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Information Fusion with Belief Functions
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Part I - Information Fusion with Belief Functions

Short historical overview

Jean Dezert & Deqiang Han Fusion 2017 Conference - Tutorial T2 July 10th, 2017 4 / 162



Short historical overview

1933 - Probability Theory
studied by Blaise Pascal in 1634
Objective, i.e. frequency interpretation PpAq “ # of possible outcomes for eventA

# of possible outcomes for space S

Geometric interpretation: PpAq “ Geometric measure of setA
Geometric measure of space S

Long run freq. interpretation (Von Mises): PpAq “ limNÑ8
# of possible outcomes of eventA

N (total # of trials)
Subjective interpretation (De Finetti): PpAq as subjective degree of belief in A

Axiomatic framework based on measure theory (Kolmogorov 1933)

Game-theoretic framework (Vovk & Shafer 2001)

1976 - Dempster-Shafer Theory (DST)
introduction of Belief Functions (BF) by Shafer based on Dempster’s works (1967)

1978 - Theory of possibilities
introduced by Zadeh, Dubois & Prade.
Fuzzy sets are interpreted as possibility distributions

1991 - Theory of Imprecise Probabilities
introduced by Walley to deal with 2nd order probabilities

2003 - Dezert-Smarandache Theory (DSmT)
new theoretical framework and methods to work with belief functions
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Limitations of probabilities

Deal generally with information drawn from generic knowledge based on
population of items, laws of physics, or common sense

Capture only one aspect of the uncertainty (the randomness, i.e. the variability
through repeated measurements)

Do not account for incomplete knowledge (epistemic uncertainty)

Cannot distinguish between uncertainty due to variability, and uncertainty due to
lack of knowledge

Variability is related with precisely observed random observations

Incompleteness is related with missing and partial information
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On modeling ignorance with probabilities (1)

Consider a random variable W taking its value w P r1, 2s

Suppose ignorance modeling is done with uniform distribution on r1, 2s based on the
insufficient reason principle

Cumulative distribution function (cdf) of W

W „ upr1, 2sq ô PpW ď wq “

$

’

&

’

%

0 if w ă 1

w´ 1 if 1 ď w ď 2

1 if w ą 2

Proba density function (pdf) of W

pWpwq fi
B

Bw
PpW ď wq “

"

1 ifw P r1, 2s

0 ifw R r1, 2s
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On modeling ignorance with probabilities (2)

Take V “ 1{W with W „ upr1, 2sq, then v P r1{2, 1s

Cumulative distribution function (cdf) of V

PpV ď vq “ Pp
1

W
ď vq “ PpW ě

1

v
q “ 1´ PpW ă

1

v
q “

$

’

&

’

%

1 if 1
v
ă 1

2´ 1
v

if 1
v
P r1, 2s

0 if 1
v
ą 2

Proba density function (pdf) of V

pVpvq fi
B

Bv
PpV ď vq “

"

1
v2 if v P r1{2, 1s

0 ifw R r1{2, 1s

V is not uniformly distributed on r1{2, 1s.This is not very satisfactory to model

ignorance because full ignorance on W should not provide information on 1{W.

The matter in this problem is the choice of random variable W P r1, 2s or
V “ 1{W P r1{2, 1s and the particular choice of underlying probability distribution to
model ignorance. Probability Theory cannot help efficiently for the choice of a priori
distribution under epistemic uncertainty (lack of knowledge).
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Part I - Information Fusion with Belief Functions

Basics of the theory of belief functions
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Theory of Belief Functions

Belief is the state of mind in which one thinks something to be true.

History

introduced by Glenn Shafer in 1976 [Shafer 1976]

also known as Dempster-Shafer Theory (DST) in the literature
http://www.glennshafer.com/books/amte.html

Main references

Paradigm shift
Beliefs often are related with singular event or evidence, and are not necessarily related with
statistical data and generic knowledge.
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Frame of discernment and power set

Frame of discernment (FoD)

The set of all possible solutions of the problem under concern is called the FoD.
Typically noted

Θ “ tθi, i “ 1, . . . ,nu

Criminal investigation example (list of suspects)

Θ “ tθ1 “ Peter, θ2 “ Paul, θ3 “ Maryu

Shafer’s model of FoD

Θ is a finite set, with all elements exclusive two by two.

Power set of Θ is the set of all subsets of Θ (empty set H included) noted

2Θ fi tX|X Ď Θu

# of elements of the power set : |2Θ| “ 2|Θ|
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Example of power set
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Equivalence between propositions and subsets

Any subset A of the FoD Θ corresponds to the proposition

PθpAq fi The true value of θ is in the subset A of Θ

Equivalence between set operators and logical operators
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Basic Belief Assignment (BBA)

Mass function (i.e. BBA)

A source of evidence (SoE) about θ is represented by a BBA (or mass function)
mΘp¨q : 2Θ ÞÑ r0, 1s such that1

mΘpHq “ 0 and
ÿ

AP2Θ

mΘpAq “ 1

(1) ñ no positive mass is committed to impossible event.
(2) ñ a mass function is normalized to one.

Focal element (FE) of mp¨q

A Ď Θ is a Focal Element (FE) of mp¨q if mpAq ą 0

Fpmq fi tA P 2Θ|mpAq ą 0u

Core of mp¨q

Cpmq fi
ď

APFpmq

A

1For notation simplicitymΘp¨q will be notedmp¨q if there is no confusion.
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Special BBAs

Let’s take the FoD Θ “ tA,B,Cu as example.

Categorical mass function: mp¨q has a unique focal element different from Θ

mpAq “ 1 and mpXq “ 0 for any X P 2Θ such that X ‰ A

mpAY Cq “ 1 and mpXq “ 0 for any X P 2Θ such that X ‰ AY C

Consonant mass function: if FE of mp.q are nested, A1 Ă A2 . . . Ă Θ

mpAq “ 0.6, mpAY Cq “ 0.1 and mpAY BY Cq “ 0.3

Dogmatic mass function: if mpΘq “ 0

Certain mass function: if mpXq “ 1 for some singleton X P 2Θ

Simple support mass function: if mpAq “ r and mpΘq “ 1´ r for some A P 2Θ

Bayesian belief mass: FE are only singletons of 2Θ („ proba pmf)

mpAq “ 0.6, mpBq “ 0.4

mpAq “ 1{3, mpBq “ 1{3 and mpCq “ 1{3

Vacuous belief assignment (VBA): It represents the full ignorant (uninformative) SoE

mvpΘq “ 1 and mvpAq “ 0, @A ‰ Θ
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Belief and plausibility functions

Belief in A: Total degree of support of A by the source of evidence

mtobel : BelpAq fi
ÿ

BP2Θ|BĎA

mpBq “ PlpΘq ´ PlpĀq “ 1´ PlpĀq

Plausibility of A: Total degree of non contradiction of A by the SoE

mtopl : PlpAq fi
ÿ

BP2Θ|BXA‰H

mpBq “ BelpΘq ´ BelpĀq “ 1´ BelpĀq

where Ā fi Θ´A is the complement of A in Θ.

Belief interval, and uncertainty on A:
"

BIpAq fi rBelpAq,PlpAqs

UpAq fi PlpAq ´BelpAq

Property: @A P 2Θ, BelpAq ď PlpAq

Interpretation: BelpAq and PlpAq are usually interpreted as lower and upper bound of
the unknown probability PpAq of A, and @A Ď Θ

0 ď BelpAq ď PpAq ď PlpAq ď 1

BIpAq “ PpAq “ PlpAq if mp¨q is a Bayesian BBA
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Example of Bayesian belief functions

Example of Bayesian BBA

Θ “ tA,B,Cu

mp.q Belp¨q Plp¨q

mpHq “ 0 0 0
mpAq “ 0.1 0.1 0.1
mpBq “ 0.3 0.3 0.3
mpCq “ 0.6 0.6 0.6
mpAYBq “ 0 0.4 “ 0.1` 0.3 0.4 “ 0.1` 0.3
mpAYCq “ 0 0.7 “ 0.1` 0.6 0.7 “ 0.1` 0.6
mpBYCq “ 0 0.9 “ 0.3` 0.6 0.9 “ 0.3` 0.6
mpAYBYCq “ 0 1 “ 0.1` 0.3` 0.6 1 “ 0.1` 0.3` 0.6

BelpYq fi
ÿ

XP2Θ|XĎY

mpXq and PlpYq fi
ÿ

XP2Θ|XXY‰H

mpXq
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Example of non Bayesian belief functions

Example of Non Bayesian BBA

Θ “ tA,B,Cu

mp.q Belp¨q Plp¨q

mpHq “ 0 0 0
mpAq “ 0.01 0.01 0.65“BelpAq` 0.04` 0.2` 0.4
mpBq “ 0.02 0.02 0.76“BelpBq` 0.04` 0.3` 0.4
mpCq “ 0.03 0.03 0.93“BelpCq` 0.2` 0.3` 0.4
mpAYBq “ 0.04 0.07“ 0.01` 0.02` 0.04 0.97“BelpAYBq` 0.2` 0.3` 0.4
mpAYCq “ 0.2 0.24“ 0.01` 0.03` 0.2 0.98“BelpAYCq` 0.04` 0.3` 0.4
mpBYCq “ 0.3 0.35“ 0.02` 0.03` 0.3 0.99“BelpBYCq` 0.04` 0.2` 0.4
mpAYBYCq “ 0.4 1 1

BelpYq fi
ÿ

XP2Θ|XĎY

mpXq and PlpYq fi
ÿ

XP2Θ|XXY‰H

mpXq
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Characterization of Bel function

Belp¨q : 2Θ ÞÑ r0, 1s is a monotone capacity function which satisfies

BelpHq “ 0 and BelpΘq “ 1

and @k ě 2 and for any collection A1, . . . ,Ak in 2Θ the inequality

Bel
´

k
ď

i“1

Ai

¯

ě
ÿ

H‰IĂt1,...,ku

p´1q|I|`1
Bel

´

č

iPI

Ai

¯

Properties of Bel

Sub-additivity: BelpAq ` BelpBq ď BelpAY Bq, in particular BelpAq ` BelpĀq ď 1

Monotonicity: A Ď Bñ BelpAq ď BelpBq

Properties of Pl

Super-additivity: PlpAq ` PlpBq ě PlpAY Bq, in particular, PlpAq ` PlpĀq ě 1

Monotonicity: A Ď Bñ PlpAq ď PlpBq
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Dempster construction of belief functions by multivalued mapping

Fundamental Dempster’s idea [Dempster 1967]

Belief (lower proba) and Plausibility (upper proba) construction come from a
multivalued mapping as follows

Start with a random variable X with set of possible values in X “ txj, . . . , xmu with
known probabilities pj “ PpX “ xjq
Choose a frame of discernment Θ “ tθ1, . . . , θnu for the variable θ
Learn a (multivalued) mapping Γ : X ÞÑ 2Θ with the meaning: if X “ xi, then θ P A,
where A “ Γpxiq P 2Θ

The belief (lower proba) and plausibility (upper proba) that θ P A are given by

P˚pAq “ BelpAq “ Belpθ P Aq “ Pptx P X|Γpxq ‰ H, Γpxq Ď Auq

P˚pAq “ PlpAq “ Plpθ P Aq “ Pptx P X|Γpxq XA ‰ Huq

see examples on the next slide

Smets TBM proposal [Smets 1990, Smets Kennes 1994]

Smets proposed his Transferable Belief Model (TBM) to justify belief functions
axiomatically with no need of underlying probabilistic multivalued mapping Γp¨q.
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Example of BBA construction

Example Testimony report from sometimes reliable witness

Paul has been killed and Police asks a witness W: Did you see Mary killing Paul?
Witness answer is Yes

X “ tx1 “W is reliable, x2 “W is not reliableu, and assume

#

Ppx1q “ 0.4

Ppx2q “ 0.6

FoD Θ “ tθ1 “ Mary is guilty, θ2 “ Mary is not guiltyu
Multivalued mapping

Γpx1 “W is reliableq “ θ1 ñ Mary is guilty

Γpx2 “W is not reliableq “ tθ1, θ2u “ Θ ñ We don’t know

Belief values

Belpθ1q “ Pptx|Γpxq Ď θ1uq “ Ppx1 “ reliableq “ 0.4

Belpθ2q “ Pptx|Γpxq Ď θ2uq “ 0

Belpθ1 Y θ2q “ Pptx|Γpxq Ď θ1 Y θ2uq “ Pptx1, x2uq “ Ppx1q ` Ppx2q “ 1

Plausibility values

Plpθ1q “ Pptx|Γpxq X θ1 ‰ Huq “ Pptx1, x2uq “ Ppx1q ` Ppx2q “ 1

Plpθ2q “ Pptx|Γpxq X θ2 ‰ Huq “ Ppx2q “ 0.6

Plpθ1 Y θ2q “ Pptx|Γpxq X pθ1 Y θ2q ‰ Huq “ Pptx1, x2uq “ Ppx1q ` Ppx2q “ 1
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Other example of BBA construction

Example Testimony report from more or less precise witness

X “ tx1 “W is precise, x2 “W is approximate, x3 “W is not reliableu
and assume Ppx1q “ 0.3, Ppx2q “ 0.1 and Ppx3q “ 0.6

FoD: Θ “ tθ1 “ Mary, θ2 “ Peter, θ3 “ Johnu

Paul has been killed and Police asks a witness W: Who did you see killing Paul?
Witness answer is Mary
Multivalued mapping:

Γpx1 “W is preciseq “ θ1 ñ Mary killed Paul

Γpx2 “W is approximateq “ tθ1, θ2u ñ Mary or Peter killed Paul

Γpx3 “W is not reliableq “ tθ1, θ2, θ3u “ Θ ñ We don’t know

Belief values

Belpθ1q “ Pptx|Γpxq Ď θ1uq “ Ppx1 “W is preciseq “ 0.4

Belpθ2q “ Pptx|Γpxq Ď θ2uq “ 0

Belpθ3q “ Pptx|Γpxq Ď θ3uq “ 0

Belpθ1 Y θ2q “ Pptx|Γpxq Ď θ1 Y θ2uq “ Pptx1, x2uq “ Ppx1q ` Ppx2q “ 0.4

BelpΘq “ Ppx|Γpxq Ď Θq “ Pptx1, x2, x3uq “ Ppx1q ` Ppx2q ` Ppx3q “ 1
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Computing m from Bel and Pl

Möbius inversion formula [Kennes 1992]

To any Belp¨q functions corresponds a unique mass function mp¨q given by

beltom : @A P 2Θ, mpAq “
ÿ

BĎA

p´1q|A´B|BelpBq

To any Plp¨q functions corresponds a unique mass function mp¨q given by

pltom : @A P 2Θ, mpAq “
ÿ

BĎA

p´1q|A´B|p1´ PlpB̄qq

mp¨q, Belp¨q and Plp¨q are one-to-one and are equivalent representations of a SoE.
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Implicability and commonality functions

Useful for computation of belief functions in fusion rules

Implicability function

mtob : bpAq fi
ÿ

BP2Θ|BĎA

mpBq “ BelpAq `mpHq

btom : mpAq “
ÿ

BP2Θ|BĎA

p´1q|A|´|B|bpBq

Commonality function

mtoq : qpAq fi
ÿ

BP2Θ|BĚA

mpBq

qtom : mpAq “
ÿ

BP2Θ|BĚA

p´1q|A|´|B|qpBq

All one-to-one transformations between Bel, b, Pl, q and m are listed in [Smets 2002]
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Part I - Information Fusion with Belief Functions

Discounting sources of evidence
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Reliability discounting of a BBA

Shafer’s reliability discounting rule [Shafer 1976]

To be used if one has a good estimation of the reliability factor α P r0, 1s of the SoE
based on past experiments and ground truth.

#

mαpAq fi α ¨mpAq @A ‰ Θ

mαpΘq fi α ¨mpΘq ` p1´ αq

α “ 1 means "the SoE is 100% reliable" ñ mα“1p¨q “ mp¨q (the BBA is unchanged)
α “ 0 means "the SoE is 100% unreliable" ñ mα“0p¨q “ mvp¨q (the BBA is changed to
vacuous BBA)

If a source is totally unreliable pα “ 0q, it can be combined with the other BBAs if and
only if the fusion rule preserves the neutral impact of vacuous BBA, otherwise this
source must be discarded (i.e. removed of the set of BBAs to fuse)

More refined discounting rules exist

Contextual discounting [Mercier et al. 2005, Mercier et al. 2006]
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Importance discounting of a BBA

Proposed in [Smarandache Dezert Tacnet 2010] to take into account the importance of
a SoE in the fusion process (see later).

Importance discounting rule

The importance factor of the SoE is modeled by β P r0, 1s, and discounted BBA by

#

mβpAq fi β ¨mpAq @A ‰ H

mβpHq fi β ¨mpHq ` p1´ βq

β “ 1 means "the SoE is 100% important" ñ mβ“1p¨q “ mp¨q

β “ 0 means "the SoE is not important at all" ñ mβ“0pHq “ 1

If a source is not important at all pβ “ 0q, this source must be discarded (i.e. removed
of the set of BBAs to fuse)

Note: Important discounted BBA mβ‰1p¨q is improper (i.e. not regular) since
mβ‰1pHq ą 0. It is however necessary to distinguish importance discounting from
reliability discounting in the fusion of sources. This discounting is useful in
Multi-Criteria Decision-Making Support problems involving BF (see Part II).
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Part I - Information Fusion with Belief Functions

Dempster-Shafer rule of combination
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Dempster-Shafer (DS) fusion rule

Dempster-Shafer fusion rule [Dempster 1967, Shafer 1976]

Let m1 and m2 be mass functions over the same frame Θ provided by two distinct
SoE2. DS fusion rule m1 ‘m2 is defined by mDS12 pHq “ 0, and @X P 2Θ

mDS12 pXq “ rm1 ‘m2spXq fi
m12pXq

1´m12pHq

where m12p¨q is the conjunctive rule3 defined @X P 2Θ by

m12pXq fi
ÿ

X1,X2P2Θ|X1XX2“X

m1pX1qm2pX2q

Degree of conflict between m1 and m2

K12 fi m12pHq “
ÿ

X1,X2P2Θ|X1XX2“H

m1pX1qm2pX2q

DS formula can be used if m12pHq ă 1, i.e. the SoE are not in total conflict
DS formula extents directly for the combination of n ą 2 distinct SoE.

DS rule = Normalized Conjunctive rule

2assumed both reliable with same importance.
3We also use notationmConj12 p.q to identify it more precisely if needed.

Jean Dezert & Deqiang Han Fusion 2017 Conference - Tutorial T2 July 10th, 2017 29 / 162



Properties of Dempster-Shafer rule

DS rule is not idempotent in general : if m is not categorical then m‘m ‰ m

Advantages

Commutativity: m1 ‘m2 “ m2 ‘m1

Associativity: One can do the fusion sequentially in any order

m1 ‘m2 ‘m3 ‘ . . .mn “ pppm1 ‘m2q ‘m3q ‘ ...q ‘mn

Neutrality of VBA: Full ignorant SoE does not impact the fusion result

m‘mv “ m

Some similarity with Bayes rule for conditioning by a certain set mZpZq “ 1

mpX|Zq “ rm‘mZspXq ñ

#

BelpX|Zq “ BelpXYZ̄q´BelpZ̄q

1´BelpZ̄q

PlpX|Zq “ PlpXXZq

PlpZq

Drawbacks

Very complex in the worst case when Fpm1q “ Fpm2q “ 2Θ ´ tHu for large FoD
Counter-intuitive results in an infinite number of cases even if the conflict is low!

The validity of DS rule and DST has been disputed by many authors including [Zadeh 1979, Lemmer 1985,

Voorbraak 1988, Gelman 2006, Dezert Tchamova 2011, Brodzik Enders 2011, Dezert Wang Tchamova 2012,

Tchamova Dezert 2012, Dezert Tchamova Han Tacnet 2013, Dezert Tchamova 2014, Heendeni et al. 2016]
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Overcoming the complexity of DS rule

Try to work with simpler FoD (by coarsening) and approximate BBAs (less FE, etc)

Sampling technique to approximate DS result [Wilson 1991, Dambreville 2009]

The estimate m̂DS12 p¨q of mDS12 p¨q can be obtained by the sampling process using N
samples as follows

1 Repeat from n “ 1, . . . ,N
§ draw Y1 P 2Θ from BBAm1, and Y2 fromm2
§ if Y1 X Y2 “ H, set Xn “ rejected
§ otherwise, set Xn “ Y1 X Y2

2 Compute the rejection rate

ẑ “
1

N

ÿ

n“1,...,N

IrXn “ rejecteds

3 For any X P 2Θ, approximate mDS12 pXq by

m̂DS12 pXq “
1

Np1´ ẑq

ÿ

n“1,...,N

IrXn “ Xs « m
DS
12 pXq

where IrXn “ Xs is Kronecker delta function, i.e IrXn “ Xs “ δpXn,Xq “ 1 if Xn “ X,
and zero otherwise.
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Counter-intuitive behavior of DS rule (1)

Zadeh’s example [Zadeh 1979]

Medical diagnosis problem

Θ “ tM “ Meningitis,C “ Concussion, T “ Tumoru

Bayesian BBA in high conflict

Two independent doctors provides the following reports for a patient as follows

m1pMq “ 1´ ε1 m1pCq “ 0 m1pT q “ ε1

m2pMq “ 0 m2pCq “ 1´ ε2 m2pT q “ ε2

The conflict is K12 “ m12pHq “ p1´ ε1qp1´ ε2q ` p1´ ε1qε2 ` ε2p1´ ε1q “ 1´ ε1ε2

Suppose doctors are in hight conflict, say ε1 “ ε2 “ 0.1 and so K12 “ 1´ 0.01 “ 0.99

mDS12 pTq “
m1pTqm2pTq

1´ K12
“

ε1ε2

1´ p1´ ε1ε2q
“
ε1ε2

ε1ε2
“ 1

DS fusion results says that patient suffers of Tumor which is counter-intuitive, because
both doctors agree that there is a little chance that it is a tumor.

DS rule provides same results whatever the values ε1 ą 0 and ε2 ą 0 are !
DS rule provides coherent result only when ε1 “ ε2 “ 1 (i.e. non conflict case)

Proponents of DS rule have strongly disputed this example ... but more interesting examples exist.
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Counter-intuitive behavior of DS rule (2)

Zadeh’s example with Low Conflict

Bayesian BBA in low conflict

Two independent doctors provides the following reports for a patient as follows

m1pMq “ 0.01 m1pCq “ 0 m1pT q “ 0.99
m2pMq “ 0 m2pCq “ 0.01 m2pT q “ 0.99

The doctors are in very low conflict because

K12 “ 1´ ε1ε2 “ 1´ 0.9801 “ 0.0199

Applying DS rule yields

mDS12 pTq “
m1pTqm2pTq

1´ K12
“
ε1ε2

ε1ε2
“ 1

DS fusion result gives complete support for the diagnosis of a brain tumor, i.e. patient
suffers of Tumor for sure, which both doctors believed very likely.

DS result is counter-intuitive and one rather expects mpTq ă 1 because the existence
of non-zero belief masses for other diagnoses implies less than complete support for
the brain tumor diagnosis, because conflict is non null.
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Counter-intuitive behavior of DS rule (3)

Numerical robustness issue for DS rule

Consider Zadeh’s example and change a bit the inputs as follows

m1pMq “ 0.99´ ε m1pCq “ ε m1pT q “ 0.01
m2pMq “ ε m2pCq “ 0.99´ ε m2pT q “ 0.01

if ε “ 0, mDS12 pMq “ 0 mDS12 pCq “ 0 mDS12 pTq “ 1
if ε “ 0.0005, mDS12 pMq “ 0.4541 mDS12 pCq “ 0.4541 mDS12 pTq “ 0.0918

When ε changes, one gets

DS rule is not robust to slight input changes.
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Counter-intuitive behavior of DS rule (4)

A more interesting example [Dezert Tchamova 2011, Dezert Wang Tchamova 2012]

Dezert-Tchamova example (2011)

Non-Bayesian BBA Θ “ tA,B,Cu, with m1 ‰ m2 ‰ mv

Conjunctive rule

m12pAq “ m1pAqm2pAY Bq `m1pAqm2pAY BY Cq “ apb1 ` b2q

m12pAY Bq “ m1pAY Bqm2pAY Bq `m1pAY Bqm2pAY BY Cq “ p1´ aqpb1 ` b2q

Degree of conflict: ñ Independent of m1 !!!

K12 “ m12pHq “ m1pAqm2pCq `m1pAY Bqm2pCq

“ ap1´ b1 ´ b2q ` p1´ aqp1´ b1 ´ b2q “ 1´ b1 ´ b2

Note: K12 can be chosen as low or as high as we want.
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Counter-intuitive behavior of DS rule (5)

Dezert-Tchamova example (cont’d)

Applying DS rule gives

mDS12 pAq “
m12pAq

1´ K12
“
apb1 ` b2q

b1 ` b2
“ a “ m1pAq

mDS12 pAY Bq “
m12pAY Bq

1´ K12
“
p1´ aqpb1 ` b2q

b1 ` b2
“ 1´ a “ m1pAY Bq

Remarks
mDS12 p¨q “ rm1 ‘m2sp¨q “ m1p¨q, even if m2 ‰ mv and K12 ą 0

Informative source m2 does not impact DS result !

Dictatorial power of DS rule !

The level of conflict does not matter at all !

Cast serious doubts on normalization step used in DS rule

DS rule result is very counter-intuitive in such Non-Bayesian example (even with low
conflict!)

ñ Need for better rule of combination (better behavior and numerical robustness)
ñ Logical contradiction in foundations of DST [Dezert Tchamova 2014]
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Incompatibility of DS rule with Bayes rule

Naive Bayes fusion rule ñ one assumes PpZ1 X Z2|Xq “ PpZ1|XqPpZ2|Xq

PpX|Z1XZ2q “
PpZ1 XZ2 XXq

PpZ1 XZ2q
“
PpZ1 XZ2|XqPpXq

PpZ1 XZ2q
“

PpZ1|XqPpZ2|XqPpXq
řN
i“1 PpZ1|X “ xiqPpZ2|X “ xiqPpX “ xiq

DS rule is not a generalization of Bayes rule because it is incompatible with Bayes rule
when the prior is not uniform, nor vacuous [Dezert Tchamova Han Tacnet 2013]

Example ΘX fi tx1, x2, x3u with Shafer’s model

Prior pmf PpX|Z1q PpX|Z2q

#

m0px1q “ PpX “ x1q “ 0.6

m0px2q “ PpX “ x2q “ 0.3

m0px3q “ PpX “ x3q “ 0.1

#

m1px1q “ PpX “ x1|Z1q “ 0.2

m1px2q “ PpX “ x2|Z1q “ 0.3

m1px3q “ PpX “ x3|Z1q “ 0.5

#

m2px1q “ PpX “ x1|Z2q “ 0.5

m2px2q “ PpX “ x2|Z2q “ 0.1

m2px3q “ PpX “ x3|Z2q “ 0.4

Fusion with Bayes rule Fusion with DS rule
$

&

%

Ppx1|Z1 XZ2q “
0.2¨0.5{0.6

2.2667 “ 0.1667
2.2667 « 0.0735

Ppx2|Z1 XZ2q “
0.3¨0.1{0.3

2.2667 “ 0.1000
2.2667 « 0.0441

Ppx3|Z1 XZ2q “
0.5¨0.4{0.1

2.2667 “ 2.0000
2.2667 « 0.8824

‰

$

&

%

mDS012 px1q “ 0.2¨0.5¨0.6
1´0.9110 “

0.060
0.089 « 0.6742

mDS012 px2q “ 0.3¨0.1¨0.3
1´0.9110 “

0.009
0.089 « 0.1011

mDS012 px3q “ 0.5¨0.4¨0.1
1´0.9110 “

0.020
0.089 « 0.2247

DS rule is compatible with (naive) Bayes rule only if the prior is uniform or vacuous
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Origins of the problem with DS rule

1 due to different reliability of the SoE (based on statistical criteria)

2 due to the possible subjectivity and bias of the SoE because they can have their
own interpretation of elements of the FoD

3 due to the final interest of experts/SoE which can be different/antagonist when
they report their assessment on a given problem . . .

4 due to serious flaw in DST foundations (logical contradiction)

Classical Attempts to prevent problems with DS rule
apply ad-hoc thresholding techniques on the degree of conflict level to accept, or
reject, DS result

modify BBAs of SoE by discounting techniques

identify the bad SoE and don’t use it in the fusion

mix the previous strategies

. . . but DS rule results can still be problematic ñ switch for better rules

This is what DSmT proposes (see later) . . .
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Part I - Information Fusion with Belief Functions

Other rules of combination
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Conjunctive rule of combination

Conjunctive rule It keeps only the items of information asserted by both sources

mConj12 pXq “ rm1©Xm2spXq fi
ÿ

X1,X2P2Θ|X1XX2“X

m1pX1qm2pX2q

Defended by Smets in his Transferable Belief Model (TBM) [Smets 1990]

Commutative, associative, not idempotent, numerically robust

Neutrality of VBA ñ m©Xmv “ m

Implemented with Fast Möbius Transform by the product of commonalily numbers
[Smets 2002]

#

m1

m2

Ñ

#

q1 “ mtoqpm1q

q2 “ mtoqpm1q
Ñ q12 “ q1. ˚ q2 Ñ mConj12 “ qtompq12q

This rule is problematic because H is an absorbing element for this rule

Fast tendency to get mConj12...npHq “ 1 when fusing many BBAs (directly or
sequentially) which makes the result quickly useless

ambiguous interpretation of the empty set
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Simple example of behavior of conjunctive rule

Independent sensor (or expert) reports expressed by BBAs are fused sequentially with
the conjunctive rule in the TBM framework
Θ “ tA,B,Cu with Shafer model for the FoD

Time 1: m1pAq “ 0.4, m1pBq “ 0, m1pCq “ 0.6
Time 2: m2pAq “ 0.7, m1pBq “ 0.3, m1pCq “ 0

§ TBM Conjunctive rulem1©Xm2: mConj
12 pAq “ 0.28,mConj

12 pHq “ 0.72
§ DS rulem1 ‘m2: mDS

12 pAq “ 1

Time 3: m3pAq “ 0, m1pBq “ 0.8, m1pCq “ 0.2

§ TBM Conjunctive rule pm1©Xm2q©Xm3: mConj
123 pHq “ 1

§ DS rule pm1 ‘m2q ‘m3: Not applicable ( total conflict betweenm3 andmConj
12 )

Time 4, 5, . . . k: if taking into account new evidential reports, one gets

§ TBM Conjunctive rule ppm1©Xm2q©Xm3q . . .©Xmk: mConj
12...k pHq “ 1

§ DS rule ppm1 ‘m2q ‘m3q . . .mk: Not applicable (total conflict from Time 3)

ñ Very quickly the conjunctive rule does not respond to new evidential reports in the
fusion process!
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Disjunctive rule of combination

Disjunctive rule It keeps all items of information provided by the sources

mDisj12 pXq “ rm1©Ym2spXq fi
ÿ

X1,X2P2Θ|X1YX2“X

m1pX1qm2pX2q

Commutative, associative, numerically robust

This rule is problematic because Θ (full ignorance) is an absorbing element for this rule

Absorptive impact of VBA ñ m©Ymv “ mv

Fast tendency to get mDisj12...npΘq “ 1 when fusing many BBAs (directly or
sequentially) which makes the result quickly useless

Implemented with Fast Möbius Transform by the product of implicability numbers
[Smets 2002]

#

m1

m2

Ñ

#

b1 “ mtobpm1q

b2 “ mtobpm1q
Ñ b12 “ b1. ˚ b2 Ñ mDisj12 “ btompb12q

This fusion rule is usually used when some SoR are unreliable but we don’t know
which one.
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Zhang and Yager rules

Zhang rule [Zhang 1994]

modified version of DS rule including a degree of intersection between focal elements

mZ12pHq “ 0 and mZ12pXq “
1

K

ÿ

X1,X2P2Θ|X1XX2“X

|X1 X X2|

|X1| ¨ |X2|
m1pX1qm2pX2q

Commutative, not associative, not idempotent, not numerically robust

Yager rule [Yager 1987]

Transfer the total conflicting mass m12pHq to full ignorance Θ

mY12pHq “ 0 and mY12pXq “

#

mConj12 pXq,@X P 2ΘztH,Θu

mConj12 pΘq `mConj12 pHq, for X “ Θ

Commutative, quasi-associative, not idempotent, neutrality of VBA

increasing of ignorance

These rules can be directly extended for the fusion of n ą 2 SoE
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Dubois-Prade and ACR rules

Dubois and Prade rule [Dubois Prade 1988]

Transfer every partial conflicting mass to its corresponding partial ignorance

mDP12 pHq “ 0 and mDP12 pAq “ m
Conj
12 pAq `

ÿ

X1,X2P2Θ

X1XX2“H
X1YX2“A

m1pX1qm2pX2q

Commutative, not associative, not idempotent
increasing of ignorance

Florea Adaptive Combination Rule (ACR) [Florea et al. 2006]

An adaptive balance between conjunctive and disjunctive rules depending on the
degree of conflict (extended in [Florea et al. 2009, Li et al. 2017])

mACR12 pHq “ 0 and mACR12 pAq “
1´ K12

1´ K12 ` K
2
12

mConj12 pAq `
K12

1´ K12 ` K
2
12

mDisj12 pAq

Commutative, not associative, not idempotent
Neutral impact of VBA

These rules can be directly extended for the fusion of n ą 2 SoE
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Part I - Information Fusion with Belief Functions

Going beyond DST with DSmT

Jean Dezert & Deqiang Han Fusion 2017 Conference - Tutorial T2 July 10th, 2017 45 / 162



Why going beyond DST

Dempster-Shafer Theory of belief functions is very interesting because it proposes
Important paradigm shift for modeling epistemic uncertainty
New appealing mathematical formalism of (quantitative) belief functions
A combination rule for combining belief functions (DS rule) with nice properties

. . . but BF and DST have never been fully accepted by a part of scientific community
and statisticians mainly because

Independency between SoE has never been well established once for all
Doubts on the validity of DS rule (normalization is controversial)
Lack of good experimental protocol to validate DST and DS rule
Different disputed semantic interpretations of DST and DS rule

What we have proved [Dezert Tchamova 2014]
1 the dictatorial power of DS rule to fuse equi-reliable sources of evidence.
2 the conflict (high or low) can be totally ignored through DS rule.
3 the problem of validity of DST is not due to conflict level, but the absolute truth

Shafer’s interpretation of propositions evaluated by SoE
4 there exists a logical contradiction in the foundations of DST

Our recommendation
BF are mathematically appealing and well defined, but use DS rule at your own risks,
even in low conflicting situations.
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DSmT in short

Developed by Dezert and Smarandache in 2003–2015

DSmT follows Shafer’s paradigm of belief functions for modeling epistemic
uncertainty.
DSmT extends the belief function framework to work

§ with different models for the frame
§ with possibly imprecise quantitative belief functions
§ with qualitative belief functions expressed as labels
§ with new decision-making methods

proposes new efficient (complicate) rules of combination, and conditioning.
Main references ñ Four Free e-Books on DSmT [DSmT books]

http://www.onera.fr/fr/staff/jean-dezert
http://www.smarandache.com/DSmT.htm
http://fs.gallup.unm.edu/DSmT.htm
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DSmT versus DST - A matter of interpretation

Shafer’s interpretation

A reliable source of evidence provides an absolute truth from partial knowledge,
observations, experience, etc.

Dezert-Smarandache interpretation

A reliable source of evidence provides only a relative truth from partial knowledge,
observations, experience, etc.

This new interpretation proposed in DSmT makes difference in the way to process
belief functions.
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Fusion spaces

General notation
The Fusion Space for the problem under concern is denoted GΘ

GΘ represents either 2Θ, DΘ or SΘ ” 2Θrefined
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Generation of hyper-power set

Method of generation of hyper-power set DΘ for Θ “ tθ1, . . . , θnu

1 H, θ1, . . . , θn P D
Θ

2 @A,B P DΘ, pAY Bq P DΘ, pAX Bq P DΘ

3 No other elements belong to DΘ, except those obtained by using rules 1 or 2

Hyper-power set DΘ reduces to classical power set 2Θ if Shafer’s model for Θ holds
(when all elements are mutually exclusive)

The cardinality of hyper-power sets |DΘ| follows Dedekind’s numbers sequence when
cardinality |Θ| of the FoD Θ increases

Example Θ “ tθ1, θ2, θ3u ñ |Θ| “ 3, |2Θ| “ 8 and |DΘ| “ 19
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Generalized Belief Functions (GBF)

Same definitions as Shafer’s ones (when GΘ “ 2Θ), except the Fusion Space can be
now GΘ “ DΘ, or GΘ “ DΘ

Mass of belief in A: Degree of support precisely committed to A by the SoE

A source of evidence (SoE) about θ is represented by a generalized mass function
mΘp¨q : GΘ ÞÑ r0, 1s such that

mΘpHq “ 0 and
ÿ

APGΘ

mΘpAq “ 1

Belief in A

BelpAq fi
ÿ

BPGΘ|BĎA

mpBq

Plausibility of A

PlpAq fi
ÿ

BPGΘ|BXA‰H

mpBq
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Simple example of GBF

Let us consider the simplest FoD defined by Θ “ tA,Bu

Working with GΘ “ 2Θ (power set and Shafer’s model of FoD)

mpAq `mpBq `mpAY Bq “ 1

Working with GΘ “ DΘ (hyper-power set and DSm free model)

mpAq `mpBq `mpAY Bq `mpAX Bq “ 1

Working with GΘ “ SΘ (super-power set)

mpAq `mpBq `mpAY Bq `mpAX Bq `mpĀq `mpB̄q `mpĀY B̄q “ 1

Note: For simplicity of presentation, in the sequel we will ONLY work with
power-set, that is GΘ “ 2Θ.
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Part I - Information Fusion with Belief Functions

PCR rules of combination
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Proportional Conflict Redistribution (PCR) rules

Principle of PCR rules
1 Apply the conjunctive rule
2 Identify and calculate all conflicting masses
3 Redistribute the (total or partial) conflicting masses proportionally on non-empty

sets according to the integrity constraints one has for the FoD
PCR can be done in many ways [DSmT books] (Vol. 2).

Main PCR rules
PCR rule #5 (PCR5) proposed by Smarandache & Dezert [DSmT books] (Vol. 2)
PCR rule #6 (PCR6) proposed by Martin & Osswald [DSmT books] (Vol. 2)

PCR5=PCR6 for combining 2 SoE, but PCR5‰PCR6 when fusing more than 2 SoE
PCR6 is better than PCR5 because it is consistent with frequentist proba estimation

PCR5/6 formula for the combination of 2 BBAs m
PCR5{6
12 pHq “ 0 and @X ‰ H P 2Θ

m
PCR5{6
12 pXq “ mConj12 pXq `

ÿ

YP2Θ
XXY“H

r
m1pXq

2m2pYq

m1pXq `m2pYq
`

m2pXq
2m1pYq

m2pXq `m1pYq
s

For general PCR5 and PCR6 formulas to fuse s ą 2 BBAs, see [DSmT books], Vol. 2
For PCR rules with Zhang’s degree of intersection, see [Smarandache Dezert 2015]
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Approximation of PCR5/6 fusion result by sampling

Sampling technique to approximate PCR5/6 result [Dambreville 2009]

The estimate m̂PCR5{6
12 p¨q of mPCR5{6

12 p¨q can be obtained by the sampling process using
N samples as follows

1 Repeat from n “ 1, . . . ,N
§ draw Y1 P 2Θ from BBAm1, and Y2 fromm2
§ if Y1 X Y2 ‰ H, set Xn “ Y1 X Y2
§ otherwise, do

1 compute u1 “
m1pY1q

m1pY1q`m2pY2q

2 generate random number u uniformly distributed on r0, 1s
3 if u ă u1, set Xn “ Y1, otherwise set Xn “ Y2

2 For any X P 2Θ, approximate mDS12 pXq by

m̂
PCR5{6
12 pXq “

1

N

ÿ

n“1,...,N

IrXn “ Xs « m
PCR5{6
12 pXq
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Advantages and drawbacks of PCR rules

Advantages

They exploit separately information entailed in all partial conflicts contrary to what
is done in most fusion rules (except DP rule)
They do not increase the uncertainty in the fusion of BBAs more than justified
They work with any level of conflict between sources
They are numerically robust to input changes
They transfer the partial conflicting masses to the elements involved in the partial
conflict proportionally to masses of only elements involved in the partial
conflict. For instance, if AX B “ H and m1pAqm2pBq ą 0 then m1pAqm2pBq will
be redistributed back only to A and B and proportionally to m1pAq and m2pBq

Drawbacks

They are commutative, not idempotent and not associative (quasi-associative only)
Non associativity implies that the fusion order does matter and it impacts the
fusion result. Therefore the PCR fusion must be applied globally (not sequentially)
to get the best result.
Very complicate to implement for combining altogether S ą 2 SoE

Good news: some toolboxes implementing PCR rules are available (see later)
Basic Matlab codes for PCR5/6 rules are given in [Smarandache Dezert Tacnet 2010]
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Example of fusion by PCR5/6 rule

m
PCR5{6
12 pXq “ mConj12 pXq `

ÿ

YP2Θ
XXY“H

r
m1pXq

2m2pYq

m1pXq `m2pYq
`

m2pXq
2m1pYq

m2pXq `m1pYq
s

Very simple example Θ “ tA,Bu

PCR5/6 result DS result

One sees that the mass committed to ignorance with PCR5/6 is lower than with DST
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Difference between PCR5 and PCR6

Very simple example Θ “ tA,Bu

PCR6 result is more stable than PCR5 result for decision making, and PCR6 is
consistent with frequentist proba estimate.
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Consistency of PCR6 with frequentist proba estimate

Theorem [Smarandache Dezert 2013]: When S ě 2 SoE provide binary BBAs on 2Θ

whose total conflicting mass is 1, then PCR6 rule coincides with the averaging rule.

Random coin flip experiment Θ “ tH “ Head, T “ Tailu

Observations sequence: Obs “ tH,H, T ,H, T ,H,H, Tu ñ npHq “ 5 and npTq “ 3

Probas: P̂pH|Obsq “ npHq

n
“ 5

8
“ mAver12...8 pHq and P̂pT |Obsq “ npTq

n
“ 3

8
“ mAver12...8 pTq

DS rule does not work (conflict=1)

PCR6 works because Theorem applies

mPCR6
12...8 pHq “

5

8
and mPCR6

12...8 pHq “
3

8

PCR5 does not work efficiently

mPCR5
12...8 pHq “ m

PCR5
12...8 pTq “ 0.5

because

xH

1 ¨ 1 ¨ 1 ¨ 1 ¨ 1
“

xT

1 ¨ 1 ¨ 1

“
m12...8pHq

p1 ¨ 1 ¨ 1 ¨ 1 ¨ 1q ` p1 ¨ 1 ¨ 1q
“

1

2

Jean Dezert & Deqiang Han Fusion 2017 Conference - Tutorial T2 July 10th, 2017 59 / 162



Zadeh example with PCR5/6

Θ “ tM “ Meningitis,C “ Concussion, T “ Tumoru

m1pMq “ 1´ ε1 m1pCq “ 0 m1pT q “ ε1

m2pMq “ 0 m2pCq “ 1´ ε2 m2pT q “ ε2

K12 “ m12pHq “ p1´ ε1qp1´ ε2q ` p1´ ε1qε2 ` ε2p1´ ε1q “ 1´ ε1ε2

m
PCR5{6
12 pMq “

p1´ ε1qp1´ ε2q

p1´ ε1q ` p1´ ε2q
p1´ ε1q `

p1´ ε1qε2

p1´ ε1q ` ε2
p1´ ε1q

m
PCR5{6
12 pCq “

p1´ ε1qp1´ ε2q

p1´ ε1q ` p1´ ε2q
p1´ ε2q `

ε1p1´ ε2q

ε1 ` p1´ ε2q
p1´ ε2q

m
PCR5{6
12 pTq “ ε1ε2 `

p1´ ε1qε2

p1´ ε1q ` ε2
ε2 `

ε1p1´ ε2q

ε1 ` p1´ ε2q
ε1

Bayesian BBA in high conflict ε1 “ ε2 “ 0.1 ñ K12 “ 1´ p0.1 ¨ 0.1q “ 0.99

mDS12 pTq “ 1 but mPCR5{6
12 pMq “ 0.486 m

PCR5{6
12 pCq “ 0.486 m

PCR5{6
12 pTq “ 0.028

Bayesian BBA in low conflict ε1 “ ε2 “ 0.99 ñ K12 “ 1´ p0.99 ¨ 0.99q “ 0.0199

mDS12 pTq “ 1 but mPCR5{6
12 pMq « 0.00015 m

PCR5{6
12 pCq « 0.00015 m

PCR5{6
12 pTq « 0.9997
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Dezert-Tchamova example with PCR6

Non-Bayesian BBA Θ “ tA,B,Cu, with m1 ‰ m2 ‰ mv

K12 “ m12pHq “ ap1´ b1 ´ b2q ` p1´ aqp1´ b1 ´ b2q “ 1´ b1 ´ b2 ą 0

DS result: mDS12 pAq “ m1pAq “ a and mDS12 pAYBq “ m1pAYBq “ 1´ a which means
that m2 has no impact in DS fusion result even if the SoE are in (strong or low) conflict

PCR5/6 result:

m
PCR5{6
12 pAq “ apb1 ` b2q `

ap1´ b1 ´ b2q

a` p1´ b1 ´ b2q
¨ a

m
PCR5{6
12 pAY Bq “ p1´ aqpb1 ` b2q `

p1´ aqp1´ b1 ´ b2q

p1´ aq ` p1´ b1 ´ b2q
¨ p1´ aq

m
PCR5{6
12 pCq “

ap1´ b1 ´ b2q

a` p1´ b1 ´ b2q
¨ p1´ b1 ´ b2q `

p1´ aqp1´ b1 ´ b2q

p1´ aq ` p1´ b1 ´ b2q
¨ p1´ b1 ´ b2q

One sees that mPCR5{6
12 ‰ mDS12 ñ the source m2 has an impact in the fusion result
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Simple example of behavior of PCR5/6 rule

Independent sensor (or expert) reports expressed by BBAs are fused sequentially with
the conjunctive rule in Smets TBM framework
Θ “ tA,B,Cu with Shafer’s model of the FoD

Time 1: m1pAq “ 0.4, m1pBq “ 0, m1pCq “ 0.6

Time 2: m2pAq “ 0.7, m1pBq “ 0.3, m1pCq “ 0

TBM Conjunctive rule: mConj12 pAq “ 0.28,mConj12 pHq “ 0.72

DS rule: mDS12 pAq “ 1

PCR5/6 rule: mPCR5{6
12 pAq “ 0.574725,m

PCR5{6
12 pBq “ 0.111429,m

PCR5{6
12 pCq “ 0.313846

Time 3: m3pAq “ 0, m1pBq “ 0.8, m1pCq “ 0.2

TBM Conjunctive rule: mConj123 pHq “ 1

DS rule is not applicable because of total conflict between m3 and mConj12

PCR5/6 rule: mPCR5{6
p12q3 pAq “ 0.277490,m

PCR5{6
p12q3 pBq “ 0.545010,m

PCR5{6
p12q3 pCq “ 0.177500

Time 4, 5, . . . k: if new evidential reports are available, one will get

TBM Conjunctive rule is not responding because mConj12...k pHq “ 1

DS rule is not applicable because of total conflict from Time 3
PCR5/6 rule: is still responding to new evidential reports coming
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Bayesian and PCR5/6 fusion of Gaussian pdf

Naive Bayes fusion: pBayes12 pxq “ ppx|z1qppx|z2q

ppxq
9p1pxqp2pxq when ppxq is uniform pdf

We extend PCR5 to work on a continuous frame with pdf as follows

PCR5/6 fusion: pPCR5{6
12 pxq fi p1pxq

ş

Θ

p1pxqp2pyq

p1pxq`p2pyq
dy`

ş

Θ

p2pxqp1pyq

p2pxq`p1pyq
dy

Fusion of Gaussian pdf – p1p¨q “ p2p¨q Fusion of Gaussian pdf – p1p¨q ‰ p2p¨q

PCR5/6 rule allows to keep the modes of pdf through the fusion process

Application ñ Particle Filtering for target tracking [Kirchner et al. 2007]
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Part I - Information Fusion with Belief Functions

Approximation of a BBA by probability measures
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Popular transformations of BBA to probability

Many methods exist, we only present the most popular – see [DSmT books] (Vol. 3)

Simplest method
Take the mass of each element of Θ and
normalize, but it does not take into account
partial ignorances

PmpAq “
mpAq

ř

BPΘmpBq

Method based on plausibility [Cobb Shenoy 2006]
Take the plausibility of each element of Θ
and normalize, but it is inconsistent with
belief interval

PPlpAq “
PlpAq

ř

BPΘ PlpBq

Pignistic probability [Smets 1990]
Redistribute the mass of partial ignorances
equally to singletons included in them
ñ higher entropy obtained with BetPp¨q

BetPpAq “
ÿ

XP2Θ

|XXA|

|A|
mpXq

DSmP probability [Dezert Smarandache 2008]
Redistribute mass of partial ignorances
proportionally to masses of singletons
included in them. ε ą 0 is a small
parameter to prevent division by zero in
some cases.
ñ smaller entropy obtained with DSmPp¨q

DSmPεpAq “
ÿ

YP2Θ

ÿ

ZĎAXY
|Z|“1

mpZq ` ε|AX Y|

ÿ

ZĎY
|Z|“1

mpZq ` ε|Y|
mpYq
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Examples of probabilistic transformations

PPlp.q is inconsistent with belief interval! Consider Θ “ tA,B,Cu, and the BBA
#

mpAq “ 0.2

mpBYCq “ 0.8
ñ

$

’

&

’

%

rBelpAq,PlpAqs “ r0.2, 0.2s

rBelpBq,PlpBqs “ r0, 0.8s

rBelpCq,PlpCqs “ r0, 0.8s

ñ

$

’

&

’

%

PPlpAq “
0.2

0.2`0.8`0.8 « 0.112 ă BelpAq

PPlpBq “
0.8

0.2`0.8`0.8 « 0.444

PPlpCq “
0.8

0.2`0.8`0.8 « 0.444

Note: inconsistency also occurs with PBelp.q

Simple example for BetP and DSmP calculation

Consider Θ “ tA,Bu, and mpAq “ 0.3, mpBq “ 0.1, mpAY Bq “ 0.6

#

BetPpAq “ mpAq ` 1
2
mpAY Bq “ 0.3` p0.6{2q “ 0.6

BetPpBq “ mpBq ` 1
2
mpAY Bq “ 0.1` p0.6{2q “ 0.4

With DSmP the masses of singletons are used as a priori information to make the
redistribution of the mass of ignorance (reinforcement principle)

#

DSmPε“0.001pAq “ mpAq `
mpAq`ε

mpAq`mpBq`2ε
¨mpAY Bq “ 0.7492

DSmPε“0.001pBq “ mpBq `
mpBq`ε

mpAq`mpBq`2ε
¨mpAY Bq “ 0.2508

Shannon entropy (measure of randomness): HpPq “ ´
ř

i pi log pi

HpDSmPq “ 0.8125 bits ă HpBetPq “ 0.9710 bits
Thus, decision-making is made easier with DSmP because randomness is reduced

Jean Dezert & Deqiang Han Fusion 2017 Conference - Tutorial T2 July 10th, 2017 66 / 162



Part I - Information Fusion with Belief Functions

Distances between two BBAs
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Distance between two BBAs

A strict distance metric d : px,yq P Sˆ S ÞÑ dpx,yq P R must satisfy
1 Nonnegativity: dpx,yq ě 0;
2 Nondegeneracy: dpx,yq “ 0 ô x “ y;
3 Symmetry: dpx,yq “ dpy, xq;
4 Triangle inequality: dpx,yq ` dpy, zq ě dpx, zq,@z P S.

References on distances : [Jousselme Maupin 2012, Han Dezert Yang 2017]

Tessem distance [Tessem 1993] ñ Not a strict distance metric

dT pm1,m2q fi max
AĎΘ

t|BetP1pAq ´ BetP2pAq|u

Jousselme distance [Jousselme Grenier Bossé 2001]

dJpm1,m2q fi

b

0.5 ¨ pm1 ´m2q
TJac pm1 ´m2q

where the elements JacpA,Bq of Jaccard’s weighting matrix Jac are defined by
JacpA,Bq “ |AX B|{|AY B|

ñ proved to be a strict distance metric in [Bouchard Jousselme Doré 2013]
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Distance between two BBAs

The belief interval of A P 2Θ is defined as BIpAq fi rBelpAq,PlpAqs

Euclidean belief interval based distance [Han Dezert Yang 2014]

dEBIpm1,m2q fi

d

1

2|Θ|´1
¨
ÿ

AP2Θ

dIpBI1pAq,BI2pAqq
2

ñ proved to be a strict distance metric in [Han Dezert Yang 2014]

Chebyshev belief interval based distance [Han Dezert Yang 2014]

dCBI pm1,m2q fi max
AP2Θ

 

dI pBI1pAq,BI2pAqq
(

ñ proved to be a strict distance metric in [Han Dezert Yang 2014]

dI is Wasserstein distance of interval numbers

dI pra1,b1s, ra2,b2sq “

d

„

a1 ` b1

2
´
a2 ` b2

2

2

`
1

3

„

b1 ´ a1

2
´
b2 ´ a2

2

2
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Comparison of distances

Simple example [Han Dezert Yang 2014] Θ “ tθ1, θ2, θ3u

m1pθ1q “ m1pθ2q “ m1pθ3q “ 1{3

m2pθ1q “ m2pθ2q “ m2pθ3q “ 0.1,m2pΘq “ 0.7

m3pθ1q “ m3pθ2q “ 0.1,m3pθ3q “ 0.8

Results
distances dT dJ dEBI dCBI
dpm1,m2q 0 0.4041 0.2858 0.2333
dpm1,m3q 0.4667 0.4041 0.4041 0.4667

Using Jousselme distance
The result is not very reasonable because m2 makes no preference for choice,
whereas m3 prefers the 3rd element θ3.
Using Tessem pseudo-distance
The result is not intuitively acceptable because m1 is different of m2 but
dT pm1,m2q “ 0
Using belief interval distances dEBI or dCBI
The results make more sense because dBIpm1,m2q ă dBIpm1,m3q
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Part I - Information Fusion with Belief Functions

Measures of uncertainty of a belief function
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Measures of uncertainty of a belief function (1)

How to characterize a BBA to measure the level of uncertainty it contains?

Ñ see the excellent survey in [Jousselme et al. 2006], with remarks in [Klir Lewis 2008]
Simplest approach
Approximate mp¨q in a probability measure Pp¨q and use Shannon entropy HpPq

it measures (approximately) the randomness in the BBA but not the imprecision
(ambiguities), and many probabilistic transformations are possible
some information is lost in the transformation mp¨q Ñ Pp¨q

these measures do not well measure uncertainty, see [Klir Lewis 2008]
Example: Ambiguity measure (or Pignistic Entropy) [Jousselme et al. 2006]

AMpmq fi ´
ÿ

θĎΘ

BetPpθq log2pBetPpθqq

Measures of discord of a belief function (entropy-alike measures)

1 Confusion [Höhle1982] Confpmq fi ´
ř

AĎΘmpAq log2pBelpAqq

2 Dissonance [Yager 1983] Disspmq fi ´
ř

AĎΘmpAq log2pPlpAqq

3 Discord [Klir Ramer 1990] Discpmq fi ´
ř

AĎΘmpAq log2p1´
ř

BĎΘmpBq
|B´A|

|B|
q

4 Strife [Klir Parviz 1992] Stripmq fi ´
ř

AĎΘmpAq log2p1´
ř

BĎΘmpBq
|A´B|

|A|
q
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Measures of uncertainty of a belief function (2)

Measures of non-specificity of a belief function

Non-specificity (or ambiguity) means that some focal elements of mp¨q are disjunctions
of elements of the FoD Θ

Non-specificity [Dubois Prade 1985, Ramer 1987]
NSpmq fi

ř

AĎΘmpAq log2 |A|

§ generalization of Hartley measure of a set
§ ifmp¨q is Bayesian,NSpmq “ 0 (the min value)
§ ifmp¨q is vacuous,NSpmq “ log2 |Θ| (the max value)

Measures of total uncertainty of a belief function

Aggregated uncertainty [Harmanec Klir 1994]

AUpmq fi maxr´
ÿ

θPΘ

Ppθq log2 Ppθqs s.t.

$

’

&

’

%

Ppθq P r0, 1s,@θ P Θ
ř

θPΘ Ppθq “ 1

BelpAq ď
ř

θPA Ppθq ď PlpAq,@A Ď Θ

AUpmq is the max of Shannon entropies (upper entropy) of all probability
measures Pp¨q compatible with mp¨q. It is interesting because [Abellan et al. 2008]

§ it captures both non-specificity and discord
§ it offers a probability consistency and set consistency
§ value range, monotonicity, sub-additivity and additivity for the joint BBA in Cartesian

space
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Measures of uncertainty of a belief function (3)

A new measure of total uncertainty of a belief function [Yang Han 2016]

Ñ based on belief Intervals which includes both the randomness and the imprecision
(non-specificity)

Basic idea Given a belief interval rBelpAq,PlpAqs, if this interval is farther from the
most uncertain case represented by r0, 1s, then A has smaller uncertainty; if the belief
interval of A is nearer to r0, 1s, then A has larger uncertainty.

Total uncertainty measure

TUpmq fi 1´

?
3

|Θ|

ÿ

θiPΘ

dIprBelpθ1q,Plpθiqs, r0, 1sq

where dI is Wasserstein distance of interval numbers

dI pra1,b1s, ra2,b2sq “

d

„

a1 ` b1

2
´
a2 ` b2

2

2

`
1

3

„

b1 ´ a1

2
´
b2 ´ a2

2

2

dIprBelpθiq,Plpθiqs, r0, 1sq reaches the bounds 1{
?

3 when rBelpθiq,Plpθiqs “ r0, 0s
and rBelpθiq,Plpθiqs “ r1, 1s. Therefore, the normalization factor is

1
dIpr0,0s,r0,1sq

“ 1
dIpr1,1s,r0,1sq

“
?

3
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Measures of uncertainty of a belief function (4)

TUpmq fi 1´

?
3

|Θ|

ÿ

θiPΘ

dIprBelpθ1q,Plpθiqs, r0, 1sq

Properties of TU measure of total uncertainty [Yang Han 2016]

TUpmq P r0, 1s

if mp¨q is vacuous, mpΘq “ 1, then TUpmq “ 1

@θi P Θ, rBelpθiq,plpθiqs “ r0, 1s ñ dIprBelpθiq,Plpθiqs, r0, 1sq “ 0 ñ TUpmq “ 1

if mp¨q is categorical, mpθiq “ 1 for some θi P Θ, then TUpmq “ 0

#

for θi, rBelpθiq,Plpθiqs “ r1, 1s ñ dIpr1, 1s, r0, 1sq “ 1{
?

3

@θj ‰ θi, rBelpθjq,Plpθjqs “ r0, 0s ñ dIpr0, 0s, r0, 1sq “ 1{
?

3
ñ TUpmq “ 0

TUpmq satisfies monotonicity, that is

if @A Ď Θ, rBel1pAq,Pl1pAqs Ď rBel2pAq,Pl2pAqs then TUpm1q ď TUpm2q
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Example for the TU measure (1)

Consider Θ “ tθ1, θ2, θ3u with the following BBA

mpθ1q “ 0.3, mpθ2 Y θ3q “ 0.5, mpθ1 Y θ2 Y θ3q “ 0.2

Then

$

’

&

’

%

mpθ1q “ 0.3

mpθ2 Y θ3q “ 0.5

mpθ1 Y θ2 Y θ3q “ 0.2

ñ

$

’

&

’

%

rBelpθ1q,Plpθ1qs “ r0.3, 0.5s

rBelpθ2q,Plpθ2qs “ r0, 0.7s

rBelpθ3q,Plpθ3qs “ r0, 0.7s

The Wasserstein distances are
$

’

’

’

&

’

’

’

%

dIprBelpθ1q,Plpθ1qs, r0, 1sq “
b

“

0.3`0.5
2

´ 0`1
2

‰2
` 1

3

“

0.5´0.3
2

´ 1´0
2

‰2
“ 0.2517

dIprBelpθ2q,Plpθ2qs, r0, 1sq “
b

“

0`0.7
2
´ 0`1

2

‰2
` 1

3

“

0.7´0
2
´ 1´0

2

‰2
“ 0.1732

dIprBelpθ3q,Plpθ3qs, r0, 1sq “
b

“

0`0.7
2
´ 0`1

2

‰2
` 1

3

“

0.7´0
2
´ 1´0

2

‰2
“ 0.1732

because Wasserstein distance between intervals ra1,b1s and ra2,b2s is defined by

dI pra1,b1s, ra2,b2sq “

d

„

a1 ` b1

2
´
a2 ` b2

2

2

`
1

3

„

b1 ´ a1

2
´
b2 ´ a2

2

2

Therefore, TUpmq “ 1´
?

3
3
p0.2517` 0.1732` 0.1732q “ 0.6547

More examples with applications in [Yang Han 2016]
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Example for the TU measure (2)
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Part I - Information Fusion with Belief Functions

BBA construction from FMF

Jean Dezert & Deqiang Han Fusion 2017 Conference - Tutorial T2 July 10th, 2017 78 / 162



BBA construction from FMF (1)

How to construct a BBA from a Fuzzy Membership Function (FMF)?

Fuzzy sets and fuzzy membersip function

Definition: A fuzzy set, denoted by A Ď Θ, is defined by a fuzzy membership function
(FMF) µApθq : Θ ÞÑ r0, 1s, which quantifies the grade of membership of element θ of
the fuzzy set A.

The FMF is a generalization of the characteristic function in classical set and can take
its values in the interval r0, 1s.
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BBA construction from FMF (2)

Relationship between FMF and BBA

Theorem: If Θ` “ tθ1, . . . , θnu is countable, the necessary and sufficient condition for
µp¨q to be a plausibility function is:

n
ÿ

i“1

µpθiq ě 1

The necessary and sufficient condition for µp¨q to be a belief function is

n
ÿ

i“1

µpθiq ď 1

where Θ` defined as the set Θ` “ tθ|µpθq ą 0u

Proposition: Any membership function µpθq, defining on Θ a fuzzy set, can be viewed
as the restriction to singletons θ either of a plausibility measure µpθq “ Plpθq, or a
belief function µpθq “ Belpθq.

According to the above, the transformation of BBA into FMF can be obtained.
What about the reverse direction?
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BBA construction from FMF (3)

Multi-answer problems when transforming a FMF into a BBA

Suppose that
ř

θPΘ µpθq ě 1 with |Θ| “ n, then the FMF is equivalentt to the one-point
plausibility. For the frame of discernment, there may exist at most 2|Θ| ´ 1 subsets
which are not empty. That is

Ai “ tθiu Ď Θ, mpAiq ě 0, i “ 1, 2, . . . ,n

Aij “ tθi, θju Ď Θ, mpAijq ě 0, i ď j, i, j “ 1, 2, . . . ,n

Aijk “ tθi, θj, θku Ď Θ, mpAijkq ě 0, i ď j ď k

...

A12...n “ Θ, mpΘq ě 0

The problem consists of n` 1 linear equations given by
$

’

’

’

’

&

’

’

’

’

%

mpA1q `
ř

jmpA1jq `
ř

j,kmpA1jkq ` . . .`mpΘq “ µpθ1q

...
mpAnq `

ř

jmpAnjq `
ř

j,kmpAnjkq ` . . .`mpΘq “ µpθnq
ř

impAiq `
ř

i,jmpAijq `
ř

i,j,kmpAijkq ` . . .`mpΘq “ 1

The 2n ´ 1 focal elements’ mass values are unknown variables to find, but we have
only n` 1 linear equations ñ solution to build a BBA from a FMF is not unique
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BBA construction from FMF (4)

Transformation of FMF into a BBA [Han 2016]

Given µpθiq P r0, 1s, @θi P Θ, i “ 1, . . . ,n, if
řn
i“1 µpθiq ě 1, the FMF is equivalent to

the plausibility for one-point (singleton). A BBA can be obtained by solving the following
maximization problem.

Find the BBA mp¨q such that

where PpΘq “ 2Θ (i.e. the power set of the FoD Θ)

Jean Dezert & Deqiang Han Fusion 2017 Conference - Tutorial T2 July 10th, 2017 82 / 162



BBA construction from FMF (5)

Example - part 1 [Han 2016]
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BBA construction from FMF (6)

Example - part 2 [Han 2016]
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Part I - Information Fusion with Belief Functions

Working with admissible imprecise BBA
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Working with admissible imprecise BBA

Operation on sets of numbers [Dezert Smarandache 2006, DSmT books], Vol. 2
Addition: X1 ‘ X2 “ X2 ‘ X1 fi tx|x “ x1 ` x2, x1 P X1, x2 P X2u

Multiplication: X1 d X2 “ X2 d X1 fi tx|x “ x1 ¨ x2, x1 P X1, x2 P X2u

Division: defined for case where 0 R X2, infpX2q ‰ 0, suppX2q ‰ 0

X1 c X2 fi tx|x “ x1 ˜ x2, x1 P X1, x2 P X2u

Imprecise BBA
Imprecise BBA is a BBA whose each mass of FE is an interval of numbers.
Example: Θ “ tθ1, θ2u, mImppθ1q “ r0.2, 0.3s, mImppθ2q “ p0.4, 0.5q Ñ improper
Because mpHq “ 0, then mImppHq “ r0, 0s (degenerate interval)
General imprecise BBA is a BBA whose each mass of FE is a disjunction of
intervals and sets of numbers
Example: mImppθ1q “ r0.1, 0.2s Y t0.3u, mImppθ2q “ t0.4, 0.6u Y p0.1, 0.2s

Imprecise admissible BBA

mImpp¨q is admissible if @A P FpmImpq, DmpAq P mImppAq, s.t.
ř

APFpmImpqmpAq “ 1

Example:
#

mImppθ1q “ r0.1, 0.2s Y t0.3u

mImppθ2q “ p0.4, 0.6q Y r0.7, 0.8s
Ñ D

#

mpθ1q “ 0.3 PmImppθ1q

mpθ2q “ 0.7 PmImppθ2q
Ñ s.t.mpθ1q `mpθ2q “ 1

Working with imprecise admissible BBA needs operators on sets of numbers
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Simple example of fusion of imprecise admissible BBAs

Θ “ tθ1, θ2u with Shafer model for the FoD

BBA \FE θ1 θ2

mImp1 p¨q r0.2, 0.3s r0.6, 0.8s

mImp2 p¨q r0, 4, 0.7s r0.5, 0.6s

Conjunctive rule gives m12pθ1q “ r0.08, 0.21s and m12pθ2q “ r0.30, 0.48s

K12 “ m12pHq “ rm
Imp
1 pθ1qdm

Imp
2 pθ2qs‘ rm

Imp
1 pθ2qdm

Imp
2 pθ1qs

“ pr0.2, 0.3sd r0.5, 0.6sq‘ pr0.4, 0.7sd r0.6, 0.8sq “ r0.34, 0.74s

PCR5/6 rule gives [DSmT books], Vol. 2, pp. 52-53

xθ1
r0.2,0.3s

“
xθ2

r0.5,0.6s
“
r0.2,0.3sdr0.5,0.6s
r0.2,0.3s‘r0.5,0.6s

“
r0.10,0.18s
r0.7,0.9s

ñ

#

xθ1
« r0.022, 0.077s

xθ2
« r0.055, 0.154s

yθ1
r0.4,0.7s

“
yθ2
r0.6,0.8s

“
r0.4,0.7sdr0.6,0.8s
r0.4,0.7s‘r0.6,0.8s

“
r0.24,0.56s
r1,1.5s

ñ

#

yθ1
« r0.064, 0.392s

yθ2
« r0.096, 0.448s

Therefore mPCR5{6
12 pHq “ r0, 0s and

m
PCR5{6
12 pθ1q “ m12pθ1q‘ xθ1

‘ yθ1
« r0.166, 0.679s

m
PCR5{6
12 pθ2q “ m12pθ2q‘ xθ2

‘ yθ2
« r0.451, 1s

Compute divisions at the end to get tightest bounds. Use Interval Arithmetic toolboxes.
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Part I - Information Fusion with Belief Functions

Working with qualitative BBA
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Working with qualitative basic belief assignment

Linguistic labels L “ tLmin “ L0,L1, . . . ,Ln,Lmax “ Ln`1u with L0 ă L1 ă . . .Ln`1

Assuming linguistically equidistant labels of L, we make an isomorphism between
L “ tL0,L1,L2, . . . ,Ln`1u and t0 “ 0

n`1
, 1
n`1

, 2
n`1

, . . . , 1 “ n`1
n`1

u

Operators on linguistic labels [DSmT books] (Vol. 2, Chap. 10) & [Martin et al. 2008]

q -addition and subtraction q -multiplication and division

Li ` Lj “

#

Li`j if i` j ă n` 1

Ln`1 if i` j ě n` 1
Li ¨ Lj “ Lrpi¨jq{pn`1qs with rxs “ closest integer to x

Li ´ Lj “

#

Li´j if i ě j
´Lj´i if i ă j

Li{Lj‰0 “

#

Lrpi{jq¨pn`1qs if rpi{jq ¨ pn` 1qs ă n` 1

Ln`1 otherwise

with a scalar by a scalar
#

Li ` r “ r` Li “ Lri`rpn`1qs

Li ´ r “ Lri´rpn`1qs

a ¨ Li “
a¨i
n`1

«

#

Lra¨is if ra ¨ is ě 0

L´ra¨is otherwise

No matter how many operations on labels we have, the most accurate result is
obtained if we do only one approximation, and that one should be just at the very end.
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Working with qualitative basic belief assignment

Linguistic labels L “ tLmin “ L0,L1, . . . ,Ln,Lmax “ Ln`1u with L0 ă L1 ă . . .Ln`1

We can also work with refined labels (labels having non integer index) to get more
exact results [DSmT books], Vol. 3, Chap. 2

Basic idea: Use real index of label to be more precise, for instance L 3
2
“ L1.5 to

express a label between L1 and L2

Operations with refined linguistic labels

q-addition of refined labels
La ` Lb “ La`b

q-multiplication of refined labels

La ¨ Lb “ La¨b{pn`1q

q-division of refined labels (if b ‰ 0)

La ˜ Lb “ Lpa{bqpn`1q

More operations presented in [DSmT books], Vol. 3, Chap. 2
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Working with qualitative basic belief assignment

Example L “ tL0,L1,L2,L3,L4,L5u ô t0,L1 ” 0.2,L2 ” 0.4,L3 ” 0.6,L4 ” 0.8, 1u

Product using labels: L2 ¨ L3 “ Lrp2.3q{5s “ Lr6{5s “ Lr1.2s “ L1

Product using numbers: 0.4 ¨ 0.6 “ 0.24 « 0.2 “ L1

Product using labels: L3 ¨ L3 “ Lrp3.3q{5s “ Lr9{5s “ Lr1.8s “ L2

Product using numbers: 0.6 ¨ 0.6 “ 0.36 « 0.4 “ L2

Qualitative BBA qmp.q : 2Θ ÞÑ L “ tL0,L1, . . . ,Ln,Ln`1u

Quasi-normalization conditions

qmpHq “ L0 and
ÿ

XP2Θ

qmpXq “
ÿ

k

Lik “ Ln`1

Qualitative rules of combination

All previous rules of combinations (as well as BBA transformations) can be done
with qualitative BBA thanks to operators on linguistic labels [Martin et al. 2008].

Extension for working with imprecise qualitative BBAs is proposed in
[Li Dai Dezert Smarandache 2010]
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Example of qualitative BBA fusion (1)

Example drawn from [Martin et al. 2008]

L “ tL0,L1 “ very poor,L2 “ poor,L3 “ good,L4 “ very good,L5 “ very very good,L6u

ô t0, 1{6 « 0.166, 2{6 « 0.333, 3{6 “ 0.5, 4{6 « 0.666, 5{6 « 0.833, 1u

Θ “ tA,Bu satisfying Shafer’s model, and the two qualitative normalized BBAs

qm1pAq “ L1,qm1pBq “ L3,qm1pAY Bq “ L2

qm2pAq “ L4,qm2pBq “ L1,qm2pAY Bq “ L1

Conjunctive rule (with refined labels calculus)

K12 “ qm12pHq “ qm1pAqqm2pBq ` qm1pBqqm2pAq

“ L1L1 ` L3L4 “ L 1¨1
6
` L 3¨4

6
“ L 1`12

6
“ L 13

6
“ L2.166« L2

qm12pAq “ qm1pAqqm2pAq ` qm1pAqqm2pAY Bq ` qm2pAqqm1pAY Bq

“ L1L4 ` L1L1 ` L4L2 “ L 1¨4
6
` L 1¨1

6
` L 4¨2

6
“ L 4`1`8

6
“ L 13

6
“ L2.166« L2

qm12pBq “ qm1pBqqm2pBq ` qm1pBqqm2pAY Bq ` qm2pBqqm1pAY Bq

“ L3L1 ` L3L1 ` L1L2 “ L 3¨1
6
` L 3¨1

6
` L 1¨2

6
“ L 3`3`2

6
“ L 8

6
“ L1.333« L1

qm12pAY Bq “ qm1pAY Bqqm2pAY Bq “ L2L1 “ L 2¨1
6
“ L 2

6
“ L0.333« L0

With refined labels, qm12 is normalized: L 13
6
` L 13

6
` L 8

6
` L 2

6
“ L 36

6
“ L6 “ Lmax

With approximate labels, qm12 is not normalized: L2 ` L2 ` L1 ` L0 “ L5 ‰ L6 “ Lmax
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Example of qualitative BBA fusion (2)

qm1pAq “ L1,qm1pBq “ L3,qm1pAY Bq “ L2

qm2pAq “ L4,qm2pBq “ L1,qm2pAY Bq “ L1

PCR5/6 rule (with refined labels calculus)

Partial conflict qm1pAqqm2pBq “ L1L1 “ L 1¨1
6
“ L 1

6
goes back to A and to B with

xA

L1
“
xB

L1
“

L1L1

L1 ` L1
“
L 1¨1

6

L2
“ Lp 1

6˜2q¨6 “ L 1
2
ñ

#

xA “ L1L 1
2
“ Lp1¨ 1

2 q{6
“ L 1

12
« L0.083

xB “ L1L 1
2
“ Lp1¨ 1

2 q{6
“ L 1

12
« L0.083

Partial conflict qm2pAqqm1pBq “ L4L3 “ L 4¨3
6
“ L 12

6
goes back to A and to B with

yA

L4
“
yB

L3
“

L4L3

L4 ` L3
“
L 12

6

L7
“ Lp 12

6 ˜7q¨6 “ L 12
7
ñ

#

yA “ L4L 12
7
“ Lp4¨ 12

7 q{6
“ L 8

7
« L1.142

yB “ L3L 12
7
“ Lp3¨ 12

7 q{6
“ L 6

7
« L0.857

Finally, one gets qmPCR5{6pHq “ L0 and
qmPCR5{6pAq “ qm12pAq ` xA ` yA “ L 13

6
` L 1

12
` L 8

7
“ L 285

84
« L3.392 « L3

qmPCR5{6pBq “ qm12pBq ` xB ` yB “ L 8
6
` L 1

12
` L 6

7
“ L 191

84
« L2.273 « L2

qmPCR5{6pAYBq “ qm12pAYBq “ L 2
6
“ L 28

84
« L0.333 « L0

With refined labels one has L0 ` L 285
84
` L 191

84
` L 28

84
“ L 504

84
“ L6 “ Lmax
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Part II

Decision-Making Support with Belief Functions
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Outline of Part 2

14 Classical decision-making methods with belief functions

15 General mono-criteria decision-making problem

16 Methods for Multi-Criteria Decision-Making support
AHP and DSm-AHP methods
TOPSIS and BF-TOPSIS methods

17 Non classical MCDM problem

18 Toolboxes
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Part II - Decision-Making Support with Belief Functions

Classical decision-making methods with belief functions
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Decision-making methods from a BBA (1)

Decision-making problem (DMP) FoD Θ “ tθ1, . . . , θnu “ set of possible solutions
Knowing a BBA mp¨q over 2Θ, how should I make my decision δ based on mp¨q?
In the classical DMP, we restrict δ P Θ, i.e. the best decision θ̂ is a singleton of 2Θ.

Classical DM methods
Pessimistic Decision-Making attitude: Maximum of belief strategy

mp¨q Ñ Belp¨q and δ “ θ̂ “ arg max
θiPΘ

Belpθiq

Optimistic Decision-Making attitude: Maximum of plausibility strategy

mp¨q Ñ Plp¨q and δ “ θ̂ “ arg max
θiPΘ

Plpθiq

Compromise Decision-Making attitude: Maximum of probability strategy

mp¨q Ñ Pp¨q and δ “ θ̂ “ arg max
θiPΘ

Ppθiq

where Pp¨q P rBelp¨q,Plp¨qs is a (subjective) proba measure approximated from the
BBA mp¨q, typically obtained with a lossy transformation like BetP, or DSmP
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Decision-making methods from a BBA (2)

Decision-making based on distances [Han Dezert Yang 2014, Dezert et al. 2016]

A better theoretical approach for decision-making is to use a strict distance metric
dp¨, ¨q between two BBAs and to make the decision by

δ “ X̂ “ argmin
XPX

dpm,mXq

X “ tadmissibleX,X P 2Θu is the set of possible admissible decisions we consider. For
instance, if δ must be a singleton, then X “ Θ “ tθ1, . . . , θnu.
mX is the BBA focused on X defined by mXpYq “ 0 if Y ‰ X, and mXpYq “ 1 if Y “ X
Few strict distance metrics are possible

Jousselme distance: dJpm1,m2q fi

b

0.5 ¨ pm1 ´m2q
TJac pm1 ´m2q

Euclidean dBI distance: dEBIpm1,m2q fi

b

1
2|Θ|´1 ¨

ř

AP2Θ d
IpBI1pAq,BI2pAqq

2

Chebyshev dBI distance: dCBI pm1,m2q fi max
AP2Θ

 

dI pBI1pAq,BI2pAqq
(

In practice, we recommend to use dEBIpm1,m2q [Han Dezert Yang 2017]

Quality of the decision qpX̂q “ 1´
dBIpm,mX̂q

ř

XPX dBIpm,mXq
P r0, 1s

Higher is qpX̂q more trustable is the decision δ “ X̂
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Part II - Decision-Making Support with Belief Functions

General mono-criteria decision-making problem
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General mono-criteria decision-making problem

How to make a decision among several possible choices, based on some contexts ?

Problem modeling
q ě 2 alternatives (choices) A “ tA1, . . . ,Aqu
n ě 1 states of nature (contexts) S “ tS1, . . . ,Snu

C fi

»

—

—

—

—

—

—

–

S1 . . . Sj . . . Sn

A1 C11 . . . C1j . . . C1n

...
...

Ai Ci1 . . . Cij . . . Sin
...

...
Aq Cq1 . . . Cqj . . . Cqn

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

C is the benefit (payoff) matrix of the problem under consideration

Investment company example

An investment company wants to invest a given amount of money in the best option
A˚ P A “ tA1,A2,A3u, where A1 “ car company, A2 “ food company, and
A3 “ computer company. Several scenarios (states of nature) Si are identified
depending on national economical situation predictions, which provide the elements of
the payoff matrix C according to a given criteria (growth analysis criterion by example).
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General mono-criteria decision-making problem

Several decision-making frameworks are possible

Decision under certainty
If we know the true state of nature is Sj, take as decision δ “ A˚ with

A˚ “ Ai˚ with i˚ “ arg max
i
tCiju

Decision under risk
If we know all probabilities pj “ PpSjq of the states of nature, compute the
expected benefit ErCis “

ř

j pjCij of each Ai and take as decision δ “ A˚ with

A˚ “ Ai˚ with i˚ “ arg max
i
tErCisu

Decision under ignorance
If we don’t know the probabilities pj “ PpSjq of the states of nature, use OWA
(Ordered Weighted Averaging) approach [Yager 1988], or Cautious-OWA
[Tacnet Dezert 2011], or Fuzzy-Cautious-OWA [Han Dezert Tacnet Han 2012]

Decision under uncertainty
If we have only a BBA over the states of the nature S “ tS1, . . . ,Snu defined on
the power set 2S, we can use Yager extended OWA approach.
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Decision under risk

C fi

»

—

—

—

—

—

—

—

–

S1,p1 . . . Sj,pj . . . Sn,pn

A1 C11 . . . C1j . . . C1n

...
...

Ai Ci1 . . . Cij . . . Cin

...
...

Aq Cq1 . . . Cqj . . . Cqn

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

ñ ErCs “

»

—

—

—

—

—

—

—

—

–

ErC1s “
ř

j pjC1j

...
ErCis “

ř

j pjCij

...
ErCqs “

ř

j pjCqj

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

Decision: A˚ is the chosen alternative corresponding to highest expected benefit.

Example

C “

»

—

–

S1,p1 “ 1{4 S2,p2 “ 1{4 S3,p3 “ 1{2

A1 16 12 20
A2 32 4 6
A3 12 20 4
A4 40 4 8

fi

ffi

fl
ñ

»

—

–

ErC1s “ p1{4q16` p1{4q12` p1{2q20 “ 17
ErC2s “ p1{4q32` p1{4q4` p1{2q6 “ 12
ErC3s “ p1{4q12` p1{4q20` p1{2q4 “ 10
ErC4s “ p1{4q40` p1{4q4` p1{2q8 “ 15

fi

ffi

fl

Sorting the expected benefits by their decreasing values gives the ranking

A1 ą A4 ą A2 ą A4

The decision to take is A˚ “ A1
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Decision under ignorance using OWA

The probabilities pj “ PpSjq of the states of the nature are unknown

Cfi

»

—

—

—

—

—

—

—

—

—

—

—

—

–

S1,p1 “? . . . Sj ,pj “? . . . Sn ,pn “?

A1 C11 . . . C1j . . . C1n

.

.

.

.

.

.
Ai Ci1 . . . Cij . . . Cin

.

.

.

.

.

.
Aq Cq1 . . . Cqj . . . Cqn

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

OWA (Ordered Weighted Averaging) method [Yager 1988]
1 Decisional attitude: choose the set of n weights w “ rw1 . . . wns with

ř

jwj “ 1
§ Optimistic (max benefit): w “ r1 0 . . . 0s
§ Hurwicz (a balance between min and max): w “ rα 0 . . . 0 p1´αqs, typically α “ 1{2
§ Normative (equi weights): w “ r 1

n . . . 1
n s

§ Pessimistic (min benefit): w “ r0 . . . 0 1s
2 Evaluation: compute the weighted average of ordered benefits for each alternative

Vi “OWApCi1, . . . ,Cinq “
n
ÿ

j“1

wjbij

where bij is the j-th element/benefit among tCi1, . . . ,Cinu and
bi “ rbi1 bi2 . . . bins is the reordering of i-th row by decreasing values

3 Decision: take δ “ A˚ with

A˚ “ Ai˚ with i˚ “ arg max
i
tViu
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Example of decision under ignorance with OWA

The probabilities pj “ PpSjq of the states of the nature are unknown

C “

»

–

S1,p1 “? S2,p2 “? S3,p3 “? S4,p4 “?

A1 10 0 20 30
A2 1 10 20 30
A3 30 10 2 5

fi

fl

OWA result with optimistic attitude w “ r1 0 0 0s Ñ we take the max by row
$

’

&

’

%

V1 “OWAp10, 0, 20, 30q “ w ¨ r30 20 10 0s1 “ 30

V2 “OWAp1, 10, 20, 30q “ w ¨ r30 20 10 1s1 “ 30

V3 “OWAp30, 10, 2, 5q “ w ¨ r30 10 5 2s1 “ 30

ñ No best choice exists

OWA result with Hurwicz attitude with α “ 0.5 ñ w “ rp1{2q 0 0 p1{2qs
$

’

&

’

%

V1 “OWAp10, 0, 20, 30q “ w ¨ r30 20 10 0s1 “ p30{2q ` p0{2q “ 15

V2 “OWAp1, 10, 20, 30q “ w ¨ r30 20 10 1s1 “ p30{2q ` p1{2q “ 15.5

V3 “OWAp30, 10, 2, 5q “ w ¨ r30 10 5 2s1 “ p30{2q ` p2{2q “ 16

ñA3 is the best choice

OWA result with normative attitude w “ rp1{4q p1{4q p1{4q p1{4qs
$

’

&

’

%

V1 “OWAp10, 0, 20, 30q “ w ¨ r30 20 10 0s1 “ 60{4 “ 15

V2 “OWAp1, 10, 20, 30q “ w ¨ r30 20 10 1s1 “ 61{4

V3 “OWAp30, 10, 2, 5q “ w ¨ r30 10 5 2s1 “ 47{4

ñA2 is the best choice

OWA result with pessimistic attitude w “ r0 0 0 1s Ñ we take the min by row
$

’

&

’

%

V1 “OWAp10, 0, 20, 30q “ w ¨ r30 20 10 0s1 “ 0

V2 “OWAp1, 10, 20, 30q “ w ¨ r30 20 10 1s1 “ 1

V3 “OWAp30, 10, 2, 5q “ w ¨ r30 10 5 2s1 “ 2

ñA3 is the best choice
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Decision under uncertainty using OWA

Probas pj “ PpSjq of the states Sj are unknown, but we know a BBA mp¨q : 2S ÞÑ r0, 1s

C“ rc1 . . . cj . . . cnsfi

»

—

—

—

—

—

—

—

—

—

—

—

—

–

S1,p1 “? . . . Sj ,pj “? . . . Sn ,pn “?

A1 C11 . . . C1j . . . C1n

.

.

.

.

.

.
Ai Ci1 . . . Cij . . . Cin

.

.

.

.

.

.
Aq Cq1 . . . Cqj . . . Cqn

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

Method 1: Approximate mp¨q by a proba measure ñ decison-making under risk

Method 2: Extended OWA method [Yager 1988]

1 Decisional attitude: choose the decisional attitude (optimistic,pessimistic, etc)
2 Apply OWA on each sub-matrix CpXkq of benefits associated with the focal

element Xk, k “ 1, . . . , r of mp¨q to get valuations VipXkq, i “ 1, . . . ,q

CpXkq “ rcj|Sj Ď Xks

3 Compute the generalized expected benefits for i “ 1, . . . ,q

ErCis “

r
ÿ

k“1

mpXkqVipXkq

4 Decision: take the decision δ “ A˚ “ Ai˚ with i˚ “ arg maxitErCisu
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Example of decision under uncertainty using OWA (1)

Probas pj “ PpSjq of the states Sj are unknown, but we know a BBA mp¨q : 2S ÞÑ r0, 1s

C “

»

—

—

–

S1,p1 “? S2,p2 “? S3,p3 “? S4,p4 “? S5,p5 “?

A1 7 5 12 13 6
A2 12 10 5 11 2
A3 9 13 3 10 9
A4 6 9 11 15 4

fi

ffi

ffi

fl

The uncertainty is modeled by a BBA with 3 focal elements as follows

BBA\FE X1 fi S1 Y S3 Y S4 X2 fi S2 Y S5 X3 fi S1 Y S2 Y S3 Y S4 Y S5

mp¨q 0.6 0.3 0.1

Construction of benefit sub-matrices for each focal element of mp¨q

CpX1q “

»

—

–

S1 S3 S4

A1 7 12 13
A2 12 5 11
A3 9 3 10
A4 6 11 15

fi

ffi

fl
CpX2q “

»

—

–

S2 S5

A1 5 6
A2 10 2
A3 13 9
A4 9 4

fi

ffi

fl
CpX3q “

»

—

–

S1 S2 S3 S4 S5

A1 7 5 12 13 6
A2 12 10 5 11 2
A3 9 13 3 10 9
A4 6 9 11 15 4

fi

ffi

fl
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Example of decision under uncertainty using OWA (2)

Using pessimistic decisional attitude

Apply OWA for each sub-matrix CpX3q, k “ 1, 2, 3

CpX1q “

»

—

—

–

S1 S3 S4

A1 7 12 13
A2 12 5 11
A3 9 3 10
A4 6 11 15

fi

ffi

ffi

fl

ñ

$

’

’

’

&

’

’

’

%

V1pX1q “OWAp7, 12, 13q “ r0 0 1s ¨ r13 12 7s1 “ 7

V2pX1q “OWAp12, 5, 11q “ r0 0 1s ¨ r12 11 5s1 “ 5

V3pX1q “OWAp9, 3, 10q “ r0 0 1s ¨ r10 9 3s1 “ 3

V4pX1q “OWAp6, 11, 15q “ r0 0 1s ¨ r15 11 6s1 “ 6

CpX2q “

»

—

—

–

S2 S5

A1 5 6
A2 10 2
A3 13 9
A4 9 4

fi

ffi

ffi

fl

ñ

$

’

’

’

&

’

’

’

%

V1pX2q “OWAp5, 6q “ r0 1s ¨ r6 5s1 “ 5

V2pX2q “OWAp10, 2q “ r0 1s ¨ r10 2s1 “ 2

V3pX2q “OWAp13, 9q “ r0 1s ¨ r13 9s1 “ 9

V4pX2q “OWAp9, 4q “ r0 1s ¨ r9 4s1 “ 4

CpX3q “

»

—

—

–

S1 S2 S3 S4 S5

A1 7 5 12 13 6
A2 12 10 5 11 2
A3 9 13 3 10 9
A4 6 9 11 15 4

fi

ffi

ffi

fl

ñ

$

’

’

’

&

’

’

’

%

V1pX3q “OWAp7, 5, 12, 13, 6q “ r0 0 0 0 1s ¨ r13 12 7 6 5s1 “ 5

V2pX3q “OWAp12, 10, 5, 11, 2q “ r0 0 0 0 1s ¨ r12 11 10 5 2s1 “ 2

V3pX3q “OWAp9, 13, 3, 10, 9q “ r0 0 0 0 1s ¨ r13 10 9 9 3s1 “ 3

V4pX3q “OWAp6, 9, 11, 15, 4q “ r0 0 0 0 1s ¨ r15 11 9 6 4s1 “ 4

Compute generalized expected benefits ErCis “
ř

kmpXkqVipXkq

with mpX1q “ 0.6, mpX2q “ 0.3 and mpX3q “ 0.1

ErC1s “ 0.6 ¨ 7` 0.3 ¨ 5` 0.1 ¨ 5 “ 6.2

ErC2s “ 0.6 ¨ 5` 0.3 ¨ 2` 0.1 ¨ 2 “ 3.8

ErC3s “ 0.6 ¨ 3` 0.3 ¨ 9` 0.1 ¨ 3 “ 4.8

ErC4s “ 0.6 ¨ 6` 0.3 ¨ 4` 0.1 ¨ 4 “ 5.2

Take final decision with alternative having highest expected benefit Ñ A˚ “ A1
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Example of decision under uncertainty using OWA (3)

Using optimistic decisional attitude

Apply OWA for each sub-matrix CpX3q, k “ 1, 2, 3

CpX1q “

»

—

—

–

S1 S3 S4

A1 7 12 13
A2 12 5 11
A3 9 3 10
A4 6 11 15

fi

ffi

ffi

fl

ñ

$

’

’

’

&

’

’

’

%

V1pX1q “OWAp7, 12, 13q “ r1 0 0s ¨ r13 12 7s1 “ 13

V2pX1q “OWAp12, 5, 11q “ r1 0 0s ¨ r12 11 5s1 “ 12

V3pX1q “OWAp9, 3, 10q “ r1 0 0s ¨ r10 9 3s1 “ 10

V4pX1q “OWAp6, 11, 15q “ r1 0 0s ¨ r15 11 6s1 “ 15

CpX2q “

»

—

—

–

S2 S5

A1 5 6
A2 10 2
A3 13 9
A4 9 4

fi

ffi

ffi

fl

ñ

$

’

’

’

&

’

’

’

%

V1pX2q “OWAp5, 6q “ r1 0s ¨ r6 5s1 “ 6

V2pX2q “OWAp10, 2q “ r1 0s ¨ r10 2s1 “ 10

V3pX2q “OWAp13, 9q “ r1 0s ¨ r13 9s1 “ 13

V4pX2q “OWAp9, 4q “ r1 0s ¨ r9 4s1 “ 9

CpX3q “

»

—

—

–

S1 S2 S3 S4 S5

A1 7 5 12 13 6
A2 12 10 5 11 2
A3 9 13 3 10 9
A4 6 9 11 15 4

fi

ffi

ffi

fl

ñ

$

’

’

’

&

’

’

’

%

V1pX3q “OWAp7, 5, 12, 13, 6q “ r1 0 0 0 0s ¨ r13 12 7 6 5s1 “ 13

V2pX3q “OWAp12, 10, 5, 11, 2q “ r1 0 0 0 0s ¨ r12 11 10 5 2s1 “ 12

V3pX3q “OWAp9, 13, 3, 10, 9q “ r1 0 0 0 0s ¨ r13 10 9 9 3s1 “ 13

V4pX3q “OWAp6, 9, 11, 15, 4q “ r1 0 0 0 0s ¨ r15 11 9 6 4s1 “ 15

Compute generalized expected benefits ErCis “
ř

kmpXkqVipXkq

with mpX1q “ 0.6, mpX2q “ 0.3 and mpX3q “ 0.1

ErC1s “ 0.6 ¨ 13` 0.3 ¨ 6` 0.1 ¨ 13 “ 10.9

ErC2s “ 0.6 ¨ 12` 0.3 ¨ 10` 0.1 ¨ 12 “ 11.4

ErC3s “ 0.6 ¨ 10` 0.3 ¨ 13` 0.1 ¨ 13 “ 11.2

ErC4s “ 0.6 ¨ 15` 0.3 ¨ 9` 0.1 ¨ 15 “ 13.2

Take final decision with alternative having highest expected benefit Ñ A˚ “ A4
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Advantage, limitation and improvement of OWA

Advantage of OWA

Very simple to apply

Limitation of OWA

The result strongly depends on the decisional attitude chosen when applying OWA
How to avoid this? Ñ complicate methods exist to select weights (using entropy)

Improvements of OWA

Use jointly the two most extreme decisional attitudes (pessimistic and optimistic) to be
more cautious, which can be done as follows

1 Applying OWA using Hurwicz attitude by taking α “ 1{2
Ñ a balance only between min and max benefit values

2 Applying modified OWA based on belief functions
Ñ we use all benefit values between min and max

§ Cautious OWA (COWA) [Tacnet Dezert 2011]
Pessimistic and optimistic generalized expected benefits allow to build belief intervals,
and to get BBAs that are combined with PCR6 to get combined BBA from which the
final decision is taken.

§ Fuzzy Cautious OWA (FCOWA) [Han Dezert Tacnet Han 2012]
A version of COWA more efficient and more simple to implement
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Cautious OWA for decision under ignorance or uncertainty

At first, apply OWA with pessimistic and optimistic attitudes to get bounds
rEminrCis,E

maxrCiss of expected benefits of each alternative Ai

Main steps of Cautious OWA (COWA) [Tacnet Dezert 2011]

1 Normalization of exp. benefits intervals (˜ by max value) to get intervals in r0, 1s
2 Conversion of each interval in a BBA mipAiq, mipĀiq, mipAi Y Āiq
3 Fusion of the q BBAs mip¨q, i “ 1, . . . ,q (by PCR6) to get the combined BBA mp¨q
4 Final decision drawn from mp¨q by a chosen decision rule, for example by max

BetP, max DSmP, or by min dBI)

Drawbacks of COWA

High computational complexity of the combination (highly dependent on the
number q of alternatives)
In COWA, each expected interval is used as a SoE. However these intervals are
jointly obtained which introduces a correlation between the sources, and which is
harmful for the combination of BBAs.

Overcoming the drawbacks of COWA

Ñ Use Fuzzy-COWA approach, which is more efficient and simpler
Jean Dezert & Deqiang Han Fusion 2017 Conference - Tutorial T2 July 10th, 2017 110 / 162



Example of decision making using COWA (1)

Let consider the previous example with

BBA\FE X1 fi S1 Y S3 Y S4 X2 fi S2 Y S5 X3 fi S1 Y S2 Y S3 Y S4 Y S5

mp¨q 0.6 0.3 0.1

and the benefit matrix

C “

»

—

–

S1 S2 S3 S4 S5

A1 7 5 12 13 6
A2 12 10 5 11 2
A3 9 13 3 10 9
A4 6 9 11 15 4

fi

ffi

fl
ñ

rEminrC1s “ 6.2,EmaxrC1s “ 10.9s
rEminrC2s “ 3.8,EmaxrC2s “ 11.4s
rEminrC3s “ 4.8,EmaxrC3s “ 11.2s
rEminrC4s “ 5.2,EmaxrC4s “ 13.2s

ñ

r6.2{13.2, 10.9{13.2s « r0.47, 0.82s
r3.8{13.2, 11.4{13.2s « r0.29, 0.86s
r4.8{13.2, 11.2{13.2s « r0.36, 0.85s
r5.2{13.2, 13.2{13.2s « r0.39, 1.00s

BBA construction from interval ra,bs Ď r0, 1s
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Example of decision making using COWA (2)

Fusion of BBAs (here with PCR5)

Final decision (by max of Bel, BetP, DSmP or Pl)

Final decision is A˚ “ A1
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Fuzzy Cautious OWA for decision under ignorance or uncertainty

At first, apply OWA with pessimistic and optimistic attitudes to get bounds
rEminrCis,E

maxrCiss of expected benefits of each alternative Ai
Main steps of Fuzzy Cautious OWA (FCOWA) [Han Dezert Tacnet Han 2012]

1 Normalize each column EminrCs and EmaxrCs separately to obtain EFuzzypCq

2 Conversion of the two normalized columns, i.e. two Fuzzy Membership Functions
(FMF), into two pessimistic and optimistic BBAs mPessp¨q and mOptip¨q

3 Fusion of mPessp¨q and mOptip¨q to get a combined BBA mp¨q
4 Final decision drawn from mp¨q by a chosen decision rule, for example by max of

BetP, DSmP, or by min of dBI

Advantages of FCOWA

only 2 BBAs are involved in the combination ñ only one fusion step is needed
the BBAs in FCOWA (built by using alpha-cuts) are consonant support (FE are
nested), which brings less computational complexity than with COWA
good performances of FCOWA w.r.t. COWA
good robustness of FCOWA to scoring errors w.r.t. COWA

Physical meaning

In FCOWA, the 2 SoE are pessimistic OWA and optimistic OWA. The combination
result can be regarded as a tradeoff between these two attitudes.
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Differences between COWA and FCOWA

The differences between COWA and FCOWA (on previous example):

Difference in normalization

Difference in BBA modeling
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Principle of α-cut for BBA modeling in FCOWA
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On robustness of FCOWA on error scoring

Example: decision under ignorance with COWA and FCOWA

The FCOWA method provides a decision A˚ “ A1 which is consistent with what we
obtain by rank-level fusion, contrariwise to what gives COWA

no general proof of this good behavior of FCOWA has been proved so far
impact of the normalization method on FCOWA performances not available yet

Jean Dezert & Deqiang Han Fusion 2017 Conference - Tutorial T2 July 10th, 2017 116 / 162



Part II - Decision-Making Support with Belief Functions

Methods for Multi-Criteria Decision-Making support
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Classical Multi-Criteria Decision-Making (MCDM) problem

How to make a choice among several alternatives based on different criteria?

Problem modeling 1 ñ using pairwise comparison matrices Ñ AHP methods
We consider a set of criteria C1, . . . , CN with preferences of importance established
from a pairwise comparison matrix (PCM) M. For each criteria Cj, a set of preferences
of the alternatives is established from a given pairwise comparison matrix Mj.

Problem modeling 2 ñ using directly the score matrix Ñ TOPSIS methods

A set of M ě 2 alternatives A fi tA1, . . . ,AMu

A set of N ą 1 Criteria C fi tC1, . . . ,CNu

A set of N ą 1 criteria importance weights W “ tw1, . . . ,wNu, with wj P r0, 1s
and

ř

jwj “ 1

S fi

»

—

—

—

—

—

—

—

–

C1,w1 . . . Cj,wj . . . CN,wN

A1 S11 . . . S1j . . . S1N

...
...

Ai Si1 . . . Sij . . . SiN

...
...

AM SM1 . . . SMj . . . SMN

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

S is the score matrix of the MCDM problem under consideration
Car example: How to buy a car based on some criteria (i.e. cost, safety, etc.)?
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Methods for solving classical MCDM problem

Important remarks
All methods developed so far suffer from rank reversal problem [Wang Luo 2009],
which means that the rank is changed by adding (or deleting) an alternative in the
problem. We consider rank reversal as very serious drawback.

Most of existing methods require score normalization at first, except for ERV
(Estimator Ranking Vector) method [Yin et al. 2013]. Normalization has been
identified as one of the origins of rank reversal problem.
There is no MCDM method which makes consensus among users, . . . but some
are very popular

§ AHP (Analytic Hierarchy Process) method is very popular in operational research
community but not exempt of problems

§ TOPSIS (Technique for Order Preference by Similarity to Ideal Solution) method is very
popular but the choice of normalization is disputed

What we present
AHP method and its extension DSm-AHP using belief functions
[Saaty 1980, Dezert et al. 2010, Dezert Tacnet 2011]

a new Belief-Function-based TOPSIS method called BF-TOPSIS to solve classical
and non-classical MCDM problems [Dezert Han Yin 2016, Carladous et al. 2016]
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Part II - Decision-Making Support with Belief Functions

Methods for Multi-Criteria Decision-Making support

‚ AHP and DSm-AHP methods
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Classical AHP method for MCDM

AHP = Analytic Hierarchy Process

AHP is a Multi-Criteria Decision-Making method developed by Thomas Saaty in 1980’s
based on the derivation of priority from preferences.

Main steps of classical AHP method [Saaty 1980]

1 The multiple criteria C1,. . . , CN are ordered in a hierarchy of importance
characterized by w “ rw1 . . . wNs such that

řN
j“1wj “ 1, obtained either through

a given pairwise comparison matrix (PCM), or given directly.
2 For each criterion Cj, j “ 1, . . . ,N, a set of preferences wpCjq of the choice of

alternatives is established from given pairwise comparison matrix MpCjq

3 Combine by the weighted arithmetic mean these preferences to get the global
ranking of the alternatives

4 Final decision-making is based on the result of step 3 by selecting the most
preferred alternative

Normalized Perron-Frobenius (NPF) eigen vectors (i.e. the eigen vector associated to
largest eigen value) of Pairwise Comparison Matrices are the keys of AHP method.
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Example for classical AHP method

Car selection example Θ “ set of cars “ tA,B,C,Du
We consider 3 criteria: C1=Gasoil economy, C2=Reliability, and C3=style.

Establishing importance of criteria from PCM (using NPF eigen vector)

M “ rMijs “

»

–

C1 C2 C3

C1 1{1 1{3 4{1
C2 3{1 1{1 5{1
C3 1{4 1{5 1{1

fi

fl ñ w “

»

–

0.2797
0.6267
0.0936

fi

fl ñ C2 ą C1 ą C3

M21 “ 3{1 means C2 is 3 times as important as C1

M23 “ 5{1 means C2 is 5 times as important as C3

Similarly, based on the given comparison matrices MpCjq we get wpCjq
For example, suppose we obtain from some PCM MpC1q, MpC2q and MpC3q

W fi rwpC1q wpC2q wpC3qs “

»

—

–

wpC1q wpC2q wpC3q

CarA 0.2500 0.4733 0.1129
Car B 0.1304 0.0611 0.4435
Car C 0.5109 0.1832 0.0565
CarD 0.1087 0.2824 0.3871

fi

ffi

fl

Combination (by weighted arithmetic mean) to get final ranking vector r

r “Wˆ w “

»

—

–

0.2500 0.4733 0.1129
0.1304 0.0611 0.4435
0.5109 0.1832 0.0565
0.1087 0.2824 0.3871

fi

ffi

fl
ˆ

»

–

0.2797
0.6267
0.0936

fi

fl “

»

—

–

r

CarA 0.3771
Car B 0.1163
Car C 0.2630
CarD 0.2436

fi

ffi

fl
ñA ą C ąD ą B

Final decision based on r vector: δ “ Car A
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Advantages and limitations of AHP for MCDM

Advantages

quite easy to implement (toolboxes exist for eigen vector computation)
easy to use
pairwise comparison matrices are convenient for preference elicitation for experts

Limitations

rank reversal problem
does not take into account for uncertainties in the ranking process

Extension of AHP with DST [Beynon 2002]

DS-AHP extends AHP using belief functions and Dempster-Shafer (DS) rule
. . . but DS rule is questionable, and the importance discounting is not efficient

Extension of AHP with DSmT [Dezert et al. 2010, Dezert Tacnet 2011]

DSm-AHP proposes a better rule of combination (PCR6)
DSm-AHP proposes a more interesting importance discounting technique
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DSm-AHP method for MCDM

DSm-AHP is an extension of Analytic Hierarchy Process (AHP) with using, PCR rules
of combination, and the new importance discounting technique to take into account
uncertainty in the ranking process

Main steps of DSm-AHP method [Dezert et al. 2010, Dezert Tacnet 2011]
1 Construction of uncertain comparison matrices. Take as BBA, the normalized

Perron-Frobenius vector of each pairwise comparison matrix
2 Use PCR6 rule, to combine BBAs to get a final priority ranking vector r
3 Make final decision by a chosen classical decision rule (i.e. max of Bel, max of Pl,

max of BetP, max of DSmP, or min of dBI)

Advantages of DSm-AHP method

better efficient rule of combination
distinction between Shafer’s reliability discounting and importance discounting

Drawbacks of DSm-AHP method

rank reversal can occur with DS-AHP and DSm-AHP
complicate to implement because of PCR6 general formula
cannot work with many criteria and alternatives because of its too high complexity
Solution Ñ use BBA approximation techniques, and PCR6 rule sequentially
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Main steps of DSm-AHP

Reliability discounting versus importance discounting

Reliability discounting, α P r0, 1s Importance discounting, β P r0, 1s

#

mαpAq “ α ¨mpAq @A ‰ Θ

mαpΘq “ α ¨mpΘq ` p1´ αq
‰

#

mβpAq “ β ¨mpAq @A ‰ H

mβpHq “ β ¨mpHq ` p1´ βq

α “ 1 ô SoE is 100% reliable β “ 1 ô SoE is 100% important

α “ 0 ô SoE is 100% unreliable β “ 0 ô SoE is not important

PCR5/6 fusion4 of importance discounted BBAs (if β1 “ β2 “ 0, mPCR5{6
12 pΘq fi 1q

m
PCR5{6H
12 pXq “ mConj,β1β2

12 pXq `
ÿ

YP2Θ
XXY“H

r
mβ1

1 pXq
2mβ2

2 pYq

mβ1
1 pXq `m

β2
2 pYq

`
mβ2

2 pXq
2
mβ1

1 pYq

mβ2
2 pXq `m

β1
1 pYq

s

Because mPCR5{6H
12 pHq ą 0, a classical normalization applies, that is

m
PCR5{6
12 pHq “ 0, and mPCR5{6

12 pXq “ m
PCR5{6H
12 pXq{r1´m

PCR5{6H
12 pHqs for X ‰ H

Note: Dempster-Shafer rule does not react to importance discounting

4use general PCR6 formula for combining more than two BBAs, see [DSmT books], Vols. 2 & 3
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Example for DSm-AHP method (1)

Car example tCarsu “ Θ “ tA,B,Cu, tCriteriau “ tC1 fi Economy,C2 fi Reliabilityu

Suppose the two given pairwise comparisons matrices MpC1q and MpC2q are

MpC1q “

»

–

A BYC Θ

A 1 ?Ñ 0 1{3
BYC ?Ñ 0 1 2
Θ 3 1{2 1

fi

fl ñ wpC1q «

»

–

0.0889
0.5337
0.3774

fi

fl “

»

–

m1pAq
m1pBYCq
m1pΘq

fi

fl

MpC2q “

»

—

–

A B AYC BYC

A 1 2 4 3
B 1{2 1 1{2 1{5
AYC 1{4 2 1 ?Ñ 0
BYC 1{3 5 ?Ñ 0 1

fi

ffi

fl
ñ wpC2q «

»

—

–

0.5002
0.1208
0.1222
0.2568

fi

ffi

fl
“

»

—

–

m2pAq
m2pBq
m2pAYCq
m2pBYCq

fi

ffi

fl

Suppose the two criteria have same full importances, i.e. β1 “ 1 and β2 “ 1

We apply directly PCR6 rule
FE of 2Θ m1p¨q m2p¨q m

PCR5{6
12 p¨q

H 0 0 0
A 0.0889 0.5002 0.3837
B 0 0 0.1162
AYB 0 0.1208 0
C 0 0 0.0652
AYC 0 0.1222 0.0461
BYC 0.5337 0.2568 0.3887
AYBYC 0.3774 0 0

We take the final decision according a
chosen decision rule from m

PCR5{6
12 p¨q

FE of 2Θ Belp¨q BetPp¨q Plp¨q
A 0.3837 0.4068 0.4298
B 0.1162 0.3105 0.5049
C 0.0652 0.2826 0.5000
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Example for DSm-AHP method (2)

Car example again with different importances β1 “ 0.25 and β2 “ 0.75

With DSm-AHP

We apply importance discounting to derive mβ1
1 p¨q and mβ2

2 p¨q, apply PCR5/6 rule to
get mPCR5{6H

12 p¨q and normalize to get mPCR5{6
12 p¨q

FE of 2Θ m1p¨q m2p¨q m
β1
1 p.q m

β2
2 p¨q m

PCR5{6H
12 p¨q m

PCR5{6
12 p¨q

H 0 0 0.7500 0.2500 0.6558 0
A 0.0889 0.5002 0.0222 0.3751 0.1794 0.5213
B 0 0 0 0 0.0121 0.0351
AYB 0 0.1208 0 0.0906 0.0159 0.0461
C 0 0 0 0 0.0122 0.0355
AYC 0 0.1222 0 0.0917 0.0161 0.0469
BYC 0.5337 0.2568 0.1334 0.1926 0.1020 0.2963
AYBYC 0.3774 0 0.0944 0 0.0065 0.0188

With classic AHP (by simple componentwise weighted averaging)

mAHP12 p¨q “ rm1p¨qm2p¨qs ˆ

„

β1

β2



“

»

—

—

—

—

—

—

—

—

—

–

0 0
0.0889 0.5002
0 0
0 0.1208
0 0
0 0.1222
0.5337 0.2568
0.3774 0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

ˆ

„

0.25
0.75



«

»

—

—

—

—

—

—

—

—

—

–

0
0.3974
0
0.0906
0
0.0916
0.3260
0.0944

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl
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Example for DSm-AHP method (3)

Car example again with different importances β1 “ 0.25 and β2 “ 0.75

ñ DSm-AHP reduces the uncertainty of the result UpXq “ PlpXq ´ BelpXq

Decision drawn from classical AHP using mAHP12 p¨q Ñ δ “ A

FE of 2Θ Belp¨q BetPp¨q Plp¨q Up¨q
A 0.3974 0.5200 0.6741 0.2767
B 0 0.2398 0.5110 0.5110
C 0 0.2403 0.5121 0.5121

Decision drawn from DSm-AHP using mPCR5{6
12 p¨q Ñ δ “ A

FE of 2Θ Belp¨q BetPp¨q Plp¨q Up¨q
A 0.5213 0.5741 0.6331 0.1118
B 0.0351 0.2126 0.3963 0.3612
C 0.0355 0.2134 0.3974 0.3619

In this example AHP and DSm-AHP provide the same decision, but DSm-AHP offers a
better precision (less uncertainty) on the result
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Part II - Decision-Making Support with Belief Functions

Methods for Multi-Criteria Decision-Making support

‚ TOPSIS and BF-TOPSIS methods
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Classical TOPSIS method for MCDM

TOPSIS = Technique for Order Preference by Similarity to Ideal Solution

Classical TOPSIS method [Hwang Yoon 1981]

1 Build the normalized score matrix R “ rRijs “ rSij{
b

ř

i S
2
ijs

2 Calculate the weighted normalized decision matrix D “ rwj ¨ Rijs
3 Determine the positive (best) ideal solution Abest by taking the best/max value in

each column of D
4 Determine the negative (worst) ideal solution Aworst by taking the worst/min

value in each column of D
5 Compute L2-distances dpAi,Abestq of Ai, (i=1,. . . ,M) to Abest, and dpAi,Aworstq

of Ai to Aworst
6 Calculate the relative closeness of Ai to best ideal solution Abest by

CpAi,A
bestq fi

dpAi,A
worstq

dpAi,Aworstq ` dpAi,Abestq

When CpAi,Abestq “ 1, its means thatAi “Abest because dpAi,Abestq “ 0

When CpAi,Abestq “ 0, its means thatAi “Aworst because dpAi,Aworstq “ 0

7 Rank alternatives Ai according to CpAi,Abestq in descending order, and select
the highest preferred solution
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Example for classical TOPSIS method

A very simple example for TOPSIS S “

»

–

C1,w1 “ 1{2 C2,w2 “ 1{2

A1 6 2
A2 3 5
A3 4 4

fi

fl

1 Step 1 & 2 (normalization & columns weighting):

R “ rSij{

d

ÿ

i

S2
ijs ñ R “

»

–

C1, 1{2 C2, 1{2

0.7682 0.2981
0.3841 0.7454
0.5121 0.5963

fi

flñ D “

»

–

0.3841 0.1491
0.1921 0.3727
0.2561 0.2981

fi

fl

2 Step 3 & 4 (best and worst solutions) Abest “ r0.3841 0.3727s, Aworst “ r0.1921 0.1491s

3 Step 5 (L2-distance of Ai to Abest and to Aworst):

»

–

Abest “ r0.3841 0.3727s Aworst “ r0.1921 0.1491s

A1 “ r0.3841 0.1491s dpA1,Abestq “ 0.2236 dpA1,Aworstq “ 0.1921
A2 “ r0.1921 0.3727s dpA2,Abestq “ 0.1921 dpA2,Aworstq “ 0.2236
A3 “ r0.2561 0.2981s dpA3,Abestq “ 0.1482 dpA3,Aworstq “ 0.1622

fi

fl

4 Step 6 (relative closeness of Ai to Abest): CpAi,Abestq fi
dpAi ,Aworstq

dpAi ,Aworstq`dpAi ,Abestq

CpA1,Abestq “ 0.4620 CpA2,Abestq “ 0.5380 CpA3,Abestq “ 0.5227

5 Step 7 (ranking by decreasing order of CpAi,Abestq): A2 ą A3 ą A1

Based on TOPSIS, the decision δ to make is δ “ A2
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BF-TOPSIS method for MCDM

BF-TOPSIS is a TOPSIS-alike method based on belief functions [Dezert Han Yin 2016]

Advantages of BF-TOPSIS
no need for ad-hoc choice of scores normalization
relatively simple to implement
more robust to rank reversal phenomena (although not exempt)

Main problem to overcome

Working with belief functions requires the construction of BBAs. How to build efficiently
BBAs from the score values

Solution Ñ see next slides

Four BF-TOPSIS methods available with different complexity

1 BF-TOPSIS1: smallest complexity
2 BF-TOPSIS2: medium complexity
3 BF-TOPSIS3: high complexity (because of PCR6 fusion rule)
4 BF-TOPSIS4: high complexity (because of ZPCR6 fusion rule)

BF-TOPSIS for working with imprecise scores presented in [Dezert Han Tacnet 2017]
Jean Dezert & Deqiang Han Fusion 2017 Conference - Tutorial T2 July 10th, 2017 132 / 162



BBA construction for BF-TOPSIS (1)

Positive support of Ai based on all scores values of a criteria Cj

SupjpAiq fi
ÿ

kPt1,...Mu|SkjďSij

|Sij ´ Skj|

SupjpAiq measures how much Ai is better (higher) than other alternatives

Negative support of Ai based on all scores values of a criteria Cj

InfjpAiq fi ´
ÿ

kPt1,...Mu|SkjěSij

|Sij ´ Skj|

InfjpAiq measures how much Ai is worse (lower) than other alternatives

Important inequality see proof in [Dezert Han Yin 2016]

SupjpAiq

Ajmax

ď 1´
InfjpAiq

Ajmin

iff Ajmax fi maxi SupjpAiq and Ajmin fi mini InfjpAiq are different from zero.
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BBA construction for BF-TOPSIS (2)

Reminder SupjpAiq

A
j
max

ď 1´
InfjpAiq

A
j
min

Belief function modeling

BelijpAiq fi
SupjpAiq

Ajmax

and BelijpĀiq fi
InfjpAiq

Ajmin

If Ajmax “ 0, we set BelijpXiq “ 0
If Ajmin “ 0, we set PlijpAiq “ 1 so that BelijpĀiq “ 0

By construction, 0 ď BelijpAiq ď pPlijpAiq “ 1´ BelijpĀiqq ď 1

BBA construction from Belief Interval

From rBelijpAiq,PlijpAiqs, one gets the MˆN BBAs matrix M “ rmijp¨qs by taking

mijpAiq “ BelijpAiq

mijpĀiq “ BelijpĀiq “ 1´ PlijpAiq

mijpAi Y Āiq “ PlijpAiq ´ BelijpAiq
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BBA construction for BF-TOPSIS (3)

Advantages of this BBA construction

1 if all Sij are the same for a given column, we get @Ai, SupjpAiq “ InfjpAiq “ 0
and therefore mijpAi Y Āiq “ 1 which is the vacuous BBA, which makes sense.

2 it is invariant to the bias and scaling effects of score values. Indeed, if Sij are
replaced by S 1ij “ a ¨ Sij ` b, with a scale factor a ą 0 and a bias b P R, then
mijp¨q and m 1

ijp¨q remain equal.

3 if a numerical value Sij is missing or indeterminate, then we use the vacuous
belief assignment mijpAi Y Āiq “ 1.

4 We can also discount the BBA mijp¨q by a reliability factor using the classical
Shafer’s discounting method if one wants to express some doubts on the reliability
of mijp¨q.

In summary

From rSijs, we know how to build the matrix M “ rpmijpAiq,mijpĀiq,mijpAi Y Āiqqs

How to use these BBAs to rank Ai to make a decision? Ñ BF-TOPSIS methods
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BF-TOPSIS1 method

Steps of BF-TOPSIS1 [Dezert Han Yin 2016]

1 From S, compute BBAs mijpAiq mijpĀiq, and mijpAi Y Āiq
2 Set mbest

ij pAiq fi 1, and mworst
ij pĀiq fi 1 and compute distances dEBIpmij,m

best
ij q and

dEBIpmij,m
worst
ij q to ideal solutions.

3 Compute the weighted average distances of Ai to ideal solutions

dbestpAiq fi

N
ÿ

j“1

wj ¨ d
E
BIpmij,m

best
ij q

dworstpAiq fi

N
ÿ

j“1

wj ¨ d
E
BIpmij,m

worst
ij q

4 Compute the relative closeness of Ai with respect to ideal best solution Abest

CpAi,A
bestq fi

dworstpAiq

dworstpAiq ` dbestpAiq

5 Rank Ai by CpAi,Abestq in descending order.
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BF-TOPSIS2 method

Steps of BF-TOPSIS2 [Dezert Han Yin 2016]

1 From S, compute BBAs mijpAiq mijpĀiq, and mijpAi Y Āiq
2 Set mbest

ij pAiq fi 1, and mworst
ij pĀiq fi 1 and compute distances dEBIpmij,m

best
ij q and

dEBIpmij,m
worst
ij q to ideal solutions.

3 For each criteria Cj, compute the relative closeness of Ai to best ideal solution
Abest by

CjpAi,A
bestq fi

dEBIpmij,m
worst
ij q

dEBIpmij,m
worst
ij q ` dEBIpmij,m

best
ij q

4 Compute the weighted average of CjpAi,Abestq by

CpAi,A
bestq fi

N
ÿ

j“1

wj ¨ CjpAi,A
bestq

5 Rank Ai by CpAi,Abestq in descending order.

Jean Dezert & Deqiang Han Fusion 2017 Conference - Tutorial T2 July 10th, 2017 137 / 162



BF-TOPSIS3 and BF-TOPSIS4 methods

Steps of BF-TOPSIS3 [Dezert Han Yin 2016]

1 Compute BBAs mijpAiq, mijpĀiq and mijpAi Y Āiq and apply importance
discounting of each BBA with weight wj, see [Smarandache Dezert Tacnet 2010]

2 For each Ai, fuse the discounted BBAs with PCR6 to get BBAs mPCR6
i p¨q

3 Set mbest
i pAiq fi 1, and mworst

i pĀiq fi 1. Compute distances

dbestpAiq fi dEBIpm
PCR6
i ,mbest

i q

dworstpAiq fi dEBIpm
PCR6
i ,mworst

i q

4 Compute the relative closeness of Ai, i “ 1, . . . ,M, with respect to ideal best
solution Abest

CpAi,A
bestq fi

dworstpAiq

dworstpAiq ` dbestpAiq

5 Rank Ai by CpAi,Abestq in descending order.

BF-TOPSIS4 method

Same as BF-TOPSIS3, but PCR6 rule is replaced by ZPCR6 rule (i.e. PCR6 rule
including Zhang’s degree of intersection) [Smarandache Dezert 2015]
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On consistency of BF-TOPSIS methods

BF-TOPSIS methods are consistent with direct ranking in mono-criteria case

Example (Mono-criteria) Preference orderÑ greater value is better

S fi

»

—

—

—

—

—

—

—

–

C1

A1 10
A2 20
A3 ´5
A4 0
A5 100
A6 ´11
A7 0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

ñM fi

»

—

—

—

—

—

—

—

–

mi1pAiq mi1pĀiq mi1pAi Y Āiq

A1 0.0955 0.5236 0.3809
A2 0.1809 0.4188 0.4003
A3 0.0102 0.8115 0.1783
A4 0.0273 0.6806 0.2921
A5 1.0000 0 0
A6 0 1.0000 0
A7 0.0273 0.6806 0.2921

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

ñ

»

—

—

—

—

—

—

—

–

CpAi,Abestq

A1 0.1130
A2 0.1948
A3 0.0257
A4 0.0485
A5 1.0000
A6 0
A7 0.0485

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

Results

Ranking methods Preferences order

By direct ranking A5 ąA2 ąA1 ą pA4 „A7q ąA3 ąA6

By BF-TOPSIS A5 ąA2 ąA1 ą pA4 „A7q ąA3 ąA6

By DS fusion A5 ą pA1 „A2 „A3 „A4 „A6 „A7q

By PCR6 fusion A5 ąA2 ąA1 ąA4 ą pA3 „A6 „A7q

Rankings resulting of DS and PCR6 fusion of the BBAs do not match with direct ranking even in mono criteria
case because of strong dependencies between BBAs in their construction.
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On consistency of BF-TOPSIS methods (2)

In this example, we have ScorepA5q ąą ScorepA2q

S fi

»

—

—

—

—

—

—

—

–

C1

A1 10
A2 20
A3 ´5
A4 0
A5 100
A6 ´11
A7 0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

ñ

»

—

—

—

—

—

—

—

–

CpAi,Abestq

A1 0.1130
A2 0.1948
A3 0.0257
A4 0.0485
A5 1.0000
A6 0
A7 0.0485

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

ñA5 ąA2 ąA1 ą pA4 „A7q ąA3 ąA6

Let’s modify the example with ScorepA5q „ ScorepA2q

S fi

»

—

—

—

—

—

—

—

–

C1

A1 10
A2 20
A3 ´5
A4 0
A5 21
A6 ´11
A7 0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

ñ

»

—

—

—

—

—

—

—

–

CpAi,Abestq

A1 0.5072
A2 0.9472
A3 0.0675
A4 0.1584
A5 1.0000
A6 0
A7 0.1584

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

ñA5 ąA2 ąA1 ą pA4 „A7q ąA3 ąA6

We see that A2 is very close to ideal best solution, even if final result is unchanged.
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BF-TOPSIS when all scores are the same

When all scores are the same

ñ all BBAs are the same and equal to the vacuous BBA

ñ all closeness measures to best ideal solution are equal

S fi

»

—

—

—

—

—

—

–

C1

A1 s
...

...
Ai s
...

...
AM s

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

ñM fi

»

—

—

—

—

—

—

–

mi1pAi Y Āiq

A1 1
...

...
Ai 1
...

...
AM 1

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

ñ

»

—

—

—

—

—

—

–

CpAi,A
bestq

A1 c
...

...
Ai c
...

...
AM c

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

Conclusion: No specific choice can be drawn, which is perfectly normal.
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MCDM rank reversal example

Multi-Criteria example [Wang Luo 2009]

We consider 5 alternatives, and 4 criteria

S fi

»

—

—

—

–

C1, 1
6 C2, 1

3 C3, 1
3 C4, 1

6

A1 36 42 43 70
A2 25 50 45 80
A3 28 45 50 75
A4 24 40 47 100
A5 30 30 45 80

fi

ffi

ffi

ffi

fl

Rank reversal with TOPSIS
Set of alternatives TOPSIS

tA1,A2,A3u A3 ąA2 ąA1

tA1,A2,A3,A4u A2 ąA3 ąA1 ąA4

tA1,A2,A3,A4,A5u A3 ąA2 ąA4 ąA1 ąA5

Rank reversal

Rank reversal with BF-TOPSIS
Set of alternatives BF-TOPSIS1 & BF-TOPSIS2 BF-TOPSIS3 & BF-TOPSIS4

tA1,A2,A3u A2 ąA3 ąA1 A3 ąA2 ąA1

tA1,A2,A3,A4u A3 ąA2 ąA4 ąA1 A3 ąA2 ąA4 ąA1

tA1,A2,A3,A4,A5u A3 ąA2 ąA4 ąA1 ąA5 A3 ąA2 ąA4 ąA1 ąA5

Rank reversal No rank reversal
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MCDM car selection example

Car selection example

How to buy a car among 4 possible choices, and based on 5 different criteria with
weights w1 “ 5{17, w2 “ 4{17, w3 “ 4{17, w4 “ 1{17, and w5 “ 3{17

C1 = price (in e); the least is the best

C2 = fuel consumption (in L/km); the least is the best

C3 = CO2 emission (in g/km); the least is the best

C4 = fuel tank volume (in L); the biggest is the best

C5 = trunk volume (in L); the biggest is the best

Building the score matrix from http://www.choisir-sa-voiture.com

S fi

»

—

—

–

C1, 5
17

C2, 4
17

C3, 4
17

C4, 1
17

C5, 3
17

A1 “ TOYOTA YARIS 69 VVT-i Tendance 15000 4.3 99 42 73
A2 “ SUZUKI SWIFT MY15 1.2 VVT So’City 15290 5.0 116 42 892
A3 “ VOLKSWAGEN POLO 1.0 60 Confortline 15350 5.0 114 45 952
A4 “ OPEL CORSA 1.4 Turbo 100 ch Start/Stop Edition 15490 5.3 123 45 1120

fi

ffi

ffi

fl

A1 is the expected best choice because the 3 most important criteria meet their best
values for car A1.

With classical TOPSIS A4 ą A1 ą A3 ą A2 (counter-intuitive)

With all BF-TOPSIS methods A1 ą A3 ą A2 ą A4 (which fits with what we expect)
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MCDM Best student prize example

Best student prize example

How to give the best student prize awards among 4 students tA1,A2,A3,A4u, and
based on 10 different criteria with equal importance (wj “ 1{10, j “ 1, . . . , 10) ?

A1 A2 A3 A4

C1 fi Math 90 80 70 60
C2 fi Arts 90 80 70 60
C3 fi English 90 80 70 60
C4 fi Geography 90 80 70 60
C5 fi Physics 90 80 70 75
C6 fi Music 90 80 70 95
C7 fi History 80 90 70 85
C8 fi Chemistry 80 90 70 85
C9 fi Biology 80 90 70 85
C10 fi Long jump 3.5m 3.7m 4.0m 3.6m

BF-TOPSIS results
Considering 3 students tA1,A2,A3u only Considering the 4 students

Methods Ranking vectors Preferences orders Ranking vectors Preferences orders

ERV r0.748, 0.636, 0.188s A1 ąA2 ąA3 r0.620, 0.636, 0.248, 0.386s A2 ąA1 ąA4 ąA3
BF-TOPSIS1 r0.729, 0.594, 0.100s A1 ąA2 ąA3 r0.675, 0.620, 0.195, 0.320s A1 ąA2 ąA4 ąA3
BF-TOPSIS2 r0.731, 0.597, 0.100s A1 ąA2 ąA3 r0.677, 0.622, 0.194, 0.319s A1 ąA2 ąA4 ąA3
BF-TOPSIS3 r0.803, 0.736, 0.100s A1 ąA2 ąA3 r0.766, 0.775, 0.158, 0.288s A2 ąA1 ąA4 ąA3
BF-TOPSIS4 r0.803, 0.736, 0.100s A1 ąA2 ąA3 r0.766, 0.775, 0.158, 0.288s A2 ąA1 ąA4 ąA3

ERV, BFTOPSIS3, and BFTOPSIS4 exhibit rank reversal
BFTOPSIS1and BFTOPSIS2 work fine here (no rank reversal)
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Part II - Decision-Making Support with Belief Functions

Non classical MCDM problem
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Non-Classical Multi-Criteria Decision-Making problem

How to make a choice in A from multi-criteria scores expressed on power-set of A ?

S fi

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

Xi P 2A C1,w1 . . . Cj,wj . . . CN,wN

A1 S11 . . . S1j . . . S1N

...
...

Ai Si1 . . . Sij . . . SiN
...

...
AM SM1 . . . SMj . . . SMN
...

...
A1 YA2 SpM`1q1 . . . SpM`1qj . . . SpM`1qN

...
...

A1 Y . . .YAi Y . . .YAM Sp2M´1q1 . . . Sp2M´1qj . . . Sp2M´1qN

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

See [Dezert Han Tacnet Carladous Yin 2016, Carladous 2017] for details
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BBA construction for non classical MCDM

How to build mp.q : 2AfitA1,A2,...,AMu ÞÑ r0, 1s from scores S fi rSijs?

Direct extension of BBA construction [Dezert Han Tacnet Carladous Yin 2016]

Positive support of Xi P 2A based on all scores values of a criteria Cj

SupjpXiq fi
ÿ

YP2A|SjpYqďSjpXiq

|SjpXiq ´ SjpYq|

SupjpXiq measures how much Xi is better (higher) than other Y of 2A

Negative support of Xi P 2A based on all scores values of a criteria Cj

InfjpXiq fi ´
ÿ

YP2A|SjpYqěSjpXiq

|SjpXiq ´ SjpYq|

InfjpXiq measures how much Xi is worse (lower) than other Y of 2A

Belief function modeling

0 ď
SupjpXiq

Xjmax

ď 1´
InfjpXiq

Xjmin

ď 1 ñ

$

&

%

BelijpXiq fi
SupjpXiq

X
j
max

, with Xjmax “ maxi SupjpXiq

BelijpX̄iq fi
InfjpXiq

X
j
min

, with Xjmin “ mini InfjpXiq
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Simple example of non classical MCDM problem

Example 1

Five students A1, . . . , A5 have to be ranked based on two criteria
C1 = long jump performance
C2 = collected funds for an animal protection project

The scores are given as follows

S “

»

—

—

—

—

—

—

–

Xi P 2A C1,w1 C2,w2

A1 3.7 m ∅
A3 3.6 m ∅
A4 3.8 m ∅
A5 3.7 m 640e
A1 YA2 ∅ 600e
A3 YA4 ∅ 650e

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

Difficulties:

Scores are given in different units and different scales
Some scores values can be missing
Criteria Cj do not have same weights of importance wj (in general)
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Example of non classical MCDM problem with BF-TOPSIS1

Step 1: BBA matrix construction

S “

»

—

—

—

—

—

—

–

FE P 2A C1,w1 C2,w2

A1 3.7m ∅
A3 3.6m ∅
A4 3.8m ∅
A5 3.7m 640e
A1 YA2 ∅ 600e
A3 YA4 ∅ 650e

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

ñM “

»

—

—

—

—

—

—

–

C1,w1 C2,w2

p0.25, 0.25, 0.50q p0, 0, 1q
p0, 1, 0q p0, 0, 1q
p1, 0, 0q p0, 0, 1q

p0.25, 0.25, 0.50q p0.6667, 0.1111, 0.2222q
p0, 0, 1q p0, 1, 0q
p0, 0, 1q p1, 0, 0q

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

Step 2: distances to ideal best and worst solutions
Focal elem. dBIpmi1,mbestq dBIpmi1,mworstq dBIpmi2,mbestq dBIpmi2,mworstq

A1 0.6016 0.2652 0.7906 0.2041
A3 0.8416 0 0.7906 0.2041
A4 0 0.8416 0.7906 0.2041
A5 0.6016 0.2652 0.2674 0.5791

A1 YA2 0.5401 0.3536 0.6770 0
A3 YA4 0.5401 0.3536 0 0.6770

Steps 3-5: weighted distances with w1 “ 1{3 and w2 “ 2{3, closeness and ranking
Focal elem. dbestpXiq dworstpXiq CpXi ,Xbestq Ranking

A1 0.7276 0.2245 0.2358 4
A3 0.8076 0.1361 0.1442 6
A4 0.5270 0.4166 0.4415 3
A5 0.3788 0.4745 0.5561 2

A1 YA2 0.6314 0.1179 0.1573 5
A3 YA4 0.1800 0.5692 0.7597 1
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A more concrete example of non classical MCDM problem

Application: Protecting housing areas against torrential floods
Presented in [Dezert Han Tacnet Carladous Yin 2016, Carladous 2017]

List of alternatives (possible actions to take)
A1= maintenance of check dams’ series

A2= no maintenance, but build a sediment trap upstream

A3= make individual protections to limit damage on buildings

List of criteria
C1 (in e) = investment cost (in negative values)

C2 (in e) = risk reduction in 50 years between the current situation and expected situation with the chosen
action

C3 (in {1,2,. . . ,10}) = impact on environment

C4 (inm2) = the land-use areas needed in privates

Score matrix (the higher is the score, the better is the proposition)

S “

»

—

—

—

—

—

—

—

–

C1,w1 “ 0.33 C2,w2 “ 0.33 C3,w3 “ 0.20 C4,w4 “ 0.14

A1 ´150000 100000 10 0
A2 ´500000 200000 2 ´20000
A3 ´550000 250000 10 ´5000
A1 YA2 ´650000 230000 2 ´20000
A1 YA3 ´700000 250000 10 ´5000
A2 YA3 ´1050000 250000 2 ´25000
A1 YA2 YA3 ´1200000 250000 2 ´25000

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

Note: the scores are not cumulative in the same way for each criterion. For C1 and C4, the score of the
disjunction of two alternatives is the sum of individual scores whereas it is not the case for C2 and C3.
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A more concrete example of non classical MCDM problem

Here we apply BFTOPSIS1 method for its simplicity

Step 1: BBA construction from score matrix S

M “

»

—

—

—

—

—

—

—

–

C1,w1 C2,w2 C3,w3 C4,w4

A1 p1, 0, 0q p0, 1, 0q p1, 0, 0q p1, 0, 0q
A2 p0.44, 0.10, 0.46q p0.45, 0.28, 0.27q p0, 1, 0q p0.10, 0.67, 0.23q
A3 p0.37, 0.13, 0.50q p1, 0, 0q p1, 0, 0q p0.70, 0.07, 0.23q
A1 YA2 p0.27, 0.21, 0.52q p0.73, 0.10, 0.17q p0, 1, 0q p0.10, 0.67, 0.23q
A1 YA3 p0.23, 0.26, 0.51q p1, 0, 0q p1, 0, 0q p0.70, 0.07, 0.23q
A2 YA3 p0.04, 0.75, 0.21q p1, 0, 0q p0, 1, 0q p0, 1, 0q
A1 YA2 YA3 p0, 1, 0q p1, 0, 0q p0, 1, 0q p0, 1, 0q

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

Steps 2-5: weighted distances with w1 “ w2 “ 0.33, w3 “ 0.20, w4 “ 0.14, closeness
and ranking

Focal elem. Xi dbestpXiq dworstpXiq CpXi,Xbestq Ranking

A1 0.3012 0.6116 0.6700 3
A2 0.5668 0.3677 0.3935 6
A3 0.1830 0.7483 0.8035 2

A1 YA2 0.4476 0.4901 0.5226 4
A1 YA3 0.1555 0.7775 0.8333 1
A2 YA3 0.5562 0.3614 0.3938 5

A1 YA2 YA3 0.8328 0.2694 0.2444 7

Final ranking: best action(s) to take

pA1 YA3q ą A3 ą A1 ą pA1 YA2q ą pA2 YA3q ą A2 ą pA1 YA2 YA3q
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Toolboxes for working with belief functions

To start working with BF, we recommend Smets TBM MatLab codes that include
many useful efficient functions based on Fast Möbius Transforms

http://iridia.ulb.ac.be/~psmets/

Main toolboxes for working with BF can be found from Belief Functions and
Applications Society (www.bfasociety.org) wiki webpage at

http://bfaswiki.iut-lannion.fr/wiki/index.php/Toolboxes

Explanations for implementation of generalized belief functions can be found in

A. Martin, Implementing general belief function framework with a practical
codification for low complexity, in [DSmT books], Vol. 3, Chap 7, 2009.

Implementation of fusion rules by sampling techniques (java package)
http://refereefunction.fredericdambreville.com
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