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Outline of Part 1

PCR rules of combination
Approximations of a BBA
Distances between two BBAs
Measures of uncertainty

BBA construction from FMF
Admissible imprecise BBA
Qualitative BBA

ﬂ Short historical overview

@ Basics of the theory of belief functions
@ Discounting sources of evidence

0 Dempster-Shafer rule of combination
e Other rules of combination

@ Going beyond DST with DSmT
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Short historical overview

1933 - Probability Theory
@ studied by Blaise Pascal in 1634

. . . . . # of possible outcomes for event A
@ Objective, i.e. frequency interpretation  P(A) = 3 Sossible oulcomes for space 5

TP : . Geometric measure of set A
@ Geometric interpretation:  P(A) = gootem S e S repace s
# of possible outcomes of event A

@ Long run freq. interpretation (Von Mises): P(A) = limn_o N (total # of rials)
@ Subjective interpretation (De Finetti): P(A) as subjective degree of belief in A

@ Axiomatic framework based on measure theory (Kolmogorov 1933)
@ Game-theoretic framework (Vovk & Shafer 2001)
1976 - Dempster-Shafer Theory (DST)
@ introduction of Belief Functions (BF) by Shafer based on Dempster’s works (1967)

1978 - Theory of possibilities
@ introduced by Zadeh, Dubois & Prade.
@ Fuzzy sets are interpreted as possibility distributions

1991 - Theory of Imprecise Probabilities
@ introduced by Walley to deal with 2nd order probabilities

2003 - Dezert-Smarandache Theory (DSmT)
@ new theoretical framework and methods to work with belief functions
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Limitations of probabilities

@ Deal generally with information drawn from generic knowledge based on
population of items, laws of physics, or common sense

@ Capture only one aspect of the uncertainty (the randomness, i.e. the variability
through repeated measurements)

@ Do not account for incomplete knowledge (epistemic uncertainty)

@ Cannot distinguish between uncertainty due to variability, and uncertainty due to
lack of knowledge

Variability is related with precisely observed random observations

Incompleteness is related with missing and partial information
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AN
N

On modeling ignorance with probabilities.

Consider a random variable W taking its value w € [1, 2]

Suppose ignorance modeling is done with uniform distribution on [1, 2] based on the
insufficient reason principle

Cumulative distribution function (cdf) of W

0 ifw<1
W~u([l,2]) e PW<w)=<w-1 ifl<w<?2
1 if w>2

Proba density function (pdf) of W

N aP - {1 ifwel1,2]
0 ifwelL,2

—
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On modeling ignorance with probabilitie_,_

Take V = 1/W with W ~ u([1, 2]), thenv € [1/2,1]
Cumulative distribution function (cdf) of V

1 1 1 if <1
P(VSV) =P(p SV =PW>)=1-PW=<)=12-1 ifle[12]
0 if £ >2

Proba density function (pdf) of V

PV = PV <) = {

ifve[1/21] 1
if w ¢ [1/2,1] ' ‘ |

V is not uniformly distributed on [1/2, 1].This is not very satisfactory to model
ignorance because full ignorance on W should not provide information on 1/W.
The matter in this problem is the choice of random variable W € [1, 2] or

V =1/W € [1/2, 1] and the particular choice of underlying probability distribution to
model ignorance. Probability Theory cannot help efficiently for the choice of a priori
distribution under epistemic uncertainty (lack of knowledge).
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Theory of Belief Functions

Belief is the state of mind in which one thinks something to be true.
History

@ introduced by Glenn Shafer in 1976 [Shafer 1976]

@ also known as Dempster-Shafer Theory (DST) in the literature
http://www.glennshafer.com/books/amte.html

Main references

G. Shafer, A mathematical theory of evidence, 1976.

R. Yager, L. Liu, Classic Works of the Dempster-Shafer
Theory of Belief Functions, 2008.

i e o e———

Paradigm shift

Beliefs often are related with singular event or evidence, and are not necessarily related with
statistical data and generic knowledge.
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http://www.glennshafer.com/books/amte.html

Frame of discernment and power s

Frame of discernment (FoD)

The set of all possible solutions of the problem under concern is called the FoD.

Typically noted
= {91,i= ].,...,Tl}

Criminal investigation example (list of suspects)
O = {0, = Peter, 6, = Paul, 6; = Mary}
Shafer’s model of FoD
O is a finite set, with all elements exclusive two by two.
Power set of O is the set of all subsets of © (empty set & included) noted
29 = (XX c @)

# of elements of the power set : |2°| = 2©!
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Example of power set

o, b2
ety
Impossibility partial ignorances full ignorance

{ / {

2° = {0,61,02,03,01 U62,01U03,02U63,60, U600 03}

2] =23 =38
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Equivalence between propositions and su o

Any subset A of the FoD © corresponds to the proposition

Po(A) = The true value of 8 is in the subset A of ©

Equivalence between set operators and logical operators

Operations Subsets Propositions
Intersection /conjunction ANB Po(A) N Py(B)
Union/disjunction AUB Po(A) V Py(B)
Inclusion/implication ACB Py(A) = Py(B)
Complementation/negation | A = cg(B) | Py(A) = =Py(B)
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Basic Belief Assignment (BBA)

Mass function (i.e. BBA)

A source of evidence (SoE) about 6 is represented by a BBA (or mass function)
m®(.) : 22 — [0, 1] such that'

me(g) =0 and > me(A) =1 J

Ae2©

(1) = no positive mass is committed to impossible event.
(2) = a mass function is normalized to one.

Focal element (FE) of m(-)
A < O is a Focal Element (FE) of m(-) if m(A) >0

F(m) = {A €29m(A) > 0}
Core of m(-)

C(m) = U A

A€F(m)

"For notation simplicity m® (-) will be noted m(-) if there is no confusion.
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Special BBAs

Let’s take the FoD ® = {A, B, C} as example.
Categorical mass function: m(-) has a unique focal element different from ©

@ m(A) =1 and m(X) = 0 for any X € 2° such that X # A
@ m(AuC)=1and m(X) = 0forany X e 2° suchthat X # A U C

Consonant mass function: if FE of m(.) are nested, A; c A,...c ©
@ m(A) =06 mAuUC)=01landm(AuBuUC) =03
Dogmatic mass function: if m(@) = 0

Certain mass function: if m(X) = 1 for some singleton X € 2©
Simple support mass function: if m(A) = r and m(®) = 1 — r for some A € 2°

Bayesian belief mass: FE are only singletons of 2€ (~ proba pmf)
@ m(A) =0.6, m(B) =0.4
@ m(A)=1/3, m(B) =1/3and m(C) =1/3
Vacuous belief assignment (VBA): It represents the full ignorant (uninformative) SoE

m,(®) =1 and m,(A)=0, VA #0©
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Belief in A: Total degree of support of A by the source of evidence

mtobel:  Bel(A)= > m(B)="PL®)-PLA)=1-PlA)

Be2®© [BSA

Plausibility of A: Total degree of non contradiction of A by the SoE

mtopl:  PL(A) = >, m(B) = Bel(®) — Bel(A) = 1 — Bel(A)
Be2@|BnA#Y

where A = © — A is the complement of A in ©.
BI(A) = [Bel(A), PL(A)]

Belief interval, and uncertainty on A: {U(A) 4 PUA) — Bel(A)

Property: VA € 2°, Bel(A) < PL(A)

Interpretation: Bel(A) and P1(A) are usually interpreted as lower and upper bound of
the unknown probability P( )of A,and VA € ©

el(A) < P(A) <PUA) <1
BI(A): P(A) = PY(A) if m(-) is a Bayesian BBA
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Example of Bayesian belief functionsss

e

Example of Bayesian BBA

©={A,B,C}
m() | Bel() | P1()
m(g)=0 0 0
m(A) =01 0.1 0.1
m(B) =03 0.3 0.3
m(C) = 0.6 0.6 0.6
m(AUB)=0 04=01+03 04=01+03
m(AuC)=0 07=01+06 07=01+06
m(BuC)=0 09=03+0.6 09=03+0.6
mAuUBUC)=0|1=01+03+06 | 1=01+0.3+0.6
Bel(Y)= > m(X) and PL(Y)= ) = m(X)

Xe2© |XgY Xe2@ XN Y#Y
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Example of non Bayesian belief function

Example of Non Bayesian BBA

0 ={A,B, C}
m() | Bel( | PLO)
m(g) =0 0 0
m(A) =001 0.01 0.65=Bel(A)+0.04+0.2+04
m(B) =0.02 0.02 076 = Bel(B) +0.04 + 0.3 + 0.4
m(C) = 0.03 0.03 093=Bel(C)+02+03+04
m(A U B) =0.04 0.07 = 0.01 + 0.02 + 0.04 097 =Bel(AUB)+024+03+04
m(A U C) =02 0.24 = 0.01 + 0.03 + 0.2 098=Bel(A U C)+004+03+04
m(BuC)=03 0.35 =0.02+0.03 +0.3

m(AuUBUC)=04 | 1

099=Bel(BuC)+0.04+02+04
1

Bel(Y)= > m(X) and PLY)= > m(X)

Xe2© |XcY

Xe2@ XN Y#Z
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Characterization of Bel function

Bel(-) : 2° — [0, 1] is a monotone capacity function which satisfies
Bel(d) =0 and Bel(O®) =1
and Yk > 2 and for any collection Ay, ..., Ay in 22 the inequality

Bel(iszJlAi)> 3 (_1)|Il+lBel(ﬂAi) J

FAIC{L,... k} iel

Properties of Bel

@ Sub-additivity: Bel(A) + Bel(B) < Bel(A u B), in particular Bel(A) + Bel(A) < 1

@ Monotonicity: A € B = Bel(A) < Bel(B)
Properties of P1

@ Super-additivity: PL(A) + P1(B) > PL(A u B), in particular, PL(A) + PL(A) > 1

@ Monotonicity: A < B = PL(A) < P1(B)
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Dempster construction of belief functions by multivé

Fundamental Dempster’s idea [Dempster 1967]

Belief (lower proba) and Plausibility (upper proba) construction come from a
multivalued mapping as follows

@ Start with a random variable X with set of possible values in X = {x;, ..., Xm } With
known probabilities p; = P(X = x;)
@ Choose a frame of discernment ® = {64, ..., 0.} for the variable 6

@ Learn a (multivalued) mapping T : X +— 2° with the meaning: if X = x;, then 8 € A,
where A = I'(x;) € 2°
@ The belief (lower proba) and plausibility (upper proba) that 6 € A are given by
P.(A) = Bel(A) =Bel(8 e A) = P({x e X|I'(x) # &, T(x) € A})

P*(A) = PL(A) = PL(0 € A) = P({x e X|T(x) n A # &})

see examples on the next slide
Smets TBM proposal [Smets 1990, Smets Kennes 1994]

Smets proposed his Transferable Belief Model (TBM) to justify belief functions
axiomatically with no need of underlying probabilistic multivalued mapping I'(+).
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Example of BBA construction

Example Testimony report from sometimes reliable witness

Paul has been killed and Police asks a witness W: Did you see Mary killing Paul?
Witness answer is Yes
P(Xl) =04

X = {x; = Wis reliable, x, = W is not reliable}, and assume
P(x2) = 0.6
FoD O = {0; = Mary is guilty, 0, = Mary is not guilty}
Multivalued mapping
I'(x; = Wisreliable) = 0; = Mary is guilty
I'(x, = Wis not reliable) = {6;,0,} =©® = We don’t know
Belief values
Bel(81) = P({x|I'(x) € 6:1}) = P(x; = reliable) = 0.4
Bel(6,) = P({x|I'(x) € 6,}) =0
Bel(8; U 0,) = P({x|I'(x) € 0; U B2}) = P({x1,%2}) = P(x1) + P(x2) = 1
Plausibility values
PL(01) = P({x|T'(x) n 61 # T}) = P({x1,%x2}) = P(x1) + P(x2) =1
PL(62) = P({x|T'(x) N 8, # &F}) = P(xz) = 0.6
PL(6; U 0,) = P({x|T'(x) n (01 U B2) # T}) = P({x1,x2}) = P(x1) + P(x2) =1
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Other example of BBA construction _:

Example Testimony report from more or less precise withess

X = {x; = W is precise, x, = W is approximate, x3 = W is not reliable}
and assume P(x;) = 0.3, P(x,) = 0.1 and P(x3) = 0.6

FoD: ® = {06, = Mary, 6, = Peter, 65 = John}
Paul has been killed and Police asks a withess W: Who did you see killing Paul?
Witness answer is Mary
Multivalued mapping:
I'(x; = W is precise) = 8; = Mary killed Paul
I'(x, = W is approximate) = {61,0,} = Mary or Peter killed Paul
I'(x3 = W is not reliable) = {61,0,,0;} =©® = We don’t know

Belief values

Bel(81) = P({x|I'(x) € 01}) = P(x; = Wiis precise) = 0.4

Bel(0;) = P({x|T'(x) € 6,}) =0

Bel(03) = P({x|T'(x) € 635}) =0

Bel(8; U 0,) = P({x|T(x) € 6; U 05}) = P({x1,x2}) = P(x1) + P(x2) = 0.4
Bel(®) = P(x|T(x) € ©) = P({x1,x2,%x3}) = P(x1) + P(x2) + P(x3) =1
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Computing m from Bel and Pl

M@obius inversion formula [Kennes 1992]
To any Bel(+) functions corresponds a unique mass function m(-) given by

beltom: YA€2°, m(A)= Y (-1)"*""Bel(B) J

BCA

To any P1(-) functions corresponds a unique mass function m(-) given by

pltom: VA€2®, m(A)= Y (-1 Pl1-PyB)) J

m(-), Bel(-) and P1(-) are one-to-one and are equivalent representations of a SoE.
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Implicability and commonality functionss
Useful for computation of belief functions in fusion rules

Implicability function

mtob: b(A) = Z m(B) = Bel(A) + m()
Be2® |BSA

btom: m(A) = Z (—1)AI=IBlp(B)
Be2©|BSA

Commonality function

mtoq: q(A) = 2 m(B)

Be2©|B2A

gtom: m(A)= >, (-1)AI-IBig(B)

Be2®© |B2A

All one-to-one transformations between Bel, b, P1, ¢ and m are listed in [Smets 2002]
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Reliability discounting of a BBA 8

v

Shafer’s reliability discounting rule [Shafer 1976]

To be used if one has a good estimation of the reliability factor « € [0, 1] of the SoE
based on past experiments and ground truth.

o = 1 means "the SoE is 100% reliable" = m>=1(-) = m(-) (the BBA is unchanged)
o = 0 means "the SoE is 100% unreliable" = m*=°(.) = m,(-) (the BBA is changed to
vacuous BBA)

If a source is totally unreliable (o« = 0), it can be combined with the other BBAs if and

only if the fusion rule preserves the neutral impact of vacuous BBA, otherwise this
source must be discarded (i.e. removed of the set of BBAs to fuse)

More refined discounting rules exist

@ Contextual discounting [Mercier et al. 2005, Mercier et al. 2006]

Jean Dezert & Degiang Han Fusion 2017 Conference - Tutorial T2 July 10th, 2017 26/162



Importance discounting of a BBA 2

Proposed in [Smarandache Dezert Tacnet 2010] to take into account the importance of
a SoE in the fusion process (see later).

Importance discounting rule

The importance factor of the SoE is modeled by § € [0, 1], and discounted BBA by

mP(A) 2B -m(A) VA#Z
mP () = 8- m(F) + (1 - B)

B =1 means "the SoE is 100% important”" = mP=1(.) = m(.)

B = 0 means "the SoE is not important at all' = mP=°(&) =1

If a source is not important at all ( = 0), this source must be discarded (i.e. removed
of the set of BBAs to fuse)

Note: Important discounted BBA m?##1(.) is improper (i.e. not regular) since
mP#L(25) > 0. It is however necessary to distinguish importance discounting from
reliability discounting in the fusion of sources. This discounting is useful in
Multi-Criteria Decision-Making Support problems involving BF (see Part Il).
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Dempster-Shafer (DS) fusion rules '

Dempster-Shafer fusion rule [Dempster 1967, Shafer 1976]

Let m; and m, be mass functions over the same frame © provided by two distinct
SoE?. DS fusion rule m; @ m, is defined by mB5 (&) = 0, and ¥X € 2°

DS _ L m(X)
M0 = [m @m0 = |
where my(+) is the conjunctive rule® defined VX € 2° by
mlg(X) = 2 my (Xl)mZ(X2)

X1,X2€29 X1 X=X
Degree of conflict between m; and m,
Ki2 = mu () = Z my (X1)mao(X2)
X1,X2€29|X1nXo =0

DS formula can be used if m> () < 1, i.e. the SoE are not in total conflict
DS formula extents directly for the combination of n > 2 distinct SoE.

DS rule = Normalized Conjunctive rule

2assumed both reliable with same importance.
3We also use notation mf;’“’ (.) to identify it more precisely if needed.
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Properties of Dempster-Shafer ruless

DS rule is not idempotent in general : if m is not categorical then m @ m # m
Advantages

@ Commutativity: m;®m, =m,®my
@ Associativity: One can do the fusion sequentially in any order

MOMEOMz® ... My = ((M @mM2) ®@m3) @ ...) DMy
@ Neutrality of VBA: Full ignorant SoE does not impact the fusion result
mem, =m

@ Some similarity with Bayes rule for conditioning by a certain set mz(Z) =1

Bel(X|Z) = BelXu2)-Bel(z)
m(X|Z) = [m@mz]|(X) = Bl
(X|Z) = [m&®mz](X) {Pl(XIZ)= Pgii;)z)

Drawbacks

@ Very complex in the worst case when F(m;) = F(m,) = 2° — {F} for large FoD
@ Counter-intuitive results in an infinite number of cases even if the conflict is low!

The validity of DS rule and DST has been disputed by many authors including [Zadeh 1979, Lemmer 1985,
Voorbraak 1988, Gelman 2006, Dezert Tchamova 2011, Brodzik Enders 2011, Dezert Wang Tchamova 2012,
Tchamova Dezert 2012, Dezert Tchamova Han Tacnet 2013, Dezert Tchamova 2014, Heendeni et al. 2016]
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Overcoming the complexity of DS ruIJ.""

Try to work with simpler FoD (by coarsening) and approximate BBAs (less FE, etc)
Sampling technique to approximate DS result [Wilson 1991, Dambreville 2009]

The estimate DS () of mBS(+) can be obtained by the sampling process using N
samples as follows

@ Repeatfromn=1,...,N
» draw Y; € 2© from BBA my, and Y from m»
> if Y1 n Yo = &, set X, = rejected
» otherwise, set X = Y1 n Y2

© Compute the rejection rate

where I[X, = X] is Kronecker delta function, i.e [[X,, = X] = 5(X,,, X) = 1if X, = X,
and zero otherwise.



Counter-intuitive behavior of DS ruIe,

Zadeh’s example [Zadeh 1979]

Medical diagnosis problem

© = {M = Meningitis, C = Concussion, T = Tumor}
Bayesian BBA in high conflict
Two independent doctors provides the following reports for a patient as follows
mi(M)=1-—€e; my(C)=0 mi(T) =e1
ma(M) =0 mp(C)=1-e2 mo(T)=e2

The conflict is Ky = m12(®) = (1 — 61)(1 — €2) + (1 — 61)62 + 62(1 — €1) =1—¢€16
Suppose doctors are in hight conflict, say e; = e, = 0.1 and so K;; =1 —0.01 = 0.99

my (T)my(T) _ €16 _ €&

1-— K12 1-— (1 — €1€2) €1€7
DS fusion results says that patient suffers of Tumor which is counter-intuitive, because
both doctors agree that there is a little chance that it is a tumor.

@ DS rule provides same results whatever the values €; > 0 and e, > 0 are !

@ DS rule provides coherent result only when €; = €, = 1 (i.e. non conflict case)

mp*(T) = =1

Proponents of DS rule have strongly disputed this example ... but more interesting examples exist.
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Counter-intuitive behavior of DS rule\(@

Zadeh’s example with Low Conflict

Bayesian BBA in low conflict
Two independent doctors provides the following reports for a patient as follows

ml(M) =0.01 ml(C) =0 T‘I’Ll(T) =0.99
ma(M) =0 mz(C) =0.01  my(T) =0.99

The doctors are in very low conflict because
Kip=1—¢€16, =1-0.9801 = 0.0199
Applying DS rule yields

T)mg(T) €1€7
DS(T) = mi(Mma(T) _ erez _ 1
mp” (T) 1—Kp €162

DS fusion result gives complete support for the diagnosis of a brain tumor, i.e. patient

suffers of Tumor for sure, which both doctors believed very likely.

DS result is counter-intuitive and one rather expects m(T) < 1 because the existence
of non-zero belief masses for other diagnoses implies less than complete support for

the brain tumor diagnosis, because conflict is non null.
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Counter-intuitive behavior of DS ruleX

Numerical robustness issue for DS rule

Consider Zadeh’s example and change a bit the inputs as follows
mi(M)=099—-€e¢ my(C)=¢ m;(T) =0.01
ma(M) =€ my(C)=099—€ my(T)=0.01

ife=0mBS(M)=0 mBS5(C)=0 mBS5(T) =1

if e = 0.0005, mDS(M) = 0.4541 mBS(C) =0.4541 mBS(T) = 0.0918

When e changes, one gets

miE(M) miE(C) miE(T)

“ os o
I o
“f
'
% o T

o1 ] o2
Vales of ¢ Valubs of ¢ Valubs of-

DS rule is not robust to slight input changes.



Counter-intuitive behavior of DS rule (4%

g

A more interesting example [Dezert Tchamova 2011, Dezert Wang Tchamova 2012]
Dezert-Tchamova example (2011)

Non-Bayesian BBA © = {A,B, C}, with m; # m, # m,

Focal elem. \ bba’s | m1(.) ma(.)
A a 0
AUB l1-a b1
c 0 1—by — b2
AUBUC 0 ba

Conjunctive rule
mlz(A) = ml(A)mz(A U B) + ml(A)mg(A uBuU C) = (l(bl + b2)
TTL12(A ) B) = ml(A U B)m2(A U B) + TTL]_(A U B)TTLQ(A uBu C) = (1 — a)(b1 + bz)
Degree of conflict: = Independent of m; !l
K12 = mlg(Q) = ml(A)mQ(C) + ml(A ) B)mz(C)
= Cl(].—bl—b2)+(1—(1)(1—b1—b2) =1—b1—b2

Note: K;, can be chosen as low or as high as we want.
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Counter-intuitive behavior of DS rule\(s)

Dezert-Tchamova example (cont'd)
Applying DS rule gives
m12(A) . a(b1 + b2)

DS(A) = = =a=m(A
mp (A) 1—Kp b, 1 b, a=m(A)
AUB)  (1—a)(b; +by)
DS(A U B) = Mz = —1-a=m(AUB
myp” (A U B) 1 Ke b, 1 b, a=my(AuUB)
Remarks

o mBS()) = [my ®my](-) = mu(+), even if my # m, and K;» > 0

@ Informative source m, does not impact DS result !

@ Dictatorial power of DS rule !

@ The level of conflict does not matter at all !

@ Cast serious doubts on normalization step used in DS rule
DS rule result is very counter-intuitive in such Non-Bayesian example (even with low
conflict!)

= Need for better rule of combination (better behavior and numerical robustness)
= Logical contradiction in foundations of DST [Dezert Tchamova 2014]
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Incompatibility of DS rule with Bayes

Naive Bayes fusion rule = one assumes P(Z; n Z,|X) = P(Z;|X)P(Z1|X)

P(ZinZynX) _ P(Zin Zo|X)P(X) _ P(Z1]X)P(Z2|X)P(X)
P(Z1n Z,) P(Z1n Z,) SN P(Z1]X = x1)P(Z2]X = x1)P(X = x4)

P(X|Z1nZ,) =

DS rule is not a generalization of Bayes rule because it is incompatible with Bayes rule
when the prior is not uniform, nor vacuous [Dezert Tchamova Han Tacnet 2013] J

Example Ox = {x1, x, x3} with Shafer’s model
Prior pmf P(X|Zy) P(X|Z,)

mo(X1)=P(X=X1)=0.6 ml(xl) =P(X=X1|Zl)=0.2 m2(X1)=P(X=X1|Zz) =05
mgo(x2) = P(X =x2) =0.3 my(x2) = P(X =x2|Z;) =0.3 ma(x2) = P(X =x2|Z,) =0.1
mo(x3) = P(X =x3)=0.1 mi(x3) = P(X =x3|Z;) =0.5 my(x3) = P(X =x3]|Z,) =0.4
Fusion with Bayes rule Fusion with DS rule
PlalZinza) = 029000 _ 218 < 00735 MBS (x1) = G050 - 90 06742
P(x2|Z1 " Zy) = Zzzzz%zj = 91000 + 0.0441 # mogzz (x2) = §§§§1§§ = ﬁ ~ 0.1011
P(xs|Z1 0 Zo) = 555 = 35 ~ 08824 mary (x3) = TZg%i10 = oose ~ 0-2247

DS rule is compatible with (naive) Bayes rule only if the prior is uniform or vacuous
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Origins of the problem with DS ruless

@ due to different reliability of the SoE (based on statistical criteria)

@ due to the possible subjectivity and bias of the SoE because they can have their
own interpretation of elements of the FoD

© due to the final interest of experts/SoE which can be different/antagonist when
they report their assessment on a given problem ...
@ due to serious flaw in DST foundations (logical contradiction)
Classical Attempts to prevent problems with DS rule

@ apply ad-hoc thresholding techniques on the degree of conflict level to accept, or
reject, DS result

@ modify BBAs of SoE by discounting techniques
@ identify the bad SoE and don’t use it in the fusion
@ mix the previous strategies
... but DS rule results can still be problematic = switch for better rules

This is what DSmT proposes (see later) ...
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Part | - Information Fusion with Belief FURCHORSH

Other rules of combination
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Conjunctive rule of combination

Conjunctive rule It keeps only the items of information asserted by both sources

mp(X) = [miems](X) = > my (X1)m2(Xz) J

X1,X2€29 |X1n X=X

Defended by Smets in his Transferable Belief Model (TBM) [Smets 1990]

@ Commutative, associative, not idempotent, numerically robust
@ Neutrality of VBA = m@m, = m

Implemented with Fast Mébius Transform by the product of commonalily numbers
[Smets 2002]

{ml N {‘h = mtoq(m) Conj _

Qe =qFq o my D = qtom(qiz)
my qo = mtoq(ml)

This rule is problematic because ¢J is an absorbing element for this rule

@ Fast tendency to get m{,’") (¥) = 1 when fusing many BBAs (directly or

sequentially) which makes the result quickly useless
@ ambiguous interpretation of the empty set
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Simple example of behavior of conjunctiv '::'.

Independent sensor (or expert) reports expressed by BBAs are fused sequentially with
the conjunctive rule in the TBM framework

® = {A, B, C} with Shafer model for the FoD

@ Time 1: m;(A) = 0.4, m;(B) =0, m;(C) = 0.6
@ Time 2: m2(A) =0.7, ml(B) = 0.3, ml(C) =0

» TBM Conjunctive rule m;@m,: m ™ (A) = 0.28, m&°™ (&) = 0.72
» DSrule m;®my: mBS(A) =1

@ Time 3: m3(A) =0, my(B) = 0.8, my(C) = 0.2

> TBM Conjunctive rule (m;®m;)@ms: mlcz%nj(g) =1
> DS rule (m; ® m,) @ ms: Not applicable ( total conflict between m3 and mf{’“’)

@ Time 4, 5, .. .k: if taking into account new evidential reports, one gets

Conj

> TBM Conjunctive rule (mi1©m2)@ms)...0Omyx: my, () =1
> DS rule ((m1 @ my) @ ms)... my: Not applicable (total conflict from Time 3)

= Very quickly the conjunctive rule does not respond to new evidential reports in the
fusion process!
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Disjunctive rule of combination

Disjunctive rule It keeps all items of information provided by the sources

X1,X2€29 |X1UuXp=X

mp® (X) = [miom,](X) = 2 my(X1)me(Xz) J

@ Commutative, associative, numerically robust
This rule is problematic because © (full ignorance) is an absorbing element for this rule

@ Absorptive impact of VBA = mgm, = m,
@ Fast tendency to get m},'*) (®) = 1 when fusing many BBAs (directly or
sequentially) which makes the result quickly useless

Implemented with Fast Mébius Transform by the product of implicability numbers
[Smets 2002]

b; = mtob s
m; R 1 mto (ml) — by = by.#by — m1D21.3] _ btom(blz)
m, b, = mtob(m;)

This fusion rule is usually used when some SoR are unreliable but we don’t know
which one.

Jean Dezert & Degiang Han Fusion 2017 Conference - Tutorial T2 July 10th, 2017 42/162



Zhang and Yager rules

Zhang rule [Zhang 1994]
modified version of DS rule including a degree of intersection between focal elements

1 X1 n X
mb(2) =0 and mB =g X O mma(a)
X1,X2€29 | X1 n X=X L 2

@ Commutative, not associative, not idempotent, not numerically robust

Yager rule [Yager 1987]
Transfer the total conflicting mass my» (&) to full ignorance ©

Conj (S]
Y _ % B RLLLST) (X), VX € 2°\{7, ©}
mlz(g) =0 and m12(x) - {mlczonj (@) + mlCzonj (@),for X=0 J

@ Commutative, quasi-associative, not idempotent, neutrality of VBA
@ increasing of ignorance

These rules can be directly extended for the fusion of n > 2 SoE
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Dubois-Prade and ACR rules

Dubois and Prade rule [Dubois Prade 1988]
Transfer every partial conflicting mass to its corresponding partial ignorance

mp’ (@) =0 and mpT(A)=mpPY(A)+ D m(X)ma(X)

X1,X262©
X1~ Xo =0
XiuXo=A

@ Commutative, not associative, not idempotent
@ increasing of ignorance

Florea Adaptive Combination Rule (ACR) [Florea et al. 2006]

An adaptive balance between conjunctive and disjunctive rules depending on the
degree of conflict (extended in [Florea et al. 2009, Li et al. 2017])

1-K ; K .

ACR ACR 12 Con 12 Dis

m =0 and m A)=——— mPIA) + ———= (A

2 (D) 2 (A) 1—Kp 1 K, ™2 (A) + 1—Kp K5, g (A) J

@ Commutative, not associative, not idempotent
@ Neutral impact of VBA

These rules can be directly extended for the fusion of n > 2 SoE
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Part | - Information Fusion with Belief FURCHORSH

Going beyond DST with DSmT
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Why going beyond DST

Dempster-Shafer Theory of belief functions is very interesting because it proposes
@ Important paradigm shift for modeling epistemic uncertainty
@ New appealing mathematical formalism of (quantitative) belief functions
@ A combination rule for combining belief functions (DS rule) with nice properties

...but BF and DST have never been fully accepted by a part of scientific community
and statisticians mainly because

@ Independency between SoE has never been well established once for all

@ Doubts on the validity of DS rule (normalization is controversial)

@ Lack of good experimental protocol to validate DST and DS rule

@ Different disputed semantic interpretations of DST and DS rule

What we have proved [Dezert Tchamova 2014]
@ the dictatorial power of DS rule to fuse equi-reliable sources of evidence.
@ the conflict (high or low) can be totally ignored through DS rule.
© the problem of validity of DST is not due to conflict level, but the absolute truth
Shafer’s interpretation of propositions evaluated by SoE
@ there exists a logical contradiction in the foundations of DST

Our recommendation

BF are mathematically appealing and well defined, but use DS rule at your own risks,
even in low conflicting situations.
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DSmT in short
Developed by Dezert and Smarandache in 2003-2015

@ DSmT follows Shafer’s paradigm of belief functions for modeling epistemic
uncertainty.

@ DSmT extends the belief function framework to work

with different models for the frame

with possibly imprecise quantitative belief functions

with qualitative belief functions expressed as labels

with new decision-making methods

@ proposes new efficient (complicate) rules of combination, and conditioning.
Main references = Four Free e-Books on DSmT [DSmT books]

vy v v v

http://www.onera.fr/fr/staff/jean-dezert
http://www.smarandache.com/DSmT.htm
http://fs.gallup.unm.edu/DSmT.htm
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DSmT versus DST - A matter of interpretati

Shafer’s interpretation

A reliable source of evidence provides an absolute truth from partial knowledge,
observations, experience, etc.

Dezert-Smarandache interpretation

A reliable source of evidence provides only a relative truth from partial knowledge,
observations, experience, etc.

This new interpretation proposed in DSmT makes difference in the way to process
belief functions.
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Fusion spaces

Super-power set Hyper-power set (Dedekind’s lattice)  power set

2974 = 89 £ (6,u,n,¢(.)| > |D® = (6,U,N)| > |27 = (©,V)]

1 1 l

Free DSm model

[ 0, 0,

Free DSm model + Integrity constraint

M@

General notation
The Fusion Space for the problem under concern is denoted G®
G® represents either 2€, D® or S = 2rerinca
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Generation of hyper-power set

Method of generation of hyper-power set D® for® = {61,...,0,}

Q@ ».0,,...,0,eD®

Q VA,BeD® (AUB)eD® (AnB)eD®

© No other elements belong to D®, except those obtained by using rules 1 or 2
Hyper-power set D® reduces to classical power set 2° if Shafer's model for © holds
(when all elements are mutually exclusive)

The cardinality of hyper-power sets |D®| follows Dedekind’'s numbers sequence when
cardinality |©| of the FoD © increases

Example  © = {0;,0,, 05} = |©] = 3, [2°| = 8 and |D®| = 19

a0 =0 a2 000 a2 (0, 102) U (B N0s)U (021 05) an2 2 (B106) U85 a5 20,00,
a2 0N0N0 g2 (0,060,)N05 oy 2a, a2 (N0 Ul a2 0, U0,

oz £ 6106y g2 (01U0:) N0y o 26, o2 (B0 Ub 80Uy UG,
asE000 0 20,0000 an L6 a5 20,06,
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Generalized Belief Functions (GBF) %

Same definitions as Shafer’s ones (when G® = 2°9), except the Fusion Space can be
now G® = D®, or G® = D°®

Mass of belief in A: Degree of support precisely committed to A by the SoE
A source of evidence (SoE) about 0 is represented by a generalized mass function
m®(.): G® — [0, 1] such that

me(g) =0 and > meA) =1 J

Belief in A

Bel(A)= >  m(B)

BeGO|BcSA
Plausibility of A

PLA) = Z m(B)

BeG® BnA#Y
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Simple example of GBF

Let us consider the simplest FoD defined by © = {A, B}
@ Working with G® = 2° (power set and Shafer's model of FoD)

m(A)+m(B) + m(AuB)=1
@ Working with G® = D® (hyper-power set and DSm free model)

m(A) +m(B) + m(AuB)+m(AnB)=1
@ Working with G® = S® (super-power set)

m(A) + m(B) + m(A UB) + m(AnB)+m(A)+m(B) + m(AuB)=1

Note: For simplicity of presentation, in the sequel we will ONLY work with
power-set, that is G© = 2°.
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Part | - Information Fusion with Belief FURCHORSH

PCR rules of combination
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Proportional Conflict Redistribution (PCR

Principle of PCR rules
@ Apply the conjunctive rule
@ Identify and calculate all conflicting masses
© Redistribute the (total or partial) conflicting masses proportionally on non-empty
sets according to the integrity constraints one has for the FoD

PCR can be done in many ways [DSmT books] (Vol. 2).

Main PCR rules
@ PCR rule #5 (PCRS5) proposed by Smarandache & Dezert [DSmT books] (Vol. 2)
@ PCR rule #6 (PCR6) proposed by Martin & Osswald [DSmT books] (Vol. 2)
PCR5=PCR6 for combining 2 SoE, but PCR5#PCR6 when fusing more than 2 SoE

PCRE6 is better than PCR5 because it is consistent with frequentist proba estimation

PCR5/6 formula for the combination of 2 BBAs  m! s ~”/®(2) = 0 and VX # & € 2©

Ye2©
XnY=g

For general PCR5 and PCR6 formulas to fuse s > 2 BBAs, see [DSmT books], Vol. 2
For PCR rules with Zhang’s degree of intersection, see [Smarandache Dezert 2015]
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Approximation of PCR5/6 fusion result by Sam

Sampling technique to approximate PCR5/6 result [Dambreville 2009]

The estimate iy */°(-) of mix ~*/®(-) can be obtained by the sampling process using

N samples as follows

@ Repeatfromn=1,...,N

» draw Y; € 2© from BBA my, and Y, from m.,
ifYin Yo # d,set Xy =Y n Y
» otherwise, do

my(Yy)

O compute w1 = ey my(v)
@ generate random number wu uniformly distributed on [0, 1]
@ if u <y, set X,y = Yq, otherwise set X,, = Y3

@ For any X e 29, approximate mb2S (X) by

1
iy, O(X) = — I[Xn = X] ~ mj, **°(X)
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Advantages and drawbacks of PCR

Advantages
@ They exploit separately information entailed in all partial conflicts contrary to what
is done in most fusion rules (except DP rule)
@ They do not increase the uncertainty in the fusion of BBAs more than justified
@ They work with any level of conflict between sources
@ They are numerically robust to input changes

@ They transfer the partial conflicting masses to the elements involved in the partial
conflict proportionally to masses of only elements involved in the partial
conflict. For instance, if A n B = & and m;(A)m,(B) > 0 then m; (A)m,(B) will
be redistributed back only to A and B and proportionally to m;(A) and m,(B)

Drawbacks

@ They are commutative, not idempotent and not associative (quasi-associative only)

@ Non associativity implies that the fusion order does matter and it impacts the
fusion result. Therefore the PCR fusion must be applied globally (not sequentially)
to get the best result.

@ Very complicate to implement for combining altogether S > 2 SoE

Good news: some toolboxes implementing PCR rules are available (see later)
Basic Matlab codes for PCR5/6 rules are given in [Smarandache Dezert Tacnet 2010]
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PCR5/6
m /

SR = mipmix) Y O e

my (X)2m1 (Y) ]
Yeo® mi (X) + mz(Y) mg(X) + my (Y)
XﬁeY=Q
Very simple example © = {A, B}
— ( ) OAG 033 AOUIB mlg(A n B = w) = ma (A)’I’TLQ(B) + ml(B)mg(A)
ma() [ 028205 05 = B8+ 0:06 = 0.24
[m2() 044 027 005

21/0.6 = 31/0.3 = (21 +41)/(0.6+0.3) = W09 = 0.2 =)

1 =03-02=0.06
22/0.2 = 42/0.3 = (w2 +12)/(0.2+03

[z =0.2-012=0.024
—0B/05 =012 —mp (02020012 =0.020

y2 = 0.3 0.12 = 0.036
PCR5/6 result

DS result

m"CR5/8( Ay L0.44]+[0.12}+ [0.024) = 0.584 mp; (A) =~ 0.579
m{;"/%(B) <[0.27}+(0.061+[0.036 = 0.366 miz (B) ~ 0.355
mE/8 (AU B) =[0.05]+ 0 = 0.05 miy (AU B) =~ 0.066
One sees that the mass committed to ignorance with PCR5/6 is lower than with DST
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Difference between PCR5 and PCR6 L.__f

Very simple example © = {A, B}

my(A) =0.6 mi(B)=03 mi(AUB)=0.1

ma(A) =0.2 my(B) =03 ma(AUB) =05 ??"L1(A)mz( )m_;(B) —06- 0-3 -= 0.018

ms(A) =07 ms(B) :- ms(AUB)=0.2

PCR5 PCR5
With PCR5, gne takes = -4 R _ ma(A)yma(B)ms(B)

.................................... m (/1) - TRZ(B)TR;; (B) my (/1) + THQ(B)TH»:i(B)

PECRS  GECRS o018 2HCF = 0.60 - 0.02857 = 0.01714
0.6 003  06G+003 002857 . ahCRS = 0.03 - 0.02857 =~ 0.00086
P("Rﬁ - PCRG - (A)}m (B)-
B o 1 2
With PCRS, one takes (A) = e (B) ma(B)  ma(A) + (me(B) o+ ma(B))
ghORS  ghoms 0.018 B I_{iCI% =0.6-0.018 = 0.0108
06~ 08401 064 03101 ~ VOIS T LPORS _ (0.34.0.1) 0,018 = 0.0072

PCRE® result is more stable than PCRS result for decision making, and PCR6 is
consistent with frequentist proba estimate.
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Consistency of PCR6 with frequentist probaies

Theorem [Smarandache Dezert 2013]: When S > 2 SoE provide binary BBAs on 2°
whose total conflicting mass is 1, then PCR® rule coincides with the averaging rule.
Random coin flip experiment © = {H = Head, T = Tail}

Observations sequence: Obs = {H,H,T,H,T,H,H, T} = n(H) =5and n(T) = 3
Probas: P(H|Obs) = ™) = 5 = mfvr(H) and P(T|Obs) = ™D = 2 = mfyver(T)

@ DS rule does not work (conflict=1)

bba's \ Focal elem. | H | T @ PCR®6 works because Theorem applies
ma(:) 1 [0 my P (H) =2 and mirP(H) =2
ma() 01 8 8
mal(.) 1 10 @ PCR5 does not work efficiently
ms(.) 0 1
me(.) 10 mpy§(H) = miy §(T) = 0.5
ms(.) 0 ] 1 because
XH _ XT
1-1-1-1-1 1-1-1

m12..48(@) 1

(1-1-1-1-1)+(1-1-1) 2
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Zadeh example with PCR5/6

© = {M = Meningitis, C = Concussion, T = Tumor}

mi(M)=1-e; my(C)=0 ma(T) = e
ma(M) =0 me(C)=1—€ex myp(T)=e€2

K12 = mlz(g) = (1 — €1)(1 — 62) + (1 — €1)€2 + 62(1 — €1) =1- €1€2

. (-e)(d-er) (1—e€r)e
i M) = (1- €1)1+ (1- 2€2) (1=e)+ 1- €1)1+ 2€2 (1=e)
m(0) = L ey 00

(1—€1)€2 e 61(1—82)

PCR5/6
m T)=-e€1e2+ €
2 M T et T arl-e !

Bayesian BBA in high conflict €1=€=01=K;,=1-(0.1-0.1) =0.99

m25(T) = Lbut mpy *°(M) = 0.486 m}y*°(C) = 0.486 mix °(T) = 0.028

Bayesian BBA in low conflict €1 =€ =099 = K;p =1-(0.99-0.99) = 0.0199

mD8(T) = 1 but mbx ®*®(M) ~ 0.00015 mI*/°(C) ~ 0.00015 m < *°(T) ~ 0.9997
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Dezert-Tchamova example with PCF{.

Non-Bayesian BBA O = {A, B, C}, with m; # m, # m,

Focal elem. \ bba's | mi(.) ma(.)
A a 0
AUB l1-a b1
c 0 1—b — b
AUBUC 0 by

K12=TTL]_2(®)=(1(1—b]_—b2)+(1—(1)(1—b1—b2)=1—b1—b2>0

DS result: mDS(A) = my(A) = aand mES(A U B) = m;(A U B) = 1 — a which means
that m, has no impact in DS fusion result even if the SoE are in (strong or low) conflict

PCR5/6 result:

(1 — (1)(1 — bl — bz)
(1—a)+(1—b;—by)
(1—-a)(1—b;—Dby)
(1—(1)+(1—b1—b2)

mi (A UB) = (1—a)(by +by) +

(1-a)

PCR5/6C:M.1_1, . (1-b1-Db
mP R () PP (g ( 1—by) + ( 1—ba)

One sees that m!y */® 2 mBS = the source m, has an impact in the fusion result
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Simple example of behavior of PCRS/6

Independent sensor (or expert) reports expressed by BBAs are fused sequentially with
the conjunctive rule in Smets TBM framework

® = {A, B, C} with Shafer’'s model of the FoD
@ Time 1: my(A) = 0.4, my(B) =0, m;(C) = 0.6
@ Time 2: my(A) = 0.7, my(B) = 0.3, m;(C) =0
TBM Conjunctive rule: mS°™ (A) =0.28, m5°™ (&) = 0.72
DS rule: mB2s(A)=1
PCR5/6 rule: m],“®/°(A) = 0574725, m},“**°(B) = 0.111429, m],“**/®(C) = 0.313846
@ Time 3: m3(A) =0, my(B) = 0.8, m;(C) = 0.2
TBM Conjunctive rule: mo9™ () =1
DS rule is not applicable because of total conflict between ms and m$;°™

PCR5/6 rule: m/[55"°(A) = 0277490, m{,55*/°(B) = 0.545010, m{55*°(C) = 0.177500

@ Time 4, 5, .. . k: if new evidential reports are available, one will get
TBM Conjunctive rule is not responding because m$,""V () = 1
DS rule is not applicable because of total conflict from Time 3
PCRS5/6 rule: is still responding to new evidential reports coming
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Bayesian and PCR5/6 fusion of Gaussia

Naive Bayes fusion: piy™®* (x) = BXEURXIZ2) orp, (x)p, (x) when p(x) is uniform pdf

We extend PCR5 to work on a continuous frame with pdf as follows

. . _PCRS5/6 .
PCRS/6 fusion: pi;*°(x) = p1(x) fo 2 aitl; 4y + Jo i Ean oy Ay

0
o014 mn(.) = mai(.)ma(.)/Cte -
mn(.) = my()ma(.)/Cte

0.12 ml’CRS(-) 0.12
R o ma(.) = pa( )
. "\ oo mi(.) = pa(.)

/ \ ma(.) = ma() ' N\ e
008 A 2 ! 008 mpc}gs(.)>/ \ /
oo o0s x . ‘:\ // \
Fusion of Gaussian pdf — p1(:) = pa(+) Fusion of Gaussian pdf — p1(-) # pa(-)

PCR5/6 rule allows to keep the modes of pdf through the fusion process

Application = Particle Filtering for target tracking [Kirchner et al. 2007]

Jean Dezert & Degiang Han Fusion 2017 Conference - Tutorial T2 July 10th, 2017

63/162



\

Part | - Information Fusion with Belief FURCHORSES

Approximation of a BBA by probability measures
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Popular transformations of BBA to probat

Many methods exist, we only present the most popular — see [DSmT books] (Vol. 3)

Simplest method
Take the mass of each element of ©® and m(A)

normalize, but it does not take into account Pn(A) = o=——=
partial ignorances 2ipeo M(B)

Method based on plausibility [Cobb Shenoy 2006]
Take the plausibility of each element of © PL(A)

and normalize, but it is inconsistent with Ppi(A) = 5——=
belief interval e PL(B)
Pignistic probability [Smets 1990]

Redistribute the mass of partial ignorances X A A\
equally to singletons included in them BetP(A Z A

= higher entropy obtained with BetP(-) Xe2@

DSmP probability [Dezert Smarandache 2008]
Redistribute mass of partial ignorances

proportionally to masses of singletons Y, m(Z)+elAnY]
incl inthem. e > 0i mall &Y
cluded in the Q_s_as a . DSmP(A)= 1Z]=1 mey)
parameter to prevent division by zero in V56 m(Z) + elY]|
some cases. 2

= smaller entropy obtained with DSmP(-)
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Examples of probabilistic transformati

Ppi(.) is inconsistent with belief intervall  Consider ©® = {A, B, C}, and the BBA
Y [Bel(A), PL(A)] = [0.2,0.2] Ppi(A) = 5395508 ~ 0112 < Bel(A)
{m( )=0. = =

m(B U C) =08 [Bel(B), PL(B)] = [0,0.8] Pp1(B) = m ~ 0.444

[Bel(C),PL(C)] = [0,0.8] Ppi(C) = garossos ~ 0.444
Note: inconsistency also occurs with Pg et (.)
Simple example for BetP and DSmP calculation

Consider ® = {A, B}, and m(A) = 0.3, m(B) = 0.1, m(A U B) = 0.6

BetP(A) = m(A) + m(A UB) =03+ (0.6/2) = 0.6

BetP(B) = m(B) + 3m(A UB) = 0.1+ (0.6/2) = 0.4
With DSmP the masses of singletons are used as a priori information to make the
redistribution of the mass of ignorance (reinforcement principle)

Shannon entropy (measure of randomness): H(P) = — >, pi logp:

H(DSmP) = 0.8125 bits < H(BetP) = 0.9710 bits
Thus, decision-making is made easier with DSmP because randomness is reduced
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Distance between two BBAs

A strict distance metric d : (x,y) € 8 x 8 — d(x,y) € R must satisfy
@ Nonnegativity: d(x,y) = 0;
© Nondegeneracy: d(x,y) =0 < x =y;
© Symmetry: d(x,y) = d(y, x);
@ Triangle inequality: d(x,y) + d(y,z) = d(x,z),Vz € 8.
References on distances : [Jousselme Maupin 2012, Han Dezert Yang 2017]

@ Tessem distance [Tessem 1993] = Not a strict distance metric

dr(my, mz) = max{[BetPy(A) — BetPy(A)]} J

@ Jousselme distance [Jousselme Grenier Bossé 2001]

dy(ma, ma) = 4/0.5 - (my — ma) Jac (my —ma) ]

where the elements Jac(A, B) of Jaccard’s weighting matrix Jac are defined by
Jac(A,B) = |A n B|/|A U B|
= proved to be a strict distance metric in [Bouchard Jousselme Doré 2013]
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Distance between two BBAs

The belief interval of A € 29 is defined as BI(A) = [Bel(A), PL(A)]

@ Euclidean belief interval based distance [Han Dezert Yang 2014]

dgy(ma, mp) = \/2@}“ >, di(BL(A), BLx(A))® J

Ae2©

= proved to be a strict distance metric in [Han Dezert Yang 2014]
@ Chebyshev belief interval based distance [Han Dezert Yang 2014]

a5y (1, my) = max {d' (BI1(A), BL(A))} J

= proved to be a strict distance metric in [Han Dezert Yang 2014]

d! is Wasserstein distance of interval numbers

a; +b aG+b]? 1[bi—a by —ar]?
dl([al.bl],[az,bz])=\/[ 12 1 22 2] +§[ 12 1 22 2]
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Simple example [Han Dezert Yang 2014] © = {6, 02, 03}

m1(91) = ml(ez) =

my(63) =1/3
my(01) = Ma(6,) = my(03) = 0.1, My(O) = 0.7
ms(0;) = m3(6,) = 0.1, m3(03) = 0.8
Results
distances | dr dy dg,; ds;

d(myq, mp) 0 0.4041 0.2858 0.2333
d(my, m3) | 0.4667 0.4041 0.4041 0.4667

@ Using Jousselme distance

The result is not very reasonable because m, makes no preference for choice,

whereas ms prefers the 3rd element 65.
@ Using Tessem pseudo-distance

The result is not intuitively acceptable because m; is different of m, but

dT(ml, mg) =0
@ Using belief interval distances d§; or d§;

The results make more sense because dg;(m;, my) < dgr(mg, ms)
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Measures of uncertainty of a belief funciie

How to characterize a BBA to measure the level of uncertainty it contains?
— see the excellent survey in [Jousselme et al. 2006], with remarks in [Klir Lewis 2008]
Simplest approach
Approximate m(-) in a probability measure P(-) and use Shannon entropy H(P)
@ it measures (approximately) the randomness in the BBA but not the imprecision
(ambiguities), and many probabilistic transformations are possible
@ some information is lost in the transformation m(-) — P(-)
@ these measures do not well measure uncertainty, see [Klir Lewis 2008]

Example: Ambiguity measure (or Pignistic Entropy) [Jousselme et al. 2006]
— ) BetP(0) log,(BetP(0))
0co
Measures of discord of a belief function (entropy-alike measures)
@ Confusion [H6hle1982] Conf(m) £ — 3, g M (A) log,(Bel(A))
© Dissonance [Yager 1983] Diss(m) = — 3, .o M(A) log,(PL(A))

Q Discord [Klir Ramer 1990] ~ Disc(m) = — 3, .o m(A) log, (1 — Yo m(B) E5t)

B
O Strife [Klir Parviz 1992]  Stri(m) = — 3, .o m(A) logy(1 — Ypco m(B)A5E)
iy 10th, 2017 72/162




Measures of uncertainty of a belief functior

Measures of non-specificity of a belief function

Non-specificity (or ambiguity) means that some focal elements of m(-) are disjunctions
of elements of the FoD ©
@ Non-specificity [Dubois Prade 1985, Ramer 1987]
NS(m) = 2ace M(A) log, A
» generalization of Hartley measure of a set
> if m(-) is Bayesian, NS(m) = 0 (the min value)
> if m(-) is vacuous, NS(m) = log, |©| (the max value)

Measures of total uncertainty of a belief function
@ Aggregated uncertainty [Harmanec Klir 1994]
P(6)€[0,1],V0 e ®
AU(m) = max[— > P(0)log, P(0)] st. 4 Yoo P(6) =1
0c® Bel(A) < Ygca P(O) < PUA), VA C ©
AU(m) is the max of Shannon entropies (upper entropy) of all probability

measures P(-) compatible with m(-). It is interesting because [Abellan et al. 2008]

» it captures both non-specificity and discord

> it offers a probability consistency and set consistency

» value range, monotonicity, sub-additivity and additivity for the joint BBA in Cartesian
space
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Measures of uncertainty of a belief functior

A new measure of total uncertainty of a belief function [Yang Han 2016]

— based on belief Intervals which includes both the randomness and the imprecision
(non-specificity)

Basic idea Given a belief interval [Bel(A), PL(A)], if this interval is farther from the
most uncertain case represented by [0, 1], then A has smaller uncertainty; if the belief
interval of A is nearer to [0, 1], then A has larger uncertainty.

Total uncertainty measure

TU(m) = 1— e >, d'([Bel(6y), PL(6:)], [0, 1])

‘®| 0;€0

where d! is Wasserstein distance of interval numbers

a+b; a+b]? 1[bi—a byr—a
dl([alvbl],[ag,bz]):\/[ 12 1 22 2:| +§|: 12 1 22 2

d'([Bel(8;), P1(8:)], [0, 1]) reaches the bounds 1/+/3 when [Bel(8;), P1(6;)] = [0, 0]
and [Bel(6,), P1(8 )] = [1, 1]. Therefore, the normalization factor is

ar(ooroL) — dl(LiLoI) =3
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Measures of uncertainty of a belief functlo,,

TU(m) =1— = > d'([Bel(0y), PL(6:)], [0, 1])

Properties of TU measure of total uncertainty [Yang Han 2016]
@ TU(m) € [0,1]
@ if m(-) is vacuous, m(®) = 1, then TU(m) =1
V0; € O, [Bel(0:), pl(6:)] = [0, 1] = d'([Bel(8:), P1(6:)],[0,1]) =0 = TU(m) =1

@ if m(.) is categorical, m(0;) = 1 for some 0; € ©, then TU(m) =0

{foreh [Bel(6:), PL(0:)] = [1,1] = d'([1,1],[0,1]) = 1/v/3

] —
¥, # 0., [Bel(8), PL(O,)] = [0,0] = aX([0,0], [0,1)) = 1/v3 =0

@ TU(m) satisfies monotonicity, that is

if VA € ©, [Bel;(A), Ply(A)] < [Bely(A), PL(A)] then TU(m;) < TU(m,)
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Example for the TU measure (1)

Consider © = {0, 6,, 03} with the following BBA
m(Gl) =0.3, m(Gz v 93) = 0.5, m(91 U 92 v 93) =0.2

Then {m(6,u0;) =05 = { [Bel(6,), P1(6,)] = [0,0.7]
m(0; LB, U B;) =0.2 [Bel(65), P1(03)] = [0,0.7]

The Wasserstein distances are

a'([Bel(8,), PL(0,)], [0, 1]) = /[23505 — 0117 ¢
d'([Bel(82), PL(O:)], [0, 1]) = /[ 227 — 041
a1([Bel(03), PL(63)], [0,1]) = /[ 2407 — 1]’

because Wasserstein distance between intervals [a;, b;1] and [a,, b,] is defined by

2

a+b; a+b|? 1[bi—a; by—a
dl([al,bl],[ag,b2])=\/[ 12 1 22 2:| §|: 12 I 22 2

Therefore, TU(m) = 1 — ¥3(0.2517 + 0.1732 + 0.1732) = 0.6547

More examples with applications in [Yang Han 2016]
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Suppose that the FOD © = {#;,6,}). A BBA over © is m({#;}) =
a, m({th}) =b m({©®})=1—-a—-Db, where a, b € [0, 0.5]

AU
2
15
1
o5
ol e
= 08
Pl — -
o " 04 03 =
a®2 g2 R @ 02 n
o L]

Bel({6h}) = a <P(6;) <1-b="PI({6h}):

Bel({02}) = b< P(02) <1 =a=PI({6:}):
Bel(®) =1—-a—-b<P(0)) <1=Pl(O);
AU tries to find a p.m.f. with the maximum
Shannon entropy. The uniformly distributed

P(0,)=P(0,)=0.5 is always picked up, since it
always satisfies the constraints above

Jean Dezert & Degiang Han

AM reaches its maximum when a=b,
because when a=bh, the pignistic probability
is uniformly distributed. Counter-intuitive!
my ({¢4}) = m; ({#2}) = 0.5
m2({91 }) = mz({GE]] =0.25, my(O) = 0.5
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BBA construction from FMFE (1)

How to construct a BBA from a Fuzzy Membership Function (FMF)?
Fuzzy sets and fuzzy membersip function

Definition: A fuzzy set, denoted by A < O, is defined by a fuzzy membership function
(FMF) pa(0) : © — [0, 1], which quantifies the grade of membership of element 0 of
the fuzzy set A.

HEA A
classical (crisp) set 4
s —
fuzzy set A
membership
function J(x)
0.0 1 T b

x Y

The FMF is a generalization of the characteristic function in classical set and can take
its values in the interval [0, 1].
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BBA construction from FMF (2)

Relationship between FMF and BBA

Theorem: If ©, = {64,..., 0.} is countable, the necessary and sufficient condition for
u(-) to be a plausibility function is:

n

Din(0:) =1

i=1
The necessary and sufficient condition for p(-) to be a belief function is

D@ <1

i=1

where O defined as the set ©, = {6|u(6) > 0}

Proposition: Any membership function 11(6), defining on © a fuzzy set, can be viewed
as the restriction to singletons 6 either of a plausibility measure (1(6) = P1(6), or a
belief function p1(6) = Bel(0).

According to the above, the transformation of BBA into FMF can be obtained.
What about the reverse direction?
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BBA construction from FMF (3)

Multi-answer problems when transforming a FMF into a BBA

Suppose that Y, o 1(0) = 1 with |®] = n, then the FMF is equivalentt to the one-point
plausibility. For the frame of discernment, there may exist at most 2!/®! — 1 subsets
which are not empty. That is

A = {91} cC O, m(Al) =
Ay = {61,0;} € O, m(Ay
Aijk = {61, Bj,ek} < @, m(Aijk) = O, i< ] <k

Ap.n =0, m(@) =0
The problem consists of n + 1 linear equations given by
m(A1) + 25 m(Ay) + 255 M(Agji) + ... + m(O) = p(0:)

M(An) + 25 M(Anj) + 255 M(Anjk) + ... +m(O) = u(6y)

2 m(AD) + 2 mUAy) + 25 M(Ag) +...+m(0) =1
The 2™ — 1 focal elements’ mass values are unknown variables to find, but we have
only n + 1 linear equations = solution to build a BBA from a FMF is not unique
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BBA construction from FMF (4)

Transformation of FMF into a BBA [Han 2016]

Given n(0;) € [0,1],v0: € ©,i=1,...,n,if 3.7, n(6;) > 1, the FMF is equivalent to
the plausibility for one-point (singleton). A BBA can be obtained by solving the following
maximization problem.

Find the BBA m(-) such that

) n m( ) m(B)
:'t!;l.\ Jim) = —Z‘_l ( Z B logs( Z l—]]

BNYheRCoO B, eHCo Bl

5T om(B)=1

BEP(O)
s.t. > m(B) = u(#;).v8; € ©
BY{8;1NB#0
0<m(B)<1
where P(©) = 2° (i.e. the power set of the FoD ©)
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BBA construction from FMFE (5)

Example - part 1 [Han 2016]

Sequence number  Focal element

B(‘tpm[gl} _ m(.l-lgj + ru(‘;g) + m(;.g} + n!(;lr):

Ay {03}
As {fa}
A {61} BetP,,(8;) = 22 4 mida) | m(ds) | m{Ar),
Ayg {03,902}
As {33-91} mi A m( 4 mi | A
Ag {02,0,} B(‘th(ﬁa} = (illl + (.2“} + ('Zl5} + L3‘T)'
Az {03.02,01}
Objective Function
AM(m) =

_ {‘ ru;l.-la[ g miAy) | miAg) m[:il-_vb:_luggf m;l-l;,l + m!;_,! L omitg) ru;:;lzll

+ m{Az) |, miAg) + miAg) , m( l”] -loj!,g{m['.’] 4 ( A5) + midg) , mi/ l-]]

(A | m 'm mAs) rug;\ﬂ'llun?tarr!.hj fomidg) | omids) | m;l_.n!,}
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BBA construction from FMFE (6)

Example - part 2 [Han 2016]

For example, the cardinality of the FOD is 3 and the corresponding FMF is
(B) = 1 pu(B2) = 0.6, u(#3) = 0.2. Obviously, there exists 37, _,  u(#;) = 1. All
the constraints are as follows (see the details of focal elements in Table 1):

1=p(fy) =m(As) +m(As) +m(Ag) + m(Az);

Constraints 0.6 = p(8) = m(Az) + m(Ag) + m(Ag) + m(Az7);
0.2 = pu(f3) = m(A1) + m(Ag) + m(As) + m(Az);
E'T:l m(A;) = 1:

0<m(4;) <1 L .
Sm(d) < AM(m) = Objective Function

_ {I nniill} Lomids) |, midg) rrllsl-,-l}_ lugg{m;{l“ LomlAs) | midg) m;:;lﬂ]
m(Az) = m({th}) =02

m(As) = m({#s,01}) = 0.2; p(mida) o miAy) | omlA) ‘N]_-'lr[J + logy (2 Aa) | mids) | mids) o mg_-!rll

m(Ag) = m({t th}) = 0.6

(miAy) |, miAg) |, mids miAz)y | miAy m{Ay m{As miAy
. . +H(2iha) ¢ =) 4 mGe) 4 i) og, (=Gl 4 2URe) 4 i) 4 i)
Unique BBA obtained }
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Working with admissible imprecise BB;
Operation on sets of numbers [Dezert Smarandache 2006, DSmT books], Vol. 2
@ Addition: xl :X:2 = X2 f)Cl £ {X|X = X1 +X2,X1 € xl,Xz € :x:2}
o Multiplication: Xi[HXo =X X = {X|X =X;-X2,X1 € X1, X2 € :X:g}
@ Division: defined for case where 0 ¢ X5, inf(X,) # 0, sup(X,) # 0
Xi1E3X, = {X‘X =X1; ~X2,X1 € X1, X2 € XQ}

Imprecise BBA
@ Imprecise BBA is a BBA whose each mass of FE is an interval of numbers.
Example: © = {0,,0,}, m!™P(0;) = [0.2,0.3], m!™P(0,) = (0.4,0.5) — improper
Because m() = 0, then m'™P () = [0, 0] (degenerate interval)
@ General imprecise BBA is a BBA whose each mass of FE is a disjunction of
intervals and sets of numbers
Example: m'™P(6,) = [0.1,0.2] U {0.3}, m!™P(0,) = {0.4,0.6} U (0.1,0.2]
Imprecise admissible BBA
m!™P(.) is admissible if YA € F(m™?), 3Im(A) € m'™P(A), s.t. Y g (nimp) M(A) =1
Example:

{m“ﬂv(el) =1[0.1,02] U {0.3} . {m(el) —03em!™p (o)

mImP(0,) = (0.4,0.6) U [0.7,0.8] m(6) = 07 € mImp(gy) St O) +m(02) =1

Working with imprecise admissible BBA needs operators on sets of numbers
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Simple example of fusion of imprecise admiss)j

® = {0,, 6>} with Shafer model for the FoD
BBA\FE | 01 0

m;™(-) | [0.2,0.3] [0.6,0.8]
my™P(-) | [0,4,0.7] [0.5,0.6]

Conjunctive rule gives my,(6;) = [0.08,0.21] and m;»(6,) = [0.30, 0.48]
Kiz = mpp () = [my™" (01) my™ (02)] B [my™P (6,) I my™P (0y)]
= ([0.2,0.3]1[0.5,0.6]) FH ([0.4,0.7] 1 [0.6, 0.8]) = [0.34,0.74]
PCR5/6 rule gives [DSmT books], Vol. 2, pp. 52-53

Xo, _ _Xop, _ [0203][][0506] _ [0.100.18] _, X, ~ [0.022,0.077]
[02,03] ~ [0506] ~ [0203|m[0506] _ [0.7.09] X, ~ [0.055, 0.154]
Yo, _ Yo, _ [0407]1[0.6.0.8] _ [0.24.056] _ Yo, ~ [0.064,0.392]
[0.4,0.7] — [0.6,0.8] ~ [0.4,0.7]FH[0.6,0.8] —  [1,1.5] 0, [0096,0448]

Therefore mix **/®() = [0,0] and

mis®%(0,) = myp(0,) F xe, E e, ~ [0.166,0.679]

mPCRS/S(Gz) m12(92) X92 y92 % [0451, 1]

Compute divisions at the end to get tightest bounds. Use Interval Arithmetic toolboxes.
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Working with qualitative basic belief assigng

Linguistic labels L = {L;, = Lo, L1,..., Ly, Lyax = Lus1p With Ly < Ly < ... Ly

Assuming linguistically equidistant labels of L, we make an isomorphism between
L={lo,LyLs....Laa}and {0 = &5 25 25, 1= 25

Operators on linguistic labels [DSmT books] (Vol. 2, Chap. 10) & [Martin et al. 2008]
q -addition and subtraction q -multiplication and division
L ifi+j<n+1 . .
Li+L = ) Li- L = Lrwiy/(n th [x] = closest integer to
+14 {Lnﬂ 4 >n 41 i = Licig)/(n+1y) With [x] integer to x

L — L = Lij ifi>] Li/Liso = L -many HLEG)-(n+1)] <n+1
L . N 1 e Lot otherwise

with a scalar by a scalar
Li+r=r+1L = L[i+r(n+1)] ai L[a-i] if [(l . 1.] =0
Li—r= L[i—r(n+1)] ntl L—[a-i] otherwise

G’Liz

No matter how many operations on labels we have, the most accurate result is
obtained if we do only one approximation, and that one should be just at the very end.
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Working with qualitative basic belief assig 't‘

Linguistic labels L = {L;, = Lo, L1,..., Ly, Lyax = Lus1p With Ly < Ly < ... Ly

We can also work with refined labels (labels having non integer index) to get more
exact results [DSmT books], Vol. 3, Chap. 2

Basic idea: Use real index of label to be more precise, for instance L ;3 =Listo
express a label between L; and L,

Operations with refined linguistic labels

@ g-addition of refined labels
Lo+ Ly =Laso

@ g-multiplication of refined labels
Lo Ly = Lav/(ns)
@ g-division of refined labels (if b 5 0)
Lo + Ly = Ligmy(n+1)
More operations presented in [DSmT books], Vol. 3, Chap. 2
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Working with qualitative basic belief assigng

Example L= {Lo, Ll, I_2, I_3, L4, Ls} = {0, Ll =0.2, L2 = 0.4, L3 = 0.6, I_4 = 0.8, 1}

Product using labels: L, -5 = L[(2_3)/5] = L[6/5] = L[1_2] =1
Product using numbers: 0.4-0.6 =024~ 02 =1,

Product USing labels: L3-L3= L[(3_3)/5] = L[9/5] = L[l_g] =1
Product using numbers: 0.6 - 0.6 = 0.36 ~ 0.4 = L,

Qualitative BBA qm(.):2® —»L={Lg,Ly,..., Ly, Lus1}
Quasi-normalization conditions

qm() =1L, and Z qm(X) = ZLik =Lny1
k

Xe2©
Qualitative rules of combination
@ All previous rules of combinations (as well as BBA transformations) can be done
with qualitative BBA thanks to operators on linguistic labels [Martin et al. 2008].

@ Extension for working with imprecise qualitative BBAs is proposed in
[Li Dai Dezert Smarandache 2010]
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Example of qualitative BBA fusion (1)

Example drawn from [Martin et al. 2008]
L = {Lo, L; = very poor, L, = poor, L3 = good, L, = very good, Ls = very very good, Lg}
< {0,1/6 ~ 0.166,2/6 ~ 0.333,3/6 = 0.5,4/6 ~ 0.666,5/6 ~ 0.833,1}
© = {A, B} satisfying Shafer’s model, and the two qualitative normalized BBAs
gmy(A) =L;,qm;(B) = L3, qmi(AuUB) =1,
gqmy(A) =Ly, qmy(B) =L, qma(AUB) =1
Conjunctive rule (with refined labels calculus)
K1z = qmu () = qma(A)gmy(B) + qmy(B)qma(A)
=Ll +Lsls =Lua +Lss = L¥ =L = Laee~ Lo
qmiz(A) = qmi(A)qma(A) + qmi(A)qma(A U B) + qma(A)qmi(A U B)

= L1L4 + L1L1 + L4L2 = L%ﬁ + L% + L%g = L4+1+8 = I_%g = Lz‘lsﬁz ]_2

qmaa(B) = qmi(B)qmy(B) + qmi(B)qma(A © B) + gma(B)gmi(A U B)
= L3L1 + L3L1 + L1L2 = L% + L% + L% = L3+g+2 = L% = L1_333% Ll
qmlg(A v B) = qml(A U B)qmz(A U B) = L2L1 = L% = L% = L0A333% Lo

With refined labels, gm;, is normalized: L% + L% + Lg + L% = L% =L = Linax
With approximate labels, qm,, is not normalized: L, + L, + L; + Ly = Ls # Lg = Liax
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Example of qualitative BBA fusion (2

qml(A) = Ll, qml(B) = L3, qml(A U B) = Lz
qmz(A) = L4, me(B) = Ll, qmz(A U B) = L]_
PCR5/6 rule (with refined labels calculus)

Partial conflict qm;(A)gqmy(B) = L;L; = L =L, goes back to A and to B with

XA:Xi: LlLl =L% L. N XA:LlL%:L(l-%)/(i:Li%%L0-083
L, L Li+L L, (5+2)6

xg =Ll =Lq1y6 =Lz ~Loos

Partial conflict gmy(A)qmy(B) = L4153 = Las = 12 goes back to A and to B with

ya _ys _ Ly e

_ _ _ —Lu Ly — yA=L4L¥ L(4 12)/6_L§ %L1142
Ly L3 Ly + 13 L (F=7)6 7 yp = L3L¥ L(3 2y = Ls ~ Logs?

7

Finally, one gets qm"R%%(¥) = 1, and

P CR5/6 — ~ ~
m A) =qmqp(A) + + =Lz +L; +L L ~ L ~ L
q (A) qmu(A) +xa +ya 13 11 ; 253‘5 3.392 3
quCR5/6(B) =qmu(B) +xg +ys = L% + I_112 + L% = L0 ~ ooz~ Ly

1
qmPERYS(A U B) = qmu(AUB) = L% = ng ~ Losss ~ Lo

With refined labels one has Ly + Lass + L1o1 + L2s = Lsos = Lg = Lnax
kS k0 8 8



Part Il

Decision-Making Support with Belief Functions
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Outline of Part 2

@ Classical decision-making methods with belief functions
@ General mono-criteria decision-making problem

@ Methods for Multi-Criteria Decision-Making support
@ AHP and DSm-AHP methods
@ TOPSIS and BF-TOPSIS methods

@ Non classical MCDM problem

@ Toolboxes
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Part Il - Decision-Making Support with BeliefSFuRcHe:

Classical decision-making methods with belief functions
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Decision-making methods from a BBA_,;

Decision-making problem (DMP) FoD © = {64, ...,0,} = set of possible solutions

Knowing a BBA m(-) over 22, how should | make my decision 5 based on m(-)?

In the classical DMP, we restrict 5 € ©, i.e. the best decision 6 is a singleton of 2€.

Classical DM methods
@ Pessimistic Decision-Making attitude: Maximum of belief strategy

m(-) > Bel(:) and 5=0=arg max Bel(6;)
1E

@ Optimistic Decision-Making attitude: Maximum of plausibility strategy

m(-) > Pl(-) and b= 0 =arg max P1(6,)
i€

@ Compromise Decision-Making attitude: Maximum of probability strategy

m(-) > P(-) and & =0 = arg maxP(0;)
0;€@

v

where P(-) € [Bel(-), P1(-)] is a (subjective) proba measure approximated from the

BBA m(-), typically obtained with a lossy transformation like BetP, or DSmP
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Decision-making methods from a BEBAX

Decision-making based on distances [Han Dezert Yang 2014, Dezert et al. 2016]

A better theoretical approach for decision-making is to use a strict distance metric
d(-, -) between two BBAs and to make the decision by

§=X=arg Tg} d(m, mx) J
€

X = {admissibleX, X € 2®} is the set of possible admissible decisions we consider. For
instance, if 5 must be a singleton, then X = © = {64, ..., On}.

my is the BBA focused on X defined by mx(Y) = 0if Y # X, and mx(Y) =1if Y =X
Few strict distance metrics are possible

@ Jousselme distance:  dj(my, my) = \/0.5 - (my — mz)TJac (mp —my)

@ Euclidean dg; distance:  d§;(m;, my) = \/2‘@% S aepe dI(BI;(A), BIy(A))?
@ Chebyshev dg; distance:  d§; (my, my) = max {d! (BI1(A), BI>(A))}
Ae2

In practice, we recommend to use d§;(m;, m,) [Han Dezert Yang 2017]

. . . 5 dBI(m,mA)
Quality of the decision X)=1—-=—"""""X__¢J0,1
y q(X) S dor(m, ) [0.1]

Higher is q(X) more trustable is the decision § = X
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Part Il - Decision-Making Support with BeliefSFuRcHe:

General mono-criteria decision-making problem
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General mono-criteria decision-making pro

How to make a decision among several possible choices, based on some contexts ?

Problem modeling
q > 2 alternatives (choices) A = {A4, ..., Aq}

n > 1 states of nature (contexts) 8§ = {S1,...,Sn}
Si ... S Sn
Al C11 e Clj - Cln
C= A;| Cu CLJ Sin
AgLCq1 ... Cqi ... Cgn

C is the benefit (payoff) matrix of the problem under consideration

Investment company example

An investment company wants to invest a given amount of money in the best option
A* e A ={A41, Ay, A3}, where A; = car company, A, = food company, and

A3z = computer company. Several scenarios (states of nature) S; are identified
depending on national economical situation predictions, which provide the elements of
the payoff matrix C according to a given criteria (growth analysis criterion by example).
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General mono-criteria decision-making prok

Several decision-making frameworks are possible

@ Decision under certainty
If we know the true state of nature is S;, take as decision 6 = A* with

A* = Ay with 1* = argmax{Cy;}

@ Decision under risk
If we know all probabilities p; = P(S;) of the states of nature, compute the
expected benefit E[C;] = 3}, p;Cy; of each A; and take as decision & = A* with

A* = A with i* = argmax{E[Ci]}

@ Decision under ignorance
If we don’t know the probabilities p; = P(S;) of the states of nature, use OWA
(Ordered Weighted Averaging) approach [Yager 1988], or Cautious-OWA
[Tacnet Dezert 2011], or Fuzzy-Cautious-OWA [Han Dezert Tacnet Han 2012]

@ Decision under uncertainty
If we have only a BBA over the states of the nature 8 = {S;, ..., S,,} defined on
the power set 2%, we can use Yager extended OWA approach.
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Decision under risk

Sl,‘pl Sjypj Snypn
Al Cu Cyj Cin E[Ci] =2 p;Cyj
C= A Ci1 C” Cin = E[C] = E[Ci] = Zj Pj Cij

Aq Cq1 .- C-q,» Cyn E[Cq]=.Zj'Pqui
Decision: A* is the chosen alternative corresponding to highest expected benefit.
Example

S1.p1=1/4 Sp,po=1/4 S3,p3=1/2

A 16 12 20 E[C1] = (1/4)16 + (1/4)12 + (1/2)20 = 17
Az 32 4 6 E[Ca] = (1/4)32 + (1/4)4 + (1/2)6 = 12

= As 12 20 4 ] = [E[Cﬂ = (1/4)12 + (1/4)20 + (1/2)4 = 10
Ag 40 4 8

E[C4] = (1/4)40 + (1/4)4 + (1/2)8 = 15
Sorting the expected benefits by their decreasing values gives the ranking

AL > As > Ay > Ay
The decision to take is A* = A,
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Decision under ignorance using OW

The probabilities p; = P(S;) of the states of the nature are unknown

S1.p1 =7 ... S]-,pj:? . Sn,pn =7
Aq Cyy Clj Cin
C£ Ay Ci1 Cl] Cin
Aq Cq1 Cq] Cqn

OWA (Ordered Weighted Averaging) method [Yager 1988]

© Decisional attitude: choose the set of n weights w = [w; ... wy] with 35, w; =1
» Optimistic (max benefit): w =[10...0]
> Hurwicz (a balance between min and max): w = [x 0...0 (1 — «)], typically « = 1/2
» Normative (equi weights): w = [1 ... L
> Pessimistic (min benefit): w = [0...01]
@ Evaluation: compute the weighted average of ordered benefits for each alternative
Vi =0OWA(Ci1,...,Cin) = Y. wiby;
j=1
where by; is the j-th element/benefit among {Ci;, ..., Cin} and
b; = [bi1 biz ... bin] is the reordering of i-th row by decreasing values
© Decision: take 56 = A* with

A* = A with i* = argmax{V;}
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Example of decision under ignorance with,"

The probabilities p; = P(S;) of the states of the nature are unknown
S1,p1 =7 Sz, p2=? S3,p3=7 S4ps=7

Al 10 0 20 30
C= A, 1 10 20 30
Az 30 10 2 5

@ OWA result with optimistic attitude w = [1 0 0 0] — we take the max by row
V; = OWAC(10,0,20,30) = w - [30 20 10 0]’ = 30
V, = OWA(1,10,20,30) = w-[302010 1]’ =30 = No best choice exists
V3 = OWA(30,10,2,5) = w- [30 105 2]’ = 30
@ OWA result with Hurwicz attitude with « = 0.5 = w = [(1/2) 00 (1/2)]
V; = OWA(10,0,20,30) = w- [30 20 10 0]’ = (30/2) + (0/2) = 15
V, = OWA(1,10,20,30) = w- [3020 10 1]’ = (30/2) + (1/2) = 155 = Aj is the best choice
Vs = OWA(30,10,2,5) = w- [30 10 5 2]’ = (30/2) + (2/2) = 16
@ OWA result with normative attitude w = [(1/4) (1/4) (1/4) (1/4)]
Vi = OWA(10,0,20,30) = w-[30 20 10 0]’ = 60/4 = 15
V>, = OWA(1,10,20,30) = w-[302010 1]’ = 61/4 = A, is the best choice
Vs = OWA(30,10,2,5) = w- [30 10 5 2]’ = 47/4
@ OWA result with pessimistic attitude w = [0 00 1] — we take the min by row
V; = OWA(10,0,20,30) = w-[3020 10 0]’ =0
Vo, =0WA(1,10,20,30) =w-[3020101]' =1 = Agsis the best choice
Vi = OWA(30,10,2,5) = w-[30105 2]’ =2
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Decision under uncertainty using OW :'

Probas p; = P(S;) of the states S; are unknown, but we know a BBA m(:) : 25 — [0, 1]

S1.,p1=7 ... Sj,pj:7 .. Sn.pn =7
Al Cy1 Clj Cin
C=l[c RS | en] = Ay Ci1 Cl] Cin
Aq Cq1 - Cgqj Cqn

Method 1: Approximate m(-) by a proba measure = decison-making under risk
Method 2: Extended OWA method [Yager 1988]
@ Decisional attitude: choose the decisional attitude (optimistic,pessimistic, etc)
@ Apply OWA on each sub-matrix C(Xy) of benefits associated with the focall
element Xy, k = 1,...,rof m(-) to get valuations V;(Xy),i=1,...,q
C(Xk) = [¢5]S; = Xi]
© Compute the generalized expected benefits fori =1,...,q

T

E[Ci] = ) m(Xi)Vi(Xe)

k=1

@ Decision: take the decision § = A* = A« with i* = arg max; {E[C;]}
iy o 2708 e



Example of decision under uncertainty using\€

Probas p; = P(S;) of the states S; are unknown, but we know a BBA m(-) : 25 + [0, 1]

S1,p1 =7 Sz, p2=7 S3,p3=? S4,ps=7 Ss5ps="7

Ay 7 5 12 13 6
C— A, 12 10 5 11 2
As 9 13 3 10 9
Ay 6 9 11 15 4

The uncertainty is modeled by a BBA with 3 focal elements as follows

‘ BBA\FE ‘ X1é51U53US4 ‘ X2£SQUS5 ‘ X3é51u52u53u54u55 ‘
m(O | 06 \ 03 \ 01 |

Construction of benefit sub-matrices for each focal element of m(-)

S; S3 S4 S, Ss S1 S S3 S; Ss

Al 7 12 13 Ai[5 6 ATT7 5 12 13 6

A |12 5 11 _As|10 2 _As|12 10 5 11 2
CXD= 2 19 3 10 CX2)= 113 o CX)= A 19 13 3 10 o
Asl6 11 15 Aslo 4 Asl6 o 11 15 4
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Using pessimistic decisional attitude
@ Apply OWA for each sub-matrix C(X3), k =1,2,3

S1 S3 Sy

Ay [7 12 13 Vi(X1) = OWA(7,12,13) = [001] - [13127)/ =7
cxy) = 2 205 1| Vo(X1) = OWA(12,5,11) = [001] - [12115]” =5
V=A3 ]9 3 10 V3(X1) = OWA(9,3,10) = [001] - [1093] =3

Ag L6 11 15 V4(X1) = OWA(6,11,15) = [001] - [15116]’ =6
Sy S
10 Vy(Xp) = OWA(10,2) = [01] - [102]/ =2
C(Xq) = 2(X2) ( =[ ] [102]

A1 [5 6 V1(Xp) = OWA(5,6) = [01] - [65]" =5
2
[ 9};‘ V3(Xp) = OWA(13,9)
4

[01]-[139]" =9

Aq Lo V4(Xp) = OWA(9,4) = [01] - [94] =4
S1 Sp S3 S4 Ss
Al 7 5 12 13 6 Vl(X3)=OWA(7.5,12,13,6)=[00001]-[1312765]’:5
C(X3) = |:12 10 5 11 2:|= Vz(X3):OWA(12.10,5,11.2):[00001]-[12111052]’:2
9 13 3 10 9 V3(X3) = OWA(9,13,3,10,9) = [00001] - [1310993]" =3
Ag L6911 15 4 V4(X3) = OWA(6,9,11,15,4) = [

00001]-[1511964] =4

@ Compute generalized expected benefits E[C;] = >, m(Xk)V;i(Xk)
with m(X;) = 0.6, m(X,) = 0.3 and m(X3) = 0.1

E[Ci]=06-7+03-5+0.1-5=6.2
E[C2]=06-5+03-2+01-2=38
E[C3]=0.6-3+03-9+0.1-3=4.8

E[C4]=06-6+03-4+0.1-4=52
@ Take final decision with alternative having highest expected benefit - A* = A;
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Using optimistic decisional attitude

@ Apply OWA for each sub-matrix C(X3), k =1,2,3

S1 S3 Sy
AL [7 12 13 V1(X1) = OWA(7,12,13) = [100] - [13127]/ =13
A 12 5 11 = 12,5,11) = [1 -[12115]" =1
c(xq) = A2 _ [ Va(Xy) =owA(2 00] - [12 f=12
V=A3]9 3 10 V3(X1) = OWA(9,3,10) = [100] - [1093] = 10
Ag L6 11 15 V4(X1) = OWA(6,11,15) = [100] - [1511 6]/ = 15
S, S

=[10]-[65]" =
=[10]-[102] =10
=[10]-[139]" =13
=[10]-[94]" =9

AL [5 6 Vi1(X2) = OWA(5,6)
C(Xy) = 2=
4

V5 (Xp) = OWA(10,2)
V3(Xp) = OWA(13,9)
Ag V4(Xo) = OWA(9,4)

Sy Sp S3 S4 Ss

A7 5 12 13 6 Vi(X3) = OWA(7,5,12,13,6) = [10000] - [1312765]” = 13
Ay 12 10 5 11 2 Va(X3) = OWA(12,10,5,11,2) = [10000] - [12111052] = 12
CX3)=x3]9 13 3 10 o= - _ r_
3 V3(X3) = OWA(9,13,3,10,9) = [10000] - [1310993]’ = 13
Asl6 9o 11 15 a4 _

V4(X3) = OWA(6,9,11,15,4) = [10000] - [1511964]/ =15
2o (X)) Vi (Xic)

@ Compute generalized expected benefits E[Ci] =
with m(X;) = 0.6, m(X,) = 0.3 and m(X3) = 0.1

E[C:1]=0.6-13+0.3-6+0.1-13 =109
E[C2] =06-12+03-10+0.1-12 =114
E[C3]=06-10+03-13+0.1-13 =112
E[C4] =0.6-15+0.3-9+0.1-15 =132

@ Take final decision with alternative having highest expected benefit
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Advantage, limitation and improvement

Advantage of OWA
Very simple to apply
Limitation of OWA

The result strongly depends on the decisional attitude chosen when applying OWA
How to avoid this? — complicate methods exist to select weights (using entropy)

Improvements of OWA
Use jointly the two most extreme decisional attitudes (pessimistic and optimistic) to be
more cautious, which can be done as follows
@ Applying OWA using Hurwicz attitude by taking o« = 1/2
— a balance only between min and max benefit values

@ Applying modified OWA based on belief functions
— we use all benefit values between min and max

» Cautious OWA (COWA) [Tacnet Dezert 2011]

Pessimistic and optimistic generalized expected benefits allow to build belief intervals,
and to get BBAs that are combined with PCR6 to get combined BBA from which the
final decision is taken.

» Fuzzy Cautious OWA (FCOWA) [Han Dezert Tacnet Han 2012]
A version of COWA more efficient and more simple to implement
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Cautious OWA for decision under ignorance om

At first, apply OWA with pessimistic and optimistic attitudes to get bounds
[Emin[C;], Em™[C:]] of expected benefits of each alternative A;

Main steps of Cautious OWA (COWA) [Tacnet Dezert 2011]

@ Normalization of exp. benefits intervals (+ by max value) to get intervals in [0, 1]

@ Conversion of each interval in a BBA m;(A;), mi(Ai), mi(A; U A)

© Fusion of the g BBAs m;(-),i=1,..., q (by PCR®) to get the combined BBA m(-)

© Final decision drawn from m(-) by a chosen decision rule, for example by max
BetP, max DSmP, or by min dg;)

Drawbacks of COWA

@ High computational complexity of the combination (highly dependent on the
number q of alternatives)

@ In COWA, each expected interval is used as a SoE. However these intervals are
jointly obtained which introduces a correlation between the sources, and which is
harmful for the combination of BBAs.

Overcoming the drawbacks of COWA

— Use Fuzzy-COWA approach, which is more efficient and simpler
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Example of decision making using COWA;

Let consider the previous example with

‘ BBA\FE ‘ X1é51u53u54 ‘ X2é

52u55 ‘ X3é51u52u53u54u55 ‘

Cm | 06 \ 03 \ 01 \
and the benefit matrix
51 52 53 54 55
Ai[7 5 12 13 6 [E™M[C1] = 6.2, E™*[C1] =10.9]  [6.2/13.2,10.9/13.2] ~ [0.47,0.82]
c_ A2|12 10 5 11 2 [E™"[C,] = 3.8, E™[C,] = 11.4] _ [3.8/13.2,11.4/13.2] ~ [0.29, 0.86]
= As|9 13 3 10 9 | T [EMN[C3] = 4.8 EMX[C3] =11.2] ~ [4.8/13.2,11.2/13.2] ~ [0.36,0.85]
AsL 6 9 11 15 4 [EmMn[C,4] = 5.2, E™[C4] = 13.2]  [5.2/13.2,13.2/13.2] ~ [0.39, 1.00]
BBA construction from interval [a, b] < [0, 1]
Alternatives A; | mi (At) | m{(;i{) | mi (At U }L‘)
mi(A;) = A 047 0.18 0.35
mi(A)=1-5 Az 029 0.14 0.57
AN AN — o (O — B Aj 0.36 0.15 0.49
mi(A; UA)=mi(@)=b—a A 030 0 061



Fusion of BBAs (here with PCR5)

Focal Element mpcRrs(.)
Ay 0.2488
As 0.1142
Ag 0.1600
Ay 0.1865
AU Ay 0.0045
Ag U Ay 0.0094
Al UA U Ay 0.0236
Az U Ay 0.0075
Al UA3 U Ay 0.0198
Az UA3 U A, 0.0374
A1 UAz U Az U Ay 0.1883

Final decision (by max of Bel, BetP, DSmP or PI)
A; | Bel(A;) | BetP(Ai) | DSmP(Ai) | Pl(Ai)

Ay 0.2488 0.3126 0.3364 0.4850
As 0.1142 0.1863 0.1623 03729
Aj 0.1600 0.2299 0.2242 0.4130
Ay 0.1865 0.2712 0.2771 0.4521

Final decision is A* = A;



Fuzzy Cautious OWA for decision under ignoranc

At first, apply OWA with pessimistic and optimistic attitudes to get bounds
[Emin[C;], Em™*[C;]] of expected benefits of each alternative A;

Main steps of Fuzzy Cautious OWA (FCOWA) [Han Dezert Tacnet Han 2012]
@ Normalize each column E™"[C] and E™>[C] separately to obtain EF¥2%/(C)
@ Conversion of the two normalized columns, i.e. two Fuzzy Membership Functions
(FMF), into two pessimistic and optimistic BBAS mpess(-) and moyp;i(-)
© Fusion of mpess(-) and mopi(+) to get a combined BBA m(-)

@ Final decision drawn from m(-) by a chosen decision rule, for example by max of
BetP, DSmP, or by min of dg;

Advantages of FCOWA

@ only 2 BBAs are involved in the combination = only one fusion step is needed

@ the BBAs in FCOWA (built by using alpha-cuts) are consonant support (FE are
nested), which brings less computational complexity than with COWA

@ good performances of FCOWA w.r.t. COWA

@ good robustness of FCOWA to scoring errors w.r.t. COWA

Physical meaning
In FCOWA, the 2 SoE are pessimistic OWA and optimistic OWA. The combination
result can be regarded as a tradeoff between these two attitudes.
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Differences between COWA and FCOW_:?'

The differences between COWA and FCOWA (on previous example):

Difference in normalization

COWA-ER FCOWA-ER
FMF1 FMF2
{6.2/]3.2; 1(1.9;112]} F) AT 0. 8? [6.2/6.2;10.9/13.2] [1.0000; 0.8258]
Dnpjeg — | [B8/13.2104/13.2] 1] [0.20;0.86 wemy 3.8/6.2; 11.4/13.2 0.6129: 0.8636
EM0 = lasmznza | = |sos| | B7I0T= | ESE0N1055 | = (0o sis
[5.2/13.2;13.2/13.2] [0.39: 1.00] [5.2/6.2:13.2/12.9] [0.8387: 1.0000]
Difference in BBA modeling
COWA-ER FCOWA-ER
mi(A;) = a, —fA4 €@ A, ‘
mi(A;)=1-h { Bj(g i{i' ifﬂfﬂ(f‘) z o} alpha-cut
mi(A; UA) =mi(®)=b—a AR T e
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FCOWA

e ml) pa(l)
. R;j&};:(—f 6.2/6.2;10.9/13.9] [1.0000; 0.8258]
E™C] = 29 0.8 ez 3.8/6.2,11.4/13.2] | _ |[0.6129;0.8636
‘! [[gif;?ﬁ(’]} Step 1 EFuev[e] = {4_555_2;11.2//113.2% ~ {0.7742; 0.54&5{
R 5.2/6.2;13.2/13.2) [0.8387; 1.0000]
rm(f};) =a, B ={4; ?I—)Jp(‘A i) =y} alpha-cut
miy(A)=1-58 Step 2 m(B;) = Jm;’
my(Ag U;’L) =mi(®)=b—a
Focal Element | mpeeo(.) | Focal Element | mopei()
A UAUA;UA; | 06129 | A UA UA; UAs | 08257
ArUAsU Ay 0.1613 AzUAsU Ay 0.0227
AU AL 0.0645 AU Ag 0.0152
Ar 0.1613 Aa 0.1364
Combination + decision Steps 384 Combination + decision

Example: To compute mipess(A1 U Ag) = 0.0645, we sort pi(.) in increasing order:

p1(Az) = 0.6129 = oy, py(Az) = 0.7742 = a9, p1 (Ag) = 0.8387 = ag, jy (A1) = 1 =y

Focal element By = {A4;[p1(A;) > ey = 0.8387} = {A; U Ay}, because only 1 (Ay) > cvg and iy (Ay) > ey, Therefore

g — 0 0.8387 — 0.7742
mpees(Ba) = mpeas(A1 U Ag) = S22 = - — 0.0645
M
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On robustness of FCOWA on error sco

Example: decision under ignorance with COWA and FCOWA

Si.Ss.

53,54, 55

12 11 10 120 7] 4, [7, 120]
. 9 10 6 110 3| A -. [3, 110]
l = A2 E|C) =
¢ 713 5 100 6| A, ] (5, 100]
3 ‘ i 1 ' 2, 150
6 2 3 150 4] 4, [ 50)
Rank-level Fusion COWA FCOWA
A A Ay Ay [0.0467,  0.8000] [1.0000,  0.8000]
3. . B y Tmpr v [0.0200,  0.7333] Pz _ (04286, 0.7333]
:i l) f f i EICT= | folosss, 0.6667] ENUHICT =) j07s 06667]
- =1 - 33, 1. 02857, 1.0000
s 1l2 3 4 [0.0133,  1.0000] [0.285 |
Sy 2 3 4 1 wvermaies 4y | i (A) | m(Ag) | (AU ALY Focal Element | mp,.o() | Focal Element | mayul-)
Sy 1 1 2 3 ET 0.0467 | 0.2000 07533 T 04 0A; UA; | 0288 U404, 04, | 0666
Ao 0.0200 0.2667 0.7 AL U 0.1429 AU Az U Ay 00667
A 00333 | 03333 06334 0.2857 AU Ay 0.0667
Ay 0.0133 0 09867 0.2857 Ay 0.1999
Focal Element | BetP{.) Focal Element | BetP(.)
A1 0.2625 p 03300
As 02152 Az 0.1036
Aa 0.2038 As 0.2037
A 0.3185 A 0.1407

The FCOWA method provides a decision A* = A; which is consistent with what we
obtain by rank-level fusion, contrariwise to what gives COWA

@ no general proof of this good behavior of FCOWA has been proved so far
@ impact of the normalization method on FCOWA performances not available yet
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Part Il - Decision-Making Support with BeliefSFuRcHe:

Methods for Multi-Criteria Decision-Making support
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Classical Multi-Criteria Decision-Making (MCDIV

How to make a choice among several alternatives based on different criteria?

Problem modeling 1 = using pairwise comparison matrices — AHP methods

We consider a set of criteria Cyq, ..., Cn with preferences of importance established
from a pairwise comparison matrix (PCM) M. For each criteria C;, a set of preferences
of the alternatives is established from a given pairwise comparison matrix M;.

Problem modeling 2 = using directly the score matrix — TOPSIS methods
@ Asetof M > 2 alternatives A = {A;,..., Am}
@ Asetof N > 1 Criteria C = {Cy,...,Cn}

@ Asetof N > 1 criteria importance weights W = {wy, ..., wn}, withw; € [0, 1]
and 3, wj =1

Ci,wi ... Cj,w; ... Cn,wWN
Al Su S1j Sin
S= A Si1 Sij Sin
AM Smi1 Smj SMN

S is the score matrix of the MCDM problem under consideration
Car example: How to buy a car based on some criteria (i.e. cost, safety, etc.)?
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Methods for solving classical MCDM prot

Important remarks

@ All methods developed so far suffer from rank reversal problem [Wang Luo 2009],
which means that the rank is changed by adding (or deleting) an alternative in the
problem. We consider rank reversal as very serious drawback.

@ Most of existing methods require score normalization at first, except for ERV
(Estimator Ranking Vector) method [Yin et al. 2013]. Normalization has been
identified as one of the origins of rank reversal problem.

@ There is no MCDM method which makes consensus among users, ... but some
are very popular

» AHP (Analytic Hierarchy Process) method is very popular in operational research
community but not exempt of problems

» TOPSIS (Technique for Order Preference by Similarity to Ideal Solution) method is very
popular but the choice of normalization is disputed

What we present

@ AHP method and its extension DSm-AHP using belief functions
[Saaty 1980, Dezert et al. 2010, Dezert Tacnet 2011]

@ a new Belief-Function-based TOPSIS method called BF-TOPSIS to solve classical
and non-classical MCDM problems [Dezert Han Yin 2016, Carladous et al. 2016]
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Part Il - Decision-Making Support with BeliefE

Methods for Multi-Criteria Decision-Making support

e AHP and DSm-AHP methods
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Classical AHP method for MCDM=

AHP = Analytic Hierarchy Process

AHP is a Multi-Criteria Decision-Making method developed by Thomas Saaty in 1980’s
based on the derivation of priority from preferences.

Main steps of classical AHP method [Saaty 1980]

@ The multiple criteria Cy,..., Cy are ordered in a hierarchy of importance
characterized by w = [w; ... wy] such that Z]N:le = 1, obtained either through
a given pairwise comparison matrix (PCM), or given directly.

© For each criterion Cj,j =1,..., N, a set of preferences w(C;) of the choice of
alternatives is established from given pairwise comparison matrix M(Cj)

© Combine by the weighted arithmetic mean these preferences to get the global
ranking of the alternatives

@ Final decision-making is based on the result of step 3 by selecting the most
preferred alternative

Normalized Perron-Frobenius (NPF) eigen vectors (i.e. the eigen vector associated to
largest eigen value) of Pairwise Comparison Matrices are the keys of AHP method.
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Example for classical AHP method;,;‘-

Car selection example O = setof cars = {A,B,C,D}
We consider 3 criteria: C;=Gasoil economy, C,=Reliability, and Cs=style.

@ Establishing importance of criteria from PCM (using NPF eigen vector)

C: C» C3
c[1/1 1/3 4/1 0.2797
M= [M;;]= Cz2|3/1 1/1 5/1 = w= [0.6267 = (Cp>C;>C3
Cs|1/4 1/5 1/1 0.0936

M,; = 3/1 means C, is 3 times as important as C;
Mo; = 5/1 means C, is 5 times as important as C;
@ Similarly, based on the given comparison matrices M(C;) we get w(C;)
For example, suppose we obtain from some PCM M(C;), M(C,) and M(Cs)
w(C1) w(Cz) w(Cs)

Car A [0.2500 0.4733 O.1129]

X _ CarB |0.1304 0.0611 0.4435
W= [w(C) w(C2) w(C3)l = carc | 05100 0.1832 0.0565

Car D | 0.1087 0.2824 0.3871
@ Combination (by weighted arithmetic mean) to get final ranking vector r

r
Car A [0.3771

Car B | 0.1163
~ Car C | 0.2630
Car D | 0.2436

0.1304 0.0611 0.4435
0.5109 0.1832 0.0565
0.1087 0.2824 0.3871

@ Final decision based on r vector: 6 = Car A
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0.0936

0.2500 0.4733 0.1129
r=Wxw= |: ] X [

0.2797
=A>C>D>B



Advantages and limitations of AHP forivC

Advantages

@ quite easy to implement (toolboxes exist for eigen vector computation)
@ easy to use
@ pairwise comparison matrices are convenient for preference elicitation for experts

Limitations

@ rank reversal problem
@ does not take into account for uncertainties in the ranking process

Extension of AHP with DST [Beynon 2002]

@ DS-AHP extends AHP using belief functions and Dempster-Shafer (DS) rule
@ ...but DS rule is questionable, and the importance discounting is not efficient

Extension of AHP with DSmT [Dezert et al. 2010, Dezert Tacnet 2011]

@ DSm-AHP proposes a better rule of combination (PCR6)
@ DSm-AHP proposes a more interesting importance discounting technique
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DSm-AHP method for MCDM =

DSm-AHP is an extension of Analytic Hierarchy Process (AHP) with using, PCR rules
of combination, and the new importance discounting technique to take into account
uncertainty in the ranking process

Main steps of DSm-AHP method [Dezert et al. 2010, Dezert Tacnet 2011]

@ Construction of uncertain comparison matrices. Take as BBA, the normalized
Perron-Frobenius vector of each pairwise comparison matrix

@ Use PCRE6 rule, to combine BBAs to get a final priority ranking vector r

© Make final decision by a chosen classical decision rule (i.e. max of Bel, max of PI,
max of BetP, max of DSmP, or min of dg;)

Advantages of DSm-AHP method

@ better efficient rule of combination
@ distinction between Shafer’s reliability discounting and importance discounting

Drawbacks of DSm-AHP method

@ rank reversal can occur with DS-AHP and DSm-AHP

@ complicate to implement because of PCR6 general formula

@ cannot work with many criteria and alternatives because of its too high complexity
@ Solution — use BBA approximation techniques, and PCR6 rule sequentially
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Main steps of DSm-AHP

Reliability discounting versus importance discounting

Reliability discounting, « € [0, 1] Importance discounting, 3 € [0, 1]
m*(A) = - m(A) VA #O mP(A) =B -m(A) VA#Z
m*(0) = a-m(0) + (1 - «) mP () =B -m() + (1 - B)
« =1 < SoE is 100% reliable B =1 < SoE is 100% important
= 0 < SoE is 100% unreliable B = 0 < SoE is not important

PCR5/6 fusion* of importance discounted BBAs (if B; = B, = 0, mi, ~/°(©) = 1)

) f51 X 2 Y
mll’zCR5/6g(X)zmlczon),ﬁlﬁz(x)+ Z [ B ( ) [5( ) + B ( ) ( ) ]
voo mit(X) +my?(Y) §2(X) + mf*(Y)
XY=
Because mPCRS/%(Q) > 0, a classical normalization applies, that is

PCR5/6 PCR5/64
my, My, (

mECRS5(g5) = 0, and mECRO(X) = 00/ - Z)]for X # &

Note: Dempster-Shafer rule does not react to importance discounting

4use general PCR6 formula for combining more than two BBAs, see [DSmT books], Vols. 2 & 3

Jean Dezert & Degiang Han Fusion 2017 Conference - Tutorial T2 July 10th, 2017 125/162



Example for DSm-AHP method (1)

Car example {Cars} = © = {A, B, C}, {Criteria} = {C; = Economy, C, = Reliability}

Suppose the two given pairwise comparisons matrices M(C;) and M(C,) are
A BuC ©
A 1 750 1/3 0.0889 mi(A)
M(C;)= BuC|?—-0 1 2 = w(C;)~ |0.5337| = | mi(BuC)
e 3 12 1 0.3774 my(0)
A B AuC BuC

A 1 2 a4 3 050027 [ma(A)
B 12 1 12 15 _|o1208| | ma(B)
MC)=aAiclis 2 1 250 = Y~ 0102 = |m(Auc)

BuC |13 5 250 1 0.2568] [ ma(B U C)

Suppose the two criteria have same full importances,i.e. f; =1landf, =1

We apply directly PCR6 rule We take the final decision according a

FEo2® | mi)  ma() | mBCRIE( chosen decision rule from mx /% (.)
0 0 0

2 00889 05002 | 0.3837 FEof2° | Bel() BetP() PL()

B 0 0 01162 A 03837/ 04068  0.4298

AvB 0 01208 | 0 B 01162 03105  0.5049

Soc 5 Simme | oo c 00652 02826  0.5000

BucC 0.5337 0.2568 0.3887

AuBuC 0.3774 0 0

Jean Dezert & Degiang Han Fusion 2017 Conference - Tutorial T2 July 10th, 2017 126 / 162



Example for DSm-AHP method (2

Car example again with different importances 3; = 0.25 and 3, = 0.75

With DSm-AHP

We apply importance discounting to derive m?(-) and m®2(.), apply PCR5/6 rule to

PCR5/6 .
get mys </°2 (.} and normalize to get mFSR/ ()
PCR5/6
FEof2° | mi()  mp() | mP() mP2() | my, () mpot()
%] 0 0 0.7500  0.2500 | 0.6558
A 0.0889 0.5002 | 0.0222  0.3751 | 0.1794 0.5213
B 0 0 0 0 0.0121 0.0351
AUB 0 0.1208 | 0 0.0906 | 0.0159 0.0461
C 0 0 0 0 0.0122 0.0355
AuC 0 0.1222 | 0 0.0917 | 0.0161 0.0469
BuC 0.5337 0.2568 | 0.1334  0.1926 | 0.1020 0.2963
AuBuUC | 03774 0 0.0944 0 0.0065 0.0188
With classic AHP (by simple componentwise weighted averaging)
0 0 0
0.0889  0.5002 0.3974
0 0 0
AHP B:] _|o 0.1208 0.25] _ |0.0906
m3" o = e maO) < B < 1§ 5| < [8%] ~ [
0 0.1222 0.0916
0.5337  0.2568 0.3260
03774 0 0.0944
July 10th, 2017
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Example for DSm-AHP method (3 -

Car example again with different importances 3; = 0.25 and 3, = 0.75
= DSm-AHP reduces the uncertainty of the result U(X) = P1(X) — Bel(X)

Decision drawn from classical AHP using m}""(.) -5 = A

FEof2© | Bel() BetP() PL() | u()

A 0.3974  0.5200 0.6741 | 0.2767
B 0 0.2398 0.5110 | 0.5110
C 0 0.2403 0.5121 | 0.5121

Decision drawn from DSm-AHP using m/, **/°(.) > 5 = A

FEof2© | Bel(-) BetP() PL() | U()

A 05213 05741 06331 | 0.1118
B 0.0351 02126  0.3963 | 0.3612
C 0.0355 02134  0.3974 | 0.3619

In this example AHP and DSm-AHP provide the same decision, but DSm-AHP offers a

better precision (less uncertainty) on the result
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Part Il - Decision-Making Support with BeliefE

Methods for Multi-Criteria Decision-Making support

e TOPSIS and BF-TOPSIS methods
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Classical TOPSIS method for MCDMS

TOPSIS = Technique for Order Preference by Similarity to Ideal Solution

Classical TOPSIS method [Hwang Yoon 1981]
© Build the normalized score matrix R = [Ri;] = [Si;/4/ 2 S3]

@ Calculate the weighted normalized decision matrix D = [wj - Ry;]

© Determine the positive (best) ideal solution A¢st by taking the best/max value in
each column of D

© Determine the negative (worst) ideal solution A*°Tst by taking the worst/min
value in each column of D

@ Compute L2-distances d(A;, Abest) of Ay, (i=1,...,M) to APest and d(A;, Averst)
of A; to Awerst

@ Calculate the relative closeness of A; to best ideal solution A®est by

d(Ai, Aworst)

d(Aq, Aworst) 1 d(A;, Abest)
When C(A;, APest) =1, its means that A; = APest because d(A;, Abest) =0
When C(A;, APest) =0, its means that A; = AW°Tst because d(A;, AV°Tst) =0

@ Rank alternatives A; according to C(A;, A®¢st) in descending order, and select
the highest preferred solution
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Example for classical TOPSIS meth

Cl,W1=1/2 C2,W2=1/2
Aq 6 2
A very simple example for TOPSIS S= A, 3 5
As 4 4
@ Step 1 & 2 (normalization & columns weighting):

C1,1/2 Cp1/2

0.7682  0.2981 0.3841 0.1491
R=[Sy/,[>.8%]=R= | 03841 07454 | = D= |[01921 03727

T 0.5121  0.5963 0.2561 0.2081
© Step 3 & 4 (best and worst solutions) APest = [0.3841 0.3727], AWerst

— [0.1921 0.1491]
© Step 5 (L,-distance of A; to Abst and to A™erst):

Abest =[0.3841 0.3727] Aworst

d(Ap, APest) =02236  d(A;, AWOTSt) =0.1921

= [0.1921 0.1491]
d(Az, APest) =0.1921  d(Az, AWOTSt) =0.2236 }

0.1921 0.3727]

0.3841 0.1491]
0.2561 0.2981]

A=
As =
Az =

d(Asz APest) — 01482 d(As, AWOTSt) =0.1622
@ Step 6 (relative closeness of A; to APest): C(A;, Abest) =

d(Ai,AworSt)
d(Ai,AW"TSt)i»d(Ai.AhESt)

C(Ay APest) = 05380  C(Aj, APSY) = 0.5227
@ Step 7 (ranking by decreasing order of C(A;, A®est)): Ay > Az > Ay
Based on TOPSIS, the decision 6 to make is 6 = A,
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BF-TOPSIS method for MCDM ===

BF-TOPSIS is a TOPSIS-alike method based on belief functions [Dezert Han Yin 2016]

Advantages of BF-TOPSIS
@ no need for ad-hoc choice of scores normalization
@ relatively simple to implement
@ more robust to rank reversal phenomena (although not exempt)

Main problem to overcome

Working with belief functions requires the construction of BBAs. How to build efficiently
BBAs from the score values

Solution — see next slides

Four BF-TOPSIS methods available with different complexity
@ BF-TOPSIS1: smallest complexity
@ BF-TOPSIS2: medium complexity

© BF-TOPSIS3: high complexity (because of PCR6 fusion rule)
© BF-TOPSIS4: high complexity (because of ZPCR6 fusion rule)

BF-TOPSIS for working with imprecise scores presented in [Dezert Han Tacnet 2017]



AN

BBA construction for BE-TOPSIS ()

@ Positive support of A; based on all scores values of a criteria C;

ke{1,..M}|Sk;j<Si;

Sup;(A;) = > |Sij — Sij J

Sup;(A;) measures how much A; is better (higher) than other alternatives

@ Negative support of A; based on all scores values of a criteria C;

Infj(A;) = — > 1S4 — Sy J

ke{l,..M}[Sk;>S;

Inf;(A;) measures how much A; is worse (lower) than other alternatives
Important inequality see proof in [Dezert Han Yin 2016]

A

min

S'LL‘pj (Al)
Ahax

iff Al

= max; Sup;(A;) and AJ

min
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BBA construction for BF-TOPSIS(2)8 X

. Sup;(Ay) Inf; (Ay)
Reminder A}.nax <1- A],jn .
Belief function modeling
(A = Inf; (A4
Bel-lj (Al) = M and Beli]’ (Al) = m J
Ao AL,
If Agnax =0, we set Belij (Xl) =0 B
If AJ., =0, we set PL;;(A;) = 1 so that Bel;;(A;) =0
By construction, 0 < Belyj(Ai) < (Pl (A) = 1 — Belyj(Ay)) <1

BBA construction from Belief Interval

From [Belij(Ai), PLi;(A4)], one gets the M x N BBAs matrix M = [my;(-)] by taking
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BBA construction for BF-TOPSIS (S)

Advantages of this BBA construction

Q if all Sy; are the same for a given column, we get VA;, Sup;(A;) = Infj(A;) =0
and therefore m;;(A; U A;) = 1 which is the vacuous BBA, which makes sense.

@ itis invariant to the bias and scaling effects of score values. Indeed, if S; are
replaced by S{j = a- Si; + b, with a scale factor a > 0 and a bias b € R, then
m;(-) and m{;(-) remain equal.

© if a numerical value S;; is missing or indeterminate, then we use the vacuous

belief assignment m;(A; U A;) = 1.

© We can also discount the BBA my;(-) by a reliability factor using the classical
Shafer’s discounting method if one wants to express some doubts on the reliability
of myj ()
In summary
From [Sij]: we know how to build the matrix M = [(mij (Ai), mij (Ai), mij (A1 U Al))]
How to use these BBAs to rank A; to make a decision? — BF-TOPSIS methods
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BF-TOPSIS1 method

Steps of BF-TOPSIS1 [Dezert Han Yin 2016]

@ From S, compute BBAs my;(A;) mij(As), and my;(A; U Ay)
Q Set m¥¥'(A;) = 1, and m¥!(A;) = 1 and compute distances df; (m;, m?') and
dBI(mu , M) to ideal solutions.

© Compute the weighted average distances of A; to ideal solutions

dbeSt(Ai) & best)

E
wj - dgr(mij, mg

VP

Il
—

dworst (Ai) & orst)

~dgp (myj, m}

'MZ

Il
—

)
@ Compute the relative closeness of A; with respect to ideal best solution Asst

dworst ( Ai)

besty
C(Ai,A es) - dworSt(Ai) + dbest(Ai)

© Rank A; by C(A;, Ab*s!) in descending order.

Jean Dezert & Degiang Han Fusion 2017 Conference - Tutorial T2 July 10th, 2017 136 /162



BF-TOPSIS2 method

Steps of BF-TOPSIS2 [Dezert Han Yin 2016]

@ From S, compute BBAs m;(A;) my;(Ai), and myj(A; U Ay)
Q Set mi¥'(A;) = 1, and m¥'(A;) = 1 and compute distances df; (m;, m?') and
dg (myj, miP™) to ideal solutlons

© For each criteria C;, compute the relative closeness of A; to best ideal solution
Abest by
dBI (mu , mWOI’Sl)

C. Ai,AbeSt &
1( ) dBI(mll' worst) +dBI(m1J mbest)

@ Compute the weighted average of C;(A;, AP*!) by

1

C(A,',, Abest) & wj - Cj (Ai: Abest)

1

)

© Rank A; by C(A;, Ab*s!) in descending order.
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BF-TOPSIS3 and BF-TOPSIS4 methog

Steps of BF-TOPSIS3 [Dezert Han Yin 2016]

© Compute BBAs my;(A;), mij(A;) and mi;(A; U A;) and apply importance
discounting of each BBA with weight w;, see [Smarandache Dezert Tacnet 2010]

@ For each A, fuse the discounted BBAs with PCR6 to get BBAs mPCRé(.)

Q Set mbest(A;) = 1, and m¥°st(A;) = 1. Compute distances

dbESt(Ai) & dgl(m?CRe, m?est)

dworst(Ai) 2 dEI(mPCRs m\(vorst)
© Compute the relative closeness of A;,i=1,..., M, with respect to ideal best

solution Abest
dworst(Ai)

dworst(Ai) + dbest(Ai)
© Rank A; by C(A;, Ab*s!) in descending order.

C(Ai, Abest) &

BF-TOPSIS4 method

Same as BF-TOPSISS, but PCR6 rule is replaced by ZPCR®6 rule (i.e. PCR6 rule
including Zhang'’s degree of intersection) [Smarandache Dezert 2015]
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On consistency of BF-TOPSIS meth

BF-TOPSIS methods are consistent with direct ranking in mono-criteria case

Example (Mono-criteria)

Ci
A1 [ 10
Al 20
Az | =5
S= As| O
As | 100
Ag | —11
A7 0
Results

mir(Ai) mi(Ai) mi(Ai U AY)

0.0955
0.1809
0.0102
0.0273
1.0000
0
0.0273

Preference order — greater value is better

0.5236 0.3809
0.4188 0.4003
0.8115 0.1783
0.6806 0.2921
0 0
1.0000 0
0.6806 0.2921

=

C (Ai , Abest)
0.1130
0.1948
0.0257
0.0485
1.0000

0
0.0485

Ranking methods

Preferences order

By direct ranking

A5>A2>A1>(A4~A7)>A3>A6

By BF-TOPSIS As > Ax > Ap > (Ay ~ A7) > Az > Ag
By DS fusion As > (A1 ~Ax~ A3 ~As~Ag ~ A7)
By PCR6 fusion As > Ax > Ay > Ay > (Az ~ Ag ~ A7)

Rankings resulting of DS and PCR6 fusion of the BBAs do not match with direct ranking even in mono criteria
case because of strong dependencies between BBAs in their construction.
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On consistency of BF-TOPSIS methodsi(

In this example, we have Score(As) >> Score(A,)

C, C(Ai, Abest)
Ap | 10 Al 0.1130
Ay | 20 A 0.1948
Az | =5 Az 0.0257
S Ay 0 = Ay 0.0485 = As > Ay > A1 > (As ~ A7) > Az > Ag

As | 100 As 1.0000
AG —11 AG 0

Az 0 Az 0.0485

Let’'s modify the example with Score(As) ~ Score(A,)

C, C(Ai, Abest)
Ay [ 10 Al 0.5072
Az | 20 Ao 0.9472
Az | =5 As 0.0675
S= A, 0 = Ay 0.1584 = As > Ax > A1 > (As ~ A7) > A3 > Ag

As 21 As 1.0000
Ag | —11 Asg 0

A7 O Az 0.1584

We see that A, is very close to ideal best solution, even if final result is unchanged.
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BF-TOPSIS when all scores are the sa

When all scores are the same

= all BBAs are the same and equal to the vacuous BBA
= all closeness measures to best ideal solution are equal

C1 mi (A U Ay) C(A;, Abest)
Al S Al 1 Al C
S= A; s [ =M= A; 1 = A; c
AM S AM 1 AM C

Conclusion: No specific choice can be drawn, which is perfectly normal.
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Multi-Criteria example [Wang Luo 2009]

We consider 5 alternatives, and 4 criteria

1 1 1 1
Cig Coz Cs3 Cag

Al 36 42 43 70
A 25 50 45 80
S= Aj 28 45 50 75
As| 24 40 47 100
As 30 30 45 80
Rank reversal with TOPSIS
Set of alternatives TOPSIS
{Al,Az,A3} A3>A2>A1
{Al,Az,A3,A4} A2>A3>A1 >A4
{Al,Az,A3,A4,A5} A3>A2>A4>A1 >A5
Rank reversal

Rank reversal with BF-TOPSIS

Set of alternatives BF-TOPSIS1 & BF-TOPSIS2 | BF-TOPSIS3 & BF-TOPSIS4
{Al,AQ,A3} A2>A3>A1 A3>A2>A1
{Al,Az,A3,A4} Az > Ar > Ay > Ay Az > A > Ay > Ay

{A1L,A2,A3, A4 As} | As>Ar > Ag> Al > As

Az > Ay > Ay > A1 > As

Rank reversal

No rank reversal
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MCDM car selection example

Car selection example

How to buy a car among 4 possible choices, and based on 5 different criteria with
Welghts Wi = 5/17, Wy = 4/17, W3 = 4/17, Wy = 1/17, and Wy = 3/17

@ C; = price (in €); the least is the best

@ C; = fuel consumption (in L/km); the least is the best
@ C3 = CO; emission (in g/km); the least is the best

@ C, = fuel tank volume (in L); the biggest is the best
@ Cs = trunk volume (in L); the biggest is the best

Building the score matrix from http://www.choisir-sa-voiture.com

5 4 4 1 3
G Gy Gy G Gy

A1 = TOYOTA YARIS 69 VVT Tendance 15000 4.3 99 42 73
g A = SUZUKI SWIFT MY15 1.2 WT SoGity 15290 5.0 116 42 892
" A3 = VOLKSWAGEN POLO 1.0 60 Confortiine 15350 5.0 114 45 952

A4 = OPEL CORSA 1.4 Turbo 100 ch Start/Stop Ediion | 15490 5.3 123 45 1120

A; is the expected best choice because the 3 most important criteria meet their best
values for car A;.

With classical TOPSIS A, > A; > A3 > A, (counter-intuitive)

With all BF-TOPSIS methods A; > A3 > A, > A, (which fits with what we expect)


http://www.choisir-sa-voiture.com

MCDM Best student prize examplée

Best student prize example
How to give the best student prize awards among 4 students {A;, A,, A3, A4}, and

based on 10 different criteria with equal importance (w; = 1/10,j =1,...,10) ?

Ay Ao Az Ag

C; £ Math 90 80 70 60

Cy = Arts 90 80 70 60

C3 = English 90 80 70 60

C,4 = Geography 90 80 70 60

Cs = Physics 90 80 70 75

Cg = Music 90 80 70 95

C7 = History 80 90 70 85

Cg = Chemistry 80 90 70 85

Co = Biology 80 90 70 85

Cipo = Longjump | 35m 3.7m 4.0m 3.6m
BF-TOPSIS results
Considering 3 students {A 1, Ay, A3} only Considering the 4
Methods Ranking vectors Preferences orders Ranking vectors Preferences orders

ERV 0.748,0.636, 0.188 A1 > Ay > Aj 0.620, 0.636, 0.248, 0.386 Ap > A1 > Ay > A
BF-TOPSIST 0.729,0.594, 0.100 AL > Ay > A3 0.675, 0.620, 0.195, 0.320 AL > Ay > Ag > Az
BF-TOPSIS2 0.731,0.597,0.100 Al > Ao > Az 0.677,0.622,0.194,0.319 Al > Ay > Ay > Az
BF-TOPSIS3 0.803, 0.736, 0.100 Al > Ao > Az 0.766,0.775, 0.158, 0.288 Ao > Al > Ay > Az
BF-TOPSIS4 0.803, 0.736, 0.100 A1 > Ax > Az 0.766, 0.775, 0.158, 0.288 Ag > A1 > Ay > A3

ERV, BFTOPSIS3, and BFTOPSIS4 exhibit rank reversal

BFTOPSIS1and BFTOPSIS2 work fine here (no rank reversal)
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Part Il - Decision-Making Support with Beliei Fuig RN

Non classical MCDM problem
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Non-Classical Multi-Criteria Decision-Making C

How to make a choice in A from multi-criteria scores expressed on power-set of A ?

X; e 24 Ciwi ... GCjw; ... Cn,wn
Ay [ Su .. Sy ... S ]
As Su ... Sy ... S
S+ Aw Smi ... Smj ... Swn
}.\1 U Ay SM411 .- S(M.+1)j oo StMaN
AtU. L UAULLUAM| Somgy; - S(ziv;,l)j o SeMonN |

See [Dezert Han Tacnet Carladous Yin 2016, Carladous 2017] for details
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BBA construction for non classical MCB

Direct extension of BBA construction [Dezert Han Tacnet Carladous Yin 2016]

How to build m(.) : 24*{A1A2-Am} s [0, 1] from scores S = [Sy;]?

@ Positive support of X; € 2 based on all scores values of a criteria C;

Ye24 S5 (Y)<S; (X3)

Sup;(Xy) = Z 1S;(Xi) = S;(Y)| J

Sup;(X;) measures how much X; is better (higher) than other Y of 2
@ Negative support of X; € 2* based on all scores values of a criteria C;

) =— Y I80%) = (V)] J

Ye2A |85 (Y)=S; (X3)

Inf;(X;) measures how much X; is worse (lower) than other Y of 2
Belief function modeling

Sup; (Xi ; 5
o< Sup; (Xi) _ 1 Infs X)) _ Bely; (Xi) = inx;)- With Xinax = max; Sup; (Xi)
T X X Bely; (X;) = I“QJ& with XJ. = ming Inf;(X:)

min
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Simple example of non classical MCDM prﬁ

e

Example 1

Five students A, ..., As have to be ranked based on two criteria
@ C; =long jump performance
@ C, = collected funds for an animal protection project

The scores are given as follows

Xi € 2A Cl,Wl C2,W2

A 3.7m %]

As 3.6m %)
g A 38m o

As 3.7m 640€

Al U A2 %] 600€
Az U A, 1%} 650€

Difficulties:

@ Scores are given in different units and different scales
@ Some scores values can be missing
@ Criteria C; do not have same weights of importance w; (in general)
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Example of non classical MCDM problem with

Step 1: BBA matrix construction

FE e 2A Cl,Wl C2,W2 C1,W1 C2:1’\)2
Ai 3.7m (%] (0.25,0.25,0.50) (0,0,1)
As 3.6m (%] (0,1,0) (0,0,1)
g As 3.8m (%] M= (1,0,0) (0,0,1)
T As 3.7m 640€ - (0.25,0.25,0.50) (0.6667,0.1111, 0.2222)
A1 U A, (o] 600€ (0,0,1) (0,1,0)
Az U A, (%] 650€ (0,0,1) (1,0,0)
Step 2: distances to ideal best and worst solutions
Focal elem. dBI(milvmbESt) dBI(m“vmworst) dBI(mi2vmbESt) dBI<miZ~mWOTSt)
Aq 0.6016 0.2652 0.7906 0.2041
A3 0.8416 0 0.7906 0.2041
Ag 0 0.8416 0.7906 0.2041
As 0.6016 0.2652 0.2674 0.5791
A1uU Ay 0.5401 0.3536 0.6770 0
Az U Ay 0.5401 0.3536 0 0.6770
Steps 3-5: weighted distances with w; = 1/3 and w, = 2/3, closeness and ranking
Focalelem. | abest(x;) — aworst(x;) C(x;, xbesty Ranking
Al 0.7276 0.2245 0.2358 4
A3z 0.8076 0.1361 0.1442 6
Ay 0.5270 0.4166 0.4415 3
As 0.3788 0.4745 0.5561 2
Al U Ay 0.6314 0.1179 0.1573 5
Az U Ay 0.1800 0.5692 0.7597 1
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A more concrete example of non classical MCB

Application: Protecting housing areas against torrential floods
Presented in [Dezert Han Tacnet Carladous Yin 2016, Carladous 2017]
List of alternatives (possible actions to take)

@ A;= maintenance of check dams’ series

@ A,=no maintenance, but build a sediment trap upstream

@ A ;= make individual protections to limit damage on buildings
List of criteria

@ C; (in €) = investment cost (in negative values)

@ C, (in €) = risk reduction in 50 years between the current situation and expected situation with the chosen
action

@ C;3(in{1,2,...,10}) = impact on environment
@ C, (in m?) = the land-use areas needed in privates
Score matrix (the higher is the score, the better is the proposition)
Cy,w; =033 Cy,wy =033 C3,w3=020 C4,wy=0.14

Aq —150000 100000 10 0
Ao —500000 200000 2 —20000
Az —550000 250000 10 —5000
S= A1UA> —650000 230000 2 —20000
A1 U A3 —700000 250000 10 —5000
Ax U Az —1050000 250000 2 —25000
A1UArU Az —1200000 250000 2 —25000

Note: the scores are not cumulative in the same way for each criterion. For C; and C4, the score of the
disjunction of two alternatives is the sum of individual scores whereas it is not the case for C, and Cs.
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A more concrete example of non classical M

Here we apply BFTOPSIS1 method for its simplicity

Step 1: BBA construction from score matrix S

Ci1,wy Co,wo C3, w3 Ca, Wy
Ay (1,0,0) (0,1,0) (1,0,0) (1,0,0)
A, (0.44,0.10,0.46) (0.45,0.28,0.27) (0,1,0) (0.10,0.67,0.23)
As (0.37,0.13,0.50) (1,0,0) (1,0,0) (0.70,0.07,0.23)
M= A;UA, (0.27,0.21,0.52) (0.73,0.10,0.17) (0,1,0) (0.10,0.67,0.23)
A1 U A3 (0.23,0.26,0.51) (1,0,0) (1,0,0) (0.70,0.07,0.23)
AU Az (0.04,0.75,0.21) (1,0,0) (0,1,0) (0,1,0)
A1 UAp U A; (0,1,0) (1,0,0) (0,1,0) (0,1,0)
Steps 2-5: weighted distances with w; = w, = 0.33, w3 = 0.20, w, = 0.14, closeness
and ranking
Focal elem. X; | d®®s(X;)  d"os{(X;) || C(Xi,XPest) || Ranking
AL 0.3012 06116 0.6700 3
A, 0.5668 0.3677 0.3935 6
As 0.1830 0.7483 0.8035 2
A1 U A, 0.4476 0.4901 0.5226 4
A1 U A3 0.1555 0.7775 0.8333 1
Az U As 0.5562 0.3614 0.3938 5
A1 UA, U A3 0.8328 0.2694 0.2444 7

Final ranking: best action(s) to take
(A1UA3) >A3>A1 > (A1UA2) > (AzUA3) >A2 > (A1UA2UA3)
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Toolboxes for working with belief functir_

@ To start working with BF, we recommend Smets TBM MatlLab codes that include
many useful efficient functions based on Fast Mébius Transforms

http://iridia.ulb.ac.be/~psmets/

@ Main toolboxes for working with BF can be found from Belief Functions and
Applications Society (www.bfasociety.org) wiki webpage at

http://bfaswiki.iut-lannion.fr/wiki/index.php/Toolboxes

@ Explanations for implementation of generalized belief functions can be found in

A. Martin, Implementing general belief function framework with a practical
codification for low complexity, in [DSmT books], Vol. 3, Chap 7, 2009.

@ Implementation of fusion rules by sampling techniques (java package)
http://refereefunction.fredericdambreville.com
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