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Context: Natural risks management

Rapid mass movements in mountains (avalanches, floods, rockfalls,…)

… threaten people and infra structures

We try to get protected against them by taking good decisions and actions.
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Context: Decision-making and natural risks management

Many decisions have to be taken to assess and manage risks  
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Objectives of the approach 

   

The goal is to design decision-aiding methods in a context 
of heterogeneous and imperfect information provided by 

more or less reliable sources… 

and apply them to real life problems….

We use belief function theory to improve multicriteria 
decision-making methods  

Risk management is based on complex, multi-actors 
decision processes 

[Carladous PhD. Thesis 2017]
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Part 1 - Belief Functions

… or how to go beyond probabilities

Theory of Belief Functions

Belief is the state of mind in which one thinks something to be true.

History

introduced by Glenn Shafer in 1976 [Shafer 1976]
also known as Dempster-Shafer Theory (DST) in the literature
http://www.glennshafer.com/books/amte.html

Main references

Paradigm shift
Beliefs often are related with singular event or evidence, and are not necessarily related with
statistical data and generic knowledge.
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Belief = State of mind in which one thinks something to be true
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Part 1 - Belief functions

Frame of discernment and power set

Frame of discernment (FoD)

The set of all possible solutions of the problem under concern is called the FoD.
Typically noted

⇥ “ t✓i, i “ 1, . . . ,nu
Criminal investigation example (list of suspects)

⇥ “ t✓1 “ Peter, ✓2 “ Paul, ✓3 “ Maryu
Land cover classification example (list of classes)

⇥ “ t✓1 “ Bare soil, ✓2 “ Corn, ✓3 “ Wooded area, ✓4 “ Buildingsu
Shafer’s model of FoD

⇥ is a finite set, with all elements exclusive two by two (i.e. disjoint).

Power set of ⇥ is the set of all subsets of ⇥ (empty set H included) noted

2

⇥ fi tX|X Ñ ⇥u
# of elements of the power set : |2⇥| “ 2

|⇥|
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Frame of discernment (FoD) Power-set

Example of power set
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Example

J. Dezert & J.-M. Tacnet - Workshop Grenoble - June 3-6, 2019.

[Dempster 1967,Shafer 1976]

Basic Belief Assignment (BBA)

Mass function (or BBA)

A source of evidence (SoE) about ✓ is represented by a BBA (or mass function)
m⇥p¨q : 2⇥ fiÑ r0, 1s such that1

mp¨q : 2⇥ fiÑ r0, 1s
mpHq “ 0 and

ÿ

AP2⇥
mpAq “ 1

(1) ñ no positive mass is committed to impossible event.
(2) ñ a mass function is normalized to one.

Focal element (FE): A Ñ ⇥ is a FE of mp¨q if mpAq ° 0

Set of FE of m: F⇥pmq fi tA P 2

⇥|mpAq ° 0u
Set of FE of m included in A: FApmq fi tB P F⇥pmq|A X B “ Bu
Set of FE of m not in A, neither in ¯A: FA˚ pmq fi F⇥pmq ´ FApmq ´ FĀpmq
where ¯A “ ⇥ ´ A (i.e. the complement of A in ⇥).

Core of mp¨q: Cpmq fi
î

APF
⇥

pmq A
1For notation simplicity m⇥p¨q will be noted mp¨q if there is no confusion about the FoD ⇥.
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s.t.

Vacuous BBA :

Special BBAs

Let’s take the FoD ⇥ “ tA,B,Cu as example.

Categorical mass function: mp¨q has a unique focal element different from ⇥

mpAq “ 1 and mpXq “ 0 for any X P 2

⇥ such that X ‰ A

mpA Y Cq “ 1 and mpXq “ 0 for any X P 2

⇥ such that X ‰ A Y C

Consonant mass function: if FE of mp.q are nested, A1 Ä A2 . . . Ä ⇥

mpAq “ 0.6, mpA Y Cq “ 0.1 and mpA Y B Y Cq “ 0.3

Dogmatic mass function: if mp⇥q “ 0

Certain mass function: if mpXq “ 1 for some singleton X P 2

⇥

Simple support mass function: if mpAq “ r and mp⇥q “ 1 ´ r for some A P 2

⇥

Bayesian belief mass: FE are only singletons of 2⇥ („ proba pmf)
mpAq “ 0.6, mpBq “ 0.4

mpAq “ 1{3, mpBq “ 1{3 and mpCq “ 1{3
Vacuous belief assignment (VBA): It represents the full ignorant (uninformative) SoE

mvp⇥q “ 1 and mvpAq “ 0, @A ‰ ⇥
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Belief in A:

Belief and plausibility functions

Belief in A: Total degree of support of A by the source of evidence

BelpAq fi
ÿ

BP2⇥|BÑA

mpBq “ Plp⇥q ´ Plp¯Aq “ 1 ´ Plp¯Aq

Plausibility of A: Total degree of non contradiction of A by the SoE

PlpAq fi
ÿ

BP2⇥|BXA‰H
mpBq “ Belp⇥q ´ Belp¯Aq “ 1 ´ Belp¯Aq

Property: @A P 2

⇥, BelpAq § PlpAq Belief interval of A: BIpAq fi rBelpAq,PlpAqs
Interpretation: BelpAq and PlpAq are usually interpreted as lower and upper bound of
PpAq, and @A Ñ ⇥, that is

0 § BelpAq § PpAq § PlpAq § 1

Uncertainty on A ” Imprecision on PpAq
UpA˚q fi PlpAq ´ BelpAq “

ÿ

BPF
A

˚ pmq
mpBq

H and ⇥ have always zero imprecision because empty set is always the impossible
event which never occurs, and ⇥ the sure event which certainly occurs.
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Degree of 
support of A
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Interpretation Lower and upper bounds of 
(subj.) unknown proba P(A)

Uncertainty of A = Pl(A)-Bel(A)
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Part 1 - Discounting a Source of Evidence (SoE)

Reliability discounting of a BBA

Shafer’s reliability discounting rule [Shafer 1976]

To be used if one has a good estimation of the reliability factor ↵ P r0, 1s of the SoE
based on past experiments and ground truth.

#
m↵pAq fi ↵ ¨ mpAq @A ‰ ⇥

m↵p⇥q fi ↵ ¨ mp⇥q ` p1 ´ ↵q
↵ “ 1 means "the SoE is 100% reliable" ñ m↵“1p¨q “ mp¨q (the BBA is unchanged)
↵ “ 0 means "the SoE is 100% unreliable" ñ m↵“0p¨q “ mvp¨q (the BBA is changed to
vacuous BBA)

If a source is totally unreliable p↵ “ 0q, it can be combined with the other BBAs if and
only if the fusion rule preserves the neutral impact of vacuous BBA, otherwise this
source must be discarded (i.e. removed of the set of BBAs to fuse)

More refined discounting rules exist

Contextual discounting [Mercier et al. 2005, Mercier et al. 2006]
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Importance discounting of a BBA

Proposed in [Smarandache Dezert Tacnet 2010] to take into account the importance of
a SoE in the fusion process (see later).

Importance discounting rule

The importance factor of the SoE is modeled by � P r0, 1s, and discounted BBA by
#
m�pAq fi � ¨ mpAq @A ‰ H
m�pHq fi � ¨ mpHq ` p1 ´ �q

� “ 1 means "the SoE is 100% important" ñ m�“1p¨q “ mp¨q
� “ 0 means "the SoE is not important at all" ñ m�“0pHq “ 1

If a source is not important at all p� “ 0q, this source must be discarded (i.e. removed
of the set of BBAs to fuse)

Note: Importance discounted BBA m�‰1p¨q is not regular because m�‰1pHq ° 0. This
discounting is useful specially in Multi-Criteria Decision-Making Support problems.
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Part 1 - Belief functions - Dempster-Shafer rule

Dempster-Shafer (DS) rule of combination [Dempster 1967,Shafer 1976]

Dempster-Shafer (DS) fusion rule

Dempster-Shafer fusion rule [Dempster 1967, Shafer 1976]

Let m1 and m2 be mass functions over the same frame ⇥ provided by two distinct
SoE2. DS fusion rule m1 ‘ m2 is defined by mDS

12 pHq “ 0, and @X P 2

⇥

mDS
12 pXq “ rm1 ‘ m2spXq fi

∞
X1,X2P2⇥|X1XX2“X m1pX1qm2pX2q

1 ´ ∞
X1,X2P2⇥|X1XX2“H m1pX1qm2pX2q

mDS
12 pXq “ rm1 ‘ m2spXq fi m12pXq

1 ´ m12pHq
where m12p¨q is the conjunctive rule3 defined @X P 2

⇥ by

m12pXq fi
ÿ

X1,X2P2⇥|X1XX2“X

m1pX1qm2pX2q

Degree of conflict between m1 and m2

K12 fi m12pHq “
ÿ

X1,X2P2⇥|X1XX2“H
m1pX1qm2pX2q

DS formula can be used if m12pHq † 1, i.e. the SoE are not in total conflict
DS formula extents directly for the combination of n ° 2 distinct SoE.

DS rule = Normalized Conjunctive rule
2assumed both reliable with same importance.
3We also use notation mConj

12 p.q to identify it more precisely if needed.J. Dezert Seminar at Remote Sensing Technology Institute, Weßling, Germany. November 22th, 2018 24/113

Degree of conflict = m(ø)

Conjunctive rule

DS rule extends to the fusion of n>2 sources

DS rule is commutative and associative, and vacuous BBA has no impact

If we consider two independent SOE with respect to same FoD, then

Shafer Conditioning [Shafer 1976]

Properties of Dempster-Shafer rule

DS rule is not idempotent in general : if m is not categorical then m ‘ m ‰ m

Advantages

Commutativity: m1 ‘ m2 “ m2 ‘ m1

Associativity: One can do the fusion sequentially in any order

m1 ‘ m2 ‘ m3 ‘ . . .mn “ pppm1 ‘ m2q ‘ m3q ‘ ...q ‘ mn

Neutrality of VBA: m ‘ mv “ m
Shafer’s conditioning has some similarity with Bayes rule for conditioning by a
certain set mZpZq “ 1

mpX|Zq “ rm ‘ mZspXq ñ
#
BelpX|Zq “ BelpXYZ̄q´BelpZ̄q

1´BelpZ̄q
PlpX|Zq “ PlpXXZq

PlpZq
Drawbacks

Complex in the worst case when F⇥pm1q “ F⇥pm2q “ 2

⇥ ´ tHu for large FoD
Counter-intuitive results in an infinite number of cases even if the conflict is low!

The validity of DS rule and DST has been disputed during the last decades
[Zadeh 1979, Lemmer 1985, Kyburg 1987, Voorbraak 1988, Gelman 2006, Dezert Tchamova 2011,
Brodzik Enders 2011, Dezert Wang Tchamova 2012, Tchamova Dezert 2012,
Dezert Tchamova Han Tacnet 2013, Dezert Tchamova 2014, Heendeni et al. 2016]
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Only apparent compatibility with Bayes rule!

Properties of Dempster-Shafer rule

DS rule is not idempotent in general : if m is not categorical then m ‘ m ‰ m

Advantages

Commutativity: m1 ‘ m2 “ m2 ‘ m1

Associativity: One can do the fusion sequentially in any order

m1 ‘ m2 ‘ m3 ‘ . . .mn “ pppm1 ‘ m2q ‘ m3q ‘ ...q ‘ mn

Neutrality of VBA: m ‘ mv “ m
Shafer’s conditioning has some similarity with Bayes rule for conditioning by a
certain set mZpZq “ 1

mpX|Zq “ rm ‘ mZspXq ñ
#
BelpX|Zq “ BelpXYZ̄q´BelpZ̄q

1´BelpZ̄q
PlpX|Zq “ PlpXXZq

PlpZq
Drawbacks

Complex in the worst case when F⇥pm1q “ F⇥pm2q “ 2

⇥ ´ tHu for large FoD
Counter-intuitive results in an infinite number of cases even if the conflict is low!

The validity of DS rule and DST has been disputed during the last decades
[Zadeh 1979, Lemmer 1985, Kyburg 1987, Voorbraak 1988, Gelman 2006, Dezert Tchamova 2011,
Brodzik Enders 2011, Dezert Wang Tchamova 2012, Tchamova Dezert 2012,
Dezert Tchamova Han Tacnet 2013, Dezert Tchamova 2014, Heendeni et al. 2016]

J. Dezert Seminar at Remote Sensing Technology Institute, Weßling, Germany. November 22th, 2018 25/113

(one knows Z for sure)

= mConj

12

(X)

J. Dezert & J.-M. Tacnet - Workshop Grenoble - June 3-6, 2019.
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Part 1 - Belief functions - Dempster-Shafer rule

Drawbacks of DS rule

Counter intuitive results when conflict is high [Zadeh 1979]
Not defined when conflict is total, and numerically not robust to input changes

Counter intuitive results when conflict is low [Dezert-Wang-Tchamova 2012]

Counter-intuitive behavior of DS rule (4)

A more interesting example [Dezert Tchamova 2011, Dezert Wang Tchamova 2012]

Dezert-Tchamova example (2011)

Non-Bayesian BBA ⇥ “ tA,B,Cu, with m1 ‰ m2 ‰ mv

Conjunctive rule

m12pAq “ m1pAqm2pA Y Bq ` m1pAqm2pA Y B Y Cq “ apb1 ` b2q
m12pA Y Bq “ m1pA Y Bqm2pA Y Bq ` m1pA Y Bqm2pA Y B Y Cq “ p1 ´ aqpb1 ` b2q

Degree of conflict: ñ Independent of m1 !!!

K12 “ m12pHq “ m1pAqm2pCq ` m1pA Y Bqm2pCq
“ ap1 ´ b1 ´ b2q ` p1 ´ aqp1 ´ b1 ´ b2q “ 1 ´ b1 ´ b2

Note: K12 can be chosen as low or as high as we want.
J. Dezert Seminar at Remote Sensing Technology Institute, Weßling, Germany. November 22th, 2018 29/113

Counter-intuitive behavior of DS rule (5)

Dezert-Tchamova example (cont’d)

Applying DS rule gives

mDS
12 pAq “ m12pAq

1 ´ K12
“ apb1 ` b2q

b1 ` b2
“ a “ m1pAq

mDS
12 pA Y Bq “ m12pA Y Bq

1 ´ K12
“ p1 ´ aqpb1 ` b2q

b1 ` b2
“ 1 ´ a “ m1pA Y Bq

Remarks
mDS

12 p¨q “ rm1 ‘ m2sp¨q “ m1p¨q
Informative source m2 does not impact DS result !
Dictatorial power of DS rule !
The level of conflict does not matter at all !
Cast serious doubts on normalization step used in DS rule

DS rule result is very counter-intuitive in such Non-Bayesian example (even with low
conflict!)

ñ Need for better rule of combination (better behavior and numerical robustness)
ñ Logical contradiction in foundations of DST [Dezert Tchamova 2014]
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Counter-intuitive behavior of DS rule (4)

A more interesting example [Dezert Tchamova 2011, Dezert Wang Tchamova 2012]

Dezert-Tchamova example (2011)

Non-Bayesian BBA ⇥ “ tA,B,Cu, with m1 ‰ m2 ‰ mv

Conjunctive rule

m12pAq “ m1pAqm2pA Y Bq ` m1pAqm2pA Y B Y Cq “ apb1 ` b2q
m12pA Y Bq “ m1pA Y Bqm2pA Y Bq ` m1pA Y Bqm2pA Y B Y Cq “ p1 ´ aqpb1 ` b2q

Degree of conflict: ñ Independent of m1 !!!

m12pHq “ m1pAqm2pCq ` m1pA Y Bqm2pCq
“ ap1 ´ b1 ´ b2q ` p1 ´ aqp1 ´ b1 ´ b2q “ 1 ´ b1 ´ b2

Note: K12 can be chosen as low or as high as we want.
J. Dezert Seminar at Remote Sensing Technology Institute, Weßling, Germany. November 22th, 2018 29/113

Shafer’s conditioning and its inconsistency

Shafer’s conditioning based on DS rule ‘: mpA|Bq fi rm ‘ mBspAq
where mBpBq “ 1, and assuming PlpBq ° 0. Hence,

BelpA|Bq “ BelpA Y ¯Bq ´ Belp¯Bq
1 ´ Belp¯Bq “ PlpBq ´ PlpB X ¯Aq

PlpBq
PlpA|Bq “ PlpA X Bq

PlpBq

Serious problem of Shafer’s belief conditioning based on Dempster’s rule
The bounds of conditional belief interval rBelpA|Bq,PlpA|Bqs can be incompatible with
the lower and upper bounds of PpA|Bq !!!

ñ see the simple Ellsberg’s urn example in the next slide

J. Dezert Seminar at Remote Sensing Technology Institute, Weßling, Germany. November 22th, 2018 70/113

see Ellsberg’s example in [Dezert-Tchamova-Han 2018]

J. Dezert & J.-M. Tacnet - Workshop Grenoble - June 3-6, 2019.

Advantage: Associativity
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Part 1 - Belief functions - PCR fusion rules

Proportional Conflict Redistribution (PCR) rules

Principle of PCR rules
1 Apply the conjunctive rule
2 Identify and calculate all conflicting masses
3 Redistribute the (total or partial) conflicting masses proportionally on non-empty

sets according to the integrity constraints one has for the FoD

PCR can be done in many ways [DSmT books] (Vol. 2).

Main PCR rules

PCR rule #5 (PCR5) proposed by Smarandache & Dezert [DSmT books] (Vol. 2)
PCR rule #6 (PCR6) proposed by Martin & Osswald [DSmT books] (Vol. 2)

PCR5=PCR6 for combining 2 SoE, but PCR5‰PCR6 when fusing more than 2 SoE
PCR6 is better than PCR5 because it is consistent with frequentist proba estimation

PCR5/6 formula for the combination of 2 BBAs mPCR5{6
12 pHq “ 0 and @X ‰ H P 2

⇥

mPCR5{6
12 pXq “ mConj

12 pXq `
ÿ

YP2⇥
XXY“H

r m1pXq2m2pYq
m1pXq ` m2pYq ` m2pXq2m1pYq

m2pXq ` m1pYq s

For general PCR5 and PCR6 formulas to fuse s ° 2 BBAs, see [DSmT books], Vol. 2
For PCR rules with Zhang’s degree of intersection, see [Smarandache Dezert 2015]

J. Dezert Seminar at Remote Sensing Technology Institute, Weßling, Germany. November 22th, 2018 46/113

PCR5=PCR6 for the fusion of 2 Sources. General formulas exist for n>2.

J. Dezert & J.-M. Tacnet - Workshop Grenoble - June 3-6, 2019.

Principle of Proportional Conflict Redistribution (PCR) rules [DSmT Book Vol2]

Redistribute each partial conflict to elements involved in it proportionally to their mass

Principle of Proportional Conflict Redistribution (PCR) rules [DSmT Book Vol2]

PCR5 and PCR6 formulas for 2 sources

Toolboxes and code

PCR5 rule presented by Smarandache and Dezert  
PCR6 rule presented by Martin and Osswald

http://www.bfasociety.org

[Smarandache-Dezert-Tacnet 2010]

http://www.bfasociety.org


12

Part 1 - Example of PCR fusion

Example of fusion by PCR5/6 rule

mPCR5{6
12 pXq “ mConj

12 pXq `
ÿ

YP2⇥
XXY“H

r m1pXq2m2pYq
m1pXq ` m2pYq ` m2pXq2m1pYq

m2pXq ` m1pYq s

Very simple example ⇥ “ tA,Bu

PCR5/6 result DS result

One sees that the mass committed to ignorance with PCR5/6 is lower than with DST
J. Dezert Seminar at Remote Sensing Technology Institute, Weßling, Germany. November 22th, 2018 49/113
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J. Dezert & J.-M. Tacnet - Workshop Grenoble - June 3-6, 2019.

Advantages of PCR rules

It does not increase uncertainty more than justified
It works with any level of conflict
It is numerically robust to input changes

Example

The mass of 
ignorance is 
reduced with 
PCR rules

Drawbacks
Complexity

Non associativity
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Part 1 - Approximation of a BBA in a proba measure

J. Dezert & J.-M. Tacnet - Workshop Grenoble - June 3-6, 2019.

Popular transformations of BBA to probability

Many methods exist, we only present the most popular – see [DSmT books] (Vol. 3)

Simplest method
Take the mass of each element of ⇥ and
normalize, but it does not take into account
partial ignorances

PmpAq “ mpAq∞
BP⇥ mpBq

Method based on plausibility [Cobb Shenoy 2006]
Take the plausibility of each element of ⇥
and normalize, but it is inconsistent with
belief interval

PPlpAq “ PlpAq∞
BP⇥ PlpBq

Pignistic probability [Smets 1990]
Redistribute the mass of partial ignorances
equally to singletons included in them
ñ higher entropy obtained with BetPp¨q

BetPpAq “
ÿ

XP2⇥

|X X A|
|A| mpXq

DSmP probability [Dezert Smarandache 2008]
Redistribute mass of partial ignorances
proportionally to masses of singletons
included in them. ✏ ° 0 is a small
parameter to prevent division by zero in
some cases.
ñ smaller entropy obtained with DSmPp¨q

DSmP✏pAq “
ÿ

YP2

⇥

ÿ

ZÑAXY
|Z|“1

mpZq ` ✏|A X Y|

ÿ

ZÑY
|Z|“1

mpZq ` ✏|Y| mpYq
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Part 1 - Distances between BBAs

Distance between two BBAs

A strict distance metric d : px,yq P S ˆ S fiÑ dpx,yq P R must satisfy
1 Nonnegativity: dpx,yq • 0;
2 Nondegeneracy: dpx,yq “ 0 ô x “ y;
3 Symmetry: dpx,yq “ dpy, xq;
4 Triangle inequality: dpx,yq ` dpy, zq • dpx, zq,@z P S.

References on distances : [Jousselme Maupin 2012, Han Dezert Yang 2017]

Tessem distance [Tessem 1993] ñ Not a strict distance metric

dT pm1,m2q fi max

AÑ⇥
t|BetP1pAq ´ BetP2pAq|u

Jousselme distance [Jousselme Grenier Bossé 2001]

dJpm1,m2q fi
b
0.5 ¨ pm1 ´ m2qTJac pm1 ´ m2q

where the elements JacpA,Bq of Jaccard’s weighting matrix Jac are defined by
JacpA,Bq “ |A X B|{|A Y B|

ñ proved to be a strict distance metric in [Bouchard Jousselme Doré 2013]

J. Dezert Seminar at Remote Sensing Technology Institute, Weßling, Germany. November 22th, 2018 59/113

Distance between two BBAs

The belief interval of A P 2

⇥ is defined as BIpAq fi rBelpAq,PlpAqs

Euclidean belief interval based distance [Han Dezert Yang 2014]

dE
BIpm1,m2q fi

d
1

2

|⇥|´1
¨

ÿ

AP2⇥
dIpBI1pAq,BI2pAqq2

ñ proved to be a strict distance metric in [Han Dezert Yang 2014]
Chebyshev belief interval based distance [Han Dezert Yang 2014]

dC
BI pm1,m2q fi max

AP2⇥
 
dI pBI1pAq,BI2pAqq(

ñ proved to be a strict distance metric in [Han Dezert Yang 2014]

dI is Wasserstein distance of interval numbers

dI pra1,b1s, ra2,b2sq “
d„

a1 ` b1

2

´ a2 ` b2

2

⇢2
` 1

3

„
b1 ´ a1

2

´ b2 ´ a2

2

⇢2

J. Dezert Seminar at Remote Sensing Technology Institute, Weßling, Germany. November 22th, 2018 60/113

BI1(A) = [Bel1(A), P l1(A)] BI2(A) = [Bel2(A), P l2(A)]
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J. Dezert & J.-M. Tacnet - Workshop Grenoble - June 3-6, 2019.

Jousselme distance [Jousselme et al. 2001]

Tessem distance [Tessem 1993] this is not a strict metric!

Euclidean belief interval distance [Han Dezert Yang 2014]

dT (m1,m2) = max

A✓⇥
{|BetP1(A)� BetP2(A)|}
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Part 1 - Decision-making based on belief functions

Decision-making methods from a BBA (2)

Decision-making based on dBI [Han Dezert Yang 2014, Dezert et al. 2016]

A better theoretical approach for decision-making is to use a strict distance metric
dp¨, ¨q between two BBAs and to make the decision by

� “ ˆX “ argmin

XPX dBIpm,mXq
X “ tadmissibleX,X P 2

⇥u is the set of possible admissible decisions we consider. For
instance, if � must be a singleton, then X “ ⇥ “ t✓1, . . . , ✓nu.
mX is the BBA focused on X defined by mXpYq “ 0 if Y ‰ X, and mXpYq “ 1 if Y “ X

Few strict distance metrics are possible

Jousselme distance: dJpm1,m2q fi
b
0.5 ¨ pm1 ´ m2qTJac pm1 ´ m2q

Euclidean dBI distance: dE
BIpm1,m2q fi

b
1

2|⇥|´1 ¨ ∞AP2⇥ dIpBI1pAq,BI2pAqq2
Chebyshev dBI distance: dC

BI pm1,m2q fi max

AP2⇥
 
dI pBI1pAq,BI2pAqq(

In practice, we recommend to use dE
BIpm1,m2q [Han Dezert Yang 2017]

Quality of the decision qpˆXq “ 1 ´ dBIpm,mX̂q∞
XPX dBIpm,mXq P r0, 1s

Higher is qpˆXq more trustable is the decision � “ ˆX
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AP2⇥
 
dI pBI1pAq,BI2pAqq(

In practice, we recommend to use dE
BIpm1,m2q [Han Dezert Yang 2017]

Quality of the decision qpˆXq “ 1 ´ dBIpm,mX̂q∞
XPX dBIpm,mXq P r0, 1s

Higher is qpˆXq more trustable is the decision � “ ˆX
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Higher is the quality index, more 
confident we are in the decision

J. Dezert & J.-M. Tacnet - Workshop Grenoble - June 3-6, 2019.

Maximum of belief strategy (pessimistic/cautious)

m(·) ! Bel(·) and � =

ˆ✓ = argmax

✓i2⇥
Bel(✓i)

Maximum of plausibility strategy (optimistic)

m(·) ! Pl(·) and � =

ˆ✓ = argmax

✓i2⇥
Pl(✓i)

Compromise strategy with proba transforms

m(·) ! P (·) and � =

ˆ✓ = argmax

✓i2⇥
P (✓i)

Decision using min distance strategy [Han Dezert Yang 2014]
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Part 1 - Total Belief Theorem and Fagin Halpern conditioning

Total Probability Theorem

Total Belief and Total Plausibility Theorems [Dezert-Tchamova-Han 2018]

Total Belief Theorem

Total Belief Theorem (TBT): For any chosen partition tA1, . . . ,Aku of ⇥ and for any
B Ñ ⇥, one has

BelpBq “
ÿ

XPF
⇥

pmq|XÑB

mpXq “
ÿ

i“1,...,k

BelpAi X Bq ` UpA˚ X Bq

where FA˚ pmq fi F⇥pmq ´ FA1pmq ´ . . . ´ FA
k

pmq and

UpA˚ X Bq fi
ÿ

XPF
A

˚ pmq|XPF
B

pmq
mpXq.

Proof: Based on the fact that F⇥pmq “ FA1pmq Y . . . Y FA
k

pmq Y FA˚ pmq.
TBT reduces to Total Probability Theorem (TPT) if mp¨q is Bayesian because
FA˚ pmq “ H and so UpA˚ X Bq “ 0 and Belp¨q is homogeneous to a proba measure.

Total Plausibility Theorem (TPlT): For any partition tA1, . . . ,Aku of ⇥ and B Ñ ⇥,

PlpBq “
ÿ

i“1,...,k

Plp¯Ai Y Bq ` 1 ´ k ´ UpA˚ X ¯Bq

Proof: Express Belp¯Bq with TBT and note that PlpBq “ 1 ´ Belp¯Bq.
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set of focal elements of 
m(.) included in Ak

Generalization of TPT and Bayes’ Theorem

Total Probability Theorem (TPT):

For any event B and any partition tA1,A2, . . . ,Aku of the space ⇥, then
PpBq “ PpB X A1q ` PpB X A2q ` . . . ` PpB X Akq

Bayes’ theorem (BT) formula:

PpAi|Bq “ PpB|AiqPpAiq
PpBq “ PpB|AiqPpAiq∞k

i“1 PpB|AiqPpAiq
Our three main recent contributions are [Dezert Tchamova Han 2018]

1 - Generalization of TPT Ñ Total Belief Theorem (TBT)

2 - Constructive justification of Fagin-Halpern (FH) belief conditioning
[Fagin Halpern 1991]

3 - Extension of Bayes’ Theorem from FH Ñ Generalized Bayes Theorem (GBT)
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(TPT)

(TBT)

J. Dezert & J.-M. Tacnet - Workshop Grenoble - June 3-6, 2019.

For any event B and any partition {A1, . . . , Ak} of ⇥

Fagin-Halpern conditioning from TBT [Dezert-Tchamova-Han 2018]

Bel(A|B) =
Bel(A \B)

Bel(A \B) + Pl(Ā \B)

Pl(A|B) =
Pl(A \B)

Pl(A \B) +Bel(Ā \B)

(FH)

Shafer’s conditioning formulas 
are inconsistent with TBT and 
conditional proba bounds.

(see Ellsberg’s urn example)
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Generalized Bayes’ Theorem

Generalized Bayes’ Theorem (GBT): For any partition tA1, . . . ,Aku of a FoD ⇥, any
belief function Belp¨q : 2⇥ fiÑ r0, 1s, and any subset B of ⇥ with BelpBq ° 0, then one
has for i P t1, . . . ,ku

BelpAi|Bq “ BelpB|AiqqpAi,Bq
∞k

i“1 BelpB|AiqqpAi,Bq ` Upp¯Ai X Bq˚q
where

#
Upp¯Ai X Bq˚q fi Plp¯Ai X Bq ´ Belp¯Ai X Bq “ ∞

XPFpĀ
i

XBq˚ pmq mpXq
qpAi,Bq fi BelpAiq ` Upp¯B X Aiq˚q ´ UpB˚ X Aiq

Proof: see details in the paper.

Lemma: GBT reduces to Bayes Theorem if Belp¨q is a Bayesian belief function.

Proof: If Belp¨q is Bayesian then Belp¨q “ Plp¨q, hence Upp¯Ai X Bq˚q “ 0. Also,
qpAi,Bq “ BelpAiq because Upp¯B X Aiq˚q “ 0 and UpB˚ X Aiq “ 0 because any focal
element (singleton) of mp¨q is either a subset of B or a subset of ¯B of the FoD ⇥ so that
FB˚ pmq involved in UpB˚ X Aiq is empty.

J. Dezert Seminar at Remote Sensing Technology Institute, Weßling, Germany. November 22th, 2018 77/113
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Part 2 - Soft ELECTRE TRI

for sorting alternatives into categories  
based on multi-criteria

J. Dezert & J.-M. Tacnet - Workshop Grenoble - June 3-6, 2019.

ELECTRE = ELimination Et Choix Traduisant la REalité [Roy 1968]

ELECTRE (1968)          ELECTRE TRI (1992)           Soft ELECTRE TRI [Dezert-Tacnet 2012]
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Part 2 - Sorting alternatives in categories

J. Dezert & J.-M. Tacnet - Workshop Grenoble - June 3-6, 2019.

For each criteria, we preset categories by some profile bounds

Very bad Bad Good Very good

Profile of alternativeWhich category does ai belong to?
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Part 2 - Soft ELECTRE TRI (SET)

J. Dezert & J.-M. Tacnet - Workshop Grenoble - June 3-6, 2019.

SET Step 1: Partial concordance and discordance indices are replaced by local BBAs

SET Step 2: Global belief of assertion and global indices

SET Step 4: Soft (probabilistic) assignment of each alternative in a category

SET Step 3: Probabilized outranking based on  imprecise probability areas

We evaluate the assertion ai is at least as good as bhPurpose:

0 10 20 30 40 50 60 70 80 90 100
−0.5

0

0.5

1

1.5

gj(ai)

Sigmoid model with increasing preferences

 

 
cj(ai,bh)
dj(ai,bh)
uj(ai,bh)

We use sigmoidal models  
+ BBA PCR6 fusion

TRI” method (SET for short) and we present it in details in
this section.

Before going further, it is necessary to recall briefly the
definition of a mass of belief m(.) (also called basic belief
assignment, or bba), a credibility function Bel((.) and the
plausibility function Pl((.) defined over a finite set ⇥ =
{✓1, ✓2, . . . , ✓n} of mutually exhaustive and exclusive hy-
potheses. Belief functions have been introduced by Shafer in
his development of Dempster-Shafer Theory (DST), see [11]
for details. In DST, ⇥ is called the frame of discernment of
the problem under consideration. By convention the power-
set (i.e. the set of all subsets of ⇥) is denoted 2⇥ since its
cardinality is 2|⇥|. A basic belief assignment provided by a
source of evidence is a mapping m(.) : 2⇥ ! [0, 1] satisfying

m(;) = 0 and
X

X22⇥

m(X) = 1 (14)

The measures of credibility and plausibility of any proposition
X 2 2⇥ are defined from m(.) by

Bel(X) ,
X

Y✓X
Y 22⇥

m(Y ) (15)

Pl(X) ,
X

Y \X 6=;
Y 22⇥

m(Y ) (16)

Bel(X) and Pl(X) are usually interpreted as lower
and upper bounds of the unknown probability of X .
U(X) = Pl(X) � Bel(X) reflects the uncertainty on X .
The belief functions are well adapted to model uncertainty
expressed by a given source of evidence. For information
fusion purposes, many solutions have been proposed in
the literature [12] to combine bba’s efficiently for pooling
evidences arising from several sources.

As for the classical ET method, there are four main steps
in our new SET method. However, the SET steps are different
from the ET steps. The four steps of SET, that are actually
very specific and improves the ET steps, are:

• SET-Step 1: Computation of partial concordance indices
cj(ai, bh) and cj(bh, ai)), partial discordances indices
dj(ai, bh) and dj(bh, ai)), and also partial uncertainty
indices uj(ai, bh) and uj(bh, ai)) thanks to a smooth
sigmoidal model for generating bba’s [13].

• SET-Step 2: Computation of the global (overall) con-
cordance indices c(ai, bh), c(bh, ai), discordance indices
d(ai, bh), d(bh, ai), and uncertainty indices u(ai, bh),
u(bh, ai);

• SET-Step 3: Computation of the probabilized outranking
relations grounded on the global indices of SET-Step 2.
The probabilization is directly obtained and thus elimi-
nates the arbitrary �-cut strategy necessary in ET.

• SET-Step 4: Final soft assignment of ai into Ch based
on combinatorics of probabilized outranking relations.

Let’s explain in details the four steps of SET and the
computation of the indices necessary for the implementation
of the SET method.

A. SET-Step 1: Partial indices

In SET, a sigmoid model is proposed to replace the original
truncated trapezoidal model for computing concordance and
discordance indices of the ET method. The sigmoidal model
has been presented in details in [13] and is only briefly recalled
here. We consider a binary frame of discernment3 ⇥ , {c, c̄}
where c means that the alternative ai is concordant with the
assertion ”ai is at least as good as profile bh”, and c̄ means that
the alternative ai is opposed (discordant) to this assertion. We
can compute a basic belief assignment (bba) mih(.) defined
on 2⇥ for each pair (ai, bh). mih(.) is defined from the
combination (fusion) of the local bba’s mj

ih(.) evaluated from
each possible criteria gj(.) as follows: mj

ih(.) = [m1�m2](.)
is obtained by the fusion4 (denoted symbolically by �) of the
two following simple bba’s defined by:

focal element m1(.) m2(.)
c fsc,tc(g) 0
c̄ 0 f�sc̄,tc̄(g)

c [ c̄ 1� fsc,tc(g) 1� f�sc̄,tc̄(g)

Table I: Construction of m1(.) and m2(.).

where fs,t(g) , 1/(1+e�s(g�t)) is the sigmoid function; g is
the criterion magnitude of the alternative under consideration;
t is the abscissa of the inflection point of the sigmoid. The
abscisses of inflection points are given by tc = gj(bh) �
1
2 (pj(bh) + qj(bh)) and tc̄ = gj(bh) � 1

2 (pj(bh) + vj(bh))
and the parameters sc and sc̄ are given by5 sc = 4/(pj(bh)�
qj(bh)) and sc̄ = 4/(vj(bh)� pj(bh)).

From the setting of threshold parameters pj(bh), qj(bh) and
vj(bh) (the same as for ET method), it is easy to compute the
parameters of the sigmoids (tc, sc) and (tc̄, tc̄), and thus to
get the values of bba’s m1(.) and m2(.) to compute mj

ih(.).
We recommend to use the PCR5 fusion rule6 since it offers
a better management of conflicting bba’s yielding to more
specific results than with other rules. Based on this sigmoidal
modeling, we get now from mj

ih(.) a fully consistent and
efficient representation of local concordance cj(ai, bh), local
discordance dj(ai, bh) and the local uncertainty uj(ai, bh) by
considering:

8
><

>:

cj(ai, bh) , mj
ih(c) 2 [0, 1]

dj(ai, bh) , mj
ih(c̄) 2 [0, 1]

uj(ai, bh) , mj
ih(c [ c̄) 2 [0, 1].

(17)

Of course, a similar approach must be adapted (not
reported here due to space limitation restraint) to

3Here we assume that Shafer’s model holds, that is c \ c̄ = ;.
4with averaging rule, PCR5 rule, or Dempster-Shafer rule [14].
5The coefficient 4 appearing in sc and sc̄ expressions comes from the fact

that for a sigmoid of parameter s, the tangent at its inflection point is s/4.
6see [15] for details on PCR5 with many examples.

c = ai is concordant with assertion
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c̄ = ai is discordant with assertion

PCR6 fusion + imp. Discounting

compute cj(bh, ai) = mj
hi(c), dj(bh, ai) = mj

hi(c̄) and
uj(bh, ai) = mj

hi(c [ c̄).

Example 1: Let’s consider only one alternative ai and a
criterion gj(.) in range [0, 100], and let’s take gj(bh) = 50 and
the following thresholds: qj(bh) = 20 (indifference threshold),
pj(bh) = 25 (preference threshold) and vj(bh) = 40 (veto
threshold) for the profile bound bh. Then, the inflection points
of the sigmoids f1(g) , fsc,tc(g) and f2(g) , f�sc̄,tc̄(g) have
the following abscisses: tc = 50 � (25 + 20)/2 = 27.5 and
tc̄ = 50� (25 + 40)/2 = 17.5 and parameters: sc = 4/(25�
20) = 4/5 = 0.8 and sc̄ = 4/(40 � 25) = 4/15 ⇡ 0.2666.
The construction of the consistent bba mj

ih(.) is obtained by
the PCR5 fusion of the bba’s m1(.) and m2(.) given in Table
I. The result is shown in Fig. 2.
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Figure 2: mj
ih(.) corresponding to partial indices.

The blue curve corresponds to cj(ai, bh), the red plot
corresponds to dj(ai, bh) and the green plot to uj(ai, bh) when
gj(ai) varies in [0; 100]. cj(bh, ai), dj(bh, ai) and uj(bh, ai)
can easily be obtained by mirroring (horizontal flip) the curves
around the vertical axis at the mid-range value gj(ai) = 50.

B. SET-Step 2: Global indices

As explained in SET-Step 1, the partial indices are en-
capsulated in bba’s mj

ih(.) for alternative ai versus profile
bh (aivs.bh), and encapsulated in bba’s mj

hi(.) for profile
bh versus alternative ai (bhvs.ai). In SET, the global indices
c(ai, bh), d(ai, bh) and u(ai, bh) are obtained by the fusion
of the ng bba’s mj

ih(.). Similarly, the global indices c(bh, ai),
d(bh, ai) and u(bh, ai) are obtained by the fusion of the ng

bba’s mj
hi(.). More precisely, one must compute:
(
mih(.) = [m1

ih �m2
ih � . . .�m

ng

ih ](.)

mhi(.) = [m1
hi �m2

hi � . . .�m
ng

hi ](.)
(18)

To take into account the weighting factor wj of criterion gj(.),
we suggest to use as fusion operator � either:

• the weighting averaging fusion rule (as in ET method)
which is simple and compatible with probability calculus
and Bayesian reasoning,

• or the more sophisticated operator defined by the PCR5
fusion rule adapted for importance discounting presented

in details in [16] which belongs to the family of non-
Bayesian fusion operators.

Once the bba’s mih(.) and mhi(.) have been computed, the
global indices are defined by:

8
><

>:

c(ai, bh) , mih(c)↵(ai, bh)

d(ai, bh) , mih(c̄)�(ai, bh)

u(ai, bh) , 1� c(ai, bh)� d(ai, bh).

(19)

The discounting factors ↵(ai, bh) and �(ai, bh) are defined by

↵(ai, bh) ,
(
1 if V↵ = ;
Q

j2V↵

1�dj(ai,bh)

1�mih(c) if V↵ 6= ;
(20)

�(ai, bh) ,
(
1 if V� = ;
Q

j2V�

1�cj(ai,bh)

1�mih(c̄) if V� 6= ; (21)

with

(
V↵ , {j 2 J|dj(ai, bh) > mih(c)}
V� , {j 2 J|cj(bh, ai) > mih(c̄)}

(22)

c(bh, ai), d(bh, ai) and u(bh, ai) are similarly computed
using dual formulas of (19)–(22).

The belief and plausibility of the outranking propositions
X = ”ai > bh” and Y = ”bh > ai” are then given by

(
Bel(X) = c(ai, bh)

Bel(Y ) = c(bh, ai)
(23)

and

(
Pl(X) = 1� d(ai, bh) = c(ai, bh) + u(ai, bh)

Pl(Y ) = 1� d(bh, ai) = c(bh, ai) + u(bh, ai)
(24)

C. SET-Step 3: Probabilized outranking

We have seen in SET-Step 2 that the outrankings X =
”ai > bh” and Y = ”bh > ai” can be characterized by their
imprecise probabilities P (X) 2 [Bel(X); Pl(X)] and P (Y ) 2
[Bel(Y ); Pl(Y )]. Figure 3 shows an example with P (X) 2
[0.2; 0.8] and P (Y ) 2 [0.1; 0.5]

Figure 3: Imprecise probabilities of outrankings.

Solving the outranking problem consists in choosing (de-
ciding) if finally X dominates Y (in such case we must
decide X as being the valid outranking), or if Y dominates
X (in such case we decide Y as being the valid outrank-
ing). Unfortunately, such hard (binary) assignment cannot
be done in general7 because it must be drawn from the
unknown probabilities P (X) in [Bel(X); Pl(X)] and P (Y )

7but in cases where the bounds of probabilities P (X) and P (Y ) do not
overlap.

mih(·) = m1
ih � . . .�m

ng

ih

[Dezert Tacnet 2012]
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SET Step 1: Computation of local concordances, discordances and uncertainties 

TRI” method (SET for short) and we present it in details in
this section.

Before going further, it is necessary to recall briefly the
definition of a mass of belief m(.) (also called basic belief
assignment, or bba), a credibility function Bel((.) and the
plausibility function Pl((.) defined over a finite set ⇥ =
{✓1, ✓2, . . . , ✓n} of mutually exhaustive and exclusive hy-
potheses. Belief functions have been introduced by Shafer in
his development of Dempster-Shafer Theory (DST), see [11]
for details. In DST, ⇥ is called the frame of discernment of
the problem under consideration. By convention the power-
set (i.e. the set of all subsets of ⇥) is denoted 2⇥ since its
cardinality is 2|⇥|. A basic belief assignment provided by a
source of evidence is a mapping m(.) : 2⇥ ! [0, 1] satisfying

m(;) = 0 and
X

X22⇥

m(X) = 1 (14)

The measures of credibility and plausibility of any proposition
X 2 2⇥ are defined from m(.) by

Bel(X) ,
X

Y✓X
Y 22⇥

m(Y ) (15)

Pl(X) ,
X

Y \X 6=;
Y 22⇥

m(Y ) (16)

Bel(X) and Pl(X) are usually interpreted as lower
and upper bounds of the unknown probability of X .
U(X) = Pl(X) � Bel(X) reflects the uncertainty on X .
The belief functions are well adapted to model uncertainty
expressed by a given source of evidence. For information
fusion purposes, many solutions have been proposed in
the literature [12] to combine bba’s efficiently for pooling
evidences arising from several sources.

As for the classical ET method, there are four main steps
in our new SET method. However, the SET steps are different
from the ET steps. The four steps of SET, that are actually
very specific and improves the ET steps, are:

• SET-Step 1: Computation of partial concordance indices
cj(ai, bh) and cj(bh, ai)), partial discordances indices
dj(ai, bh) and dj(bh, ai)), and also partial uncertainty
indices uj(ai, bh) and uj(bh, ai)) thanks to a smooth
sigmoidal model for generating bba’s [13].

• SET-Step 2: Computation of the global (overall) con-
cordance indices c(ai, bh), c(bh, ai), discordance indices
d(ai, bh), d(bh, ai), and uncertainty indices u(ai, bh),
u(bh, ai);

• SET-Step 3: Computation of the probabilized outranking
relations grounded on the global indices of SET-Step 2.
The probabilization is directly obtained and thus elimi-
nates the arbitrary �-cut strategy necessary in ET.

• SET-Step 4: Final soft assignment of ai into Ch based
on combinatorics of probabilized outranking relations.

Let’s explain in details the four steps of SET and the
computation of the indices necessary for the implementation
of the SET method.

A. SET-Step 1: Partial indices

In SET, a sigmoid model is proposed to replace the original
truncated trapezoidal model for computing concordance and
discordance indices of the ET method. The sigmoidal model
has been presented in details in [13] and is only briefly recalled
here. We consider a binary frame of discernment3 ⇥ , {c, c̄}
where c means that the alternative ai is concordant with the
assertion ”ai is at least as good as profile bh”, and c̄ means that
the alternative ai is opposed (discordant) to this assertion. We
can compute a basic belief assignment (bba) mih(.) defined
on 2⇥ for each pair (ai, bh). mih(.) is defined from the
combination (fusion) of the local bba’s mj

ih(.) evaluated from
each possible criteria gj(.) as follows: mj

ih(.) = [m1�m2](.)
is obtained by the fusion4 (denoted symbolically by �) of the
two following simple bba’s defined by:

focal element m1(.) m2(.)
c fsc,tc(g) 0
c̄ 0 f�sc̄,tc̄(g)

c [ c̄ 1� fsc,tc(g) 1� f�sc̄,tc̄(g)

Table I: Construction of m1(.) and m2(.).

where fs,t(g) , 1/(1+e�s(g�t)) is the sigmoid function; g is
the criterion magnitude of the alternative under consideration;
t is the abscissa of the inflection point of the sigmoid. The
abscisses of inflection points are given by tc = gj(bh) �
1
2 (pj(bh) + qj(bh)) and tc̄ = gj(bh) � 1

2 (pj(bh) + vj(bh))
and the parameters sc and sc̄ are given by5 sc = 4/(pj(bh)�
qj(bh)) and sc̄ = 4/(vj(bh)� pj(bh)).

From the setting of threshold parameters pj(bh), qj(bh) and
vj(bh) (the same as for ET method), it is easy to compute the
parameters of the sigmoids (tc, sc) and (tc̄, tc̄), and thus to
get the values of bba’s m1(.) and m2(.) to compute mj

ih(.).
We recommend to use the PCR5 fusion rule6 since it offers
a better management of conflicting bba’s yielding to more
specific results than with other rules. Based on this sigmoidal
modeling, we get now from mj

ih(.) a fully consistent and
efficient representation of local concordance cj(ai, bh), local
discordance dj(ai, bh) and the local uncertainty uj(ai, bh) by
considering:

8
><

>:

cj(ai, bh) , mj
ih(c) 2 [0, 1]

dj(ai, bh) , mj
ih(c̄) 2 [0, 1]

uj(ai, bh) , mj
ih(c [ c̄) 2 [0, 1].

(17)

Of course, a similar approach must be adapted (not
reported here due to space limitation restraint) to

3Here we assume that Shafer’s model holds, that is c \ c̄ = ;.
4with averaging rule, PCR5 rule, or Dempster-Shafer rule [14].
5The coefficient 4 appearing in sc and sc̄ expressions comes from the fact

that for a sigmoid of parameter s, the tangent at its inflection point is s/4.
6see [15] for details on PCR5 with many examples.
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plausibility function Pl((.) defined over a finite set ⇥ =
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source of evidence is a mapping m(.) : 2⇥ ! [0, 1] satisfying
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The measures of credibility and plausibility of any proposition
X 2 2⇥ are defined from m(.) by
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Y✓X
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Bel(X) and Pl(X) are usually interpreted as lower
and upper bounds of the unknown probability of X .
U(X) = Pl(X) � Bel(X) reflects the uncertainty on X .
The belief functions are well adapted to model uncertainty
expressed by a given source of evidence. For information
fusion purposes, many solutions have been proposed in
the literature [12] to combine bba’s efficiently for pooling
evidences arising from several sources.

As for the classical ET method, there are four main steps
in our new SET method. However, the SET steps are different
from the ET steps. The four steps of SET, that are actually
very specific and improves the ET steps, are:

• SET-Step 1: Computation of partial concordance indices
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dj(ai, bh) and dj(bh, ai)), and also partial uncertainty
indices uj(ai, bh) and uj(bh, ai)) thanks to a smooth
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• SET-Step 3: Computation of the probabilized outranking
relations grounded on the global indices of SET-Step 2.
The probabilization is directly obtained and thus elimi-
nates the arbitrary �-cut strategy necessary in ET.

• SET-Step 4: Final soft assignment of ai into Ch based
on combinatorics of probabilized outranking relations.

Let’s explain in details the four steps of SET and the
computation of the indices necessary for the implementation
of the SET method.

A. SET-Step 1: Partial indices

In SET, a sigmoid model is proposed to replace the original
truncated trapezoidal model for computing concordance and
discordance indices of the ET method. The sigmoidal model
has been presented in details in [13] and is only briefly recalled
here. We consider a binary frame of discernment3 ⇥ , {c, c̄}
where c means that the alternative ai is concordant with the
assertion ”ai is at least as good as profile bh”, and c̄ means that
the alternative ai is opposed (discordant) to this assertion. We
can compute a basic belief assignment (bba) mih(.) defined
on 2⇥ for each pair (ai, bh). mih(.) is defined from the
combination (fusion) of the local bba’s mj

ih(.) evaluated from
each possible criteria gj(.) as follows: mj

ih(.) = [m1�m2](.)
is obtained by the fusion4 (denoted symbolically by �) of the
two following simple bba’s defined by:

focal element m1(.) m2(.)
c fsc,tc(g) 0
c̄ 0 f�sc̄,tc̄(g)

c [ c̄ 1� fsc,tc(g) 1� f�sc̄,tc̄(g)

Table I: Construction of m1(.) and m2(.).

where fs,t(g) , 1/(1+e�s(g�t)) is the sigmoid function; g is
the criterion magnitude of the alternative under consideration;
t is the abscissa of the inflection point of the sigmoid. The
abscisses of inflection points are given by tc = gj(bh) �
1
2 (pj(bh) + qj(bh)) and tc̄ = gj(bh) � 1

2 (pj(bh) + vj(bh))
and the parameters sc and sc̄ are given by5 sc = 4/(pj(bh)�
qj(bh)) and sc̄ = 4/(vj(bh)� pj(bh)).

From the setting of threshold parameters pj(bh), qj(bh) and
vj(bh) (the same as for ET method), it is easy to compute the
parameters of the sigmoids (tc, sc) and (tc̄, tc̄), and thus to
get the values of bba’s m1(.) and m2(.) to compute mj

ih(.).
We recommend to use the PCR5 fusion rule6 since it offers
a better management of conflicting bba’s yielding to more
specific results than with other rules. Based on this sigmoidal
modeling, we get now from mj

ih(.) a fully consistent and
efficient representation of local concordance cj(ai, bh), local
discordance dj(ai, bh) and the local uncertainty uj(ai, bh) by
considering:
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>:

cj(ai, bh) , mj
ih(c) 2 [0, 1]

dj(ai, bh) , mj
ih(c̄) 2 [0, 1]

uj(ai, bh) , mj
ih(c [ c̄) 2 [0, 1].

(17)

Of course, a similar approach must be adapted (not
reported here due to space limitation restraint) to

3Here we assume that Shafer’s model holds, that is c \ c̄ = ;.
4with averaging rule, PCR5 rule, or Dempster-Shafer rule [14].
5The coefficient 4 appearing in sc and sc̄ expressions comes from the fact

that for a sigmoid of parameter s, the tangent at its inflection point is s/4.
6see [15] for details on PCR5 with many examples.

TRI” method (SET for short) and we present it in details in
this section.

Before going further, it is necessary to recall briefly the
definition of a mass of belief m(.) (also called basic belief
assignment, or bba), a credibility function Bel((.) and the
plausibility function Pl((.) defined over a finite set ⇥ =
{✓1, ✓2, . . . , ✓n} of mutually exhaustive and exclusive hy-
potheses. Belief functions have been introduced by Shafer in
his development of Dempster-Shafer Theory (DST), see [11]
for details. In DST, ⇥ is called the frame of discernment of
the problem under consideration. By convention the power-
set (i.e. the set of all subsets of ⇥) is denoted 2⇥ since its
cardinality is 2|⇥|. A basic belief assignment provided by a
source of evidence is a mapping m(.) : 2⇥ ! [0, 1] satisfying

m(;) = 0 and
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X22⇥

m(X) = 1 (14)

The measures of credibility and plausibility of any proposition
X 2 2⇥ are defined from m(.) by
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Bel(X) and Pl(X) are usually interpreted as lower
and upper bounds of the unknown probability of X .
U(X) = Pl(X) � Bel(X) reflects the uncertainty on X .
The belief functions are well adapted to model uncertainty
expressed by a given source of evidence. For information
fusion purposes, many solutions have been proposed in
the literature [12] to combine bba’s efficiently for pooling
evidences arising from several sources.

As for the classical ET method, there are four main steps
in our new SET method. However, the SET steps are different
from the ET steps. The four steps of SET, that are actually
very specific and improves the ET steps, are:

• SET-Step 1: Computation of partial concordance indices
cj(ai, bh) and cj(bh, ai)), partial discordances indices
dj(ai, bh) and dj(bh, ai)), and also partial uncertainty
indices uj(ai, bh) and uj(bh, ai)) thanks to a smooth
sigmoidal model for generating bba’s [13].

• SET-Step 2: Computation of the global (overall) con-
cordance indices c(ai, bh), c(bh, ai), discordance indices
d(ai, bh), d(bh, ai), and uncertainty indices u(ai, bh),
u(bh, ai);

• SET-Step 3: Computation of the probabilized outranking
relations grounded on the global indices of SET-Step 2.
The probabilization is directly obtained and thus elimi-
nates the arbitrary �-cut strategy necessary in ET.

• SET-Step 4: Final soft assignment of ai into Ch based
on combinatorics of probabilized outranking relations.

Let’s explain in details the four steps of SET and the
computation of the indices necessary for the implementation
of the SET method.

A. SET-Step 1: Partial indices

In SET, a sigmoid model is proposed to replace the original
truncated trapezoidal model for computing concordance and
discordance indices of the ET method. The sigmoidal model
has been presented in details in [13] and is only briefly recalled
here. We consider a binary frame of discernment3 ⇥ , {c, c̄}
where c means that the alternative ai is concordant with the
assertion ”ai is at least as good as profile bh”, and c̄ means that
the alternative ai is opposed (discordant) to this assertion. We
can compute a basic belief assignment (bba) mih(.) defined
on 2⇥ for each pair (ai, bh). mih(.) is defined from the
combination (fusion) of the local bba’s mj

ih(.) evaluated from
each possible criteria gj(.) as follows: mj

ih(.) = [m1�m2](.)
is obtained by the fusion4 (denoted symbolically by �) of the
two following simple bba’s defined by:

focal element m1(.) m2(.)
c fsc,tc(g) 0
c̄ 0 f�sc̄,tc̄(g)

c [ c̄ 1� fsc,tc(g) 1� f�sc̄,tc̄(g)

Table I: Construction of m1(.) and m2(.).

where fs,t(g) , 1/(1+e�s(g�t)) is the sigmoid function; g is
the criterion magnitude of the alternative under consideration;
t is the abscissa of the inflection point of the sigmoid. The
abscisses of inflection points are given by tc = gj(bh) �
1
2 (pj(bh) + qj(bh)) and tc̄ = gj(bh) � 1

2 (pj(bh) + vj(bh))
and the parameters sc and sc̄ are given by5 sc = 4/(pj(bh)�
qj(bh)) and sc̄ = 4/(vj(bh)� pj(bh)).

From the setting of threshold parameters pj(bh), qj(bh) and
vj(bh) (the same as for ET method), it is easy to compute the
parameters of the sigmoids (tc, sc) and (tc̄, tc̄), and thus to
get the values of bba’s m1(.) and m2(.) to compute mj

ih(.).
We recommend to use the PCR5 fusion rule6 since it offers
a better management of conflicting bba’s yielding to more
specific results than with other rules. Based on this sigmoidal
modeling, we get now from mj

ih(.) a fully consistent and
efficient representation of local concordance cj(ai, bh), local
discordance dj(ai, bh) and the local uncertainty uj(ai, bh) by
considering:

8
><

>:

cj(ai, bh) , mj
ih(c) 2 [0, 1]

dj(ai, bh) , mj
ih(c̄) 2 [0, 1]

uj(ai, bh) , mj
ih(c [ c̄) 2 [0, 1].

(17)

Of course, a similar approach must be adapted (not
reported here due to space limitation restraint) to

3Here we assume that Shafer’s model holds, that is c \ c̄ = ;.
4with averaging rule, PCR5 rule, or Dempster-Shafer rule [14].
5The coefficient 4 appearing in sc and sc̄ expressions comes from the fact

that for a sigmoid of parameter s, the tangent at its inflection point is s/4.
6see [15] for details on PCR5 with many examples.
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SET Step2: 

compute cj(bh, ai) = mj
hi(c), dj(bh, ai) = mj

hi(c̄) and
uj(bh, ai) = mj

hi(c [ c̄).

Example 1: Let’s consider only one alternative ai and a
criterion gj(.) in range [0, 100], and let’s take gj(bh) = 50 and
the following thresholds: qj(bh) = 20 (indifference threshold),
pj(bh) = 25 (preference threshold) and vj(bh) = 40 (veto
threshold) for the profile bound bh. Then, the inflection points
of the sigmoids f1(g) , fsc,tc(g) and f2(g) , f�sc̄,tc̄(g) have
the following abscisses: tc = 50 � (25 + 20)/2 = 27.5 and
tc̄ = 50� (25 + 40)/2 = 17.5 and parameters: sc = 4/(25�
20) = 4/5 = 0.8 and sc̄ = 4/(40 � 25) = 4/15 ⇡ 0.2666.
The construction of the consistent bba mj

ih(.) is obtained by
the PCR5 fusion of the bba’s m1(.) and m2(.) given in Table
I. The result is shown in Fig. 2.
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Figure 2: mj
ih(.) corresponding to partial indices.

The blue curve corresponds to cj(ai, bh), the red plot
corresponds to dj(ai, bh) and the green plot to uj(ai, bh) when
gj(ai) varies in [0; 100]. cj(bh, ai), dj(bh, ai) and uj(bh, ai)
can easily be obtained by mirroring (horizontal flip) the curves
around the vertical axis at the mid-range value gj(ai) = 50.

B. SET-Step 2: Global indices

As explained in SET-Step 1, the partial indices are en-
capsulated in bba’s mj

ih(.) for alternative ai versus profile
bh (aivs.bh), and encapsulated in bba’s mj

hi(.) for profile
bh versus alternative ai (bhvs.ai). In SET, the global indices
c(ai, bh), d(ai, bh) and u(ai, bh) are obtained by the fusion
of the ng bba’s mj

ih(.). Similarly, the global indices c(bh, ai),
d(bh, ai) and u(bh, ai) are obtained by the fusion of the ng

bba’s mj
hi(.). More precisely, one must compute:
(
mih(.) = [m1

ih �m2
ih � . . .�m

ng

ih ](.)

mhi(.) = [m1
hi �m2

hi � . . .�m
ng

hi ](.)
(18)

To take into account the weighting factor wj of criterion gj(.),
we suggest to use as fusion operator � either:

• the weighting averaging fusion rule (as in ET method)
which is simple and compatible with probability calculus
and Bayesian reasoning,

• or the more sophisticated operator defined by the PCR5
fusion rule adapted for importance discounting presented

in details in [16] which belongs to the family of non-
Bayesian fusion operators.

Once the bba’s mih(.) and mhi(.) have been computed, the
global indices are defined by:

8
><

>:

c(ai, bh) , mih(c)↵(ai, bh)

d(ai, bh) , mih(c̄)�(ai, bh)

u(ai, bh) , 1� c(ai, bh)� d(ai, bh).

(19)

The discounting factors ↵(ai, bh) and �(ai, bh) are defined by

↵(ai, bh) ,
(
1 if V↵ = ;
Q

j2V↵

1�dj(ai,bh)

1�mih(c) if V↵ 6= ;
(20)

�(ai, bh) ,
(
1 if V� = ;
Q

j2V�

1�cj(ai,bh)

1�mih(c̄) if V� 6= ; (21)

with

(
V↵ , {j 2 J|dj(ai, bh) > mih(c)}
V� , {j 2 J|cj(bh, ai) > mih(c̄)}

(22)

c(bh, ai), d(bh, ai) and u(bh, ai) are similarly computed
using dual formulas of (19)–(22).

The belief and plausibility of the outranking propositions
X = ”ai > bh” and Y = ”bh > ai” are then given by

(
Bel(X) = c(ai, bh)

Bel(Y ) = c(bh, ai)
(23)

and

(
Pl(X) = 1� d(ai, bh) = c(ai, bh) + u(ai, bh)

Pl(Y ) = 1� d(bh, ai) = c(bh, ai) + u(bh, ai)
(24)

C. SET-Step 3: Probabilized outranking

We have seen in SET-Step 2 that the outrankings X =
”ai > bh” and Y = ”bh > ai” can be characterized by their
imprecise probabilities P (X) 2 [Bel(X); Pl(X)] and P (Y ) 2
[Bel(Y ); Pl(Y )]. Figure 3 shows an example with P (X) 2
[0.2; 0.8] and P (Y ) 2 [0.1; 0.5]

Figure 3: Imprecise probabilities of outrankings.

Solving the outranking problem consists in choosing (de-
ciding) if finally X dominates Y (in such case we must
decide X as being the valid outranking), or if Y dominates
X (in such case we decide Y as being the valid outrank-
ing). Unfortunately, such hard (binary) assignment cannot
be done in general7 because it must be drawn from the
unknown probabilities P (X) in [Bel(X); Pl(X)] and P (Y )

7but in cases where the bounds of probabilities P (X) and P (Y ) do not
overlap.

compute cj(bh, ai) = mj
hi(c), dj(bh, ai) = mj

hi(c̄) and
uj(bh, ai) = mj

hi(c [ c̄).

Example 1: Let’s consider only one alternative ai and a
criterion gj(.) in range [0, 100], and let’s take gj(bh) = 50 and
the following thresholds: qj(bh) = 20 (indifference threshold),
pj(bh) = 25 (preference threshold) and vj(bh) = 40 (veto
threshold) for the profile bound bh. Then, the inflection points
of the sigmoids f1(g) , fsc,tc(g) and f2(g) , f�sc̄,tc̄(g) have
the following abscisses: tc = 50 � (25 + 20)/2 = 27.5 and
tc̄ = 50� (25 + 40)/2 = 17.5 and parameters: sc = 4/(25�
20) = 4/5 = 0.8 and sc̄ = 4/(40 � 25) = 4/15 ⇡ 0.2666.
The construction of the consistent bba mj

ih(.) is obtained by
the PCR5 fusion of the bba’s m1(.) and m2(.) given in Table
I. The result is shown in Fig. 2.
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ih(.) corresponding to partial indices.

The blue curve corresponds to cj(ai, bh), the red plot
corresponds to dj(ai, bh) and the green plot to uj(ai, bh) when
gj(ai) varies in [0; 100]. cj(bh, ai), dj(bh, ai) and uj(bh, ai)
can easily be obtained by mirroring (horizontal flip) the curves
around the vertical axis at the mid-range value gj(ai) = 50.

B. SET-Step 2: Global indices

As explained in SET-Step 1, the partial indices are en-
capsulated in bba’s mj

ih(.) for alternative ai versus profile
bh (aivs.bh), and encapsulated in bba’s mj

hi(.) for profile
bh versus alternative ai (bhvs.ai). In SET, the global indices
c(ai, bh), d(ai, bh) and u(ai, bh) are obtained by the fusion
of the ng bba’s mj

ih(.). Similarly, the global indices c(bh, ai),
d(bh, ai) and u(bh, ai) are obtained by the fusion of the ng

bba’s mj
hi(.). More precisely, one must compute:
(
mih(.) = [m1

ih �m2
ih � . . .�m

ng

ih ](.)

mhi(.) = [m1
hi �m2

hi � . . .�m
ng

hi ](.)
(18)

To take into account the weighting factor wj of criterion gj(.),
we suggest to use as fusion operator � either:

• the weighting averaging fusion rule (as in ET method)
which is simple and compatible with probability calculus
and Bayesian reasoning,

• or the more sophisticated operator defined by the PCR5
fusion rule adapted for importance discounting presented

in details in [16] which belongs to the family of non-
Bayesian fusion operators.

Once the bba’s mih(.) and mhi(.) have been computed, the
global indices are defined by:

8
><

>:

c(ai, bh) , mih(c)↵(ai, bh)

d(ai, bh) , mih(c̄)�(ai, bh)

u(ai, bh) , 1� c(ai, bh)� d(ai, bh).

(19)

The discounting factors ↵(ai, bh) and �(ai, bh) are defined by

↵(ai, bh) ,
(
1 if V↵ = ;
Q

j2V↵

1�dj(ai,bh)

1�mih(c) if V↵ 6= ;
(20)

�(ai, bh) ,
(
1 if V� = ;
Q

j2V�

1�cj(ai,bh)

1�mih(c̄) if V� 6= ; (21)

with

(
V↵ , {j 2 J|dj(ai, bh) > mih(c)}
V� , {j 2 J|cj(bh, ai) > mih(c̄)}

(22)

c(bh, ai), d(bh, ai) and u(bh, ai) are similarly computed
using dual formulas of (19)–(22).

The belief and plausibility of the outranking propositions
X = ”ai > bh” and Y = ”bh > ai” are then given by

(
Bel(X) = c(ai, bh)

Bel(Y ) = c(bh, ai)
(23)

and

(
Pl(X) = 1� d(ai, bh) = c(ai, bh) + u(ai, bh)

Pl(Y ) = 1� d(bh, ai) = c(bh, ai) + u(bh, ai)
(24)

C. SET-Step 3: Probabilized outranking

We have seen in SET-Step 2 that the outrankings X =
”ai > bh” and Y = ”bh > ai” can be characterized by their
imprecise probabilities P (X) 2 [Bel(X); Pl(X)] and P (Y ) 2
[Bel(Y ); Pl(Y )]. Figure 3 shows an example with P (X) 2
[0.2; 0.8] and P (Y ) 2 [0.1; 0.5]

Figure 3: Imprecise probabilities of outrankings.

Solving the outranking problem consists in choosing (de-
ciding) if finally X dominates Y (in such case we must
decide X as being the valid outranking), or if Y dominates
X (in such case we decide Y as being the valid outrank-
ing). Unfortunately, such hard (binary) assignment cannot
be done in general7 because it must be drawn from the
unknown probabilities P (X) in [Bel(X); Pl(X)] and P (Y )

7but in cases where the bounds of probabilities P (X) and P (Y ) do not
overlap.
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SET Step3: 

compute cj(bh, ai) = mj
hi(c), dj(bh, ai) = mj

hi(c̄) and
uj(bh, ai) = mj

hi(c [ c̄).

Example 1: Let’s consider only one alternative ai and a
criterion gj(.) in range [0, 100], and let’s take gj(bh) = 50 and
the following thresholds: qj(bh) = 20 (indifference threshold),
pj(bh) = 25 (preference threshold) and vj(bh) = 40 (veto
threshold) for the profile bound bh. Then, the inflection points
of the sigmoids f1(g) , fsc,tc(g) and f2(g) , f�sc̄,tc̄(g) have
the following abscisses: tc = 50 � (25 + 20)/2 = 27.5 and
tc̄ = 50� (25 + 40)/2 = 17.5 and parameters: sc = 4/(25�
20) = 4/5 = 0.8 and sc̄ = 4/(40 � 25) = 4/15 ⇡ 0.2666.
The construction of the consistent bba mj

ih(.) is obtained by
the PCR5 fusion of the bba’s m1(.) and m2(.) given in Table
I. The result is shown in Fig. 2.
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ih(.) corresponding to partial indices.

The blue curve corresponds to cj(ai, bh), the red plot
corresponds to dj(ai, bh) and the green plot to uj(ai, bh) when
gj(ai) varies in [0; 100]. cj(bh, ai), dj(bh, ai) and uj(bh, ai)
can easily be obtained by mirroring (horizontal flip) the curves
around the vertical axis at the mid-range value gj(ai) = 50.

B. SET-Step 2: Global indices

As explained in SET-Step 1, the partial indices are en-
capsulated in bba’s mj

ih(.) for alternative ai versus profile
bh (aivs.bh), and encapsulated in bba’s mj

hi(.) for profile
bh versus alternative ai (bhvs.ai). In SET, the global indices
c(ai, bh), d(ai, bh) and u(ai, bh) are obtained by the fusion
of the ng bba’s mj

ih(.). Similarly, the global indices c(bh, ai),
d(bh, ai) and u(bh, ai) are obtained by the fusion of the ng

bba’s mj
hi(.). More precisely, one must compute:
(
mih(.) = [m1

ih �m2
ih � . . .�m

ng

ih ](.)

mhi(.) = [m1
hi �m2

hi � . . .�m
ng

hi ](.)
(18)

To take into account the weighting factor wj of criterion gj(.),
we suggest to use as fusion operator � either:

• the weighting averaging fusion rule (as in ET method)
which is simple and compatible with probability calculus
and Bayesian reasoning,

• or the more sophisticated operator defined by the PCR5
fusion rule adapted for importance discounting presented

in details in [16] which belongs to the family of non-
Bayesian fusion operators.

Once the bba’s mih(.) and mhi(.) have been computed, the
global indices are defined by:
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>:

c(ai, bh) , mih(c)↵(ai, bh)

d(ai, bh) , mih(c̄)�(ai, bh)

u(ai, bh) , 1� c(ai, bh)� d(ai, bh).

(19)

The discounting factors ↵(ai, bh) and �(ai, bh) are defined by

↵(ai, bh) ,
(
1 if V↵ = ;
Q

j2V↵

1�dj(ai,bh)

1�mih(c) if V↵ 6= ;
(20)

�(ai, bh) ,
(
1 if V� = ;
Q

j2V�

1�cj(ai,bh)

1�mih(c̄) if V� 6= ; (21)

with

(
V↵ , {j 2 J|dj(ai, bh) > mih(c)}
V� , {j 2 J|cj(bh, ai) > mih(c̄)}

(22)

c(bh, ai), d(bh, ai) and u(bh, ai) are similarly computed
using dual formulas of (19)–(22).

The belief and plausibility of the outranking propositions
X = ”ai > bh” and Y = ”bh > ai” are then given by

(
Bel(X) = c(ai, bh)

Bel(Y ) = c(bh, ai)
(23)

and

(
Pl(X) = 1� d(ai, bh) = c(ai, bh) + u(ai, bh)

Pl(Y ) = 1� d(bh, ai) = c(bh, ai) + u(bh, ai)
(24)

C. SET-Step 3: Probabilized outranking

We have seen in SET-Step 2 that the outrankings X =
”ai > bh” and Y = ”bh > ai” can be characterized by their
imprecise probabilities P (X) 2 [Bel(X); Pl(X)] and P (Y ) 2
[Bel(Y ); Pl(Y )]. Figure 3 shows an example with P (X) 2
[0.2; 0.8] and P (Y ) 2 [0.1; 0.5]

Figure 3: Imprecise probabilities of outrankings.

Solving the outranking problem consists in choosing (de-
ciding) if finally X dominates Y (in such case we must
decide X as being the valid outranking), or if Y dominates
X (in such case we decide Y as being the valid outrank-
ing). Unfortunately, such hard (binary) assignment cannot
be done in general7 because it must be drawn from the
unknown probabilities P (X) in [Bel(X); Pl(X)] and P (Y )

7but in cases where the bounds of probabilities P (X) and P (Y ) do not
overlap.

compute cj(bh, ai) = mj
hi(c), dj(bh, ai) = mj

hi(c̄) and
uj(bh, ai) = mj

hi(c [ c̄).

Example 1: Let’s consider only one alternative ai and a
criterion gj(.) in range [0, 100], and let’s take gj(bh) = 50 and
the following thresholds: qj(bh) = 20 (indifference threshold),
pj(bh) = 25 (preference threshold) and vj(bh) = 40 (veto
threshold) for the profile bound bh. Then, the inflection points
of the sigmoids f1(g) , fsc,tc(g) and f2(g) , f�sc̄,tc̄(g) have
the following abscisses: tc = 50 � (25 + 20)/2 = 27.5 and
tc̄ = 50� (25 + 40)/2 = 17.5 and parameters: sc = 4/(25�
20) = 4/5 = 0.8 and sc̄ = 4/(40 � 25) = 4/15 ⇡ 0.2666.
The construction of the consistent bba mj

ih(.) is obtained by
the PCR5 fusion of the bba’s m1(.) and m2(.) given in Table
I. The result is shown in Fig. 2.
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ih(.) corresponding to partial indices.

The blue curve corresponds to cj(ai, bh), the red plot
corresponds to dj(ai, bh) and the green plot to uj(ai, bh) when
gj(ai) varies in [0; 100]. cj(bh, ai), dj(bh, ai) and uj(bh, ai)
can easily be obtained by mirroring (horizontal flip) the curves
around the vertical axis at the mid-range value gj(ai) = 50.

B. SET-Step 2: Global indices

As explained in SET-Step 1, the partial indices are en-
capsulated in bba’s mj

ih(.) for alternative ai versus profile
bh (aivs.bh), and encapsulated in bba’s mj

hi(.) for profile
bh versus alternative ai (bhvs.ai). In SET, the global indices
c(ai, bh), d(ai, bh) and u(ai, bh) are obtained by the fusion
of the ng bba’s mj

ih(.). Similarly, the global indices c(bh, ai),
d(bh, ai) and u(bh, ai) are obtained by the fusion of the ng

bba’s mj
hi(.). More precisely, one must compute:
(
mih(.) = [m1

ih �m2
ih � . . .�m

ng

ih ](.)

mhi(.) = [m1
hi �m2

hi � . . .�m
ng

hi ](.)
(18)

To take into account the weighting factor wj of criterion gj(.),
we suggest to use as fusion operator � either:

• the weighting averaging fusion rule (as in ET method)
which is simple and compatible with probability calculus
and Bayesian reasoning,

• or the more sophisticated operator defined by the PCR5
fusion rule adapted for importance discounting presented

in details in [16] which belongs to the family of non-
Bayesian fusion operators.

Once the bba’s mih(.) and mhi(.) have been computed, the
global indices are defined by:

8
><

>:

c(ai, bh) , mih(c)↵(ai, bh)

d(ai, bh) , mih(c̄)�(ai, bh)

u(ai, bh) , 1� c(ai, bh)� d(ai, bh).

(19)

The discounting factors ↵(ai, bh) and �(ai, bh) are defined by

↵(ai, bh) ,
(
1 if V↵ = ;
Q

j2V↵

1�dj(ai,bh)

1�mih(c) if V↵ 6= ;
(20)

�(ai, bh) ,
(
1 if V� = ;
Q

j2V�

1�cj(ai,bh)

1�mih(c̄) if V� 6= ; (21)

with

(
V↵ , {j 2 J|dj(ai, bh) > mih(c)}
V� , {j 2 J|cj(bh, ai) > mih(c̄)}

(22)

c(bh, ai), d(bh, ai) and u(bh, ai) are similarly computed
using dual formulas of (19)–(22).

The belief and plausibility of the outranking propositions
X = ”ai > bh” and Y = ”bh > ai” are then given by

(
Bel(X) = c(ai, bh)

Bel(Y ) = c(bh, ai)
(23)

and

(
Pl(X) = 1� d(ai, bh) = c(ai, bh) + u(ai, bh)

Pl(Y ) = 1� d(bh, ai) = c(bh, ai) + u(bh, ai)
(24)

C. SET-Step 3: Probabilized outranking

We have seen in SET-Step 2 that the outrankings X =
”ai > bh” and Y = ”bh > ai” can be characterized by their
imprecise probabilities P (X) 2 [Bel(X); Pl(X)] and P (Y ) 2
[Bel(Y ); Pl(Y )]. Figure 3 shows an example with P (X) 2
[0.2; 0.8] and P (Y ) 2 [0.1; 0.5]

Figure 3: Imprecise probabilities of outrankings.

Solving the outranking problem consists in choosing (de-
ciding) if finally X dominates Y (in such case we must
decide X as being the valid outranking), or if Y dominates
X (in such case we decide Y as being the valid outrank-
ing). Unfortunately, such hard (binary) assignment cannot
be done in general7 because it must be drawn from the
unknown probabilities P (X) in [Bel(X); Pl(X)] and P (Y )

7but in cases where the bounds of probabilities P (X) and P (Y ) do not
overlap.

compute cj(bh, ai) = mj
hi(c), dj(bh, ai) = mj

hi(c̄) and
uj(bh, ai) = mj

hi(c [ c̄).

Example 1: Let’s consider only one alternative ai and a
criterion gj(.) in range [0, 100], and let’s take gj(bh) = 50 and
the following thresholds: qj(bh) = 20 (indifference threshold),
pj(bh) = 25 (preference threshold) and vj(bh) = 40 (veto
threshold) for the profile bound bh. Then, the inflection points
of the sigmoids f1(g) , fsc,tc(g) and f2(g) , f�sc̄,tc̄(g) have
the following abscisses: tc = 50 � (25 + 20)/2 = 27.5 and
tc̄ = 50� (25 + 40)/2 = 17.5 and parameters: sc = 4/(25�
20) = 4/5 = 0.8 and sc̄ = 4/(40 � 25) = 4/15 ⇡ 0.2666.
The construction of the consistent bba mj

ih(.) is obtained by
the PCR5 fusion of the bba’s m1(.) and m2(.) given in Table
I. The result is shown in Fig. 2.
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Figure 2: mj
ih(.) corresponding to partial indices.

The blue curve corresponds to cj(ai, bh), the red plot
corresponds to dj(ai, bh) and the green plot to uj(ai, bh) when
gj(ai) varies in [0; 100]. cj(bh, ai), dj(bh, ai) and uj(bh, ai)
can easily be obtained by mirroring (horizontal flip) the curves
around the vertical axis at the mid-range value gj(ai) = 50.

B. SET-Step 2: Global indices

As explained in SET-Step 1, the partial indices are en-
capsulated in bba’s mj

ih(.) for alternative ai versus profile
bh (aivs.bh), and encapsulated in bba’s mj

hi(.) for profile
bh versus alternative ai (bhvs.ai). In SET, the global indices
c(ai, bh), d(ai, bh) and u(ai, bh) are obtained by the fusion
of the ng bba’s mj

ih(.). Similarly, the global indices c(bh, ai),
d(bh, ai) and u(bh, ai) are obtained by the fusion of the ng

bba’s mj
hi(.). More precisely, one must compute:
(
mih(.) = [m1

ih �m2
ih � . . .�m

ng

ih ](.)

mhi(.) = [m1
hi �m2

hi � . . .�m
ng

hi ](.)
(18)

To take into account the weighting factor wj of criterion gj(.),
we suggest to use as fusion operator � either:

• the weighting averaging fusion rule (as in ET method)
which is simple and compatible with probability calculus
and Bayesian reasoning,

• or the more sophisticated operator defined by the PCR5
fusion rule adapted for importance discounting presented

in details in [16] which belongs to the family of non-
Bayesian fusion operators.

Once the bba’s mih(.) and mhi(.) have been computed, the
global indices are defined by:

8
><

>:

c(ai, bh) , mih(c)↵(ai, bh)

d(ai, bh) , mih(c̄)�(ai, bh)

u(ai, bh) , 1� c(ai, bh)� d(ai, bh).

(19)

The discounting factors ↵(ai, bh) and �(ai, bh) are defined by

↵(ai, bh) ,
(
1 if V↵ = ;
Q

j2V↵

1�dj(ai,bh)

1�mih(c) if V↵ 6= ;
(20)

�(ai, bh) ,
(
1 if V� = ;
Q

j2V�

1�cj(ai,bh)

1�mih(c̄) if V� 6= ; (21)

with

(
V↵ , {j 2 J|dj(ai, bh) > mih(c)}
V� , {j 2 J|cj(bh, ai) > mih(c̄)}

(22)

c(bh, ai), d(bh, ai) and u(bh, ai) are similarly computed
using dual formulas of (19)–(22).

The belief and plausibility of the outranking propositions
X = ”ai > bh” and Y = ”bh > ai” are then given by

(
Bel(X) = c(ai, bh)

Bel(Y ) = c(bh, ai)
(23)

and

(
Pl(X) = 1� d(ai, bh) = c(ai, bh) + u(ai, bh)

Pl(Y ) = 1� d(bh, ai) = c(bh, ai) + u(bh, ai)
(24)

C. SET-Step 3: Probabilized outranking

We have seen in SET-Step 2 that the outrankings X =
”ai > bh” and Y = ”bh > ai” can be characterized by their
imprecise probabilities P (X) 2 [Bel(X); Pl(X)] and P (Y ) 2
[Bel(Y ); Pl(Y )]. Figure 3 shows an example with P (X) 2
[0.2; 0.8] and P (Y ) 2 [0.1; 0.5]

Figure 3: Imprecise probabilities of outrankings.

Solving the outranking problem consists in choosing (de-
ciding) if finally X dominates Y (in such case we must
decide X as being the valid outranking), or if Y dominates
X (in such case we decide Y as being the valid outrank-
ing). Unfortunately, such hard (binary) assignment cannot
be done in general7 because it must be drawn from the
unknown probabilities P (X) in [Bel(X); Pl(X)] and P (Y )

7but in cases where the bounds of probabilities P (X) and P (Y ) do not
overlap.

compute cj(bh, ai) = mj
hi(c), dj(bh, ai) = mj

hi(c̄) and
uj(bh, ai) = mj

hi(c [ c̄).

Example 1: Let’s consider only one alternative ai and a
criterion gj(.) in range [0, 100], and let’s take gj(bh) = 50 and
the following thresholds: qj(bh) = 20 (indifference threshold),
pj(bh) = 25 (preference threshold) and vj(bh) = 40 (veto
threshold) for the profile bound bh. Then, the inflection points
of the sigmoids f1(g) , fsc,tc(g) and f2(g) , f�sc̄,tc̄(g) have
the following abscisses: tc = 50 � (25 + 20)/2 = 27.5 and
tc̄ = 50� (25 + 40)/2 = 17.5 and parameters: sc = 4/(25�
20) = 4/5 = 0.8 and sc̄ = 4/(40 � 25) = 4/15 ⇡ 0.2666.
The construction of the consistent bba mj

ih(.) is obtained by
the PCR5 fusion of the bba’s m1(.) and m2(.) given in Table
I. The result is shown in Fig. 2.
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Figure 2: mj
ih(.) corresponding to partial indices.

The blue curve corresponds to cj(ai, bh), the red plot
corresponds to dj(ai, bh) and the green plot to uj(ai, bh) when
gj(ai) varies in [0; 100]. cj(bh, ai), dj(bh, ai) and uj(bh, ai)
can easily be obtained by mirroring (horizontal flip) the curves
around the vertical axis at the mid-range value gj(ai) = 50.

B. SET-Step 2: Global indices

As explained in SET-Step 1, the partial indices are en-
capsulated in bba’s mj

ih(.) for alternative ai versus profile
bh (aivs.bh), and encapsulated in bba’s mj

hi(.) for profile
bh versus alternative ai (bhvs.ai). In SET, the global indices
c(ai, bh), d(ai, bh) and u(ai, bh) are obtained by the fusion
of the ng bba’s mj

ih(.). Similarly, the global indices c(bh, ai),
d(bh, ai) and u(bh, ai) are obtained by the fusion of the ng

bba’s mj
hi(.). More precisely, one must compute:
(
mih(.) = [m1

ih �m2
ih � . . .�m

ng

ih ](.)

mhi(.) = [m1
hi �m2

hi � . . .�m
ng

hi ](.)
(18)

To take into account the weighting factor wj of criterion gj(.),
we suggest to use as fusion operator � either:

• the weighting averaging fusion rule (as in ET method)
which is simple and compatible with probability calculus
and Bayesian reasoning,

• or the more sophisticated operator defined by the PCR5
fusion rule adapted for importance discounting presented

in details in [16] which belongs to the family of non-
Bayesian fusion operators.

Once the bba’s mih(.) and mhi(.) have been computed, the
global indices are defined by:

8
><

>:

c(ai, bh) , mih(c)↵(ai, bh)

d(ai, bh) , mih(c̄)�(ai, bh)

u(ai, bh) , 1� c(ai, bh)� d(ai, bh).

(19)

The discounting factors ↵(ai, bh) and �(ai, bh) are defined by

↵(ai, bh) ,
(
1 if V↵ = ;
Q

j2V↵

1�dj(ai,bh)

1�mih(c) if V↵ 6= ;
(20)

�(ai, bh) ,
(
1 if V� = ;
Q

j2V�

1�cj(ai,bh)

1�mih(c̄) if V� 6= ; (21)

with

(
V↵ , {j 2 J|dj(ai, bh) > mih(c)}
V� , {j 2 J|cj(bh, ai) > mih(c̄)}

(22)

c(bh, ai), d(bh, ai) and u(bh, ai) are similarly computed
using dual formulas of (19)–(22).

The belief and plausibility of the outranking propositions
X = ”ai > bh” and Y = ”bh > ai” are then given by

(
Bel(X) = c(ai, bh)

Bel(Y ) = c(bh, ai)
(23)

and

(
Pl(X) = 1� d(ai, bh) = c(ai, bh) + u(ai, bh)

Pl(Y ) = 1� d(bh, ai) = c(bh, ai) + u(bh, ai)
(24)

C. SET-Step 3: Probabilized outranking

We have seen in SET-Step 2 that the outrankings X =
”ai > bh” and Y = ”bh > ai” can be characterized by their
imprecise probabilities P (X) 2 [Bel(X); Pl(X)] and P (Y ) 2
[Bel(Y ); Pl(Y )]. Figure 3 shows an example with P (X) 2
[0.2; 0.8] and P (Y ) 2 [0.1; 0.5]

Figure 3: Imprecise probabilities of outrankings.

Solving the outranking problem consists in choosing (de-
ciding) if finally X dominates Y (in such case we must
decide X as being the valid outranking), or if Y dominates
X (in such case we decide Y as being the valid outrank-
ing). Unfortunately, such hard (binary) assignment cannot
be done in general7 because it must be drawn from the
unknown probabilities P (X) in [Bel(X); Pl(X)] and P (Y )

7but in cases where the bounds of probabilities P (X) and P (Y ) do not
overlap.

(
PX>Y = A(X)

A(X)+A(Y ) =
0.195
0.24 = 0.8125

PY >X = A(Y )
A(X)+A(Y ) =

0.045
0.24 = 0.1875

(
ai > bh with proba Pih = PX>Y ⇡ 0.81

bh > ai with proba Phi = PY >X ⇡ 0.19

Probabilized outranking
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SET Step 4: Final assignment of alternative in a category

We consider all possible outranking sequences with their probabilities

in [Bel(Y ); Pl(Y )] where a partial overlapping is possible
between intervals [Bel(X); Pl(X)] and [Bel(Y ); Pl(Y )] (see
Fig. 3). A soft (probabilized) outranking solution is possible
by computing the probability that X dominates Y (or that Y
dominates X) by assuming uniform distribution of unknown
probabilities between their lower and upper bounds. To get the
probabilized outrankings, we just need to compute PX>Y ,
P (P (X) > P (Y )) and PY >X , P (P (Y ) > P (X)) which
are precisely computable by the ratio of two polygonal areas,
or can be estimated using sampling techniques.

Figure 4: Probabilization of outranking.

More precisely

(
PX>Y = A(X)/(A(X) +A(Y ))

PY >X = A(Y )/(A(X) +A(Y ))
(25)

where A(X) is the partial area of the rectangle A = U(X)⇥
U(Y ) under the line P (X) = P (Y ) (yellow area in Fig. 4) and
A(Y ) is the area of the rectangle A = U(X) ⇥ U(Y ) above
the line P (X) = P (Y ) (orange area in Fig. 4). Of course,
A = A(X)+A(Y ) and PX>Y = 1�PY >X . As a final result
for the example of Fig. 3, and according to (25) and Fig. 4,
we finally get the following probabilized outrankings:
(
ai > bh with probabilityPX>Y = 0.195/0.24 = 0.8125

bh > ai with probabilityPY >X = 0.045/0.24 = 0.1825

For notation convenience, we denote the probabilities of
outrankings as Pih , PX>Y with X = ”ai > bh” and Y =
”bh > ai”. Reciprocally, we denote Phi , PY >X = 1� Pih.

D. SET-Step 4: Soft assignment procedure

From the probabilized outrankings obtained in SET-Step
3, we are now able to make directly the soft assignment
of alternatives ai to categories Ch defined by their profiles
bh. This is easily obtained by the combinatorics of all
possible sequences of outrankings taking into account their
probabilities. Moreover, this soft assignment mechanism
provides also the probability �i , P (ai ! ;) reflecting
the impossibility to make a coherent outranking. Our soft
assignment procedure doesn’t require arbitrary choice of

attitude contrariwise to what is proposed in the classical
ET method. For simplicity, we present the soft assignment
procedure in the example 2 below, which can be adapted to
any number nh � 2 of categories.

Example 2: Let’s consider one alternative ai to be assigned
to categories C1, C2 and C3 based on multiple criteria (taking
into account indifference, preference and veto conditions) and
intermediate profiles b1 and b2. Because b0 and b3 are the min
and max profiles, one has always P (Xi0 = ”ai > b0”) = 1
and P (Xi3 = ”ai > b3”) = 0. Let’s assume that at the SET-
Step 3 one gets the following soft outranking probabilities Pih

as given in Table II.

Profiles bh ! b0 b1 b2 b3
Outranking probas #

Pih 1 0.7 0.2 0

Table II: Soft outranking probabilities.

From combinatorics, only the following outranking se-
quences Sk(ai), k = 1, 2, 3, 4 can occur with non null
probabilities P (Sk(ai)) as listed in Table III, where P (Sk(ai))

Profiles bh ! b0 b1 b2 b3 P (Sk(ai))
Outrank sequences # #

S1(ai) > > > < 0.14
S2(ai) > > < < 0.56
S3(ai) > < < < 0.24
S4(ai) > < > < 0.06

Table III: Probabilities of outranking sequences.

have been computed by the product of the probability of each
outranking involved in the sequence, that is:

P (S1(ai)) = 1⇥ 0.7⇥ 0.2⇥ 1 = 0.14

P (S2(ai)) = 1⇥ 0.7⇥ (1� 0.2)⇥ 1 = 0.56

P (S3(ai)) = 1⇥ (1� 0.7)⇥ (1� 0.2)⇥ 1 = 0.24

P (S4(ai)) = 1⇥ (1� 0.7)⇥ 0.2⇥ 1 = 0.06

The assignment of ai into a category Ch delimited by bounds
bh�1 and bh depends on the occurrence of the outranking
sequences. Given S1(ai) with probability P (S1(ai)) = 0.14,
ai must be assigned to C3 because ai outranks b0, b1 and
b2; Given S2(ai) with probability 0.56, ai must be assigned
to C2 because ai outranks only b0 and b1; Given S3(ai)
with probability 0.24, ai must be assigned to C1 because
ai outranks only b0. Given S4(ai) with probability 0.06,
ai cannot be reasonably assigned to categories because of
inherent inconsistency of the outranking sequence S4(ai) since
ai cannot outperform b2 and simultaneously underperform
b1 because by profile ordering one has b2 > b1. Therefore
the inconsistency indicator is given by �i = P (ai ! ;) =
P (S4(ai)) = 0.06. Finally, the soft assignment probabilities
P (ai ! Ch) and the inconsistency indicator obtained by SET-
Step 4 are given in Table IV.

Suppose at SET step 3 
one gets for alternative ai

All possible outranking sequences with their probas are

Pi3 = P (Xi3 = ”ai > b3”) = 0

Pi0 = P (Xi0 = ”ai > b0”) = 1

Categories Ch ! C1 C2 C3 ;
Assignment probas ai #

P (ai ! Ch) 0.24 0.56 0.14 �i = 0.06

Table IV: SET Soft Assignment result.

IV. APPLICATION EXAMPLE : ENVIRONMENTAL CONTEXT

In this section, we compare ET and SET methods applied
to an assignment problem related to an environmental context
proposed originally in [8]. It corresponds to the choice of the
location of an urban waste resource recovery disposal which
aims to re-use the recyclable part of urban waste produced by
several communities. Indeed, this disposal must collect at least
20000m3 of urban waste per year to be economically viable.
It must be a collective unit and the best possible location
has to be identified. Each community will have to bring its
urban waste production to the disposal: the transport costs are
valuated in tons by kilometer per year (t.km/year). Building
such a disposal is generally not easily accepted by popula-
tion, particularly when the environmental inconveniences are
already high. This initial environmental status is measured by
a specific criterion. Building an urban waste disposal implies
to use a wide area that could be used for other activities such
as a sport terrain, touristic equipments, a natural zone, etc.
This competition with other activities is measured by a specific
criterion.

A. Alternatives, criteria and profiles definition

In our example, 7 possible locations (alternatives/choices)
ai, i = 1, 2, . . . , 7, for urban waste resource recovery disposal
are compared according to the following 5 criteria gj , j =
1, 2, . . . , 5 :

g1 = Terrain price (decreasing preference);
g2 = Transport costs (decreasing preference);
g3 = Environment status (increasing preference);
g4 = Impacted population (increasing preference);
g5 = Competition activities (increasing preference).

• Price of terrain (g1) is expressed in e/m2 with decreasing
preferences (the lower is the price, the higher is the
preference);

• Transport costs (g2) are expressed in t.km/year with
decreasing preferences (the lower is the cost, the higher
is the preference);

• The environment status (g3) corresponds to the initial en-
vironmental inconvenience level expressed by population
with an increasing direction of preferences. The higher is
the environment status, the lower are the initial environ-
mental inconveniences. It is rated with an integer between
0 and 10 (highest environment status corresponding to the
lowest initial environmental inconveniences);

• Impacted population (g4) is an integrated criterion to
measure negative effects based on subjective and qual-
itative criteria. It corresponds to the status of the envi-
ronment with an increasing direction of preferences. The

higher is the evaluation, the lower are the negative effects.
It is rated with an real number between 0 (great number
of impacted people) and 10 (very few people impacted);

• Activities competition (g5) is an integrated criterion,
evaluated by a real number, that measures the competition
level between activities with an increasing direction of
preferences. The higher is the evaluation, the lower is the
competition with other activities on the planned location
(tourism, sport, natural environment . . . ).

The evaluations of the 7 alternatives are summarized in
Table V, and he alternatives (possible locations) are compared
to the 2 decision profiles b1 and b2 described in Table VI.
The weights, indifference, preference and veto thresholds for
criteria gj are described in Table VII.

Criteria gj ! g1 g2
Choices ai # (e/m2 ) (t · km/year)

a1 �120 �284
a2 �150 �269
a3 �100 �413
a4 �60 �596
a5 �30 �1321
a6 �80 �734
a7 �45 �982

(a) Choices ai and criteria g1 and g2.

Criteria gj ! g3 g4 g5
Choices ai # {0, 1, . . . , 10} [0, 10] {0, 1, . . . , 100}

a1 5 3.5 18
a2 2 4.5 24
a3 4 5.5 17
a4 6 8.0 20
a5 8 7.5 16
a6 5 4.0 21
a7 7 8.5 13

(b) Choices ai and criteria g3, g4 and g5.

Table V: Inputs of ET (7 alternatives according to 5 criteria).

Profiles bh ! b1 b2
Criteria gj #
g1 : e/m2 �100 -50
g2 : t · km/year �1000 �500
g3 : {0, 1, . . . , 10} 4 7
g4 : [0, 10] 4 7
g5 : {0, 1, . . . , 100} 15 20

Table VI: Evaluation profiles.

Thresholds ! wj qj pj vj
Criteria gj # (weight) (indifference) (preference) (veto)

g1 : e/m2 0.25 15 40 100
g2 : t · km/year 0.45 80 350 850
g3 : {0, 1, . . . , 10} 0.10 1 3 5
g4 : [0, 10] 0.12 0.5 3.5 4.5
g5 : {0, 1, . . . , 100} 0.08 1 5 8

Table VII: Thresholds.

B. Results of classical ELECTRE TRI

After applying ET-Steps 1 and 3 of the classical ET method
described in Section II with a � = 0.75 for the �-cut strategy,
one gets the outranking relations listed in Table VIII.

The final hard assignments obtained by ET method using
the pessimistic and optimistic attitudes are listed in Table IX.

C. Results of the new Soft ELECTRE TRI

After applying SET-Steps 1 and 3 of the SET method8

described in Section III, one gets the probabilities of soft
outrankings listed in Table X.

8We have used here the PCR5 fusion rule with importance discounting [16],
and a sampling technique to compute the probabilities Pih.

in [Bel(Y ); Pl(Y )] where a partial overlapping is possible
between intervals [Bel(X); Pl(X)] and [Bel(Y ); Pl(Y )] (see
Fig. 3). A soft (probabilized) outranking solution is possible
by computing the probability that X dominates Y (or that Y
dominates X) by assuming uniform distribution of unknown
probabilities between their lower and upper bounds. To get the
probabilized outrankings, we just need to compute PX>Y ,
P (P (X) > P (Y )) and PY >X , P (P (Y ) > P (X)) which
are precisely computable by the ratio of two polygonal areas,
or can be estimated using sampling techniques.

Figure 4: Probabilization of outranking.

More precisely

(
PX>Y = A(X)/(A(X) +A(Y ))

PY >X = A(Y )/(A(X) +A(Y ))
(25)

where A(X) is the partial area of the rectangle A = U(X)⇥
U(Y ) under the line P (X) = P (Y ) (yellow area in Fig. 4) and
A(Y ) is the area of the rectangle A = U(X) ⇥ U(Y ) above
the line P (X) = P (Y ) (orange area in Fig. 4). Of course,
A = A(X)+A(Y ) and PX>Y = 1�PY >X . As a final result
for the example of Fig. 3, and according to (25) and Fig. 4,
we finally get the following probabilized outrankings:
(
ai > bh with probabilityPX>Y = 0.195/0.24 = 0.8125

bh > ai with probabilityPY >X = 0.045/0.24 = 0.1825

For notation convenience, we denote the probabilities of
outrankings as Pih , PX>Y with X = ”ai > bh” and Y =
”bh > ai”. Reciprocally, we denote Phi , PY >X = 1� Pih.

D. SET-Step 4: Soft assignment procedure

From the probabilized outrankings obtained in SET-Step
3, we are now able to make directly the soft assignment
of alternatives ai to categories Ch defined by their profiles
bh. This is easily obtained by the combinatorics of all
possible sequences of outrankings taking into account their
probabilities. Moreover, this soft assignment mechanism
provides also the probability �i , P (ai ! ;) reflecting
the impossibility to make a coherent outranking. Our soft
assignment procedure doesn’t require arbitrary choice of

attitude contrariwise to what is proposed in the classical
ET method. For simplicity, we present the soft assignment
procedure in the example 2 below, which can be adapted to
any number nh � 2 of categories.

Example 2: Let’s consider one alternative ai to be assigned
to categories C1, C2 and C3 based on multiple criteria (taking
into account indifference, preference and veto conditions) and
intermediate profiles b1 and b2. Because b0 and b3 are the min
and max profiles, one has always P (Xi0 = ”ai > b0”) = 1
and P (Xi3 = ”ai > b3”) = 0. Let’s assume that at the SET-
Step 3 one gets the following soft outranking probabilities Pih

as given in Table II.

Profiles bh ! b0 b1 b2 b3
Outranking probas #

Pih 1 0.7 0.2 0

Table II: Soft outranking probabilities.

From combinatorics, only the following outranking se-
quences Sk(ai), k = 1, 2, 3, 4 can occur with non null
probabilities P (Sk(ai)) as listed in Table III, where P (Sk(ai))

Profiles bh ! b0 b1 b2 b3 P (Sk(ai))
Outrank sequences # #

S1(ai) > > > < 0.14
S2(ai) > > < < 0.56
S3(ai) > < < < 0.24
S4(ai) > < > < 0.06

Table III: Probabilities of outranking sequences.

have been computed by the product of the probability of each
outranking involved in the sequence, that is:

P (S1(ai)) = 1⇥ 0.7⇥ 0.2⇥ 1 = 0.14

P (S2(ai)) = 1⇥ 0.7⇥ (1� 0.2)⇥ 1 = 0.56

P (S3(ai)) = 1⇥ (1� 0.7)⇥ (1� 0.2)⇥ 1 = 0.24

P (S4(ai)) = 1⇥ (1� 0.7)⇥ 0.2⇥ 1 = 0.06

The assignment of ai into a category Ch delimited by bounds
bh�1 and bh depends on the occurrence of the outranking
sequences. Given S1(ai) with probability P (S1(ai)) = 0.14,
ai must be assigned to C3 because ai outranks b0, b1 and
b2; Given S2(ai) with probability 0.56, ai must be assigned
to C2 because ai outranks only b0 and b1; Given S3(ai)
with probability 0.24, ai must be assigned to C1 because
ai outranks only b0. Given S4(ai) with probability 0.06,
ai cannot be reasonably assigned to categories because of
inherent inconsistency of the outranking sequence S4(ai) since
ai cannot outperform b2 and simultaneously underperform
b1 because by profile ordering one has b2 > b1. Therefore
the inconsistency indicator is given by �i = P (ai ! ;) =
P (S4(ai)) = 0.06. Finally, the soft assignment probabilities
P (ai ! Ch) and the inconsistency indicator obtained by SET-
Step 4 are given in Table IV.

in [Bel(Y ); Pl(Y )] where a partial overlapping is possible
between intervals [Bel(X); Pl(X)] and [Bel(Y ); Pl(Y )] (see
Fig. 3). A soft (probabilized) outranking solution is possible
by computing the probability that X dominates Y (or that Y
dominates X) by assuming uniform distribution of unknown
probabilities between their lower and upper bounds. To get the
probabilized outrankings, we just need to compute PX>Y ,
P (P (X) > P (Y )) and PY >X , P (P (Y ) > P (X)) which
are precisely computable by the ratio of two polygonal areas,
or can be estimated using sampling techniques.

Figure 4: Probabilization of outranking.

More precisely

(
PX>Y = A(X)/(A(X) +A(Y ))

PY >X = A(Y )/(A(X) +A(Y ))
(25)

where A(X) is the partial area of the rectangle A = U(X)⇥
U(Y ) under the line P (X) = P (Y ) (yellow area in Fig. 4) and
A(Y ) is the area of the rectangle A = U(X) ⇥ U(Y ) above
the line P (X) = P (Y ) (orange area in Fig. 4). Of course,
A = A(X)+A(Y ) and PX>Y = 1�PY >X . As a final result
for the example of Fig. 3, and according to (25) and Fig. 4,
we finally get the following probabilized outrankings:
(
ai > bh with probabilityPX>Y = 0.195/0.24 = 0.8125

bh > ai with probabilityPY >X = 0.045/0.24 = 0.1825

For notation convenience, we denote the probabilities of
outrankings as Pih , PX>Y with X = ”ai > bh” and Y =
”bh > ai”. Reciprocally, we denote Phi , PY >X = 1� Pih.

D. SET-Step 4: Soft assignment procedure

From the probabilized outrankings obtained in SET-Step
3, we are now able to make directly the soft assignment
of alternatives ai to categories Ch defined by their profiles
bh. This is easily obtained by the combinatorics of all
possible sequences of outrankings taking into account their
probabilities. Moreover, this soft assignment mechanism
provides also the probability �i , P (ai ! ;) reflecting
the impossibility to make a coherent outranking. Our soft
assignment procedure doesn’t require arbitrary choice of

attitude contrariwise to what is proposed in the classical
ET method. For simplicity, we present the soft assignment
procedure in the example 2 below, which can be adapted to
any number nh � 2 of categories.

Example 2: Let’s consider one alternative ai to be assigned
to categories C1, C2 and C3 based on multiple criteria (taking
into account indifference, preference and veto conditions) and
intermediate profiles b1 and b2. Because b0 and b3 are the min
and max profiles, one has always P (Xi0 = ”ai > b0”) = 1
and P (Xi3 = ”ai > b3”) = 0. Let’s assume that at the SET-
Step 3 one gets the following soft outranking probabilities Pih

as given in Table II.

Profiles bh ! b0 b1 b2 b3
Outranking probas #

Pih 1 0.7 0.2 0

Table II: Soft outranking probabilities.

From combinatorics, only the following outranking se-
quences Sk(ai), k = 1, 2, 3, 4 can occur with non null
probabilities P (Sk(ai)) as listed in Table III, where P (Sk(ai))

Profiles bh ! b0 b1 b2 b3 P (Sk(ai))
Outrank sequences # #

S1(ai) > > > < 0.14
S2(ai) > > < < 0.56
S3(ai) > < < < 0.24
S4(ai) > < > < 0.06

Table III: Probabilities of outranking sequences.

have been computed by the product of the probability of each
outranking involved in the sequence, that is:

P (S1(ai)) = 1⇥ 0.7⇥ 0.2⇥ 1 = 0.14

P (S2(ai)) = 1⇥ 0.7⇥ (1� 0.2)⇥ 1 = 0.56

P (S3(ai)) = 1⇥ (1� 0.7)⇥ (1� 0.2)⇥ 1 = 0.24

P (S4(ai)) = 1⇥ (1� 0.7)⇥ 0.2⇥ 1 = 0.06

The assignment of ai into a category Ch delimited by bounds
bh�1 and bh depends on the occurrence of the outranking
sequences. Given S1(ai) with probability P (S1(ai)) = 0.14,
ai must be assigned to C3 because ai outranks b0, b1 and
b2; Given S2(ai) with probability 0.56, ai must be assigned
to C2 because ai outranks only b0 and b1; Given S3(ai)
with probability 0.24, ai must be assigned to C1 because
ai outranks only b0. Given S4(ai) with probability 0.06,
ai cannot be reasonably assigned to categories because of
inherent inconsistency of the outranking sequence S4(ai) since
ai cannot outperform b2 and simultaneously underperform
b1 because by profile ordering one has b2 > b1. Therefore
the inconsistency indicator is given by �i = P (ai ! ;) =
P (S4(ai)) = 0.06. Finally, the soft assignment probabilities
P (ai ! Ch) and the inconsistency indicator obtained by SET-
Step 4 are given in Table IV.

C1 C2 C3

Final soft assignment (and hard assignment is possible from soft assignment)

Inconsistency 
indicator
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Where should we settle the future urban waste recovery disposal?

We consider 7 possible locations a1,…, a7 for a future waste recovery disposal

We consider 5 criteria g1,…g5
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IV. APPLICATION EXAMPLE : ENVIRONMENTAL CONTEXT

In this section, we compare ET and SET methods applied
to an assignment problem related to an environmental context
proposed originally in [8]. It corresponds to the choice of the
location of an urban waste resource recovery disposal which
aims to re-use the recyclable part of urban waste produced by
several communities. Indeed, this disposal must collect at least
20000m3 of urban waste per year to be economically viable.
It must be a collective unit and the best possible location
has to be identified. Each community will have to bring its
urban waste production to the disposal: the transport costs are
valuated in tons by kilometer per year (t.km/year). Building
such a disposal is generally not easily accepted by popula-
tion, particularly when the environmental inconveniences are
already high. This initial environmental status is measured by
a specific criterion. Building an urban waste disposal implies
to use a wide area that could be used for other activities such
as a sport terrain, touristic equipments, a natural zone, etc.
This competition with other activities is measured by a specific
criterion.

A. Alternatives, criteria and profiles definition

In our example, 7 possible locations (alternatives/choices)
ai, i = 1, 2, . . . , 7, for urban waste resource recovery disposal
are compared according to the following 5 criteria gj , j =
1, 2, . . . , 5 :

g1 = Terrain price (& preference);
the lower is g1, the higher is the preference

g2 = Transport costs (& pref.);
the lower is g2, the higher is the preference

g3 = Environment status expressed by population (% pref.);
the higher is g3, the lower are the negative effects

g4 = Impacted population (% pref.);
the higher is g4, the lower are the negative effects

g5 = Competition activities (% pref.)
the higher is g5, the lower is the competition with
other activities (tourism, sport, etc)

• Price of terrain (g1) is expressed in e/m2 with decreasing
preferences (the lower is the price, the higher is the
preference);

• Transport costs (g2) are expressed in t.km/year with
decreasing preferences (the lower is the cost, the higher
is the preference);

• The environment status (g3) corresponds to the initial en-
vironmental inconvenience level expressed by population
with an increasing direction of preferences. The higher is
the environment status, the lower are the initial environ-
mental inconveniences. It is rated with an integer between
0 and 10 (highest environment status corresponding to the
lowest initial environmental inconveniences);

• Impacted population (g4) is an integrated criterion to
measure negative effects based on subjective and qual-

itative criteria. It corresponds to the status of the envi-
ronment with an increasing direction of preferences. The
higher is the evaluation, the lower are the negative effects.
It is rated with an real number between 0 (great number
of impacted people) and 10 (very few people impacted);

• Activities competition (g5) is an integrated criterion,
evaluated by a real number, that measures the competition
level between activities with an increasing direction of
preferences. The higher is the evaluation, the lower is the
competition with other activities on the planned location
(tourism, sport, natural environment . . . ).

The evaluations of the 7 alternatives are summarized in
Table VI, and he alternatives (possible locations) are compared
to the 2 decision profiles b1 and b2 described in Table VII.
The weights, indifference, preference and veto thresholds for
criteria gj are described in Table VIII.

Criteria gj ! g1 g2
Choices ai # (e/m2 ) (t · km/year)

a1 �120 �284
a2 �150 �269
a3 �100 �413
a4 �60 �596
a5 �30 �1321
a6 �80 �734
a7 �45 �982

(a) Choices ai and criteria g1 and g2.

Criteria gj ! g3 g4 g5
Choices ai # {0, 1, . . . , 10} [0, 10] {0, 1, . . . , 100}

a1 5 3.5 18
a2 2 4.5 24
a3 4 5.5 17
a4 6 8.0 20
a5 8 7.5 16
a6 5 4.0 21
a7 7 8.5 13

(b) Choices ai and criteria g3, g4 and g5.

Table V: Inputs of ET (7 alternatives according to 5 criteria).

Criteria gj ! g1 g2 g3 g4 g5
Choices ai # (e/m2 ) (t · km/year) {0, 1, . . . , 10} [0, 10] {0, 1, . . . , 100}

a1 �120 �284 5 3.5 18
a2 �150 �269 2 4.5 24
a3 �100 �413 4 5.5 17
a4 �60 �596 6 8.0 20
a5 �30 �1321 8 7.5 16
a6 �80 �734 5 4.0 21
a7 �45 �982 7 8.5 13

Table VI: Inputs of ET (7 alternatives according to 5 criteria).

Profiles bh ! b1 b2
Criteria gj #
g1 : e/m2 �100 -50
g2 : t · km/year �1000 �500
g3 : {0, 1, . . . , 10} 4 7
g4 : [0, 10] 4 7
g5 : {0, 1, . . . , 100} 15 20

Table VII: Evaluation profiles.

Thresholds ! wj qj pj vj
Criteria gj # (weight) (indifference) (preference) (veto)

g1 : e/m2 0.25 15 40 100
g2 : t · km/year 0.45 80 350 850
g3 : {0, 1, . . . , 10} 0.10 1 3 5
g4 : [0, 10] 0.12 0.5 3.5 4.5
g5 : {0, 1, . . . , 100} 0.08 1 5 8

Table VIII: Thresholds.

B. Results of classical ELECTRE TRI

After applying ET-Steps 1 and 3 of the classical ET method
described in Section II with a � = 0.75 for the �-cut strategy,
one gets the outranking relations listed in Table IX.
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 Input of the problem

Profile definition for 3 categories 
(bad,medium,good)

IV. APPLICATION EXAMPLE : ENVIRONMENTAL CONTEXT

In this section, we compare ET and SET methods applied
to an assignment problem related to an environmental context
proposed originally in [8]. It corresponds to the choice of the
location of an urban waste resource recovery disposal which
aims to re-use the recyclable part of urban waste produced by
several communities. Indeed, this disposal must collect at least
20000m3 of urban waste per year to be economically viable.
It must be a collective unit and the best possible location
has to be identified. Each community will have to bring its
urban waste production to the disposal: the transport costs are
valuated in tons by kilometer per year (t.km/year). Building
such a disposal is generally not easily accepted by popula-
tion, particularly when the environmental inconveniences are
already high. This initial environmental status is measured by
a specific criterion. Building an urban waste disposal implies
to use a wide area that could be used for other activities such
as a sport terrain, touristic equipments, a natural zone, etc.
This competition with other activities is measured by a specific
criterion.

A. Alternatives, criteria and profiles definition

In our example, 7 possible locations (alternatives/choices)
ai, i = 1, 2, . . . , 7, for urban waste resource recovery disposal
are compared according to the following 5 criteria gj , j =
1, 2, . . . , 5 :

g1 = Terrain price (& preference);
the lower is g1, the higher is the preference

g2 = Transport costs (& pref.);
the lower is g2, the higher is the preference

g3 = Environment status expressed by population (% pref.);
the higher is g3, the lower are the negative effects

g4 = Impacted population (% pref.);
the higher is g4, the lower are the negative effects

g5 = Competition activities (% pref.)
the higher is g5, the lower is the competition with
other activities (tourism, sport, etc)

• Price of terrain (g1) is expressed in e/m2 with decreasing
preferences (the lower is the price, the higher is the
preference);

• Transport costs (g2) are expressed in t.km/year with
decreasing preferences (the lower is the cost, the higher
is the preference);

• The environment status (g3) corresponds to the initial en-
vironmental inconvenience level expressed by population
with an increasing direction of preferences. The higher is
the environment status, the lower are the initial environ-
mental inconveniences. It is rated with an integer between
0 and 10 (highest environment status corresponding to the
lowest initial environmental inconveniences);

• Impacted population (g4) is an integrated criterion to
measure negative effects based on subjective and qual-

itative criteria. It corresponds to the status of the envi-
ronment with an increasing direction of preferences. The
higher is the evaluation, the lower are the negative effects.
It is rated with an real number between 0 (great number
of impacted people) and 10 (very few people impacted);

• Activities competition (g5) is an integrated criterion,
evaluated by a real number, that measures the competition
level between activities with an increasing direction of
preferences. The higher is the evaluation, the lower is the
competition with other activities on the planned location
(tourism, sport, natural environment . . . ).

The evaluations of the 7 alternatives are summarized in
Table VI, and he alternatives (possible locations) are compared
to the 2 decision profiles b1 and b2 described in Table VII.
The weights, indifference, preference and veto thresholds for
criteria gj are described in Table VIII.

Criteria gj ! g1 g2
Choices ai # (e/m2 ) (t · km/year)

a1 �120 �284
a2 �150 �269
a3 �100 �413
a4 �60 �596
a5 �30 �1321
a6 �80 �734
a7 �45 �982

(a) Choices ai and criteria g1 and g2.

Criteria gj ! g3 g4 g5
Choices ai # {0, 1, . . . , 10} [0, 10] {0, 1, . . . , 100}

a1 5 3.5 18
a2 2 4.5 24
a3 4 5.5 17
a4 6 8.0 20
a5 8 7.5 16
a6 5 4.0 21
a7 7 8.5 13

(b) Choices ai and criteria g3, g4 and g5.

Table V: Inputs of ET (7 alternatives according to 5 criteria).

Criteria gj ! g1& g2& g3% g4% g5%
Choices ai # (e/m2 ) (t · km/year) {0, 1, . . . , 10} [0, 10] {0, 1, . . . , 100}

a1 �120 �284 5 3.5 18
a2 �150 �269 2 4.5 24
a3 �100 �413 4 5.5 17
a4 �60 �596 6 8.0 20
a5 �30 �1321 8 7.5 16
a6 �80 �734 5 4.0 21
a7 �45 �982 7 8.5 13

Table VI: Inputs of ET (7 alternatives according to 5 criteria).

Profiles bh ! b1 b2
Criteria gj #
g1 : e/m2 �100 -50
g2 : t · km/year �1000 �500
g3 : {0, 1, . . . , 10} 4 7
g4 : [0, 10] 4 7
g5 : {0, 1, . . . , 100} 15 20

Table VII: Evaluation profiles.

Thresholds ! wj qj pj vj
Criteria gj # (weight) (indifference) (preference) (veto)

g1 : e/m2 0.25 15 40 100
g2 : t · km/year 0.45 80 350 850
g3 : {0, 1, . . . , 10} 0.10 1 3 5
g4 : [0, 10] 0.12 0.5 3.5 4.5
g5 : {0, 1, . . . , 100} 0.08 1 5 8

Table VIII: Thresholds.

B. Results of classical ELECTRE TRI

After applying ET-Steps 1 and 3 of the classical ET method
described in Section II with a � = 0.75 for the �-cut strategy,
one gets the outranking relations listed in Table IX.

Terrain price Transport cost Env. status Impacted pop. Competing activ.

IV. APPLICATION EXAMPLE : ENVIRONMENTAL CONTEXT

In this section, we compare ET and SET methods applied
to an assignment problem related to an environmental context
proposed originally in [8]. It corresponds to the choice of the
location of an urban waste resource recovery disposal which
aims to re-use the recyclable part of urban waste produced by
several communities. Indeed, this disposal must collect at least
20000m3 of urban waste per year to be economically viable.
It must be a collective unit and the best possible location
has to be identified. Each community will have to bring its
urban waste production to the disposal: the transport costs are
valuated in tons by kilometer per year (t.km/year). Building
such a disposal is generally not easily accepted by popula-
tion, particularly when the environmental inconveniences are
already high. This initial environmental status is measured by
a specific criterion. Building an urban waste disposal implies
to use a wide area that could be used for other activities such
as a sport terrain, touristic equipments, a natural zone, etc.
This competition with other activities is measured by a specific
criterion.

A. Alternatives, criteria and profiles definition

In our example, 7 possible locations (alternatives/choices)
ai, i = 1, 2, . . . , 7, for urban waste resource recovery disposal
are compared according to the following 5 criteria gj , j =
1, 2, . . . , 5 :

g1 = Terrain price (& preference);
the lower is g1, the higher is the preference

g2 = Transport costs (& pref.);
the lower is g2, the higher is the preference

g3 = Environment status expressed by population (% pref.);
the higher is g3, the lower are the negative effects

g4 = Impacted population (% pref.);
the higher is g4, the lower are the negative effects

g5 = Competition activities (% pref.)
the higher is g5, the lower is the competition with
other activities (tourism, sport, etc)

• Price of terrain (g1) is expressed in e/m2 with decreasing
preferences (the lower is the price, the higher is the
preference);

• Transport costs (g2) are expressed in t.km/year with
decreasing preferences (the lower is the cost, the higher
is the preference);

• The environment status (g3) corresponds to the initial en-
vironmental inconvenience level expressed by population
with an increasing direction of preferences. The higher is
the environment status, the lower are the initial environ-
mental inconveniences. It is rated with an integer between
0 and 10 (highest environment status corresponding to the
lowest initial environmental inconveniences);

• Impacted population (g4) is an integrated criterion to
measure negative effects based on subjective and qual-

itative criteria. It corresponds to the status of the envi-
ronment with an increasing direction of preferences. The
higher is the evaluation, the lower are the negative effects.
It is rated with an real number between 0 (great number
of impacted people) and 10 (very few people impacted);

• Activities competition (g5) is an integrated criterion,
evaluated by a real number, that measures the competition
level between activities with an increasing direction of
preferences. The higher is the evaluation, the lower is the
competition with other activities on the planned location
(tourism, sport, natural environment . . . ).

The evaluations of the 7 alternatives are summarized in
Table VI, and he alternatives (possible locations) are compared
to the 2 decision profiles b1 and b2 described in Table VII.
The weights, indifference, preference and veto thresholds for
criteria gj are described in Table VIII.

Criteria gj ! g1 g2
Choices ai # (e/m2 ) (t · km/year)

a1 �120 �284
a2 �150 �269
a3 �100 �413
a4 �60 �596
a5 �30 �1321
a6 �80 �734
a7 �45 �982

(a) Choices ai and criteria g1 and g2.

Criteria gj ! g3 g4 g5
Choices ai # {0, 1, . . . , 10} [0, 10] {0, 1, . . . , 100}

a1 5 3.5 18
a2 2 4.5 24
a3 4 5.5 17
a4 6 8.0 20
a5 8 7.5 16
a6 5 4.0 21
a7 7 8.5 13

(b) Choices ai and criteria g3, g4 and g5.

Table V: Inputs of ET (7 alternatives according to 5 criteria).

Criteria gj ! g1& g2& g3% g4% g5%
Choices ai # (e/m2 ) (t · km/year) {0, 1, . . . , 10} [0, 10] {0, 1, . . . , 100}

a1 �120 �284 5 3.5 18
a2 �150 �269 2 4.5 24
a3 �100 �413 4 5.5 17
a4 �60 �596 6 8.0 20
a5 �30 �1321 8 7.5 16
a6 �80 �734 5 4.0 21
a7 �45 �982 7 8.5 13

Table VI: Inputs of ET (7 alternatives according to 5 criteria).

Profiles bh ! b1 b2
Criteria gj #
g1 : e/m2 �100 -50
g2 : t · km/year �1000 �500
g3 : {0, 1, . . . , 10} 4 7
g4 : [0, 10] 4 7
g5 : {0, 1, . . . , 100} 15 20

Table VII: Evaluation profiles.

Thresholds ! wj qj pj vj
Criteria gj # (weight) (indifference) (preference) (veto)

g1 : e/m2 0.25 15 40 100
g2 : t · km/year 0.45 80 350 850
g3 : {0, 1, . . . , 10} 0.10 1 3 5
g4 : [0, 10] 0.12 0.5 3.5 4.5
g5 : {0, 1, . . . , 100} 0.08 1 5 8

Table VIII: Thresholds.

B. Results of classical ELECTRE TRI

After applying ET-Steps 1 and 3 of the classical ET method
described in Section II with a � = 0.75 for the �-cut strategy,
one gets the outranking relations listed in Table IX.

IV. APPLICATION EXAMPLE : ENVIRONMENTAL CONTEXT

In this section, we compare ET and SET methods applied
to an assignment problem related to an environmental context
proposed originally in [8]. It corresponds to the choice of the
location of an urban waste resource recovery disposal which
aims to re-use the recyclable part of urban waste produced by
several communities. Indeed, this disposal must collect at least
20000m3 of urban waste per year to be economically viable.
It must be a collective unit and the best possible location
has to be identified. Each community will have to bring its
urban waste production to the disposal: the transport costs are
valuated in tons by kilometer per year (t.km/year). Building
such a disposal is generally not easily accepted by popula-
tion, particularly when the environmental inconveniences are
already high. This initial environmental status is measured by
a specific criterion. Building an urban waste disposal implies
to use a wide area that could be used for other activities such
as a sport terrain, touristic equipments, a natural zone, etc.
This competition with other activities is measured by a specific
criterion.

A. Alternatives, criteria and profiles definition

In our example, 7 possible locations (alternatives/choices)
ai, i = 1, 2, . . . , 7, for urban waste resource recovery disposal
are compared according to the following 5 criteria gj , j =
1, 2, . . . , 5 :

g1 = Terrain price (& preference);
the lower is g1, the higher is the preference

g2 = Transport costs (& pref.);
the lower is g2, the higher is the preference

g3 = Environment status expressed by population (% pref.);
the higher is g3, the lower are the negative effects

g4 = Impacted population (% pref.);
the higher is g4, the lower are the negative effects

g5 = Competition activities (% pref.)
the higher is g5, the lower is the competition with
other activities (tourism, sport, etc)

• Price of terrain (g1) is expressed in e/m2 with decreasing
preferences (the lower is the price, the higher is the
preference);

• Transport costs (g2) are expressed in t.km/year with
decreasing preferences (the lower is the cost, the higher
is the preference);

• The environment status (g3) corresponds to the initial en-
vironmental inconvenience level expressed by population
with an increasing direction of preferences. The higher is
the environment status, the lower are the initial environ-
mental inconveniences. It is rated with an integer between
0 and 10 (highest environment status corresponding to the
lowest initial environmental inconveniences);

• Impacted population (g4) is an integrated criterion to
measure negative effects based on subjective and qual-

itative criteria. It corresponds to the status of the envi-
ronment with an increasing direction of preferences. The
higher is the evaluation, the lower are the negative effects.
It is rated with an real number between 0 (great number
of impacted people) and 10 (very few people impacted);

• Activities competition (g5) is an integrated criterion,
evaluated by a real number, that measures the competition
level between activities with an increasing direction of
preferences. The higher is the evaluation, the lower is the
competition with other activities on the planned location
(tourism, sport, natural environment . . . ).

The evaluations of the 7 alternatives are summarized in
Table VI, and he alternatives (possible locations) are compared
to the 2 decision profiles b1 and b2 described in Table VII.
The weights, indifference, preference and veto thresholds for
criteria gj are described in Table VIII.

Criteria gj ! g1 g2
Choices ai # (e/m2 ) (t · km/year)

a1 �120 �284
a2 �150 �269
a3 �100 �413
a4 �60 �596
a5 �30 �1321
a6 �80 �734
a7 �45 �982

(a) Choices ai and criteria g1 and g2.

Criteria gj ! g3 g4 g5
Choices ai # {0, 1, . . . , 10} [0, 10] {0, 1, . . . , 100}

a1 5 3.5 18
a2 2 4.5 24
a3 4 5.5 17
a4 6 8.0 20
a5 8 7.5 16
a6 5 4.0 21
a7 7 8.5 13

(b) Choices ai and criteria g3, g4 and g5.

Table V: Inputs of ET (7 alternatives according to 5 criteria).

Criteria gj ! g1& g2& g3% g4% g5%
Choices ai # (e/m2 ) (t · km/year) {0, 1, . . . , 10} [0, 10] {0, 1, . . . , 100}

a1 �120 �284 5 3.5 18
a2 �150 �269 2 4.5 24
a3 �100 �413 4 5.5 17
a4 �60 �596 6 8.0 20
a5 �30 �1321 8 7.5 16
a6 �80 �734 5 4.0 21
a7 �45 �982 7 8.5 13

Table VI: Inputs of ET (7 alternatives according to 5 criteria).

Profiles bh ! b1 b2
Criteria gj #
g1 : e/m2 �100 -50
g2 : t · km/year �1000 �500
g3 : {0, 1, . . . , 10} 4 7
g4 : [0, 10] 4 7
g5 : {0, 1, . . . , 100} 15 20

Table VII: Evaluation profiles.

Thresholds ! wj qj pj vj
Criteria gj # (weight) (indifference) (preference) (veto)

g1 : e/m2 0.25 15 40 100
g2 : t · km/year 0.45 80 350 850
g3 : {0, 1, . . . , 10} 0.10 1 3 5
g4 : [0, 10] 0.12 0.5 3.5 4.5
g5 : {0, 1, . . . , 100} 0.08 1 5 8

Table VIII: Thresholds.

B. Results of classical ELECTRE TRI

After applying ET-Steps 1 and 3 of the classical ET method
described in Section II with a � = 0.75 for the �-cut strategy,
one gets the outranking relations listed in Table IX.

Weights and thresholds used 
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Final assignment of locations in categories based on classical ELECTRE TRI

Final assignment of locations in categories based on SOFT ELECTRE TRI

We use hard assignment with

� = 0.75

b0 b1 b2 b3
a1 > > < <
a2 > R R <
a3 > > < <
a4 > > I <
a5 > R < <
a6 > > < <
a7 > > < <

Table VIII: Outranking relations obtained with ET (� = 0.75).

C1 C2 C3

a1 0 1 0
a2 1 0 0
a3 0 1 0
a4 0 1 0
a5 1 0 0
a6 0 1 0
a7 0 1 0
(a) Pessimistic attitude.

C1 C2 C3

a1 0 1 0
a2 0 0 1
a3 0 1 0
a4 0 0 1
a5 0 1 0
a6 0 1 0
a7 0 1 0
(b) Optimistic attitude.

Table IX: Hard assignments obtained with ET (� = 0.75).

Profiles bh ! b0 b1 b2 b3
Outranking probas #

P1h 1 0.9858 0.6211 0
P2h 1 0.8908 0.1812 0
P3h 1 0.9999 0.0570 0
P4h 1 1.0000 0.0807 0
P5h 1 0.2142 0.0145 0
P6h 1 0.9996 0.0006 0
P7h 1 0.9975 0.0106 0

Table X: Probabilities of soft outranking relations by SET.

The final soft assignments obtained by the SET method are
listed in Table XI.

C1 C2 C3 ;
a1 0.0054 0.3735 0.6123 �1 = 0.0088
a2 0.0894 0.7294 0.1614 �2 = 0.0198
a3 0.0001 0.9429 0.0570 �3 = 0
a4 0 0.9193 0.0807 �4 = 0
a5 0.7744 0.2111 0.0031 �5 = 0.0114
a6 0.0004 0.9990 0.0006 �6 = 0
a7 0.0025 0.9869 0.0106 �7 = 0

Table XI: SET Soft Assignment matrix [P (ai ! Ch)].

D. Discussion

From the soft assignment matrix [P (ai ! Ch)] of Table
XI, it is possible to get a hard assignment solution (if needed)
by assigning each alternative to the category corresponding
to the maximum of P (ai ! Ch), h = 1, 2, . . .. With
SET, it is also theoretically possible to ”assign” ai to none
category if the level of inconsistency �i is too high. As we
see from Table IX and Table XI, the soft assignments for ai,
i = 3, . . . 7 are compatible with the hard assignments with the
pessimistic or the optimistic attitudes. In fact, only the soft
assignments for a1 and a2 having the highest probabilities
P (a1 ! C3) = 0.6123 and P (a2 ! C2) = 0.7294

appear incompatible with ET hard assignments (pessimistic
or optimistic). The discrepancy between these soft and hard
assignments solutions is not due to SET method but comes
from the arbitrary choice of the level of the �-cut strategy used
in ET method. Another arbitrary choice of �-cut will generate
different ET hard assignments which can in fact become fully
compatible with SET soft assignments. For example, if one
takes � = 0.5, it can be verified that SET softs assignments are
now compatible with ET hard assignments for all alternatives
in this example. The soft assignments approach of SET is more
robust and interesting since it doesn’t depend on � values.

V. CONCLUSIONS

In this paper, we have proposed a new outranking sorting
method, called Soft ELECTRE TRI (SET) inspired from
the classical ELECTRE TRI and based on beliefs functions
and advanced fusion techniques. As shown in details and in
examples, SET method uses the same inputs as ET (same
criteria and thresholds definitions) but in a more effective
way and provides a soft (probabilized) assignment solution.
SET eliminates the inherent problem of classical ET due
to the arbitrary choice of a �-cut strategy which forces to
adopt either a pessimistic or optimistic attitude for the final
hard assignment of alternatives to categories. The interest of
SET over ET method has been demonstrated on a preexisting
environmental context scenario.
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C1 C2 C3

a1 0 1 0
a2 1 0 0
a3 0 1 0
a4 0 1 0
a5 1 0 0
a6 0 1 0
a7 0 1 0
(a) Pessimistic attitude.

C1 C2 C3

a1 0 1 0
a2 0 0 1
a3 0 1 0
a4 0 0 1
a5 0 1 0
a6 0 1 0
a7 0 1 0
(b) Optimistic attitude.

Table IX: Hard assignments obtained with ET (� = 0.75).

Profiles bh ! b0 b1 b2 b3
Outranking probas #

P1h 1 0.9858 0.6211 0
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P3h 1 0.9999 0.0570 0
P4h 1 1.0000 0.0807 0
P5h 1 0.2142 0.0145 0
P6h 1 0.9996 0.0006 0
P7h 1 0.9975 0.0106 0

Table X: Probabilities of soft outranking relations by SET.

The final soft assignments obtained by the SET method are
listed in Table XI.

C1 C2 C3 ;
a1 0.0054 0.3735 0.6123 �1 = 0.0088
a2 0.0894 0.7294 0.1614 �2 = 0.0198
a3 0.0001 0.9429 0.0570 �3 = 0
a4 0 0.9193 0.0807 �4 = 0
a5 0.7744 0.2111 0.0031 �5 = 0.0114
a6 0.0004 0.9990 0.0006 �6 = 0
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D. Discussion

From the soft assignment matrix [P (ai ! Ch)] of Table
XI, it is possible to get a hard assignment solution (if needed)
by assigning each alternative to the category corresponding
to the maximum of P (ai ! Ch), h = 1, 2, . . .. With
SET, it is also theoretically possible to ”assign” ai to none
category if the level of inconsistency �i is too high. As we
see from Table IX and Table XI, the soft assignments for ai,
i = 3, . . . 7 are compatible with the hard assignments with the
pessimistic or the optimistic attitudes. In fact, only the soft
assignments for a1 and a2 having the highest probabilities
P (a1 ! C3) = 0.6123 and P (a2 ! C2) = 0.7294

appear incompatible with ET hard assignments (pessimistic
or optimistic). The discrepancy between these soft and hard
assignments solutions is not due to SET method but comes
from the arbitrary choice of the level of the �-cut strategy used
in ET method. Another arbitrary choice of �-cut will generate
different ET hard assignments which can in fact become fully
compatible with SET soft assignments. For example, if one
takes � = 0.5, it can be verified that SET softs assignments are
now compatible with ET hard assignments for all alternatives
in this example. The soft assignments approach of SET is more
robust and interesting since it doesn’t depend on � values.

V. CONCLUSIONS

In this paper, we have proposed a new outranking sorting
method, called Soft ELECTRE TRI (SET) inspired from
the classical ELECTRE TRI and based on beliefs functions
and advanced fusion techniques. As shown in details and in
examples, SET method uses the same inputs as ET (same
criteria and thresholds definitions) but in a more effective
way and provides a soft (probabilized) assignment solution.
SET eliminates the inherent problem of classical ET due
to the arbitrary choice of a �-cut strategy which forces to
adopt either a pessimistic or optimistic attitude for the final
hard assignment of alternatives to categories. The interest of
SET over ET method has been demonstrated on a preexisting
environmental context scenario.
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Soft ELECTRE TRI - Conclusions

J. Dezert & J.-M. Tacnet - Workshop Grenoble - June 3-6, 2019.

SET method uses the same inputs as ET (same criteria and thresholds definitions)

Advantages of SET versus ET

SET method is more effective

it avoids lambda-cutting for hard assignment

it avoids arbitrary choice of decision strategy (optimistic or pessimistic)

it provides soft (probabilized) with inconsistency indicator
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Part 3 - BF-TOPSIS
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BF-TOPSIS = Belief-Functions based of Technique for 
Order Preference by Similarity to Ideal Solution 

for ranking alternatives based on multi-criteria
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Part 3 - MDCM modeling

Classical Multi-Criteria Decision-Making (MCDM) problem

How to make a choice among several alternatives based on different criteria?

Problem modeling 1 ñ using pairwise comparison matrices Ñ AHP methods
We consider a set of criteria C

1

, . . . , CN with preferences of importance established
from a pairwise comparison matrix (PCM) M. For each criteria Cj, a set of preferences
of the alternatives is established from a given pairwise comparison matrix Mj.

Problem modeling 2 ñ using directly the score matrix Ñ TOPSIS methods
A set of M • 2 alternatives A fi tA

1

, . . . ,AMu
A set of N ° 1 Criteria C fi tC

1

, . . . ,CNu
A set of N ° 1 criteria importance weights W “ tw

1

, . . . ,wNu, with wj P r0, 1s
and

∞
j wj “ 1

S fi
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�������fl

S is the score matrix of the MCDM problem under consideration
Car example: How to buy a car based on some criteria (i.e. cost, safety, etc.)?
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Several methods exist depending on the problem modeling.  
Here we classical modeling based on score matrix.

(Score matrix)

How to make a choice among several alternatives based on different criteria?
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Part 3 - MDCM modeling

What we present here

A new Belief-Function based TOPSIS (BF-TOPSIS) to solve classical and non-
classical MCDM problems [Dezert Han Yin 2016,Carladous et al. 2016]

All MCDM methods developed so far suffer of Rank Reversal (RR)

Most methods require score normalization which is a source of RR

No MCDM method makes consensus for users, but some are very popular and simple

AHP (Analytic hierarchy process) [Saaty 1980] is not exempt of problems 

TOPSIS (Technique for Order Preference by Similarity to Ideal Solution)  
[Hwang Yoon 1981] is very disputed because of choice of normalization

Some facts to recall
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Part 3 - Classical TOPSIS approach
Classical TOPSIS method for MCDM

TOPSIS = Technique for Order Preference by Similarity to Ideal Solution

Classical TOPSIS method [Hwang Yoon 1981]
1 Build the normalized score matrix R “ rRijs “ rSij{

b∞
i S

2

ijs
2 Calculate the weighted normalized decision matrix D “ rwj ¨ Rijs
3 Determine the positive (best) ideal solution Abest by taking the best/max value in

each column of D
4 Determine the negative (worst) ideal solution Aworst by taking the worst/min

value in each column of D
5 Compute L2-distances dpAi,A

bestq of Ai, (i=1,. . . ,M) to Abest, and dpAi,A
worstq

of Ai to Aworst

6 Calculate the relative closeness of Ai to best ideal solution Abest by

CpAi,A
bestq fi dpAi,A

worstq
dpAi,Aworstq ` dpAi,Abestq

When CpA
i

,Abestq “ 1, its means that A
i

“ Abest because dpA
i

,Abestq “ 0

When CpA
i

,Abestq “ 0, its means that A
i

“ Aworst because dpA
i

,Aworstq “ 0

7 Rank alternatives Ai according to CpAi,A
bestq in descending order, and select

the highest preferred solution
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Part 3 - BBA construction for BF-TOPSISBBA construction for BF-TOPSIS (1)

Positive support of Ai based on all scores values of a criteria Cj

SupjpAiq fi
ÿ

kPt1,...Mu|S
kj

§S
ij

|Sij ´ Skj|

SupjpAiq measures how much Ai is better (higher) than other alternatives

Negative support of Ai based on all scores values of a criteria Cj

InfjpAiq fi ´
ÿ

kPt1,...Mu|S
kj

•S
ij

|Sij ´ Skj|

InfjpAiq measures how much Ai is worse (lower) than other alternatives

Important inequality see proof in [Dezert Han Yin 2016]

SupjpAiq
Aj

max

§ 1 ´ InfjpAiq
Aj

min

iff Aj
max

fi maxi SupjpAiq and Aj
min

fi mini InfjpAiq are different from zero.
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BBA construction for BF-TOPSIS (2)

Reminder Sup
j

pA
i

q
A

j

max

§ 1 ´ Inf
j

pA
i

q
A

j

min

Belief function modeling

BelijpAiq fi SupjpAiq
Aj

max

and Belijp¯Aiq fi InfjpAiq
Aj

min

If Aj
max

“ 0, we set BelijpXiq “ 0

If Aj
min

“ 0, we set PlijpAiq “ 1 so that Belijp¯Aiq “ 0

By construction, 0 § BelijpAiq § pPlijpAiq “ 1 ´ Belijp¯Aiqq § 1

BBA construction from Belief Interval

From rBelijpAiq,PlijpAiqs, one gets the M ˆ N BBAs matrix M “ rmijp¨qs by taking

mijpAiq “ BelijpAiq
mijp¯Aiq “ Belijp¯Aiq “ 1 ´ PlijpAiq

mijpAi Y ¯Aiq “ PlijpAiq ´ BelijpAiq
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BBA used for M matrix
One always has

BBA construction for BF-TOPSIS (2)
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j

pA
i

q
A

j

max

§ 1 ´ Inf
j

pA
i

q
A

j

min

Belief function modeling

BelijpAiq fi SupjpAiq
Aj

max

and Belijp¯Aiq fi InfjpAiq
Aj

min

If Aj
max

“ 0, we set BelijpXiq “ 0

If Aj
min

“ 0, we set PlijpAiq “ 1 so that Belijp¯Aiq “ 0

By construction, 0 § BelijpAiq § pPlijpAiq “ 1 ´ Belijp¯Aiqq § 1

BBA construction from Belief Interval

From rBelijpAiq,PlijpAiqs, one gets the M ˆ N BBAs matrix M “ rmijp¨qs by taking

mijpAiq “ BelijpAiq mijp¯Aiq “ Belijp¯Aiq “ 1 ´ PlijpAiq
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How to get the BBA matrix M from the score matrix
S = [Sij ] ) M = [(mij(Ai),mij(Āi),mij(Ai [ Āi))]
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Part 3 - BBA construction for BF-TOPSIS (cont’d)BBA construction for BF-TOPSIS (3)

Advantages of this BBA construction

1 if all Sij are the same for a given column, we get @Ai, SupjpAiq “ InfjpAiq “ 0

and therefore mijpAi Y ¯Aiq “ 1 which is the vacuous BBA, which makes sense.

2 it is invariant to the bias and scaling effects of score values. Indeed, if Sij are
replaced by S 1

ij “ a ¨ Sij ` b, with a scale factor a ° 0 and a bias b P R, then
mijp¨q and m 1

ijp¨q remain equal.

3 if a numerical value Sij is missing or indeterminate, then we use the vacuous
belief assignment mijpAi Y ¯Aiq “ 1.

4 We can also discount the BBA mijp¨q by a reliability factor using the classical
Shafer’s discounting method if one wants to express some doubts on the reliability
of mijp¨q.

In summary

From rSijs, we know how to build the matrix M “ rpmijpAiq,mijp¯Aiq,mijpAi Y ¯Aiqqs
How to use these BBAs to rank Ai to make a decision? Ñ BF-TOPSIS methods
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BBA construction for BF-TOPSIS (3)

Advantages of this BBA construction

1 if all Sij are the same for a given column, we get @Ai, SupjpAiq “ InfjpAiq “ 0

and therefore mijpAi Y ¯Aiq “ 1 which is the vacuous BBA, which makes sense.

2 it is invariant to the bias and scaling effects of score values. Indeed, if Sij are
replaced by S 1

ij “ a ¨ Sij ` b, with a scale factor a ° 0 and a bias b P R, then
mijp¨q and m 1

ijp¨q remain equal.

3 if a numerical value Sij is missing or indeterminate, then we use the vacuous
belief assignment mijpAi Y ¯Aiq “ 1.

4 We can also discount the BBA mijp¨q by a reliability factor using the classical
Shafer’s discounting method if one wants to express some doubts on the reliability
of mijp¨q.

In summary

From rSijs, we know how to build the matrix M “ rpmijpAiq,mijp¯Aiq,mijpAi Y ¯Aiqqs
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Part 3 - BF-TOPSIS1 method (simplest method)BF-TOPSIS1 method

Steps of BF-TOPSIS1 [Dezert Han Yin 2016]

1 From S, compute BBAs mijpAiq mijp¯Aiq, and mijpAi Y ¯Aiq
2 Set mbest

ij pAiq fi 1, and mworst
ij p¯Aiq fi 1 and compute distances dBIpmij,m

best
ij q and

dBIpmij,m
worst
ij q to ideal solutions.

3 Compute the weighted average distances of Ai to ideal solutions

dbestpAiq fi
Nÿ

j“1

wj ¨ dBIpmij,m
best
ij q

dworstpAiq fi
Nÿ

j“1

wj ¨ dBIpmij,m
worst
ij q

4 Compute the relative closeness of Ai with respect to ideal best solution Abest

CpAi,A
bestq fi dworstpAiq

dworstpAiq ` dbestpAiq
5 Rank Ai by CpAi,A

bestq in descending order.

J. Dezert Seminar at Remote Sensing Technology Institute, Weßling, Germany. November 22th, 2018 115/133
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Part 3 - Application of BF-TOPSIS for risk management

What protective action to take within a torrential watershed?

Moreover, public authorities often wish to compare those
solutions with another one:

• A
5

: individually protecting each element at risk.
Therefore, to help the DM, we assume that the expert must

compare the first four alternatives (let us call it case 1 with
M=4) and then integrate the A

5

in a global comparison (let
us call it case 2 with M=5) (see Fig. 2).

Fig. 2. Potential alternatives of the real DMP.

The DM considers five criteria (N = 5) and wants to
minimize C

1

, C
2

and to maximize C
3

, C
4

and C
5

with:
• C

1

: the investment cost in e;
• C

2

: the annual maintenance cost in e (S
i2

= 
i

);
• C

3

: the annual risk reduction in m2 of houses damaged;
• C

4

: the annual risk reduction in human casualties;
• C

5

: the annual risk reduction in number of sites danger-
ous to environment in area at risk.

To compare criteria in pairs, the DM gives the preference
matrix P

C

according to the AHP method [6]. Implementing
the AHP step 2 gives the importance weighting vector w =

[0.08, 0.04, 0.10, 0.46, 0.32]T recalled in the Table II. It corre-
sponds to the importance ranking: C

4

� C
5

� C
3

� C
1

� C
2

.

P
C

=

2

66664

C
1

C
2

C
3

C
4

C
5

C
1

1 4 0.5 1/7 0.25
C

2

0.25 1 0.25 1/9 1/6
C

3

2 4 1 0.2 1/7
C

4

7 9 5 1 2

C
5

4 6 7 0.5 1

3

77775
(23)

For each A
i

and C
j

, the DM assesses the S
ij

value to
establish the score matrices Scase1 and Scase2 shown in Table
II.

In the next subsections, we provide intermediary results for
each method to help the reader to check by himself the validity
of our final ranking vectors gathered in comparative Tables
XIII (for case 1) and XIV (for case 2) in the subsection V-E.

B. Implementation of the CBA method

The CBA steps are applied to the two 4 ⇥ 5 and 5 ⇥ 5

score matrices Scase1 and Scase2 given in the Table II. For each
alternative A

i

and each criterion C
j

, the score S
ij

must be

TABLE II
SCORE MATRICES SCASE1 (WITHOUT A

5

) AND SCASE2 (WITH A
5

).

Cj C
1

C
2

C
3

C
4

C
5

wj 0.08 0.04 0.10 0.46 0.32

S
ca

se
2

S
ca

se
1

A
1

0 0 0 0 0
A

2

300 000 6 000 5 0.007 0.02
A

3

300 000 1 500 5 0.008 0.04
A

4

600 000 7 500 7 0.008 0.05
A

5

1 000 000 0 7 0.008 0.1

transformed into monetary value Se
ij

. For C
3

, we assume an
average price of 2 300 e/m2 for houses built in any of the
eleven French mountainous departments9: Se

i3

=2 300·S
i3

(S
i3

given in the Table II). As transforming C
5

in monetary value
is a difficult process, it is not generally done in practice: we
assume Se

i5

= 0. Practical monetary valuation of human life
is discussed and we extract two methods:

• Method 1: with no human life monetary valuation for
C

4

, one assumes Se
i4

= 0;
• Method 2: considering 2.5 million e as the average price

of one human life [23], one assumes Se
i4

=2 500 000·S
i4

(S
i4

given in the Table II).
To apply the CBA, the two 4⇥ 5 and 5⇥ 5 score matrices

Scase1 and Scase2 are transformed into two 4 ⇥ 3 and 5 ⇥ 3

score matrices Secase1 and Secase2 in Table III. For each A
i

, the
C

3

score of global risk reduction in e is Se
i3

+ Se
i4

+ Se
i5

.

TABLE III
TRANSFORMED IN e SCORE MATRICES SeCASE1 AND SeCASE2 .

C
1

C
2

C
3

Method 1 Method 2

S
e ca

se
2

S
e ca

se
1

A
1

0 0 0 0
A

2

300 000 6 000 11 500 29 000
A

3

300 000 1 500 11 500 31 500
A

4

600 000 7 500 16 100 36 100
A

5

1 000 000 0 16 100 36 100

As recommended in [24], we assume the temporal horizon
n = 50 years and a fixed rate q

p

= 3%, 8p 2 [1, n]. For each
A

i

, applying the formulae (3) and (4) gives the CBA results
in the Table IV.

TABLE IV
NPV AND r RESULTS BY CBA.

Method 1 Method 2
Without monetary With monetary

human life valuation human life valuation
NPVi ri NPVi ri

A
1

0 – 0 –
A

2

-158 487 0.65 291 784 1.64
A

3

-42 702 0.87 471 894 2.39
A

4

-378 724 0.52 135 871 1.17
A

5

-585 751 0.41 -71 156 0.93

NPV and r give the same preference ranking. We use NPV
results to establish the decision ranking vector (see Tables XIII
and XIV in the subsection V-E).

9www.meilleursagents.com/prix-immobilier

4 (or 5) possible actions 5 criteria
• A1: doing nothing

• A2: building check dam series

• A3: building a sediment trap

• A4: mixing A2 and A3

• A5: adding individual protections

[Carladous et al.2016]

• C1: investment cost

• C2: annual maintenance cost

• C3: Annual Risk Reduction (ARR) of houses damaged

• C4: ARR of human casualties

• C5: ARR of # of sites dangerous to environment

We want to reduce C1 
and C2 and increase 
C3,C4 and C5
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C. Implementation of the AHP method
After AHP Steps 1 and 2 (see the subsection V-A), the AHP

step 3 is applied on the two score matrices Scase1 and Scase2
given in the Table II. Two methods of normalization have
been tested to normalize each j-th column of Scase1 and Scase2.

Method 1: For each C
j

, the DM gives its preference matrix
on the set of alternatives to get the normalized score matrices
for case 1 and case 2 given respectively by Eqs. (24)-(25).

S1

case1 =

2

64

C
1

C
2

C
3

C
4

C
5

A
1

0.643 0.576 0.038 0.037 0.042
A

2

0.158 0.071 0.197 0.219 0.128
A

3

0.158 0.308 0.197 0.372 0.320
A

4

0.041 0.045 0.568 0.372 0.510

3

75 (24)

S1

case2 =

2

6664

C
1

C
2

C
3

C
4

C
5

A
1

0.515 0.368 0.028 0.028 0.032
A

2

0.190 0.046 0.124 0.156 0.071
A

3

0.190 0.186 0.124 0.272 0.137
A

4

0.073 0.032 0.363 0.272 0.228
A

5

0.032 0.368 0.363 0.272 0.532

3

7775
(25)

Method 2: One uses the classical normalization procedure10

and gets the normalized score matrices for case 1 and case 2
given respectively by Eqs. (26)-(27).

S2

case1 =

2

64

C
1

C
2

C
3

C
4

C
5

A
1

1.000 1.000 0.000 0.000 0.000
A

2

0.750 0.600 0.294 0.304 0.182
A

3

0.750 0.900 0.294 0.348 0.364
A

4

0.500 0.500 0.412 0.348 0.455

3

75 (26)

S2

case2 =

2

6664

C
1

C
2

C
3

C
4

C
5

A
1

1.000 1.000 0.000 0.000 0.000
A

2

0.864 0.600 0.208 0.226 0.095
A

3

0.864 0.900 0.208 0.258 0.190
A

4

0.727 0.500 0.292 0.258 0.238
A

5

0.545 1.000 0.292 0.258 0.476

3

7775
(27)

For those four normalized score matrices, the ranking results
S
i

given by the formula (6) of AHP step 4 are gathered in the
Tables XIII (case 1) and XIV (case 2), see the subsection V-E.

D. Implementation of the BF-TOPSIS methods
The decreasing preference according to C

1

and C
2

must be
first taken into account. The corresponding initial scores S

i1

and S
i2

, i = 1, . . . , 5 given in the Table II are thus multiplied
by -1 to get the corresponding 4⇥ 5 (case 1) and 5⇥ 5 (case
2) new score matrices Spref

case1 and Spref
case2 in the Table V.

The BBA construction step of all BF-TOPSIS methods
described in the subsection IV-A from these two matrices gives
us the following BBA matrices shown in Tables VI (for case
1) and VII (for case 2).

BF-TOPSIS1 results: for each A
i

, the weighted averages
of dE

BI

(m
ij

,mbest
ij

) and dE
BI

(m
ij

,mworst
ij

), j = 1, . . . , 5 are
computed with Eqs. (18) and (19). The results are gathered
for all A

i

, i = 1, . . . , 4 (case 1) and i = 1, . . . , 5 (case
2) in the Table VIII. For each A

i

, applying Eq. (20) gives

10by dividing each Sij value by
P

j Sij .

TABLE V
SCORE MATRICES SPREF

CASE1 (WITHOUT A
5

) AND SPREF
CASE2 (WITH A

5

) TAKING
INTO ACCOUNT THE PREFERENCE DIRECTION FOR EACH CRITERION Cj .

Cj C
1

C
2

C
3

C
4

C
5

wj 0.08 0.04 0.10 0.46 0.32

S
pr

ef
ca

se
2

S
pr

ef
ca

se
1

A
1

0 0 0 0 0
A

2

-300 000 -6 000 5 0.007 0.02
A

3

-300 000 -1 500 5 0.008 0.04
A

4

-600 000 -7 500 7 0.008 0.05
A

5

-1,000,000 0 7 0.008 0.1

TABLE VI
BBA MATRIX IN CASE 1 (WITHOUT A

5

).

C
1

C
2

C
3

C
4

C
5

m(A
1

) 1.000 1.000 0.000 0.000 0.000
m(A

2

[A
3

[A
4

) 0.000 0.000 1.000 1.000 1.000
m(⇥) 0.000 0.000 0.000 0.000 0.000
m(A

2

) 0.250 0.100 0.454 0.778 0.222
m(A

1

[A
3

[A
4

) 0.250 0.700 0.118 0.087 0.455
m(⇥) 0.500 0.200 0.428 0.135 0.323
m(A

3

) 0.250 0.700 0.454 1.000 0.667
m(A

1

[A
2

[A
4

) 0.250 0.100 0.118 0.000 0.091
m(⇥) 0.500 0.200 0.428 0.000 0.242
m(A

4

) 0.000 0.000 1.000 1.000 1.000
m(A

1

[A
2

[A
3

) 1.000 1.000 0.000 0.000 0.000
m(⇥) 0.000 0.000 0.000 0.000 0.000

TABLE VII
BBA MATRIX IN CASE 2 (WITH A

5

).

C
1

C
2

C
3

C
4

C
5

m(A
1

) 1.000 1.000 0.000 0.000 0.000
m(A

2

[A
3

[A
4

[A
5

) 0.000 0.000 1.000 1.000 1.000
m(⇥) 0.000 0.000 0.000 0.000 0.000
m(A

2

) 0.455 0.100 0.454 0.778 0.069
m(A

1

[A
3

[A
4

[A
5

) 0.107 0.733 0.167 0.097 0.619
m(⇥) 0.438 0.167 0.379 0.125 0.312
m(A

3

) 0.455 0.700 0.454 1.000 0.207
m(A

1

[A
2

[A
4

[A
5

) 0.107 0.733 0.167 0.000 0.333
m(⇥) 0.438 0.167 0.379 0.000 0.460
m(A

4

) 0.182 0.000 1.000 1.000 0.310
m(A

1

[A
2

[A
3

[A
5

) 0.428 1.000 0.000 0.000 0.238
m(⇥) 0.390 0.000 0.000 0.000 0.452
m(A

5

) 0.000 1.000 1.000 1.000 1.000
m(A

1

[A
2

[A
3

[A
5

) 1.000 0.000 0.000 0.000 0.000
m(⇥) 0.000 0.000 0.000 0.000 0.000

the relative closeness C(A
i

, Abest
). The ranking vectors are

deduced and shown in the comparative Tables XIII and XIV
of the subsection V-E.

TABLE VIII
BF-TOPSIS1: RESULTS OF WEIGHTED AVERAGE DISTANCE IN CASE 1

(WITHOUT A
5

) AND CASE 2 (WITH A
5

).

Ai
case 1 case 2

dbest(Ai) dworst(Ai) dbest(Ai) dworst(Ai)
A

1

0.762 0.104 0.741 0.101
A

2

0.403 0.477 0.435 0.417
A

3

0.183 0.693 0.293 0.559
A

4

0.104 0.762 0.264 0.585
A

5

– – 0.067 0.774

Initial score matrix for this problem
Moreover, public authorities often wish to compare those

solutions with another one:
• A

5

: individually protecting each element at risk.
Therefore, to help the DM, we assume that the expert must

compare the first four alternatives (let us call it case 1 with
M=4) and then integrate the A

5

in a global comparison (let
us call it case 2 with M=5) (see Fig. 2).

Fig. 2. Potential alternatives of the real DMP.

The DM considers five criteria (N = 5) and wants to
minimize C

1

, C
2

and to maximize C
3

, C
4

and C
5

with:
• C

1

: the investment cost in e;
• C

2

: the annual maintenance cost in e (S
i2

= 
i

);
• C

3

: the annual risk reduction in m2 of houses damaged;
• C

4

: the annual risk reduction in human casualties;
• C

5

: the annual risk reduction in number of sites danger-
ous to environment in area at risk.

To compare criteria in pairs, the DM gives the preference
matrix P

C

according to the AHP method [6]. Implementing
the AHP step 2 gives the importance weighting vector w =

[0.08, 0.04, 0.10, 0.46, 0.32]T recalled in the Table II. It corre-
sponds to the importance ranking: C

4

� C
5

� C
3

� C
1

� C
2

.

P
C

=

2

66664

C
1

C
2

C
3

C
4

C
5

C
1

1 4 0.5 1/7 0.25
C

2

0.25 1 0.25 1/9 1/6
C

3

2 4 1 0.2 1/7
C

4

7 9 5 1 2

C
5

4 6 7 0.5 1

3

77775
(23)

For each A
i

and C
j

, the DM assesses the S
ij

value to
establish the score matrices Scase1 and Scase2 shown in Table
II.

In the next subsections, we provide intermediary results for
each method to help the reader to check by himself the validity
of our final ranking vectors gathered in comparative Tables
XIII (for case 1) and XIV (for case 2) in the subsection V-E.

B. Implementation of the CBA method

The CBA steps are applied to the two 4 ⇥ 5 and 5 ⇥ 5

score matrices Scase1 and Scase2 given in the Table II. For each
alternative A

i

and each criterion C
j

, the score S
ij

must be

TABLE II
SCORE MATRICES SCASE1 (WITHOUT A

5

) AND SCASE2 (WITH A
5

).

Cj C
1

C
2

C
3

C
4

C
5

wj 0.08 0.04 0.10 0.46 0.32

S
ca

se
2

S
ca

se
1

A
1

0 0 0 0 0
A

2

300 000 6 000 5 0.007 0.02
A

3

300 000 1 500 5 0.008 0.04
A

4

600 000 7 500 7 0.008 0.05
A

5

1 000 000 0 7 0.008 0.1

transformed into monetary value Se
ij

. For C
3

, we assume an
average price of 2 300 e/m2 for houses built in any of the
eleven French mountainous departments9: Se

i3

=2 300·S
i3

(S
i3

given in the Table II). As transforming C
5

in monetary value
is a difficult process, it is not generally done in practice: we
assume Se

i5

= 0. Practical monetary valuation of human life
is discussed and we extract two methods:

• Method 1: with no human life monetary valuation for
C

4

, one assumes Se
i4

= 0;
• Method 2: considering 2.5 million e as the average price

of one human life [23], one assumes Se
i4

=2 500 000·S
i4

(S
i4

given in the Table II).
To apply the CBA, the two 4⇥ 5 and 5⇥ 5 score matrices

Scase1 and Scase2 are transformed into two 4 ⇥ 3 and 5 ⇥ 3

score matrices Secase1 and Secase2 in Table III. For each A
i

, the
C

3

score of global risk reduction in e is Se
i3

+ Se
i4

+ Se
i5

.

TABLE III
TRANSFORMED IN e SCORE MATRICES SeCASE1 AND SeCASE2 .

C
1

C
2

C
3

Method 1 Method 2

S
e ca

se
2

S
e ca

se
1

A
1

0 0 0 0
A

2

300 000 6 000 11 500 29 000
A

3

300 000 1 500 11 500 31 500
A

4

600 000 7 500 16 100 36 100
A

5

1 000 000 0 16 100 36 100

As recommended in [24], we assume the temporal horizon
n = 50 years and a fixed rate q

p

= 3%, 8p 2 [1, n]. For each
A

i

, applying the formulae (3) and (4) gives the CBA results
in the Table IV.

TABLE IV
NPV AND r RESULTS BY CBA.

Method 1 Method 2
Without monetary With monetary

human life valuation human life valuation
NPVi ri NPVi ri

A
1

0 – 0 –
A

2

-158 487 0.65 291 784 1.64
A

3

-42 702 0.87 471 894 2.39
A

4

-378 724 0.52 135 871 1.17
A

5

-585 751 0.41 -71 156 0.93

NPV and r give the same preference ranking. We use NPV
results to establish the decision ranking vector (see Tables XIII
and XIV in the subsection V-E).

9www.meilleursagents.com/prix-immobilier

Transformation of score matrix (multiplication by -1 of C1 and C2)

Weighting factors of criteria are obtained by AHP (pairwise comparison matrix)

Case 1 (4 actions) and Case 2 (5 actions)

Hence the 
greater is better

All criteria are 
transformed into 
monetary value 
(in euros)
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BF-TOPSIS2 results: for each C
j

and each A
i

, the relative
closeness C

j

(A
i

, Abest
) is computed applying the formula (21).

Results are gathered for all C
j

, j = 1, . . . , 5 and all A
i

, i =
1, . . . , 4 (case 1, Table IX), and all A

i

, i = 1, . . . , 5 (case
2, Table X). For each A

i

, the formula (22) gives the relative
closeness C(A

i

, Abest
). The corresponding ranking vectors are

given in the Tables XIII and XIV of the subsection V-E.

TABLE IX
BF-TOPSIS2: INTERMEDIARY Cj(Ai, ABEST) IN CASE 1 (WITHOUT A

5

).

C
1

C
2

C
3

C
4

C
5

A
1

0.080 0.120 0.120 0.120 0.120
A

2

0.028 0.034 0.086 0.543 0.544
A

3

0.028 0.057 0.109 0.569 0.794
A

4

0 0 0.100 0.560 0.880

TABLE X
BF-TOPSIS2: INTERMEDIARY Cj(Ai, ABEST) IN CASE 2 (WITH A

5

).

C
1

C
2

C
3

C
4

C
5

A
1

0.080 0.120 0.120 0.120 0.120
A

2

0.040 0.044 0.093 0.455 0.493
A

3

0.040 0.068 0.117 0.577 0.660
A

4

0.018 0.018 0.118 0.578 0.692
A

5

0 0.040 0.140 0.600 0.920

BF-TOPSIS3 results: for each A
i

and each case, the combina-
tion step through the PCR6 rule (with importance discounting)
of the five BBAs m

ij

(·), j = 1, . . . , 5 gives the results of the
Table XI. dbest

(A
i

) and dworst
(A

i

) are directly computed giving
the Table XII. Applying Eq. (20) gives the relative closeness
C(A

i

, Abest
). The corresponding ranking vectors are given in

the comparative Tables XIII and XIV of the subsection V-E.

TABLE XI
BF-TOPSIS3: INTERMEDIATE RESULTS AFTER PCR6 COMBINATION

WITHOUT A
5

(CASE 1) AND WITH A
5

(CASE 2).

case 1 case 2
mPCR6

i mPCR6
i,norm mPCR6

i mPCR6
i,norm

m(;) 0.904 0.000 0.904 0.000
m(A

1

) 0.003 0.030 0.003 0.030
m(A

2

[A
3

[A
4

[A
5

) 0.093 0.970 0.093 0.970
m(⇥) 0.000 0.000 0.000 0.000
m(;) 0.945 0.000 0.942 0.000
m(A

2

) 0.041 0.743 0.039 0.674
m(A

1

[A
3

[A
4

[A
5

) 0.008 0.145 0.014 0.234
m(⇥) 0.006 0.112 0.005 0.092
m(;) 0.920 0.000 0.924 0.000
m(A

3

) 0.076 0.954 0.064 0.847
m(A

1

[A
2

[A
4

[A
5

) 0.001 0.006 0.004 0.050
m(⇥) 0.003 0.040 0.008 0.103
m(;) 0.904 0.000 0.922 0.000
m(A

4

) 0.093 0.970 0.068 0.873
m(A

1

[A
2

[A
3

[A
5

) 0.003 0.030 0.003 0.038
m(⇥) 0.030 0.000 0.007 0.089
m(;) – – 0.904 0.000
m(A

5

) – – 0.094 0.977
m(A

1

[A
2

[A
3

[A
5

) – – 0.002 0.023
m(⇥) – – 0.000 0.000

TABLE XII
BF-TOPSIS3 & 4: RESULTS OF WEIGHTED AVERAGE DISTANCE IN CASE 1

(WITHOUT A
5

) AND CASE 2 (WITH A
5

).

Ai
case 1 case 2

dbest(Ai) dworst(Ai) dbest(Ai) dworst(Ai)
A

1

0.840 0.026 0.817 0.025
A

2

0.208 0.661 0.268 0.574
A

3

0.036 0.832 0.123 0.720
A

4

0.026 0.840 0.102 0.742
A

5

– – 0.020 0.822

BF-TOPSIS4 results: As expected considering the compara-
tive analysis made in [12], it provides the same results as with
BF-TOPSIS3.

E. Comparing results of methods for the same real DMP
The comparative Tables XIII (case 1 - without A

5

) and XIV
(case 2 - including A

5

) gather all the ranking results.

TABLE XIII
CBA, AHP & BF-TOPSIS RESULTS IN CASE 1 (WITHOUT A

5

).

Methods Ranking vectors Preference orders

A
H

P 1 [0.11, 0.18, 0.32, 0.40] A
4

� A
3

� A
2

� A
1

2 [0.12, 0.31, 0.40, 0.41] A
4

� A
3

� A
2

� A
1

B
F-

TO
PS

IS 1 [0.12, 0.54, 0.79, 0.88] A
4

� A
3

� A
2

� A
1

2 [0.12, 0.54, 0.79, 0.88] A
4

� A
3

� A
2

� A
1

3 [0.03, 0.76, 0.96, 0.97] A
4

� A
3

� A
2

� A
1

4 [0.03, 0.76, 0.96, 0.97] A
4

� A
3

� A
2

� A
1

TABLE XIV
CBA, AHP & BF-TOPSIS RESULTS IN CASE 2 (WITH A

5

).

Methods Ranking vectors Preference orders

C
BA

1 [0, -1.6, -0.4, -3.8, -5.9].105 A
1

� A
3

� A
2

� A
4

� A
5

2 [0, 2.9, 4.7, 1.4, -0.7].105 A
3

� A
2

� A
4

� A
1

� A
5

A
H

P 1 [0.07, 0.12, 0.20, 0.24, 0.35] A
5

� A
4

� A
3

� A
2

� A
1

2 [0.12, 0.25, 0.31, 0.30, 0.39] A
5

� A
3

� A
4

� A
2

� A
1

B
F-

TO
PS

IS 1 [0.12, 0.49, 0.66, 0.69, 0.92] A
5

� A
4

� A
3

� A
2

� A
1

2 [0.12, 0.49, 0.66, 0.69, 0.92] A
5

� A
4

� A
3

� A
2

� A
1

3 [0.03, 0.68, 0.85, 0.88, 0.97] A
5

� A
4

� A
3

� A
2

� A
1

4 [0.03, 0.68, 0.85, 0.88, 0.97] A
5

� A
4

� A
3

� A
2

� A
1

Even if there is no rank reversal problem while comparing
CBA results in cases 1 and 2, the CBA method is very sensitive
to monetary valuation with complete changes of preference
order if one monetary values the human life (Method 2) or
not (Method 1).

Taking into account the environmental criterion C
5

and the
importance of each criterion C

j

, the AHP changes the decision
comparing to the CBA results. With the latter, the best choice
is A

1

(CBA method 1) or A
3

(CBA method 2) whereas it is
A

5

or A
4

including (case 2) or not (case 1) A
5

into the AHP
process. For this example, the AHP method 1 (normalization
using AHP preference matrices) is more robust to the rank
reversal problem than using the AHP normalization method
2. For the latter, the preference order is A

4

� A
3

for case 1
(without A

5

) switching in A
3

� A
4

for case 2 (including A
5

).

Solution in case of 4 possible actions

Solution in case of 5 possible actions

BF-TOPSIS2 results: for each C
j

and each A
i

, the relative
closeness C

j

(A
i

, Abest
) is computed applying the formula (21).

Results are gathered for all C
j

, j = 1, . . . , 5 and all A
i

, i =
1, . . . , 4 (case 1, Table IX), and all A

i

, i = 1, . . . , 5 (case
2, Table X). For each A

i

, the formula (22) gives the relative
closeness C(A

i

, Abest
). The corresponding ranking vectors are

given in the Tables XIII and XIV of the subsection V-E.

TABLE IX
BF-TOPSIS2: INTERMEDIARY Cj(Ai, ABEST) IN CASE 1 (WITHOUT A

5

).

C
1

C
2

C
3

C
4

C
5

A
1

0.080 0.120 0.120 0.120 0.120
A

2

0.028 0.034 0.086 0.543 0.544
A

3

0.028 0.057 0.109 0.569 0.794
A

4

0 0 0.100 0.560 0.880

TABLE X
BF-TOPSIS2: INTERMEDIARY Cj(Ai, ABEST) IN CASE 2 (WITH A

5

).

C
1

C
2

C
3

C
4

C
5

A
1

0.080 0.120 0.120 0.120 0.120
A

2

0.040 0.044 0.093 0.455 0.493
A

3

0.040 0.068 0.117 0.577 0.660
A

4

0.018 0.018 0.118 0.578 0.692
A

5

0 0.040 0.140 0.600 0.920

BF-TOPSIS3 results: for each A
i

and each case, the combina-
tion step through the PCR6 rule (with importance discounting)
of the five BBAs m

ij

(·), j = 1, . . . , 5 gives the results of the
Table XI. dbest

(A
i

) and dworst
(A

i

) are directly computed giving
the Table XII. Applying Eq. (20) gives the relative closeness
C(A

i

, Abest
). The corresponding ranking vectors are given in

the comparative Tables XIII and XIV of the subsection V-E.

TABLE XI
BF-TOPSIS3: INTERMEDIATE RESULTS AFTER PCR6 COMBINATION

WITHOUT A
5

(CASE 1) AND WITH A
5

(CASE 2).

case 1 case 2
mPCR6

i mPCR6
i,norm mPCR6

i mPCR6
i,norm

m(;) 0.904 0.000 0.904 0.000
m(A

1

) 0.003 0.030 0.003 0.030
m(A

2

[A
3

[A
4

[A
5

) 0.093 0.970 0.093 0.970
m(⇥) 0.000 0.000 0.000 0.000
m(;) 0.945 0.000 0.942 0.000
m(A

2

) 0.041 0.743 0.039 0.674
m(A

1

[A
3

[A
4

[A
5

) 0.008 0.145 0.014 0.234
m(⇥) 0.006 0.112 0.005 0.092
m(;) 0.920 0.000 0.924 0.000
m(A

3

) 0.076 0.954 0.064 0.847
m(A

1

[A
2

[A
4

[A
5

) 0.001 0.006 0.004 0.050
m(⇥) 0.003 0.040 0.008 0.103
m(;) 0.904 0.000 0.922 0.000
m(A

4

) 0.093 0.970 0.068 0.873
m(A

1

[A
2

[A
3

[A
5

) 0.003 0.030 0.003 0.038
m(⇥) 0.030 0.000 0.007 0.089
m(;) – – 0.904 0.000
m(A

5

) – – 0.094 0.977
m(A

1

[A
2

[A
3

[A
5

) – – 0.002 0.023
m(⇥) – – 0.000 0.000

TABLE XII
BF-TOPSIS3 & 4: RESULTS OF WEIGHTED AVERAGE DISTANCE IN CASE 1

(WITHOUT A
5

) AND CASE 2 (WITH A
5

).

Ai
case 1 case 2

dbest(Ai) dworst(Ai) dbest(Ai) dworst(Ai)
A

1

0.840 0.026 0.817 0.025
A

2

0.208 0.661 0.268 0.574
A

3

0.036 0.832 0.123 0.720
A

4

0.026 0.840 0.102 0.742
A

5

– – 0.020 0.822

BF-TOPSIS4 results: As expected considering the compara-
tive analysis made in [12], it provides the same results as with
BF-TOPSIS3.

E. Comparing results of methods for the same real DMP
The comparative Tables XIII (case 1 - without A

5

) and XIV
(case 2 - including A

5

) gather all the ranking results.

TABLE XIII
CBA, AHP & BF-TOPSIS RESULTS IN CASE 1 (WITHOUT A

5

).

Methods Ranking vectors Preference orders
A

H
P 1 [0.11, 0.18, 0.32, 0.40] A

4

� A
3

� A
2

� A
1

2 [0.12, 0.31, 0.40, 0.41] A
4

� A
3

� A
2

� A
1

B
F-

TO
PS

IS 1 [0.12, 0.54, 0.79, 0.88] A
4

� A
3

� A
2

� A
1

2 [0.12, 0.54, 0.79, 0.88] A
4

� A
3

� A
2

� A
1

3 [0.03, 0.76, 0.96, 0.97] A
4

� A
3

� A
2

� A
1

4 [0.03, 0.76, 0.96, 0.97] A
4

� A
3

� A
2

� A
1

TABLE XIV
CBA, AHP & BF-TOPSIS RESULTS IN CASE 2 (WITH A

5

).

A
H

P 1 [0.07, 0.12, 0.20, 0.24, 0.35] A
5

� A
4

� A
3

� A
2

� A
1

2 [0.12, 0.25, 0.31, 0.30, 0.39] A
5

� A
3

� A
4

� A
2

� A
1

B
F-

TO
PS

IS 1 [0.12, 0.49, 0.66, 0.69, 0.92] A
5

� A
4

� A
3

� A
2

� A
1

2 [0.12, 0.49, 0.66, 0.69, 0.92] A
5

� A
4

� A
3

� A
2

� A
1

3 [0.03, 0.68, 0.85, 0.88, 0.97] A
5

� A
4

� A
3

� A
2

� A
1

4 [0.03, 0.68, 0.85, 0.88, 0.97] A
5

� A
4

� A
3

� A
2

� A
1

Even if there is no rank reversal problem while comparing
CBA results in cases 1 and 2, the CBA method is very sensitive
to monetary valuation with complete changes of preference
order if one monetary values the human life (Method 2) or
not (Method 1).

Taking into account the environmental criterion C
5

and the
importance of each criterion C

j

, the AHP changes the decision
comparing to the CBA results. With the latter, the best choice
is A

1

(CBA method 1) or A
3

(CBA method 2) whereas it is
A

5

or A
4

including (case 2) or not (case 1) A
5

into the AHP
process. For this example, the AHP method 1 (normalization
using AHP preference matrices) is more robust to the rank
reversal problem than using the AHP normalization method
2. For the latter, the preference order is A

4

� A
3

for case 1
(without A

5

) switching in A
3

� A
4

for case 2 (including A
5

).
As the AHP, the BF-TOPSIS methods help to take into

account all kind of quantitative criteria without monetary

rank reversal 
phenomena

more robust to 
rank reversal
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Part 3 - BF-TOPSIS Conclusion

BF-TOPSIS improves TOPSIS thanks to Belief Functions [Dezert Han Yin 2016]

Advantages of BF-TOPSIS methods

No need for ad-hoc normalization of score matrix

More robustness to rank reversal phenomena (although not exempt)

Complexity of BF-TOPSIS methods

Solid justification for BBA construction from score matrix

BF-TOPSIS1: smallest complexity

BF-TOPSIS2: medium complexity

BF-TOPSIS3: high complexity (because of PCR6 rule)

BF-TOPSIS4: highest complexity (because of ZPCR6 rule)

BF-TOPSIS can work also with imprecise scores - see [Dezert Han Tacnet 2017]
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this talk

A global framework to decide under imperfect information contexts mixing uncertainty theories 
and multicriteria decision-making methods

http://www.onera.fr/staff/jean-dezert?page=2
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