

QADA-PDA versus JPDA for Multi-Target Tracking in Clutter

Jean Dezert¹, Albena Tchamova², Pavlina Konstantinova³

¹ONERA - The French Aerospace Lab, F-91761 Palaiseau, France. *E-mail: jean.dezert@onera.fr*

² Inst. for Information and Communication Technologies, Bulgarian Academy of Sciences, "Acad.G.Bonchev" Str., bl.25A, 1113 Sofia, Bulgaria. E-mail: tchamova@bas.bg

> ³ European Polytechnical University Pernik, Bulgaria. E-mail: pavlina.konstantinova@gmail.com

July 10th, 2017

Outline

Introduction

- 2 Joint Probabilistic Data Association Filter
- 3 Data Association in Multi Target Tracking
- Presentation of QADA method
 - Choice of DA matrix for QADA
 - Derivation of DA quality in QADA method
 - QADA-PDA Kalman Filter for MTT
- 5 Measures of performances
- Scenario 1 Targets merging in a close formation
- 7 Scenario 2 Targets merging in a close formation and then splitting
- Scenario 3 Two crossing targets
- Onclusions
- References

QADA = **Q**uality **A**ssessment of **D**ata **A**ssociation

This presentation is an extension/improvement of the Fusion 2017 paper

[1] J. Dezert, A. Tchamova, P. Konstantinova, E. Blasch, A Comparative Analysis of QADA-KF with JPDAF for Multi-Target Tracking in Clutter, in Proc. of Fusion 2017 int. Conference

This QADA-PDA method for MTT has been published very recently (June 2017) in

[2] J. Dezert, A. Tchamova, P. Konstantinova, *Performance Evaluation of improved QADA-KF and JPDAF for Multitarget Tracking in Clutter*, Proc of the annual international scientific conf. "Education, Science, Innovations", European Polytechnical Univ., Pernik, Bulgaria, June 9-10, 2017.

Multi-Target Tracking (MTT) ⇒ Data Association + Tracking Filter

Data Association (DA) - important task of MTT [Bar-Shalom 1990] DA purpose is to find the assignment matrix with most likely observation-to-track associations to keep and improve target tracks maintenance performance

Classical DA approach:

-Use all observations-to-tracks pairings selected in the 1st optimal global DA solution to update tracks, ... even if some pairings solutions are doubtful (have poor quality)

Sophisticate approaches:

- Use all possible joint DA solutions and their a posteriori probas \Rightarrow Joint Probabilistic Data Association Filter (JPDAF) [Bar-Shalom Fortmann Scheffe 1980]

- Use the 1st best global DA solution, evaluate its quality and modify the tracking filter accordingly \Rightarrow Quality Assessment of Data Association (QADA) approach introduced in [Dezert Benameur 2014]

Tracking filters The CMKF (Converted Measurement Kalman Filter) [Lerro Bar-Shalom 1993] and JPDAF are used in this work

In this presentation We compare performances of

- QADA-PDA KF based MTT (QADA using PDA matrix and min dist. decision strategy)
- JPDAF based MTT.

 \rightarrow proposed in [Bar-Shalom Fortmann Scheffe 1980] as an extension of PDAF for MTT

• Main idea:

The meas.-to-target association probas $\beta_i^t(k) = \sum_{\Theta(k)} P\{\Theta(k) | Z^k\} \hat{\omega}_{it}(\Theta(k))$ and $\beta_0^t(k) = 1 - \sum_{i=1}^{m_k} \beta_i^t(k)$ are computed jointly across the targets from the joint posteriori probas $P(\Theta(k) | Z^k)$ and only for the latest set of measurements. The target track updates are done for $t = 1, \ldots, N_T$ by

$$\begin{split} \hat{x}^t(k|k) &= \hat{x}^t(k|k{-}1) + \mathsf{K}^t(k) \sum_{i=1}^{m_k} \beta^t_i(k) \tilde{z}^t_i(k) \\ \mathsf{P}^t(k|k) &= \beta^t_0(k) \mathsf{P}^t(k|k{-}1) + \left(1 - \beta^t_0(k)\right) \mathsf{P}^t_c(k) + \tilde{\mathsf{P}}^t(k) \end{split}$$

• Assumptions of JPDAF

- the number N_T of targets is known and tracks have been initialized;
- $\textbf{P}(x^t(k)|Z^k) \sim \mathcal{N}(x^t(k); \hat{x}^t(k|k), P^t(k|k)), \text{ for } t = 1, \dots, N_T$
- each target generates at most one meas. at each scan and there are no merged meas.;
- each target is detected with some known detection probability $P_d^t \leq 1$;
- False alarms (FA) are uniformly distributed with known FA density λ_{FA} (Poisson pmf).
- Advantages
 - very good theoretical framework, and 0-scan-back filter (memoryless filter)
 - work well with moderate FA densities and non persisting interferences

Drawbacks

- often intractable for complex dense MTT scenarios
- track coalescence effects in difficult scenarios

Data Association (DA) Problem

Find the global optimal assignments of measurements z_j , j = 1, ..., N available at time k to targets T_i , $i = 1, ..., N_T$ by maximizing the overall gain (rewards):

$$R(\boldsymbol{\Omega}, \boldsymbol{A}) \triangleq \sum_{i=1}^{N_{\mathrm{T}}} \sum_{j=1}^{N} \boldsymbol{\omega}(i, j) \boldsymbol{a}(i, j).$$

• $\Omega = [\omega(i, j)]$ is the **DA matrix** representing the gain of the associations of target T_i with the measurement z_j (usually homogeneous to the likelihood).

• Assignment solution: $N_T \times N$ binary matrix A = [a(i,j)] with $a(i,j) \in \{0,1\}$

$$a(i,j) = \begin{cases} 1, & \text{if } z_j \text{ is associated to track } T_i \\ 0, & \text{otherwise.} \end{cases}$$

How to get the optimal solution(s)

- by Kuhn-Munkres/Hungarian algorithm (1955/1957)
- by Bourgeois and Lassalle (1971) for rectangular DA matrix.
- by Murty's method (1968) which gives the m-best assignments in order of increasing cost ⇒ used in QADA method

The QADA method

Main Idea behind QADA method [Dezert Benameur 2014]

- $\bullet\,$ compare (z_j,T_i) in the 1st-best DA solution with (z_j,T_i) in the 2nd-best DA solution
- establish a quality indicator, associated with pairing in 1st-best DA solution, based on belief functions, PCR6 fusion rule [DSmT Books], and some decision strategy.

QADA assumes the DA (reward) matrix is known, regardless of the manner in which it is obtained. \Rightarrow Several QADA-based MTT are possible depending of the choice of DA matrix construction

The QADA method

- based on a (modified) Basic Belief Assignment (BBA) modeling
- ② the computation of quality of DA (i.e. confidence) q(i, j) ∈ [0, 1] of pairings (T_i, z_j), i = 1, ..., N_T; j = 1, ..., N chosen in the 1st-best DA solution is based on its stability in the 2nd best DA solution and a belief Interval distance decision strategy¹

J. Dezert, A. Tchamova, P. Konstantinova

¹In our Fusion 2017 paper, it is based on Pignistic Probability transformation decision strategy, which is a lossy transformation.

Choice of DA matrix for QADA

Two choices of DA matrix Ω for QADA-KF have been tested

- QADA-GNN \Rightarrow DA matrix Ω is based on distances (as used in Global Nearest Neighbours (GNN) approach)
 - For Elements ω_{ij} are the normalized distances d(i, j) s.t. $d^2(i, j) \leq \gamma$ given by

$$\omega(i,j) \equiv d(i,j) \triangleq [(\mathsf{z}_j(k) - \hat{\mathsf{z}}_i(k|k-1))'\mathsf{S}^{-1}(k)(\mathsf{z}_j(k) - \hat{\mathsf{z}}_i(k|k-1))]^{1/2}$$

- QADA-PDA ⇒ DA matrix Ω is based on Posterior Data Association (PDA) probas as given in PDAF
 - Elements ω_{ij} of Ω are the posterior DA probas p_{ij} given by PDAF

$$p_{ij} = \begin{cases} \frac{b}{b + \sum_{l=1}^{N} \alpha_{il}} & \text{for } j = 0 \text{ (no valid observ.)} \\ \\ \frac{\alpha_{ij}}{b + \sum_{l=1}^{N} \alpha_{il}} & \text{for } 1 \leqslant j \leqslant N \end{cases}$$

where $b \triangleq (1 - P_g P_d) \lambda_{\text{FA}}(2\pi)^{M/2} \sqrt{|S_{ij}|} \text{ and } \alpha_{ij} \triangleq P_d \cdot e^{-\frac{d_{ij}^2}{2}}$

The (N + 1)th column of Ω will include the values p₁₀ associated with H₀(k) DA hypothesis (i.e. no one of the validated measurements originated from the target T_i at time k).

Derivation of DA quality in QADA method

- Build DA matrix Ω and find 1st-best and 2nd-best global DA solutions A₁ and A₂ using Murty's algo.
- 2 Compare $a_1(i, j)$ in A_1 (1st best solution) with $a_2(i, j)$ value in A_2 (2nd best sol.).
- **③** Establish a quality indicator $q(i, j) \in [0, 1]$ for each optimal pairing (T_i, z_j) .

Several cases are possible

- Case 1: $a_1(i, j) = a_2(i, j) = 0 \Rightarrow$ Agreement on non-association of T_i with z_j A useless stable case. We set q(i, j) = 0.
- **Case 2**: $a_1(i, j) = a_2(i, j) = 1 \Rightarrow$ Agreement on association (T_i, z_j) Stable case with different impacts on $R_1(\Omega, A_1)$ and $R_2(\Omega, A_2)$.
 - ▶ BBAs construction on frame $\Theta = \{X = (T_i, z_j), \overline{X}\}$ done as follows for s = 1, 2

$$\mathfrak{m}_s(X) = \mathfrak{a}_s(\mathfrak{i},\mathfrak{j}) \cdot \mathfrak{w}(\mathfrak{i},\mathfrak{j})/\mathsf{R}_s(\Omega,\mathsf{A}_s) \quad \text{and} \quad \mathfrak{m}_s(X\cup\bar{X}) = 1-\mathfrak{m}_s(X)$$

Conjunctive rule of combination (here no conflict occurs)

$$\begin{cases} \mathfrak{m}_{12}(X) = \mathfrak{m}_1(X)\mathfrak{m}_2(X) + \mathfrak{m}_1(X)\mathfrak{m}_2(X \cup \bar{X}) + \mathfrak{m}_1(X \cup \bar{X})\mathfrak{m}_2(X) \\ \mathfrak{m}_{12}(X \cup \bar{X}) = \mathfrak{m}_1(X \cup \bar{X})\mathfrak{m}_2(X \cup \bar{X}) \end{cases}$$

In [1], QADA quality/confidence indicator is based on lossy pignistic proba transf.

$$q(i,j) \triangleq BetP(X) = m_{12}(X) + \frac{1}{2}m_{12}(X \cup \bar{X})$$

In [2] and here, QADA quality/confidence indicator is based on min distance strategy

Principle of QADA method (cont'd)

• Case 3: $a_1(i, j) = 1$ and $a_2(i, j) = 0 \Rightarrow$ conflict in solutions between A_1 and A_2

- find index j_2 , such that $a_2(i, j_2) = 1$
- ► BBAs construction on frame $\Theta = \{X \triangleq (T_i, z_j), Y \triangleq (T_i, z_{j_2})\}$

Basic Belief Assignment (BBA) modeling

$$\begin{cases} \mathfrak{m}_1(X) = \mathfrak{a}_1(\mathfrak{i},\mathfrak{j}) \cdot \frac{\mathfrak{w}(\mathfrak{i},\mathfrak{j})}{\mathfrak{R}_1(\Omega,A_1) + \mathfrak{R}_2(\Omega,A_2)} \\ \mathfrak{m}_1(X \cup Y) = 1 - \mathfrak{m}_1(X) \end{cases}$$

$$\begin{cases} m_2(Y) = \alpha_2(i,j_2) \cdot \frac{\omega(i,j_2)}{R_1(\Omega,A_1) + R_2(\Omega,A_2)} \\ m_2(X \cup Y) = 1 - m_2(Y) \end{cases}$$

BBAs fusion with PCR6 fusion rule

$$\begin{split} & \int \mathfrak{m}(X) = \mathfrak{m}_1(X)\mathfrak{m}_2(X \cup Y) + \mathfrak{m}_1(X) \cdot \frac{\mathfrak{m}_1(X)\mathfrak{m}_2(Y)}{\mathfrak{m}_1(X) + \mathfrak{m}_2(Y)} \\ & \mathfrak{m}(Y) = \mathfrak{m}_1(X \cup Y)\mathfrak{m}_2(Y) + \mathfrak{m}_2(Y) \cdot \frac{\mathfrak{m}_1(X)\mathfrak{m}_2(Y)}{\mathfrak{m}_1(X) + \mathfrak{m}_2(Y)} \\ & \mathfrak{m}(X \cup Y) = \mathfrak{m}_1(X \cup Y)\mathfrak{m}_2(X \cup Y) \end{split}$$

In [1], QADA quality/confidence indicator is based on lossy pignistic proba transf.

$$q(i,j) \triangleq BetP(X) = m_{12}(X) + \frac{1}{2}m_{12}(X \cup Y)$$

In [2] and here, QADA quality/confidence indicator is based on min distance strategy

Decision-Making from a BBA with min distance strategy

Belief interval of A

$$\mathrm{BI}(A) \triangleq [\mathrm{Bel}(A), \mathrm{Pl}(A)] = [\sum_{B \in 2^{\Theta} | B \subseteq A} \mathfrak{m}(B), \sum_{B \in 2^{\Theta} | B \cap A \neq \emptyset} \mathfrak{m}(B)]$$

Euclidean belief interval based distance [Han Dezert Yang 2014]

$$d^{\mathsf{E}}_{\mathsf{B}\,\mathrm{I}}(\mathfrak{m}_1,\mathfrak{m}_2) \triangleq \sqrt{\frac{1}{2^{|\Theta|-1}}} \cdot \sum_{A \in 2^{\Theta}} d^{\mathrm{I}}(\mathsf{B}\,\mathrm{I}_1(A),\mathsf{B}\,\mathrm{I}_2(A))^2$$

$$d^{I}\left(\left[a_{1}, b_{1}\right], \left[a_{2}, b_{2}\right]\right) = \sqrt{\left[\frac{a_{1} + b_{1}}{2} - \frac{a_{2} + b_{2}}{2}\right]^{2} + \frac{1}{3}\left[\frac{b_{1} - a_{1}}{2} - \frac{b_{2} - a_{2}}{2}\right]^{2}}$$

Decision-making from a BBA

$$\delta = \hat{X} = \arg\min_{X \in \Theta} d(\mathfrak{m}, \mathfrak{m}_X)$$

Quality of the decision

$$q(\hat{X}) = 1 - \frac{d_{\mathrm{BI}}(\mathfrak{m}, \mathfrak{m}_{\hat{X}})}{\sum_{X \in \Theta} d_{\mathrm{BI}}(\mathfrak{m}, \mathfrak{m}_{X})} \in [0,$$

Higher is $q(\hat{X})$ more trustable is the decision $\delta=\hat{X}$

J. Dezert, A. Tchamova, P. Konstantinova

YBS Tribute Workshop, Xi'an, China

1]

Classical Kalman Filter (KF) state estimate

$$\hat{x}(k|k) = \hat{x}(k|k-1) + \mathsf{K}(k)(\mathsf{z}(k) - \hat{\mathsf{z}}(k|k-1)$$

with Kalman filter gain matrix

$$\mathsf{K}(k) = \mathsf{P}(k|k-1)\mathsf{H}^\mathsf{T}(k) \big[\mathsf{H}(k)\mathsf{P}(k|k-1)\mathsf{H}^\mathsf{T}(k) + \mathsf{R}\big]^{-1}$$

In KF, z(k) is assumed **to be correct** with the measurement noise characterized by the given covariance matrix R

- If R decreases \Rightarrow z(k) is more precise \Rightarrow Gain K(k) increases
- If R increases \Rightarrow z(k) is less precise \Rightarrow Gain K(k) decreases

Improved KF with QADA quality factor

The quality factor $q(i, j) \equiv q(T_i, z_j)$ expresses the confidence in the association (T_i, z_j)

- If $q(T_i, z_j) \rightarrow 0 \Rightarrow$ we don't trust $(T_i, z_j) \Rightarrow z_j$ is incorrect and so we increase R
- If $q(T_i, z_j) \rightarrow 1 \Rightarrow$ we trust $(T_i, z_j) \Rightarrow z_j$ is correct and we keep R as it is

KF gain adjustment with QADA

$$\mathsf{R}_{\mathsf{QADA}} = \frac{1}{\mathsf{q}(\mathsf{T}_{\mathsf{i}},\mathsf{z}_{\mathsf{i}})} \cdot \mathsf{R} \quad \Rightarrow \quad \mathsf{K}(\mathsf{k}) = \mathsf{P}(\mathsf{k}|\mathsf{k}-1)\mathsf{H}^{\mathsf{T}}(\mathsf{k})[\mathsf{H}(\mathsf{k})\mathsf{P}(\mathsf{k}|\mathsf{k}-1)\mathsf{H}^{\mathsf{T}}(\mathsf{k}) + \mathsf{R}_{\mathsf{QADA}}]^{-1}$$

Measures of performances

We compare the performances several MTT algorithms (using Monte Carlo simul.)

- KDA-GNN KF based MTT (GNN matrix based on Kinematic meas.)
- QADA-GNN KF based MTT (QADA using GNN matrix)
- QADA-PDA KF based MTT (QADA using PDA matrix)
- JPDAF

Criteria for MTT performance evaluation

- **1** TL = Track Life \rightarrow average number of track updates before track deletion
 - A track is removed after 3 successive incorrect associations, or missed detections
 - With JPDAF, a track is removed if the true measurement is out of the gate during 3 successive scans

PMC = Percentage of miscorrelation

 \rightarrow Percentage of incorrect measurement-to-track association during the scans \rightarrow for JPDAF, pMC = % of time the true measurement is outside its target gate pMC for JPDAF is not equivalent to pMC for other algos It does reflect only partially the performances of JPDAF

- TP = Track purity TP = Number of correct associations
- **PPI = Probabilistic Purity Index** \rightarrow used only with JPDAF

PPI = % of correctness of measurement having the highest proba

Scenario 1 - Targets merging in a close formation

- Targets T₁, T₂, T₃, T₄ move from West to East with constant velocity 100m/sec during 30 scans.
- The stationary sensor is located at the origin with range 10000 m. The sampling period is $T_{scan} = 5sec$
- Measurement precision: Azimuth $\rightarrow \sigma_{Az} = 0.2 \text{ deg and range} \rightarrow \sigma_D = 40 \text{ m}.$
- From scans 15 to 30, targets move in parallel with inter distance of 150 m
- FA are uniformly distributed in the surveillance region with know density
- $P_d = 0.999$ is associated with the sensor.

Monte Carlo results based on 200 runs

(in %)	QADA-PDA	QADA-GNN	JPDAF	KDA-GNN
Average TL	89.39 (88.12)	89.13 (84.31)	78.42	70.02
Average pMC	2.45 (2.67)	2.39 (3.28)	5.92	5.71
Average TP	86.14 (84.54)	85.92 (79.86)	PPI=32.96	61.95

Performance results for 0.15 FA per gate on average

Note: JPDAF requires almost **3 times more computational time** than other methods because an exponential growing of number of joint association hypotheses.

Simulation results for scenario 1

Results with 0.15 FA per gate on average

Averaged RMSE on X for track 1 with the tracking methods.

Averaged RMSE on Y for track 1 with the tracking methods.

Results with 0.15 FA per gate on average

Averaged RMSE on X for track 3 with the tracking methods.

Averaged RMSE on Y for track 3 with the tracking methods.

Scenario 2 - Targets merging in a close formation and then splitting

Simulation of groups of target for scenario 2

- Five air targets (T₁, T₂, T₃, T₄, T₅) moving from Norht-West to South-East with constant velocity 100m/sec during 65 scans.
- The stationary sensor is located at the origin with range 2000 m. The sampling period is $T_{scan} = 5sec$
- Measurement precision: Azimuth $\rightarrow \sigma_{Az} = 0.35$ deg and range $\rightarrow \sigma_D = 25$ m.
- Targets move in three groups: $Group1 = T_1$, $Group2 = (T_2, T_3, T_4)$, $Group3 = T_5$
- The number of false alarms (FA) follows a Poisson distribution. FA are uniformly distributed in the surveillance region.
- $P_d = 0.999$ is associated with the sensor.

Monte Carlo results based on 300 runs

(In %)	GROUPS of Targets Scenario SigmaD=35,SigmaAz=0.2 FAingate=0.2			
	KDA-GNN	JPDAF	QADA-GNN-BetP QADA-GNN-d BI	QADA-PDA-BetP QADA-PDA-d BI
Average TL	50.27	66.46	81.94 83.50	90.85 91.02
Average pMC	3.35	2.98	2.10 2.02	1.75 1.78
Average TP	45.61	PPI=29.14	79.32 81.03	87.61 87.65

Performances of QADA KF methods with 0.2 FA per gate

Simulation results for scenario 2 (cont'd)

Results with 0.2 FA per gate on average

Averaged RMSE on X for track 1 with the four tracking methods.

Averaged RMSE on Y for track 1 with the four tracking methods.

Simulation results for scenario 2 (cont'd)

Results with 0.2 FA per gate on average

Averaged RMSE on X for track 3 with the four tracking methods.

Averaged RMSE on Y for track 3 with the four tracking methods.

J. Dezert, A. Tchamova, P. Konstantinova

Scenario 3 : Two crossing targets

- Two maneuvering targets moving from West to East with constant velocity 38m/sec during 65 scans.
- The stationary sensor is located at the origin with range 1200m.
- The sampling period is $T_{scan} = 1sec$.
- $\sigma_{Az} = 0.25$ deg and $\sigma_D = 25$ m for azimuth and range respectively.
- $P_d = 0.999$ is associated with the sensor.

Monte Carlo results based on 300 runs

(In %)	CROSSING Targets Scenario SigmaD=25,SigmaAz=0.2 FAingate=0.2			
	KDA-GNN	QADA-GNN-BetP QADA-GNN-d_BI	JPDAF	QADA-PDA-BetP QADA-PDA-d_BI
Average TL	77.06	88.93 89.29	91.25	93.47 93.54
Average pMC	2.40	2.24 2.20	2.08	2.11 2.15
Average TP	72.78	85.64 86.11	PPI=86.29	87.96 88.01

Performances of QADA-PDA versus JPDA for 0.2 FA per gate

(In %)	CROSSING Targets Scenario SigmaD=25,SigmaAz=0.2 FAingate=0.4			
	KDA-GNN	QADA-GNN-BetP QADA-GNN-d BI	JPDAF	QADA-PDA-BetP QADA-PDA-d BI
Average TL	58.80	77.20 80.19	82.87	83.18 83.21
Average pMC	3.61	3.63 3.54	2.94	3.40 3.41
Average TP	52.90	72.01 75.30	PPI=76.94	77.15 77.23

Performances of QADA-PDA versus JPDA for 0.4 FA per gate

Results with 0.2 FA per gate on average

Averaged RMSE on X for track 1 with the four tracking methods.

Averaged RMSE on Y for track 1 with the four tracking methods.

Simulation results for scenario 3 (contid)

Results with 0.2 FA per gate on average

Averaged RMSE on X for track 2 with the four tracking methods.

Averaged RMSE on Y for track 2 with the four tracking methods.

Conclusions

- QADA-PDA is a zero-scan back method
- QADA-PDA is quite simple to implement (mix of PDAF calculus and Optimal assignment search)
- QADA-PDA is a good compromise between strict hard-assignment (GNN) and full soft-assignment (JPDA)
- QADA-PDA avoids JPDA combinatorics/complexity
- QADA-PDA works better than QADA-GNN, KDA-GNN and JPDA in difficult scenarios
- QADA-PDA is a new and interesting practical method for MTT in clutter

Perspectives

- making more precise evaluations of QADA-PDA method
- evelopment and test of better quality evaluation models (if any)
- improvement of MTT performances using attribute information

References

Y. Bar-Shalom (Ed.), Multitarget-Multisensor Tracking: Advanced Applications, Artech House, 1990.

- J. Dezert, K. Benameur, On the Quality of Optimal Assignment for Data Association, Proc. of Belief 2014, Oxford, UK, Sept. 2014.
- J. Dezert et al., On the Quality Estimation of Optimal Multiple Criteria Data Association Solutions, Proc. of Fusion, 2015.
- J. Dezert, et al., Multitarget Tracking Performance based on the Quality Assessment of Data Association, Proc. of Fusion 2016, July 2016.
- Y. Bar-Shalom, T.E. Fortmann, M. Scheffe, JPDA for Multiple Targets in Clutter, Proc. Conf. on Inf. Sci. and Syst., Princeton, March 1980.
- D. Lerro, Y. Bar-Shalom, Tracking with debiased consistent Converted Measurement versus EKF, IEEE Trans on AES, 1993.
- R.J. Fitzgerald, Track Biases and Coalescence with Probabilistic Data Association, IEEE Trans. on AES, Vol. 21, 1985.
- F. Smarandache, J. Dezert (Editors), Advances and Applications of DSmT for Information Fusion, Volumes 1, 2, 3 & 4, ARP, 2004–2015. http://www.onera.fr/staff/jean-dezert?page=2
- J. Dezert et al., The Impact of the Quality Assessment of Optimal Assignment for Data Association in Multitarget Tracking Context, Cybernetics and Inf. Techn. J., Vol.15, No.7, pp. 88–98, 2015.
- J. Dezert et al., Performance Evaluation of improved QADA-KF and JPDAF for Multitarget Tracking in Clutter, Proc of the annual international scientific conference "Education, Science, Innovations", EPU, Pernik, Bulgaria, June 2017.
- D. Han, J. Dezert, Y. Yang, New Distance Measures of Evidence based on Belief Intervals, Proc. of Belief 2014, Oxford, 2014.
- D. Han, J. Dezert, Y. Yang, Belief interval Based Distances Measures in the Theory of Belief Functions, IEEE Trans. on SMC, 2017.