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= We try to get protected against them by taking good decisions and actions.
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Many decisions have to be taken to assess and manage risks

Decisions for nonstructural Decisions for choice of Decisions for (railroad)
mitigation measures protection works design and infrastructure management

maintenance strategies
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What are the hazard, risk levels? W TESEN

_ - Checkdams
Land-use planning: where should e

urbanisation be prohibited, : R Should we close, re-open,
= Which pro_tectlon is needed? monitor this road?
regulated or fully allowed” Is it effective?
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set of the most satisfactory
alternatives

remaining alternatives

To choose
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Decision problem
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A : set of possible alternatives

satisfactory
o alternatives
existing categories

medium
satisfactory
alternatives

To sort
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Objectives of the approach

Risk management is based on complex, multi-actors
decision processes

"o

The goal is to design decision-aiding methods in a context
of heterogeneous and imperfect information provided by
more or less reliable sources...

2O

We use belief function theory to improve multicriteria
decision-making methods

and apply them to real life problems.... [Carladous PhD. Thesis 2017]
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Part 1 - Belief Functions

... or how to go beyond probabilities

Belief = State of mind in which one thinks something to be true

Paradigm shift

Beliefs often are related with singular event or evidence, and are not necessarily related with
statistical data and generic knowledge.
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Part 1 - Belief functions [Dempster 1967,Shafer 195

o
7 ,///'.';
G

Frame of discernment (FoD) © = {6;,i=1,...,n} Power-set 2° = {X|X c 6}

Impossibility partial ignorances full ignorance
Example 2° = {0,61,02,03,01 U 02,01 U 03,0, U 03,01 UBbU 63}

Basic belief assignment (BBA) m(:):2° —[0,1] s.t. m(@) =0 and > mA) =1
Vacuous BBA: m,(®)=1 and m,(A)=0, VA #0O
Bayesian BBA : if focal elements of m(.) are singletons

Degree of

Belief in A: Bel(A)= ) m(B)=PUO)—PUA)=1-PLA)  supportofA
Be2®|BCA
Degree of non

Plausibility of A: PL(A) = Z m(B) = Bel(®) — Bel(A) = 1 — Bel(A) contradiction of A
Be29 |BNA# Y

Interpretation Lower and upper bounds of
P O < Bel(A) < P(A) < PL(A) < 1 (Sln/)j.)unknuown protl)Ja P(A)

Uncertainty of A = PI(A)-Bel(A)
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Part 1 - Discounting a Source of Evidence (

Reliability discounting [Shafer 1976]

m*(A) = a-m(A) VA #0O
m*(0) = x-m(O) + (1 — «)

x = 0 means "the SoE is 100% unreliable"
x = 1 means "the SoE is 100% reliable"

Importance discounting [Smarandache-Dezert-Tacnet 2010]

mP () = B - m() + (1 - B)

{mﬁw = B.-m(A) YVA#Q

B = 0 means "the SoE is not important at all"
B = 1 means "the SoE is 100% important"
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Part 1 - Belief functions - Dempster-Shafer

7

Dempster-Shafer (DS) rule of combination [Dempster 1967,Shafer 1976]

If we consider two independent SOE with respect to same FoD, then

Conjunctive rule = m$X™(X)
le,xzez@ X1 X=X T (X1)ma(Xs)
1— ZXl,X2€2@|X1mX2=@' my (Xq)ma(X2)

Degree of conflict = m(@)

mp” (X) = [m @ me](X) =

DS rule extends to the fusion of n>2 sources

DS rule is commutative and associative, and vacuous BBA has no impact

Shafer Conditioning [Shafer 1976] mz(Z) =1  (one knows Z for sure)

Bel(X|Z) = BelXu2)—Bel(2)

A Only apparent compatibility with Bayes rule!
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Advantage: Associativity

Drawbacks of DS rule

Not defined when conflict is total, and numerically not robust to input changes
/A Counter intuitive results when conflict is high [Zadeh 1979)]

A Counter intuitive results when conflict is low [Dezert-Wang-Tchamova 2012]

0 = {A, B, C}, with m; # m, # m,

Focal elem. \ bba’s | mi(.) ma(.)
A a 0
AUB l1—a b1
C 0 1—b1 — b2
AUuBUC 0 b2

mlz(@) = ml(A)mz(C) + ml(A U B)mg(C)
=a(l—bl—bg)+(1—a)(1—b1—b2) =1—b1—b2

mp’(-) = [m1 @ ma](-) = my (")

Informative source m, does not impact DS result !

ﬁ The bounds of conditional belief interval [Bel(A|B), PL(A|B)] can be incompatible with
the lower and upper bounds of P(A|B) !!!

see Ellsberg’s example in [Dezert-Tchamova-Han 2018]
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Part 1 - Belief functions - PCR fusion rules

Principle of Proportional Conflict Redistribution (PCR) rules [DSmT Book Vol2]

Redistribute each partial conflict to elements involved in it proportionally to their mass
Principle of Proportional Conflict Redistribution (PCR) rules [DSmT Book Vol2]

PCRS rule presented by Smarandache and Dezert
PCRG6 rule presented by Martin and Osswald

Toolboxes and code http://www.bfasociety.org
[Smarandache-Dezert-Tacnet 2010]

PCR5 and PCR6 formulas for 2 sources

my (X)2m2 (Y) Mo (X)2m1 (Y)

mPCR5/6(X) mfzon](x)_l_ Z [

00 + M) T ma(X) + m(Y)]

11


http://www.bfasociety.org

Part 1 - Example of PCR fusion

Example

my () e M2(AN B =0) = my(A)ma(B) + m1(B)ma(4)
©=1{ABJ L0 T022%03 03 = WIS -+ 0106 = 0.24

ma(.)
| 771.-12(.) | 044 027 0.05 |

A

(2, =06-0.2=0.12]
21/0.6 = 1/0.3 = (21 + 11)/(0.6 +0.3) = DHBY0.9 = 0.2 = {yl =03 02006

T, =0.2-0.12 = 0.024“1‘
y2 = 0.3-0.12 = 0.036‘

PCR5/6 result DS result

The mass of I
ignorance is m’y /% (A) = 0.44]+[0.12]+ [0.024] = 0.584 mP8(A) ~ 0.579
reduced with m{y™/%(B) 5 0.27}+[0.06/+/0.036 = 0.366 mP% (B) ~ 0.355
PCR rules my/®(Au B) =[0.05+ 0 = 0.05 mP%$ (AU B) ~ 0.066
Advantages of PCR rules Drawbacks

It does not increase uncertainty more than justified Complexity

It works with any level of conflict Non associativity

It is numerically robust to input changes
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Simplest method

& Take the mass of each element of ©® and P.(A) = m(A)
normalize, but it does not take into account m > gee M(B)
partial ignorances
Cobb-Shenoy method [Cobb Shenoy 2006]
& Take the plausibility of each element of © Ppi(A) = PL(A)
and normalize, but it is inconsistent with 2eo PUB)
belief interval
Pignistic transform [Smets 1990] BetP(A) = Z |X|2|A|m(x)
Redistribute the mass of partial ignorances Xe2©
equally to singletons included in them higher entropy obtained with BetP(-)
DSmP transform [Dezert Smarandache 2008]
. - > m(Z)+elAnY]|
Redistribute mass of partial ignorances ZeAnY
proportionally to masses of singletons DSmP.(A) = Z — m(Y)
included in them. € > 0 is a small Ye2® ZEC:Y m(Z) + elY|
parameter to prevent division by zero in |Z]=1

some cases. smaller entropy obtained with DSmP(-)




Part 1 - Distances between BBAs

Tessem distance [Tessem 1993] & this is not a strict metric!

dr(my,mg) = glgécﬂBetPl(A) — BetP5(A)|}

Jousselme distance [Jousselme et al. 2001]

dj(my, my) = \/0.5 - (my — mg)TJac (m; — my)
Jac(A,B) = |A n B|/|A u B|

Euclidean belief interval distance [Han Dezert Yang 2014]

dp1(my, M) é\/zgll . Y. dI(BI1(A), BIx(A))’

Aeg20©

3

a; + by a2—|—b2]2+1[b1—a1_b2—a2

dI([al,bl].[az,b2]>=\/[ to s d
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Maximum of plausibility strategy (optimistic)

m(-) = Pl(-) and 6 =60 = arg max PI(6;)
i€

Compromise strategy with proba transforms

m(-) — P(-) and 6 =60 = arg max P(6;)

Decision using min distance strategy [Han Dezert Yang 2014]

X = {admissibleX, X € 29} is the set of possible admissible decisions

N\

O0=X= arg )rplgrg dBI(m, mx)
€

o dgr(m, mg) ) Higher is the quality index, more
q(X) =1 €01 confident we are in the decision

A_ ZXEDC dBI(m' mX)

\ }\
N\
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Total Probability Theorem For any event B and any partition {Al,..., Ax} of ©

(TPT) PB)=P(Bn A1)+ P(BnAz)+...+ P(Bn Ay)
Total Belief and Total Plausibility Theorems [Dezert-Tchamova-Han 2018]
(TBT) Bel(B) = > m(X) = > Bel(A;nB)+ U(A* N B)
XeF g (m)|X<B i=1,..k
where F s (m) = Fo(m) — Fa, (m) — ... —<— set of focal elerments of
U(A* N B) = > m(X)

XEEFA* (m) |X€3"~B (m)

Fagin-Halpern conditioning from TBT [Dezert-Tchamova-Han 2018]

Bel( AlB) — Bel(AN B) Shafer’s conditioning formulas
EH el(AlB) = Bel(AN B) + PI(AN B) are inconsistent with TBT and
(FH) PI(AB) = PI(AN B) & conditional proba bounds.

PI(ANB) + Bel(AN B) (see Ellsberg’s urn example)
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Generalized Bayes’ Theorem (GBT): For any partition {A;,..., A} of a FoD ©, any

belief function Bel(-) : 2° — [0, 1], and any subset B of ® with Bel(B) > 0, then one
hasforie {1,...,k}

Bel(B|Ai)q(A4, B)

Bel(Ai|B) = 21;:1 Bel(B|Ai)q(Ai,B) + U((Ai M B)*)

where

U((A; nB)®) = PL(A; n B) — Bel(A; " B) = ZXeff"(;\mB)*(m m(X)
q(Ai, B) = Bel(A;) + U((B A A))™) — U(B* 1 Ay)

Lemma: GBT reduces to Bayes Theorem if Bel(-) is a Bayesian belief function

Proofs : [Dezert-Tchamova-Han 2018]

NN
N\
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Part 2 - Soft ELECTRE TRI i Al

_'A : set of possible allemati\res_' )

}
. . . . o4
for sorting alternatives into categories eising calogoris
based on multi-criteria - -

ELECTRE (1968) = ELECTRE TRI (1992) = Soft ELECTRE TRI [Dezert-Tacnet 2012]

ELECTRE = ELimination Et Choix Traduisant la REalité [Roy 1968]
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For each criteria, we preset categories by some profile bounds

Very bad Profile bh Bad bh+1Good bh+2 Very good

Criterion
1 Category (',
Cl — e T @ @ g1(.)
gl(bh) L) ; .
Cj—1 — gj—l(')
gi—1(bp)
Cj  — g5(.)
95 (bn)
Cj+1— gj+1 (>
9j+1(bh
Cji42 — gj+2(°)
gj+2<bh)
Crg — e S— o @ S g, ()

Which category does a; belong to?  Profile of alternative a;

19 J. Dezert & J.-M. Tacnet - Workshop Grenoble - June 3-6, 2




. [Dezert Tacnet 2012

c = a; 1s concordant with assertion

O = {c,c}

¢ = a; 1s discordant with assertion

SET Step 1: Partial concordance and discordance indices are replaced by local BBAs

= 4 A ;
i bn) = m? 0,1
We use sigmoidal models cj(ai, bn) A mzjh(c_) € [0, 1]
+ BBA PCR6 fusion § dj(as, br) = my,(c) € 10,1
\w;(ai, bp) =ml,(cue) € [0,1]

SET Step 2: Global belief of assertion and global indices

PCRG6 fusion + imp. Discounting c(ai, bn) = main(c)o(aq, by)
g A — S, LD = min(€)B(as, br)
mZh( ) Mip @ - O Mip, w(ai,bn) = 1 —c(ai, by) — d(ai, by)
SET Step 3: Probabilized outranking based on imprecise probability areas

SET Step 4: Soft (probabilistic) assignment of each alternative in a category

20 J. Dezert & J.-M. Tacnet - Workshop Grenoble - June 3 é*t?;“\’\' ‘ \




focal element | fml(()) m?)() er (ai; bh) = mgh(c) S [07 1]
C Schte A =
3 i g el =P d;(a;,bp) j m‘gh(c) € [0,1]
cue — fsete(9) — [=sa,t2(9) & (ai’ bh) = mgh(c U E) e [O, ]_]

fsilg) £ 1/(A+e*l70)

cj(ai,bn)

-------------




SET Step2: Computation of global concordances, discordances and uncertainties

For all alternatives a,, for each profile by,

.............

c(ai,br) = min(c)a(ai, by)
d(ai, br) = min(€)B(ai, bn)
— d(ai, bh)

u(a;,by) 2 1 — c(ai, by)

I ET Global indexes are replaced by fusion results

ET concordance and partial indexes are replaced
by bba’s @ £ {¢ ¢}

| Local concordace |

~"""I Local discordance |
| Uncertainty |

N~
. {m,-h(.) =

Fusion process

smd, @l mygl()

M (=ML emi@...a 'm:_f](.)

1

1—c;(ai;bp)

where

a(a;, by) = 1—d,(ai,bp)
[iev, T=mn

1
B(ai,bn) = {
HjEVB 1—m;p (C)

AN Ny )
with {VA—{Jeu@mum>>mm@»

if Vo=0
it Vo #£0
if Vg=0
if Vg #£0

Vg = {7 € J|cj(bn,a;) > min(e)}
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Soft ELECTRE TRI - Step 3 : Probabilized outra

Bel(X) PI(X)
— —+— P(X)
0 0.2 0.8 1
Bel(Y) PIUY)
— | P(Y)
0 0.1 0.5 1
P(Y)
! N
g
N
//Q
Q@ 3
A(Y) = 0.045 A(X) = 0.195
P(Y) > P(X) P(X) > P(Y)
PIY) %
T A= AX)+A(Y) =0.24
UY) =[7+£
J Bel(y) U |01
‘0.2 08 p(x) <
0 1
Bel(X) PI(X)
U)o

AR
AN

AT : —~

N 0
A

PI(X) =1—d(a;,bn) = c(ai,br) + u(aq, bp)
1 —d(bn,a;) = c(bn,ai) + u(bp, a;)

A(X )
Pxsy = A(Q%/j(y) — 0195 _ () 8125
Pysx = A(X)(—FX(Y) = Gor = 0.1875

(ai > by, with proba P;;, = Px>y ~ 0.81

23 J. Dezert & J.-M. Tacnet - Workshop Grenoble -
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Soft ELECTRE TRI - Step 4 : Soft assignmel

’;/;’//
SET Step 4. Final assignment of alternative in a category

We consider all possible outranking sequences with their probabilities

Profiles b;, — bo | b1 b2 | b3 | Py = P(Xi0="a; >b") =1
Suppose at SET step 3 | Outranking probas . 0 0 °
one gets for alternative ai 2 1 |07 ]02] 0 |Ps=PXiz="a;>0b3")=0

All possible outranking sequences with their probas are

C1 C2 C3
Profiles b;, — P(Sk(a;)) ) _
Outrank Squences ! ’1 P(S1(a;)) =1x0.7x02x1=0.14
S1(a;) 0.14 P(S2(a;)) =1x0.7x (1 -0.2) x 1 =0.56
52(%) 8-;61 P(Ss(ai)) =1 x (1 —0.7) x (1 —0.2) x 1 = 0.24
gigzg 0.06 P(Si(a;)) =1 x (1 —0.7) x 0.2 x 1 = 0.06

Final soft assignment (and hard assignment is possible from soft assignment)

Categories C;, — C1 Cs C's 0
Assignment probas a; | Inconsistency
P(ai — Ch) 0.24 | 0.56 | 0.14 d; = 0.06ﬁ_ indicator

ONERA
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We consider 7 possible locations a1,..., a7 for a future waste recovery disposal

‘Lh::nmi = torai pice (€ I.Lh M

Community
Community
Criterion 2 = transport costs (€)

& Criterion 5 = cumpﬂlng activities
Alernatives = possible locations (T)
). of an urban waste recovery disposal

Criterion 3 = environment :mu .

Criterion 4 = iq:unhd population '
Community

Community
We consider 5 criteria g1,...g5

Where should we settle the future urban waste recovery disposal?

25 J. Dezert & J.-M. Tacnet - Workshop Grenoble - June 3-6; N
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Soft ELECTRE TRI - Application example (cc

7

7

g1 = Terrain price (\, preference);
the lower is g;, the higher is the preference
go = Transport costs (N, pref.);
the lower is g-, the higher is the preference
g3 = Environment status expressed by population (" pref.);
the higher is g3, the lower are the negative effects
g4 = Impacted population (" pref.);
the higher is g4, the lower are the negative effects
gs = Competition activities (" pref.)
the higher is g5, the lower is the competition with

other activities (tourism, sport, etc)

26 J. Dezert & J.-M. Tacnet - Workshop Grenoble - June 3-62 -
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Soft ELECTRE TRI - Application example (co

/

e Z/:,//"/ Z

Input of the problem

Terrain price Transport cost Env. status  Impacted pop. Competing activ.
Criteria g ; — 91 g2 g3 g4.” 95"
Choices a; | €/m?2) | (t- km /year) {0,1,...,10} [0, 10] {0,1,...,100}
aq —120 —284 5 3.5 18
as —150 —269 2 4.5 24
as —100 —413 4 5.5 17
ay —60 —596 6 8.0 20
ag —30 —1321 8 7.5 16
ag —80 —734 5 4.0 21
a7 —45 —982 7 8.5 13
Profile definition for 3 categories Weights and thresholds used

(bad,medium,good)

Profiles b;, — b1 bo Thresholds — w q P v
Criteria g i 4+ Criteria g j 1 (weight) (indifference) (preference) (veto)
g91:€/m? —100 -50 g1:€/m? 0.25 15 40 100
go:t - km/year —1000 —500 go:t - km/year 0.45 80 350 850
g3:{0,1,...,10} 4 7 g3: {0,1,...,10} 0.10 1 3 5
g4: 10, 10] 4 7 g4: [0, 10] 0.12 0.5 35 45
g5:{0,1,...,100} 15 20 gs: {0,1,...,100} 0.08 1 5 8

27 J. Dezert & J.-M
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Soft ELECTRE TRI - Application example

/

/7
7

%

Final assignment of locations in categories based on classical ELECTRE TRI

Ol 02 03 Cl 02 03
al 0 1 0 ai O 1 0
az | W1 0 10 We use hard assignment with az | O | 0 ol
as 0 1 0 as 0 1 0
as | 0 |1} 0 A=0.75 as | 0] 0 |1
o | ) 8 as | 0 | 1| 0
6 = Inconsistency between ET and SET | 96 0 1 0
ar 0 1 0 _ a 0 1 0

. , = consistency between ET and SET

(a) Pessimistic attitude. (b) Optimistic attitude.

Final assignment of locations in categories based on SOFT ELECTRE TRI

Ch C Cs 0

a1 | 0.0054 | 0.3735 | 0.6123 || 01 = 0.0088
az | 0.0894 | 0.7294 | 0.1614 || 02 = 0.0198
a3z | 0.0001 | 0.9429 | 0.0570 93 =10
a4 0 0.9193 | 0.0807 04 =0
as | 0.7744 | 0.2111 | 0.0031 || J5 = 0.0114
as | 0.0004 | 0.9990 | 0.0006 de¢ =0
ar | 0.0025 | 0.9869 | 0.0106 07 =0
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Soft ELECTRE TRI - Conclusions

Advantages of SET versus ET

SET method uses the same inputs as ET (same criteria and thresholds definitions)

SET method is more effective

it avoids lambda-cutting for hard assignment

it avoids arbitrary choice of decision strategy (optimistic or pessimistic)

it provides soft (probabilized) with inconsistency indicator

29 J. Dezert & J.-M. Tacnet - Workshop Grenoble - June 3-62 9




Part 3 - BF-TOPSIS

. . o RN
for ranking alternatives based on multi-criteria )
e
BF-TOPSIS = Belief-Functions based of Technique for
Order Preference by Similarity to Ideal Solution
ONERA
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Part 3 - MDCM modeling

How to make a choice among several alternatives based on different criteria?

Car example: How to buy a car based on some criteria (i.e. cost, safety, etc.)?

Several methods exist depending on the problem modeling.
Here we classical modeling based on score matrix.

Cl,Wl C)',W]' CN,WN
Al B 511 Slj SlN
S+ A; Siir ... Sii ... Sin (Score matrix)
AM | SMl SM)' SMN _

@ Asetof M > 2 alternatives A = {A4, ..., Am}
@ Asetof N > 1 Criteria C = {Cy,..., Cn}

@ A setof N > 1 criteria importance weights W = {wy, ..., wy}, with w; € [0, 1]
and >, w; =1

NN




Part 3 - MDCM modeling

Some facts to recall

All MCDM methods developed so far suffer of Rank Reversal (RR)

Most methods require score normalization which is a source of RR

No MCDM method makes consensus for users, but some are very popular and simple

AHP (Analytic hierarchy process) [Saaty 1980] is not exempt of problems

TOPSIS (Technique for Order Preference by Similarity to Ideal Solution)
[Hwang Yoon 1981] is very disputed because of choice of normalization

What we present here

A new Belief-Function based TOPSIS (BF-TOPSIS) to solve classical and non-
classical MCDM problems [Dezert Han Yin 2016,Carladous et al. 2016]
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Part 3 - Classical TOPSIS approach

Classical TOPSIS method [Hwang Yoon 1981]
@ Build the normalized score matrix R = [Ry;] = [Sij/4/20; S%]

@ Calculate the weighted normalized decision matrix D = [w; - Ry]

© Determine the positive (best) ideal solution A®¢st by taking the best/max value in
each column of D

© Determine the negative (worst) ideal solution A°'st by taking the worst/min
value in each column of D

© Compute L2-distances d(A;, Ab¢st) of Ay, (i=1,...,M) to A5t and d(A;, Avorst)
of A; to Aerst

©Q Calculate the relative closeness of A; to best ideal solution Ab¢st by

d(Ai, Aworst)
d(Ai,Aworst) + d(Ai,Abest)
When C(A;, APest) =1, its means that A; = A"¢st because d(A;, AP¢st) =0
When C(A;, APest) =0, its means that A; = AW°Tst pecause d(Ai, AV°Tst) =0

@ Rank alternatives A; according to C(A;, A®¢st) in descending order, and select
the highest preferred solution

C(Ai, Abest) A
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Part 3 - BBA construction for BF-TOPSIS

S = [Si;] = M = [(my;(A:), mij (A), mz’j(Ai U A))]

How to get the BBA matrix M from the score matrix

X This measures how much Ai is
Sup;(Aq) = Z |Sij — Sy higher (better) than other

ke{1,..M}|Sy; <Sj; alternatives based on Cj

This measures how much Ai is
Inf;(Ay) = — Z 1Si; — S| lower (worse) than other

ke{l,..M}|Sy;:=S;; alternatives based on Cj
) )

Important inequality  Bel;; (A (Sup] < Imcj‘(Ai)] > Bely; (A)
A S A
One always has 0 < Belij(A;) < (PLi;(A1) = 1 — Bely (A1) < 1

BBA used for M matrix

mij (Al) = Belij (Al) TTLij (;1\1) = Beli]- (Al) =1-— Plij (Al)
mi]- (Al U /Z\l) = Plij (Al) — Belij (Al) =1- mij (Al) — mi)- (;u)
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Advantages of this BBA construction

Q ifall S;; are the same for a given column, we get VA, Sup;(A;) = Infj(A;) =0
and therefore m;;(A; u A;) = 1 which is the vacuous BBA, which makes sense.

@ itis invariant to the bias and scaling effects of score values. Indeed, if S;; are
replaced by S{; = a - Si; + b, with a scale factor a > 0 and a bias b € R, then
my;(-) and my;(-) remain equal.

© if a numerical value S;; is missing or indeterminate, then we use the vacuous
belief assignment my;(A; U A;) = 1.

© We can also discount the BBA m;(-) by a reliability factor using the classical
Shafer’s discounting method if one wants to express some doubts on the reliability
of my; ()

In summary

From [Sij]s we know how to build the matrix M = [(mi]- (Ai), my; (Ai), my; (A1 U Al))]

How to use these BBAs to rank A; to make a decision? — BF-TOPSIS methods
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Part 3 - BF-TOPSIS1 method (simplest met

Steps of BF-TOPSIS1 [Dezert Han Yin 2016]

@ From S, compute BBAs my;(A;) my;(Ai), and my; (A U Ay)

Q Set mP'(A;) = 1, and m!*"!(A;) = 1 and compute distances dp1(m;, mP') and
dBI(ml) my"®) to ideal solutions.

© Compute the weighted average distances of A; to ideal solutions

dbest ( A A best)

dBI (mU , T

||Mz

worst
Wj - dBI(mij , T

)

dworst ( Ai) A

2

—
I
=

© Compute the relative closeness of A; with respect to ideal best solution Abest

dworst ( Ai)

besty o
C(Ai.A es) o dworst(Ai) + dbest(Ai)

© Rank A; by C(A;, A*®) in descending order.
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What protective action to take within a torrential watershed?

4 (or 5) possible actions
e A;: doing nothing
e A,: building check dam series
e Aj: building a sediment trap
e A, mixing A and Aj

e As: adding individual protections

5

[ ] C3
Cy
[ ] 05

| Protective alternatives

Cli
® CQZ

criteria

investment cost

annual maintenance cost

: Annual Risk Reduction (ARR) of houses damaged
: ARR of human casualties

: ARR of # of sites dangerous to environment

|

torrential watershed

e headwéters
Vo

We want to reduce C1
and C2 and increase
C3,C4 and C5

EEEEEEEEEEEEEEEEEEEEE



Weighting factors of criteria are obtained by AHP (

PP

pairwise comparison matrix)

Initial score matrix for this problem Case 1 (4 actions) and Case 2 (5 actions)

Cj Ch C'2 Cs Cy Cs
w; 0.08 0.04 0.10 046 0.32

Aq 0 0 0 0 0
ol T A2 300 000 6 000 5 0.007  0.02
Sl 5| Az | 300000 1500 5  0.008 0.04
w Ay 600 000 7 500 7 0.008  0.05
As 1 000 000 0 7 0.008 0.1

All criteria are
transformed into

monetary value
(in euros)

Transformation of score matrix (multiplication by -1 of C1 and C2)

C; Ch Cs Cs Ci Cs
w; 0.08 0.04 0.10 0.46 0.32

Aq 0 0 0 0 0
ol 53| A2 | 300000 -6000 5  0.007 0.2
B2 5F| A3 | -300000 -1500 5  0.008 0.04
n Ay | -600000 -7500 7  0.008 0.05
As ~1,000,000 0 7 0008 0.1

38 J. Dezert & J.-M.
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Solution in case of 4 possible actions

Methods Ranking vectors Preference orders

% 1 [0.11,0.18,0.32,0.40] | Ag > Az > Ag = Ay
< 2 [0.12,0.31,0.40,0.41] | Ag > Az > Ag = Ay
2 1 [0.12,0.54,0.79,0.88] | Ag > Az = A = A;
£ 2 | [0.12,0.54,0.79,0.88] | A4 = Az = As = A;
@)

= 3 [0.03,0.76,0.96,0.97] | Ay > Az > Ag = A;
A 4 | [0.03,0.76,0.96,0.97] | A4 = Az = Ay = A;

Solution in case of 5 possible actions

rank reversal
phenomena

0.07,0.12,0.20,0.24,0.35] || A5 = Ay = As = As = A,
0.12,0.25,0.31,0.30,0.39 As = Az > Ay = Az > Ay
0.12,0.49,0.66, 0.69, 0.92 As = Ay = Az = Ag = A4

[ ]
[ ]
[ ]
(0.12,0.49,0.66,0.69,0.92] | As = Ay = As > Ay = A;
[ ]
[ ]

more robust to

0.03,0.68,0.85,0.88,0.97 As = Ay = Az = Ao = A4
rank reversal

0.03,0.68,0.85,0.88,0.97] | As = A4 = A3 = As = A3

AW NN RN

BEF-TOPSIS | AHP




Part 3 - BF-TOPSIS Conclusion

BF-TOPSIS improves TOPSIS thanks to Belief Functions [Dezert Han Yin 2016]

Advantages of BF-TOPSIS methods

No need for ad-hoc normalization of score matrix
Solid justification for BBA construction from score matrix
More robustness to rank reversal phenomena (although not exempt)

Complexity of BF-TOPSIS methods

BF-TOPSIS1: smallest complexity
BF-TOPSIS2: medium complexity
BF-TOPSIS3: high complexity (because of PCR6 rule)

BF-TOPSIS4: highest complexity (because of ZPCRG6 rule)

BF-TOPSIS can work also with imprecise scores - see [Dezert Han Tacnet 2017]
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Conclusion

A global framework to decide under imperfect information contexts mixing uncertainty theories
and multicriteria decision-making methods

Decision Decision Decision under uncertainty
under certainty under risk orignorance
I8 p 3
Imperfection in Imperfection of K;;gse(;) f
preferences alternatives evaluation probabilities Unknown or

(importance) evaluation Alternative, on the states of | (Subjective)
probabilities

(e.g. groups of alternatives, the world

different decision models, , itionni on the states of
agg()regation principles are used) uncpmplet_eness of al_ternatlves, (condtl::gnnmg the world
imprecise evaluations...)
A A consequences of A
alternatives)

Total agregation methods Subjective

Expected Utility Theory (EUT)

Classical (MAUT, AHP...) Expected Utility
methods (e.g.) Outranking methods Theory (SEUT)
(ELECTRE, TOPSIS...) (Ordered Weighted Averaging) OWA
DS-AHP, Cautious Ordered Averaging-Evidential Reasoning

mixing ER and Reasoning (FCOWA)

MCDM | this talk > (Belief funct_ior) bgsed Technique.for Order of Preference @
Similarity to Ideal Solution(BF-TOPSIS)

New Decision-| psmT-AHP ER-MCDA... (COWA)
:> aid methods |6oft ELECTRE Tri Fuzzy Cautious Ordered Averaging-Evidential

NN
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