterminate, then we use the vacuous
belief assignment mijpAi Y Āiq “ 1.

4 We can also discount the BBA mijp¨q by a reliability factor using the classical
Shafer’s discounting method if one wants to express some doubts on the reliability
of mijp¨q.

In summary

From rSijs, we know how to build the matrix M “ rpmijpAiq,mijpĀiq,mijpAi Y Āiqqs

How to use these BBAs to rank Ai to make a decision? Ñ BF-TOPSIS methods
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BF-TOPSIS1 method

Steps of BF-TOPSIS1 [Dezert Han Yin 2016]

1 From S, compute BBAs mijpAiq mijpĀiq, and mijpAi Y Āiq
2 Set mbest

ij pAiq fi 1, and mworst
ij pĀiq fi 1 and compute distances dEBIpmij,m

best
ij q and

dEBIpmij,m
worst
ij q to ideal solutions.

3 Compute the weighted average distances of Ai to ideal solutions

dbestpAiq fi

N
ÿ

j“1

wj ¨ d
E
BIpmij,m

best
ij q

dworstpAiq fi

N
ÿ

j“1

wj ¨ d
E
BIpmij,m

worst
ij q

4 Compute the relative closeness of Ai with respect to ideal best solution Abest

CpAi,A
bestq fi

dworstpAiq

dworstpAiq ` dbestpAiq

5 Rank Ai by CpAi,Abestq in descending order.
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BF-TOPSIS2 method

Steps of BF-TOPSIS2 [Dezert Han Yin 2016]

1 From S, compute BBAs mijpAiq mijpĀiq, and mijpAi Y Āiq
2 Set mbest

ij pAiq fi 1, and mworst
ij pĀiq fi 1 and compute distances dEBIpmij,m

best
ij q and

dEBIpmij,m
worst
ij q to ideal solutions.

3 For each criteria Cj, compute the relative closeness of Ai to best ideal solution
Abest by

CjpAi,A
bestq fi

dEBIpmij,m
worst
ij q

dEBIpmij,m
worst
ij q ` dEBIpmij,m

best
ij q

4 Compute the weighted average of CjpAi,Abestq by

CpAi,A
bestq fi

N
ÿ

j“1

wj ¨ CjpAi,A
bestq

5 Rank Ai by CpAi,Abestq in descending order.
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BF-TOPSIS3 and BF-TOPSIS4 methods

Steps of BF-TOPSIS3 [Dezert Han Yin 2016]

1 Compute BBAs mijpAiq, mijpĀiq and mijpAi Y Āiq and apply importance
discounting of each BBA with weight wj, see [Smarandache Dezert Tacnet 2010]

2 For each Ai, fuse the discounted BBAs with PCR6 to get BBAs mPCR6
i p¨q

3 Set mbest
i pAiq fi 1, and mworst

i pĀiq fi 1. Compute distances

dbestpAiq fi dEBIpm
PCR6
i ,mbest

i q

dworstpAiq fi dEBIpm
PCR6
i ,mworst

i q

4 Compute the relative closeness of Ai, i “ 1, . . . ,M, with respect to ideal best
solution Abest

CpAi,A
bestq fi

dworstpAiq

dworstpAiq ` dbestpAiq

5 Rank Ai by CpAi,Abestq in descending order.

BF-TOPSIS4 method

Same as BF-TOPSIS3, but PCR6 rule is replaced by ZPCR6 rule (i.e. PCR6 rule
including Zhang’s degree of intersection) [Smarandache Dezert 2015]
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On consistency of BF-TOPSIS methods

BF-TOPSIS methods are consistent with direct ranking in mono-criteria case

Example (Mono-criteria) Preference orderÑ greater value is better

S fi

»

—

—

—

—

—

—

—

–

C1

A1 10
A2 20
A3 ´5
A4 0
A5 100
A6 ´11
A7 0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

ñM fi

»

—

—

—

—

—

—

—

–

mi1pAiq mi1pĀiq mi1pAi Y Āiq

A1 0.0955 0.5236 0.3809
A2 0.1809 0.4188 0.4003
A3 0.0102 0.8115 0.1783
A4 0.0273 0.6806 0.2921
A5 1.0000 0 0
A6 0 1.0000 0
A7 0.0273 0.6806 0.2921

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

ñ

»

—

—

—

—

—

—

—

–

CpAi,Abestq

A1 0.1130
A2 0.1948
A3 0.0257
A4 0.0485
A5 1.0000
A6 0
A7 0.0485

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

Results

Ranking methods Preferences order

By direct ranking A5 ąA2 ąA1 ą pA4 „A7q ąA3 ąA6

By BF-TOPSIS A5 ąA2 ąA1 ą pA4 „A7q ąA3 ąA6

By DS fusion A5 ą pA1 „A2 „A3 „A4 „A6 „A7q

By PCR6 fusion A5 ąA2 ąA1 ąA4 ą pA3 „A6 „A7q

Ranking results of DS (Dempster-Shafer) fusion and PCR6 fusion of the BBAs do not match with direct ranking
even in mono criteria case because of strong dependencies between BBAs in their construction.
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On consistency of BF-TOPSIS methods (2)

In this example, we have ScorepA5q ąą ScorepA2q

S fi

»

—

—

—

—

—

—

—

–

C1

A1 10
A2 20
A3 ´5
A4 0
A5 100
A6 ´11
A7 0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

ñ

»

—

—

—

—

—

—

—

–

CpAi,Abestq

A1 0.1130
A2 0.1948
A3 0.0257
A4 0.0485
A5 1.0000
A6 0
A7 0.0485

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

ñA5 ąA2 ąA1 ą pA4 „A7q ąA3 ąA6

Let’s modify the example with ScorepA5q „ ScorepA2q

S fi

»

—

—

—

—

—

—

—

–

C1

A1 10
A2 20
A3 ´5
A4 0
A5 21
A6 ´11
A7 0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

ñ

»

—

—

—

—

—

—

—

–

CpAi,Abestq

A1 0.5072
A2 0.9472
A3 0.0675
A4 0.1584
A5 1.0000
A6 0
A7 0.1584

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

ñA5 ąA2 ąA1 ą pA4 „A7q ąA3 ąA6

We see that A2 is very close to ideal best solution, even if final result is unchanged.
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BF-TOPSIS when all scores are the same

When all scores are the same

ñ all BBAs are the same and equal to the vacuous BBA

ñ all closeness measures to best ideal solution are equal

S fi

»

—

—

—

—

—

—

–

C1

A1 s
...

...
Ai s
...

...
AM s

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

ñM fi

»

—

—

—

—

—

—

–

mi1pAi Y Āiq

A1 1
...

...
Ai 1
...

...
AM 1

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

ñ

»

—

—

—

—

—

—

–

CpAi,A
bestq

A1 c
...

...
Ai c
...

...
AM c

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

Conclusion: No specific choice can be drawn, which is perfectly normal.
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MCDM rank reversal example

Multi-Criteria example [Wang Luo 2009]

We consider 5 alternatives, and 4 criteria

S fi

»

—

—

—

–

C1, 1
6 C2, 1

3 C3, 1
3 C4, 1

6

A1 36 42 43 70
A2 25 50 45 80
A3 28 45 50 75
A4 24 40 47 100
A5 30 30 45 80

fi

ffi

ffi

ffi

fl

Rank reversal with TOPSIS
Set of alternatives TOPSIS

tA1,A2,A3u A3 ąA2 ąA1

tA1,A2,A3,A4u A2 ąA3 ąA1 ąA4

tA1,A2,A3,A4,A5u A3 ąA2 ąA4 ąA1 ąA5

Rank reversal

Rank reversal with BF-TOPSIS
Set of alternatives BF-TOPSIS1 & BF-TOPSIS2 BF-TOPSIS3 & BF-TOPSIS4

tA1,A2,A3u A2 ąA3 ąA1 A3 ąA2 ąA1

tA1,A2,A3,A4u A3 ąA2 ąA4 ąA1 A3 ąA2 ąA4 ąA1

tA1,A2,A3,A4,A5u A3 ąA2 ąA4 ąA1 ąA5 A3 ąA2 ąA4 ąA1 ąA5

Rank reversal No rank reversal
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A simple MCDM car selection example

Car selection example

How to buy a car among 4 possible choices, and based on 5 different criteria with
weights w1 “ 5{17, w2 “ 4{17, w3 “ 4{17, w4 “ 1{17, and w5 “ 3{17

C1 = price (in e); the least is the best

C2 = fuel consumption (in L/km); the least is the best

C3 = CO2 emission (in g/km); the least is the best

C4 = fuel tank volume (in L); the biggest is the best

C5 = trunk volume (in L); the biggest is the best

Building the score matrix from http://www.choisir-sa-voiture.com

S fi

»

—

—

–

C1, 5
17

C2, 4
17

C3, 4
17

C4, 1
17

C5, 3
17

A1 “ TOYOTA YARIS 69 VVT-i Tendance 15000 4.3 99 42 73
A2 “ SUZUKI SWIFT MY15 1.2 VVT So’City 15290 5.0 116 42 892
A3 “ VOLKSWAGEN POLO 1.0 60 Confortline 15350 5.0 114 45 952
A4 “ OPEL CORSA 1.4 Turbo 100 ch Start/Stop Edition 15490 5.3 123 45 1120

fi

ffi

ffi

fl

A1 is the expected best choice because the 3 most important criteria meet their best
values for car A1.

With classical TOPSIS A4 ą A1 ą A3 ą A2 (counter-intuitive)

With all BF-TOPSIS methods A1 ą A3 ą A2 ą A4 (which fits with what we expect)
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Decision-Making Support with Belief Functions

Non classical MCDM problem
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Non-Classical Multi-Criteria Decision-Making problem

How to make a choice in A from multi-criteria scores expressed on power-set of A ?

S fi

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

Xi P 2A C1,w1 . . . Cj,wj . . . CN,wN

A1 S11 . . . S1j . . . S1N

...
...

Ai Si1 . . . Sij . . . SiN
...

...
AM SM1 . . . SMj . . . SMN
...

...
A1 YA2 SpM`1q1 . . . SpM`1qj . . . SpM`1qN

...
...

A1 Y . . .YAi Y . . .YAM Sp2M´1q1 . . . Sp2M´1qj . . . Sp2M´1qN

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

See [Dezert Han Tacnet Carladous Yin 2016, Carladous 2017] for details
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BBA construction for non classical MCDM

How to build mp.q : 2AfitA1,A2,...,AMu ÞÑ r0, 1s from scores S fi rSijs?

Direct extension of BBA construction [Dezert Han Tacnet Carladous Yin 2016]

Positive support of Xi P 2A based on all scores values of a criteria Cj

SupjpXiq fi
ÿ

YP2A|SjpYqďSjpXiq

|SjpXiq ´ SjpYq|

SupjpXiq measures how much Xi is better (higher) than other Y of 2A

Negative support of Xi P 2A based on all scores values of a criteria Cj

InfjpXiq fi ´
ÿ

YP2A|SjpYqěSjpXiq

|SjpXiq ´ SjpYq|

InfjpXiq measures how much Xi is worse (lower) than other Y of 2A

Belief function modeling

0 ď
SupjpXiq

Xjmax

ď 1´
InfjpXiq

Xjmin

ď 1 ñ

$

&

%

BelijpXiq fi
SupjpXiq

X
j
max

, with Xjmax “ maxi SupjpXiq

BelijpX̄iq fi
InfjpXiq

X
j
min

, with Xjmin “ mini InfjpXiq
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Simple example of non classical MCDM problem

Concrete (complicate) examples of non classical MCDM for Protecting housing areas
against torrential floods has been studied in Carladous thesis [Carladous 2017]

Simple example

Five students A1, . . . , A5 have to be ranked based on two criteria
C1 = long jump performance
C2 = collected funds for an animal protection project

The scores are given as follows

S “

»

—

—

—

—

—

–

Xi P 2A C1,w1 C2,w2

A1 3.7 m ?
A3 3.6 m ?
A4 3.8 m ?
A5 3.7 m 640e
A1 YA2 ? 600e
A3 YA4 ? 650e

fi

ffi

ffi

ffi

ffi

ffi

fl

Difficulties:
Scores are given in different units and different scales
Some scores values can be missing
Criteria Cj do not have same weights of importance wj (in general)
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Example of non classical MCDM problem with BF-TOPSIS1

Step 1: BBA matrix construction

S “

»

—

—

—

—

—

—

–

FE P 2A C1,w1 C2,w2

A1 3.7m ?
A3 3.6m ?
A4 3.8m ?
A5 3.7m 640e
A1 YA2 ? 600e
A3 YA4 ? 650e

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

ñM “

»

—

—

—

—

—

—

–

C1,w1 C2,w2

p0.25, 0.25, 0.50q p0, 0, 1q
p0, 1, 0q p0, 0, 1q
p1, 0, 0q p0, 0, 1q

p0.25, 0.25, 0.50q p0.6667, 0.1111, 0.2222q
p0, 0, 1q p0, 1, 0q
p0, 0, 1q p1, 0, 0q

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

Step 2: distances to ideal best and worst solutions
Focal elem. dBIpmi1,mbestq dBIpmi1,mworstq dBIpmi2,mbestq dBIpmi2,mworstq

A1 0.6016 0.2652 0.7906 0.2041
A3 0.8416 0 0.7906 0.2041
A4 0 0.8416 0.7906 0.2041
A5 0.6016 0.2652 0.2674 0.5791

A1 YA2 0.5401 0.3536 0.6770 0
A3 YA4 0.5401 0.3536 0 0.6770

Steps 3-5: weighted distances with w1 “ 1{3 and w2 “ 2{3, closeness and ranking
Focal elem. dbestpXiq dworstpXiq CpXi ,Xbestq Ranking

A1 0.7276 0.2245 0.2358 4
A3 0.8076 0.1361 0.1442 6
A4 0.5270 0.4166 0.4415 3
A5 0.3788 0.4745 0.5561 2

A1 YA2 0.6314 0.1179 0.1573 5
A3 YA4 0.1800 0.5692 0.7597 1
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Inter-Criteria Analysis based on Belief Functions

BF-ICrA for MCDM simplification
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Atanassov Inter-Criteria Analysis (ICrA)

Purpose: Identify criteria that behave similarly for simplifying MCDM

Atanassov ICrA Method [Atanassov et al. 2014]

From the MCDM score matrix M, build an inter criteria matrix (ICM) K whose
components express the degree of agreement and disagreement between each
possible pair of criteria.

Agreement score between Cj and Cj1

Kµ
jj1
“

M´1
ÿ

i“1

M
ÿ

i1“i`1

rsgnpSij ´ Si1jqsgnpSij1 ´ Si1j1 q ` sgnpSi1j ´ SijqsgnpSi1j1 ´ Sij1 qs

Kµ
jj1

is the number of cases in which Sij ą Si1j and Sij1 ą Si1j1 hold simultaneously.

Disagreement score between Cj and Cj1

Kν
jj1
“

M´1
ÿ

i“1

M
ÿ

i1“i`1

rsgnpSij ´ Si1jqsgnpSi1j1 ´ Sij1 q ` sgnpSi1j ´ SijqsgnpSij1 ´ Si1j1 qs

Kνjj1 is the number of cases in which Sij ą Si1j and Sij1 ă Si1j1 hold simultaneously.

The signum function is chosen as sgnpxq “

#

1, if x ą 0

0, if x ď 0
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Atanassov Inter-Criteria Analysis (ICrA) - Cont’d

One can identify easily the criteria that are in strong agreement (i.e. those close to
T “ p1, 0q), or in strong disagreement (i.e. those close to F “ p0, 1q).
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Atanassov Inter-Criteria Analysis (ICrA) - Cont’d

Advantages of Atanassov’s ICrA: Relatively easy to implement and use

Limitations of Atanassov’s ICrA

1 Construction of µjj1 and νjj1 is very crude because it only counts the ”>” or ”<”
inequalities, but not how bigger or how lower the score values are in making the
comparison.

2 The construction of the Inter-Criteria Matrix K is not unique. It depends on the
choice of signum function.

3 Atanassov ICrA method depends on the choice of α and β thresholds
Important remark: µjj1 and νjj1 can be interpreted in the BF framework by
considering the Frame of Discernment (FoD)

Θ “ tθ “ "Cj and Cj1 agree", θ̄ “ "Cj and Cj1 disagree"u

and the following relationships

mjj1pθq “ µjj1

mjj1pθ̄q “ νjj1

mjj1pθY θ̄q “ 1´ µjj1 ´ νjj1

Ñ Development of a new BF-ICrA method
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New Belief Functions based Inter-Criteria Analysis method (BF-ICrA)

BF-ICrA is presented in [Dezert et al. 2019], with application in [Fidanova et al. 2019].

Step 1 of BF-ICrA: Construction of BBA matrix

We use method developed in BF-TOPSIS.
For each column (criteria) Cj of the score matrix Sq we compute the BBAs

mijpAiq “ BelijpAiq

mijpĀiq “ BelijpĀiq

mijpAi Y Āiq “ 1´mijpAiq ´mijpĀiq

with
$

&

%

BelijpAiq “
SupjpAiq

maxi SupjpAiq

BelijpĀiq “
InfjpAiq

mini InfjpAiq

and
#

SupjpAiq “
ř

kPt1,...,Mu|SkjďSij
|Sij ´ Skj|

InfjpAiq “ ´
ř

kPt1,...,Mu|SkjěSij
|Sij ´ Skj

So finally from score matrix S, we get BBA matrix M

S “ rSijs ÑM “ rmijp¨qs “ rpmijpAiq,mijpĀiq,mijpAi Y Āiqqs
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BF-ICrA - Cont’d

Step 2 of BF-ICrA: Construction of Inter-Criteria Matrix (ICM) matrix K “ rKjj1 s

We want to compute K “ rKjj1 s “ rpmjj1pθq,mjj1pθ̄q,mjj1pθY θ̄qqs

Step 2-a: For each alternative Ai we compute

mijj1pθq “ mijpAiqmij1pAiq `mijpĀiqmij1pĀiq Mass of agreement

mijj1pθ̄q “ mijpAiqmij1pĀiq `mijpĀiqmij1pAiq Mass of disagreement

mijj1pθY θ̄q “ 1´mijj1pθq ´m
i
jj1pθ̄q Mass of uncertainty

Step 2-b: We fuse the M BBAs mijj1p¨q to obtain the BBA mjj 1p¨q

‚ If M is not too large, we recommend PCR6 fusion rule
‚ If M is too large for PCR6 working in computer memory, we use the averaging rule
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BF-ICrA - Cont’d

Step 3 of BF-ICrA: Simplification of MCDM problem from ICM matrix K

Compute the dBIpmjj1 ,mT q distance between mjj1p¨q and the full agreement BBA
mT pθq “ 1 where the dBI distance is defined by [Han Dezert Yang 2014]

dBIpm1,m2q “

d

1

2|Θ|´1

ÿ

XP2Θ

dIprBel1pXq,Pl1pXqs, rBel2pXq,Pl2pXqsq2

dI is Wasserstein distance of interval numbers defined by

dI pra1,b1s, ra2,b2sq “

d

„

a1 ` b1

2
´
a2 ` b2

2

2

`
1

3

„

b1 ´ a1

2
´
b2 ´ a2

2

2

Since all criteria in strong agreement behave similarly from decision-making
standpoint, we can identify (quasi-)redundant criteria from dBI values and take them
out of original MCDM problem and solve (if possible) a simplified MCDM problem.

Step 4: Solve simplified MCDM problem (with criteria weighting adjustments) using an
available technique (AHP, BF-TOPSIS, etc)
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Example of BF-ICrA

MCDM Problem: How to choose a car to buy based on multiple-criteria?

Constraint: our budget is limited to 12000 euros.

List of 10 cars
A1 “ DACIA SANDERO SCe 75;

A2 “ RENAULT CLIO TCe 75;

A3 “ SUZUKI CELERIO 1.0 VVT Avantage;

A4 “ FORD KA+ Ka+ 1.2 70 ch S&S Essential;

A5 “ MITSUBISHI SPACE STAR 1.0 MIVEC 71;

A6 “ KIA PICANTO 1.0 essence MPi 67 ch BVM5 Motion;

A7 “ HYUNDAI I10 1.0 66 BVM5 Initia;

A8 “ CITROEN C1 VTi 72 S&S Live;

A9 “ TOYOTA AYGO 1.0 VVT-i x;

A10 “ PEUGEOT 108 VTi 72ch S&S BVM5 Like.
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Example of BF-ICrA - Cont’d

List of 17 criteria of original MCDM problem
C1 is the price (e); smaller is better

C2 is the length (mm); larger is better

C3 is the height (mm); larger is better

C4 is the width without mirror (mm); smaller is better

C5 is the wheelbase (mm);larger is better

C6 is the max loading volume (L);larger is better

C7 is the tank capacity (L);larger is better

C8 is the unloaded weight (Kg); smaller is better

C9 is the cylinder volume(cm3);larger is better

C10 is the acceleration 0-100 Km/h (s);larger is better

C11 is the max speed (Km/h);larger is better

C12 is the power (Kw);larger is better

C13 is the horse power (hp);larger is better

C14 is the mixed consumption (L/100Km); smaller is better

C15 is the extra-urban consumption (L/100Km); smaller is better

C16 is the urban consumption (L/100Km); smaller is better

C17 is the CO2 emission level (g/Km) smaller is better
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Example of BF-ICrA - Cont’d

MCDM Score matrix

obtained from https://automobile.choisir.com/comparateur/voitures-neuves

Sfi

»

—

—

—

—

—

—

—

—

—

—

—

—

—

–

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 C17

A1 7990 4069 1523 1733 2589 1200 50 969 998 14.2 158 55 75 5.2 4.5 6.5 117
A2 10990 4063 1448 1732 2589 1146 45 1138 898 12.3 178 56 75 5 4.2 6.3 113
A3 9790 3600 1530 1600 2425 1053 35 815 998 13.9 155 50 68 3.9 3.6 4.5 89
A4 10350 3941 1524 1774 2490 1029 42 1063 1198 14.6 164 51 70 5.1 4.4 6.3 117
A5 10990 3795 1505 1665 2450 910 35 865 999 16.7 172 52 71 4.6 4.1 5.3 105
A6 11000 3595 1485 1595 2400 1010 35 860 998 14.3 161 49 67 4.4 3.7 5.6 106
A7 11050 3665 1500 1660 2385 1046 40 1008 998 14.7 156 49 66 5.1 4.3 6.5 117
A8 11550 3466 1465 1615 2340 780 35 840 998 14 160 53 72 3.7 3.4 4.3 85
A9 11590 3465 1460 1615 2340 812 35 915 998 13.8 160 51 69 4.1 3.6 4.9 93
A10 11950 3475 1460 1615 2340 780 35 840 998 12.6 160 53 72 3.7 3.4 4.3 85

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

To make the preference order homogeneous, we multiply values of columns C1, C4, C8,
and C14 to C17 by -1 so that our MCDM problem is described by a modified score
matrix with homogeneous preference order (”larger is better”) for each column before
applying the BF-ICrA method.
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Example of BF-ICrA - Cont’d

Computation of distance matrix with BF-ICrA

Dpθq“

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 C17
C1 0.1401 0.2225 0.2434 0.7318 0.2054 0.2114 0.1901 0.6506 0.4113 0.3907 0.5493 0.4320 0.4128 0.7489 0.7766 0.7383 0.7369

C2 0.2225 0.0709 0.3946 0.9034 0.0827 0.1471 0.0977 0.8414 0.5985 0.5349 0.3081 0.2659 0.2675 0.8848 0.8945 0.8726 0.8750

C3 0.2434 0.3946 0.1014 0.5689 0.4016 0.3319 0.4383 0.4161 0.2387 0.2821 0.7145 0.6605 0.6078 0.6368 0.6948 0.6039 0.6445

C4 0.7318 0.9034 0.5689 0.0904 0.8721 0.7634 0.9054 0.1515 0.6548 0.5438 0.7242 0.7382 0.7272 0.1545 0.1370 0.1742 0.1780

C5 0.2054 0.0827 0.4016 0.8721 0.0805 0.1436 0.0958 0.8146 0.6524 0.5514 0.3145 0.2537 0.2618 0.8372 0.8536 0.8225 0.8214

C6 0.2114 0.1471 0.3319 0.7634 0.1436 0.1165 0.1673 0.7520 0.6222 0.5261 0.4767 0.4227 0.4001 0.8501 0.8432 0.8589 0.8565

C7 0.1901 0.0977 0.4383 0.9054 0.0958 0.1673 0.0355 0.8820 0.5295 0.5681 0.3585 0.2302 0.2715 0.8541 0.8632 0.8565 0.8253

C8 0.6506 0.8414 0.4161 0.1515 0.8146 0.7520 0.8820 0.1171 0.4588 0.4349 0.7325 0.6920 0.6597 0.1689 0.1890 0.1558 0.1746

C9 0.4113 0.5985 0.2387 0.6548 0.6524 0.6222 0.5295 0.4588 0.0636 0.2331 0.7125 0.7476 0.7367 0.5695 0.6200 0.5405 0.5947

C10 0.3907 0.5349 0.2821 0.5438 0.5514 0.5261 0.5681 0.4349 0.2331 0.1466 0.5893 0.7070 0.6988 0.5852 0.6389 0.5466 0.5845

C11 0.5493 0.3081 0.7145 0.7242 0.3145 0.4767 0.3585 0.7325 0.7125 0.5893 0.1294 0.2887 0.3331 0.5907 0.5922 0.5748 0.5704

C12 0.4320 0.2659 0.6605 0.7382 0.2537 0.4227 0.2302 0.6920 0.7476 0.7070 0.2887 0.1292 0.1403 0.5571 0.5907 0.5278 0.5030

C13 0.4128 0.2675 0.6078 0.7272 0.2618 0.4001 0.2715 0.6597 0.7367 0.6988 0.3331 0.1403 0.1340 0.5819 0.6086 0.5541 0.5411

C14 0.7489 0.8848 0.6368 0.1545 0.8372 0.8501 0.8541 0.1689 0.5695 0.5852 0.5907 0.5571 0.5819 0.0705 0.0842 0.0682 0.0632

C15 0.7766 0.8945 0.6948 0.1370 0.8536 0.8432 0.8632 0.1890 0.6200 0.6389 0.5922 0.5907 0.6086 0.0842 0.0849 0.0902 0.0842

C16 0.7383 0.8726 0.6039 0.1742 0.8225 0.8589 0.8565 0.1558 0.5405 0.5466 0.5748 0.5278 0.5541 0.0682 0.0902 0.0584 0.0575

C17 0.7369 0.8750 0.6445 0.1780 0.8214 0.8565 0.8253 0.1746 0.5947 0.5845 0.5704 0.5030 0.5411 0.0632 0.0842 0.0575 0.0509

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

C2, C5 and C7 are in very strong agreement and somehow redundant for MCDM. We keep
C7 (tank capacity) criteria.
C12 and C13 are not too far either and we can simplify the MCDM by keeping only criterion
C12 (the power) instead of C12 and C13

C14, C15, C16 and C17 are in very strong agreement. We keep C16 (urban consumption) in
simplified MCDM

Criteria of simplified MCDM problem to solve
C1, C3, C4, C6, C7, C8, C9, C10, C11, C12 and C16
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Example of BF-ICrA - Cont’d

The simplified MCDM car problem after BF-ICrA
Here we choose weights directly from simplified MCDM, but we could choose them by adjustment of original MCDM weights (if available).

Ssimplified fi

»

—

—

—

—

—

—

—

—

—

—

—

—

—

–

C1 C3 C4 C6 C7 C8 C9 C10 C11 C12 C16

A1 7990 1523 1733 1200 50 969 998 14.2 158 55 6.5
A2 10990 1448 1732 1146 45 1138 898 12.3 178 56 6.3
A3 9790 1530 1600 1053 35 815 998 13.9 155 50 4.5
A4 10350 1524 1774 1029 42 1063 1198 14.6 164 51 6.3
A5 10990 1505 1665 910 35 865 999 16.7 172 52 5.3
A6 11000 1485 1595 1010 35 860 998 14.3 161 49 5.6
A7 11050 1500 1660 1046 40 1008 998 14.7 156 49 6.5
A8 11550 1465 1615 780 35 840 998 14 160 53 4.3
A9 11590 1460 1615 812 35 915 998 13.8 160 51 4.9
A10 11950 1460 1615 780 35 840 998 12.6 160 53 4.3

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

Choice of importance scores imppCjq P t1 “ least important, 2, 3, 4, 5 “ most importantu

imppC1q “ imppC16q “ 5 C1 is price & C16 is urban consumption
imppC6q “ imppC7q “ 4 C6 is max loading vol. & C7 is tank vol.
imppC10q “ imppC11q “ imppC12q “ 3 C10 is accel. & C11 is max speed & C12 is power
imppC8q “ imppC9q “ 2. C8 is unloaded weight & C9 is cylinder vol.
imppC3q “ imppC4q “ 1 C3 is height & C4 is width

After normalization, the importance weights are

w “ r
5

33

1

33

1

33

4

33

4

33

2

33

2

33

3

33

3

33

3

33

5

33
s
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Example of BF-ICrA - Cont’d

Solution of the simplified MCDM car problem

with BF-TOPSIS1 & BF-TOPSIS2 methods:

A2 ą A1 ą A4 ą A7 ą A5 ą A6 ą A10 ą A9 ą A8 ą A3

with BF-TOPSIS3 & BF-TOPSIS4 methods:

A2 ą A1 ą A4 ą A7 ą A5 ą A10 ą A9 ą A6 ą A8 ą A3

with classical AHP method (with double normalization of score matrix):

A2 ą A1 ą A4 ą A7 ą A5 ą A6 ą A9 ą A8 ą A3 ą A10

Best choice for buying the car (for the chosen criteria and importance weights)

The car A2 (RENAULT CLIO TCe 75) is the first best choice

The car A1 (DACIA SANDERO SCe 75) is the second best choice

We can observe the stability of the order of first best solutions with the different MCDM
methods.
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Toolboxes for working with belief functions

To start working with BF, we recommend Smets TBM MatLab codes that include
many useful efficient functions based on Fast Möbius Transforms

http://iridia.ulb.ac.be/~psmets/

Some toolboxes for working with BF can be found from Belief Functions and
Applications Society (BFAS) web site

http://www.bfasociety.org/

Explanations for implementation of generalized belief functions can be found in

A. Martin, Implementing general belief function framework with a practical
codification for low complexity, in [DSmT books], Vol. 3, Chap 7, 2009.

Implementation of fusion rules by sampling techniques (java package)
http://refereefunction.fredericdambreville.com
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