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Part 1

Belief functions and 
Dempster-Shafer Theory
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 Belief functions and DST
Main references on Dempster-Shafer Theory (DST)

G. Shafer, A mathematical theory of evidence, 
Princeton Univ., 1976.

R. Yager, L. Liu, Classic Works of the 
Dempster-Shafer Theory of Belief Functions, 
Springer, 2008.

http://www.glennshafer.com/books/amte.html

http://www.glennshafer.com/books/amte.html
http://www.glennshafer.com/books/amte.html
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Limitations of probabilities

They do not account for partial/incomplete knowledge. 

They deal generally with information drawn from generic knowledge 
based either on population of items, laws of physics, common sense, ...

They capture only one aspect of the uncertainty 
(the randomness, i.e. the variability through repeated measurements).

They canʼt distinguish between uncertainty due to variability, and 
uncertainty due to the incompletness/lack of knowledge (epistemic 
uncertainty).

Variability is related with precisely observed random observations

Incompletness/non specificity is related with missing/partial information

 Belief functions and DST
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Limitation of uniform prior pdf to model the full ignorance
Consider a random variable W taking its value w in [1,2], and the 
random variable V=1/W which obviously takes its value v=1/w in [0.5,1].

To model ignorance of value of W, it is usually assumed uniform prior pdf.

By doing so, however we get Non-uniform prior pdf for V=1/W.

which is not satisfactory because, we are a priori fully ignorant on 
the true value of W as well as of 1/W !!! So the choice of uniform pdf 
does not model properly our prior full ignorance of values w and v.

 Belief functions and DST
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Beliefs often are related with singular event and are not necessarily 
related with statistical data and generic knowledge, but with singular 
evidence. BF are well adapted for modeling partial knowledge.

Paradigm shift with Belief Functions (BF)

Frame of discernment (FoD)  

4

La théorie de Dempster-Shafer (1976)

• Cadre de discernement : ensemble discret fini d’hypothèses
exclusives et exhaustives (closed-world approach)

Θ = {θi, i = 1, . . . , n}

• Power Set : Ensemble des parties de Θ

P(Θ) � 2Θ |P(Θ)| = 2|Θ|

• Exemple : Θ = {θ1, θ2, θ3}→ 8 élements dans P(Θ)

2Θ = {∅, θ1, θ2, θ3, θ1 ∪ θ2, θ1 ∪ θ3, θ2 ∪ θ3, θ1 ∪ θ2 ∪ θ3}

Shaferʼs model  Close world assumption with exclusivity of elements

Any subset A of the FoD corresponds to the proposition
Pθ(A) � The true value of θ is in a subset A of Θ.

4

La théorie de Dempster-Shafer (1976)

• Cadre de discernement : ensemble discret fini d’hypothèses
exclusives et exhaustives (closed-world approach)

Θ = {θi, i = 1, . . . , n}
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Power-set 

There is equivalence between operators on sets and logical operators

 Belief functions and DST
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5

Le modèle de Shafer

Θ = {θ1, θ2, θ3}

S1(A) corresponds to DSmC rule for k independent sources based onMf (Θ); S2(A)
represents the mass of all relatively and absolutely empty sets which is transferred to

the total or relative ignorances associated with non existential constraints (if any, like in

some dynamic problems); S3(A) transfers the sum of relatively empty sets directly onto
the canonical disjunctive form of non-empty sets. DSmH generalizes DSmC and is not

equivalent to Dempster’s rule. It works for any models (the free DSm model, Shafer’s

model or any other hybrid models) when manipulating precise generalized (or eventually

classical) basic belief functions.

c(X) = conjunctive normal form of X

Ex: If X = (A ∪B) ∩ [C ∩ (A ∪ C)]
then c(X) = (A ∪B) ∩ C

∅ � {∅,∅M} = {∅, set of propositions forced to be empty inM}

∅M = set of propositions forced to be empty inM

Θ = {θ1, θ2, θ3}⇒

6. Fusion of imprecise beliefs

Since it difficult to have sources/human experts providing precise beliefs, a more flexible

theory dealing with imprecise information is necessary. So we extended DSmT for deal-

ing with admissible imprecise generalized basic belief mI(.) defined as real subunitary
intervals of [0, 1], or even more general as real subunitary sets (not necessarily intervals).
These sets can be unions of (closed, open, or half-open/half-closed) intervals and/or

scalars all in [0, 1]. An imprecise belief assignment mI(.) over DΘ is said admissible if

and only if there exists for every X ∈ DΘ at least one real number m(X) ∈ mI(X)
such that

�
X∈DΘ m(X) = 1. The following simple operators on sets (addition � and

multiplication �) are necessary [8] for the fusion of imprecise beliefs:

X1 � X2 � {x | x = x1 + x2, x1 ∈ X1, x2 ∈ X2}

X1 � X2 � {x | x = x1 · x2, x1 ∈ X1, x2 ∈ X2}

From these operators, one generalizes DSmC from scalars to sets as follows [8] (Chap.

6): ∀A �= ∅ ∈ DΘ,

mI
Mf (Θ)(A) =

�

X1,X2,...,Xk∈DΘ

(X1∩X2∩...∩Xk)=A

�

i=1,...,k

mI
i (Xi) (8)

Example 

|2Θ| = 23 = 8

Impossibility partial ignorances full ignorance

4
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Basic belief assignment (BBA)

The Generalized Pignistic Transformation
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Abstract – This paper presents in detail the generalized pignistic transformation (GPT) succinctly developed in the Dezert-Smarandache

Theory (DSmT) framework as a tool for decision process. The GPT allows to provide a subjective probability measure from any gen-

eralized basic belief assignment given by any corpus of evidence. We mainly focus our presentation on the 3D case and provide the

complete result obtained by the GPT and its validation drawn from the probability theory.
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1 Introduction

[m1 ⊕ m2 ⊕ m3](.)
︸ ︷︷ ︸

Optimal Fusion

"= [m1 ⊕ m2] ⊕ m3](.)
︸ ︷︷ ︸

Suboptimal fusion

"= m1 ⊕ [m2 ⊕ m3](.)
︸ ︷︷ ︸

Suboptimal fusion

"= m2 ⊕ [m1 ⊕ m3](.)
︸ ︷︷ ︸

Suboptimal fusion

In the recent theory of plausible and paradoxical reasoning (DSmT) developed by Dezert and Smarandache [?, ?], a

new generalized pignistic transformation has been proposed to construct a subjective probability measure P{.} from any
generalized basic belief assignment m(.) defined over the hyper-power set DΘ. In reference [?], a simple example of

such generalized pignistic transformation has been presented only for the case n = |Θ| = 2. In this paper, we present the
complete derivation of this pignistic transformation for the case n = |Θ| = 3 and we generalize the result. Before intro-
ducing the GPT, it is however necessary to briefly present the DSmT [?, ?, ?, ?, ?, ?] with respect to the Dempster-Shafer

Theory (DST) [?].

[m1 ⊕ m2 ⊕ m3](.)
︸ ︷︷ ︸

Optimal Fusion

"= [(m1 ⊕ m2) ⊕ m3](.)
︸ ︷︷ ︸

Suboptimal fusion

"= [m1 ⊕ (m2 ⊕ m3)](.)
︸ ︷︷ ︸

Suboptimal fusion

"= [m2 ⊕ (m1 ⊕ m3)](.)
︸ ︷︷ ︸

Suboptimal fusion

m(.) : 2Θ → [0, 1]

m(∅) = 0 and
∑

A∈2Θ

m(A) = 1

Bel(A) =
∑

B∈2Θ,B⊆A

m(B)

Pl(A) =
∑

B∈2Θ,B∩A $=∅

m(B) = 1 − Bel(Ā)

m(∅) = 0

∗Partial support by the COST action 274 TARSKI acknowledged.

Focal element A:  iff m(A)>0
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France U.S.A. Czech Republic

Jean.Dezert@onera.fr smarand@unm.edu milan.daniel@cs.cas.cz

Abstract – This paper presents in detail the generalized pignistic transformation (GPT) succinctly developed in the Dezert-Smarandache

Theory (DSmT) framework as a tool for decision process. The GPT allows to provide a subjective probability measure from any gen-

eralized basic belief assignment given by any corpus of evidence. We mainly focus our presentation on the 3D case and provide the

complete result obtained by the GPT and its validation drawn from the probability theory.

Keywords: Dezert-Smarandache Theory (DSmT), Dempster-Shafer Theory,pignistic transformation, subjective probability, pignistic

probability, plausible and paradoxical reasoning, DSm cardinality, hybrid model, data fusion, decision-making, conflict, processing.

1 Introduction

[m1 ⊕ m2 ⊕ m3](.)
︸ ︷︷ ︸

Optimal Fusion

"= [m1 ⊕ m2] ⊕ m3](.)
︸ ︷︷ ︸

Suboptimal fusion

"= m1 ⊕ [m2 ⊕ m3](.)
︸ ︷︷ ︸

Suboptimal fusion

"= m2 ⊕ [m1 ⊕ m3](.)
︸ ︷︷ ︸

Suboptimal fusion

In the recent theory of plausible and paradoxical reasoning (DSmT) developed by Dezert and Smarandache [?, ?], a

new generalized pignistic transformation has been proposed to construct a subjective probability measure P{.} from any
generalized basic belief assignment m(.) defined over the hyper-power set DΘ. In reference [?], a simple example of

such generalized pignistic transformation has been presented only for the case n = |Θ| = 2. In this paper, we present the
complete derivation of this pignistic transformation for the case n = |Θ| = 3 and we generalize the result. Before intro-
ducing the GPT, it is however necessary to briefly present the DSmT [?, ?, ?, ?, ?, ?] with respect to the Dempster-Shafer

Theory (DST) [?].

[m1 ⊕ m2 ⊕ m3](.)
︸ ︷︷ ︸

Optimal Fusion

"= [(m1 ⊕ m2) ⊕ m3](.)
︸ ︷︷ ︸

Suboptimal fusion

"= [m1 ⊕ (m2 ⊕ m3)](.)
︸ ︷︷ ︸

Suboptimal fusion

"= [m2 ⊕ (m1 ⊕ m3)](.)
︸ ︷︷ ︸

Suboptimal fusion

m(.) : 2Θ → [0, 1]

m(∅) = 0 and
∑

A∈2Θ

m(A) = 1

Bel(A) =
∑

B∈2Θ,B⊆A

m(B)

Pl(A) =
∑

B∈2Θ,B∩A $=∅

m(B) = 1 − Bel(Ā)
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Vacuous BBA

Θ = {θ1, θ2, θ3} ⇒

In general, 0 ≤ Bel(A) ≤ Pl(A) ≤ 1

∀A $= Θ, mv(A) = 0 andmv(Θ) = 1

The development of the DSmT [8] arises from the necessity to overcome the inher-

ent limitations of the DST [7] which are closely related with the acceptance of Shafer’s

model (i.e. working with an homogeneous1 frame of discernment Θ defined as a finite

set of exhaustive and exclusive hypotheses θi, i = 1, . . . , n), the third middle excluded
principle, and Dempster’s rule for the combination of independent sources of evidence.

Limitations of DST are well reported in literature [17,13] and several alternative rules

to Dempster’s rule of combination can be found in [1,16,3,5,6,8]. DSmT provides a new

mathematical framework for information fusion which appears less restrictive and more

general than the basis and constraints of DST. The basis of DSmT is the refutation of the

principle of the third excluded middle and Shafer’s model in general, since for a wide

class of fusion problems the hypotheses one has to deal with, can have different intrinsic

nature and also appear only vague and imprecise in such a way that precise refinement

is just impossible to obtain in reality so that the exclusive elements θi cannot be prop-

erly identified and defined. Many problems involving fuzzy/vague continuous and rela-

tive2 concepts described in natural language with different semantic contents and hav-

ing no absolute interpretation enter in this category. We claim that in general, the nega-

tion/complement is not accessible, but DSmT offers the possibility to deal with negation

and Shafer’s model as well. When the model of the problem fits with these constraints

(negation follows from exclusivity constraints), we include them in the frame and then

one forms the hyper-power set in the normal way. Thus DSmT deals naturally with nega-

tions/complements when necessary. DSmT starts with the notion of free DSm model and

considers Θ only as a frame of exhaustive elements which can potentially overlap and

have different intrinsic semantic natures and which also can change with time with new

information and evidences received on the model itself. DSmT offers a flexibility on the

structure of the model one has to deal with. When the free DSm model holds, the con-

junctive consensus is performed. If the free model does not fit the reality because it is

known that some subsets of Θ contain elements truly exclusive but also possibly truly

non existing at all at a given time (in dynamic3 fusion), new fusion rules must be per-

formed to take into account these integrity constraints. The constraints can be explicitly

introduced into the free DSm model to fit it adequately with our current knowledge of

the reality; we actually construct a hybrid DSm model on which the combination will

be efficiently performed. Shafer’s model, which is the basis of DST, corresponds to a

1Although the homogeneity of Θ is not explicitly mentioned in the DST, it is a strong implicit assumption

inherent to the Shafer’s model. When working with DST, one implicitly assumes that all finite and exclusive

elements of Θ have somehow the same semantic nature, otherwise the complement defined over the power-set

becomes just a non-sense. The Shafer’s model cannot deal directly with non-homogeneous elements (carrying

different semantics) of Θ. This property however is necessary in many applications where the information
given by the sources can’t be expressed with same semantic due to the potentially different intrinsic nature of

information carried by the sources/experts/sensors.
2The notion of relativity comes from the own interpretation of the elements of the frame Θ by each sources

of evidences involved in the fusion process.
3i.e. when the frame Θ and/or the modelM is changing with time.
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m(∅) = 0

∗Partial support by the COST action 274 TARSKI acknowledged.

Credibility

Bayesian BBA     Focal elements are singletons

Total mass of subsets
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Total mass of subsets
 intersecting AΘ = {θ1, θ2, θ3} ⇒

In general, 0 ≤ Bel(A) ≤ Pl(A) ≤ 1

∀A $= Θ, mv(A) = 0 andmv(Θ) = 1
The development of the DSmT [8] arises from the necessity to overcome the inher-

ent limitations of the DST [7] which are closely related with the acceptance of Shafer’s

model (i.e. working with an homogeneous1 frame of discernment Θ defined as a finite

set of exhaustive and exclusive hypotheses θi, i = 1, . . . , n), the third middle excluded
principle, and Dempster’s rule for the combination of independent sources of evidence.

Limitations of DST are well reported in literature [17,13] and several alternative rules

to Dempster’s rule of combination can be found in [1,16,3,5,6,8]. DSmT provides a new

mathematical framework for information fusion which appears less restrictive and more

general than the basis and constraints of DST. The basis of DSmT is the refutation of the

principle of the third excluded middle and Shafer’s model in general, since for a wide

class of fusion problems the hypotheses one has to deal with, can have different intrinsic

nature and also appear only vague and imprecise in such a way that precise refinement

is just impossible to obtain in reality so that the exclusive elements θi cannot be prop-

erly identified and defined. Many problems involving fuzzy/vague continuous and rela-

tive2 concepts described in natural language with different semantic contents and hav-

ing no absolute interpretation enter in this category. We claim that in general, the nega-

tion/complement is not accessible, but DSmT offers the possibility to deal with negation

and Shafer’s model as well. When the model of the problem fits with these constraints

(negation follows from exclusivity constraints), we include them in the frame and then

one forms the hyper-power set in the normal way. Thus DSmT deals naturally with nega-

tions/complements when necessary. DSmT starts with the notion of free DSm model and

considers Θ only as a frame of exhaustive elements which can potentially overlap and

have different intrinsic semantic natures and which also can change with time with new

information and evidences received on the model itself. DSmT offers a flexibility on the

structure of the model one has to deal with. When the free DSm model holds, the con-

junctive consensus is performed. If the free model does not fit the reality because it is

known that some subsets of Θ contain elements truly exclusive but also possibly truly

non existing at all at a given time (in dynamic3 fusion), new fusion rules must be per-

formed to take into account these integrity constraints. The constraints can be explicitly

introduced into the free DSm model to fit it adequately with our current knowledge of

the reality; we actually construct a hybrid DSm model on which the combination will

be efficiently performed. Shafer’s model, which is the basis of DST, corresponds to a

very specific hybrid DSm (and homogeneous) model including all possible exclusivity

1Although the homogeneity of Θ is not explicitly mentioned in the DST, it is a strong implicit assumption

inherent to the Shafer’s model. When working with DST, one implicitly assumes that all finite and exclusive

elements of Θ have somehow the same semantic nature, otherwise the complement defined over the power-set

becomes just a non-sense. The Shafer’s model cannot deal directly with non-homogeneous elements (carrying

different semantics) of Θ. This property however is necessary in many applications where the information
given by the sources can’t be expressed with same semantic due to the potentially different intrinsic nature of

information carried by the sources/experts/sensors.
2The notion of relativity comes from the own interpretation of the elements of the frame Θ by each sources

of evidences involved in the fusion process.
3i.e. when the frame Θ and/or the modelM is changing with time.

 Bel(A)=Pl(A)=P(A)

 Belief functions and DST
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Discounting a source of evidence  (Shaferʼs reliability discounting)

The DSmT approach for information

fusion and some open problems

Jean Dezert a,1 and Florentin Smarandache b

aONERA, 92320 Châtillon, France
bDept. of Math., Univ. of New Mexico, USA

Abstract. This paper introduces the recent theory of plausible and paradoxical
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deals with imprecise, uncertain and potentially highly conflicting sources of infor-

mation. Recent publications have shown the interest and the potential ability of

DSmT to solve fusion problems where Dempster-Shafer Theory (DST) provides

counter-intuitive results, especially when conflict between sources becomes high

and information becomes vague and imprecise. This short paper presents the foun-

dations of DSmT, its main rules of combination including the most recent ones and
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1. Introduction

�
m(A)
m(Θ)

→
�

m�(A) = α · m(A) ∀A �= Θ
m�(Θ) = (1− α) + α · m(Θ)

θ1 . . . θn u1 . . . up

Source 1 ms1(θ1) . . . ms1(θn) ms1(u1) . . . ms1(up)
Source 2 ms2(θ1) . . . ms2(θn) ms2(u1) . . . ms2(up)
...

...
...

...
...

...
...

Source k msk(θ1) . . . msk(θn) msk(u1) . . . msk(up)

um,m = 1, . . . , p are disjunctions of elements θi, (i ∈ {1, . . . , n} of the frame Θ.

m(ui) = [ms1 ⊕ms2 ⊕ . . .⊕msn ](ui) = 1

Θ = {θ1, . . . , θn}, n ≥ 2
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To be used if one has a good estimation of the reliability factor of the 
source based on experiments and ground truth.

Other discounting techniques

- Contextual discounting [Denœux et al. 2005, 2006]
- Importance discounting [Smarandache, Dezert, Tacnet 2010]

 Belief functions and DST
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Basics of DST
Dempster-Shafer rule

Definition: To combine two distinct and equi-reliable sources of evidences
m1(.) and m2(.) defined on the same frame Θ, Shafer proposed Dempster’s
rule defined by mDS(∅) = 0, and ∀X ∈ 2Θ \ {∅} by

mDS(X) = [m1 ⊕ m2](X) =
m12(X)

1 − K12
(3)

with m12(X) �
�

X1,X2∈2Θ

X1∩X2=X

m1(X1)m2(X2)

� �� �
Conjunctive fusion

and K12 � m12(∅) =
�

X1,X2∈2Θ

X1∩X2=∅

m1(X1)m2(X2)

� �� �
Conflict level

DS rule = normalized conjunctive fusion rule

Properties: extension to n > 2 sources; associativity; commutativity;
neutrality of vacuous bba [m ⊕ mv ](.) = m(.)

Conditioning: m(.) combined with mZ (.) focused on Z (i.e. mZ (Z ) = 1) with
DS rule yields m(X |Z ) = [m ⊕ mZ ](X) = [mZ ⊕ m](X) and
Pl(X |Z ) = Pl(X ∩ Z )/Pl(Z ) (similar to Conditioning rule for probas).

Drawbacks: Counter-intutitive and unexpected behaviors in some cases ⇒
validity of DS rule has become very questionable over the years ... at least
for highly conflicting cases.
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Drawbacks: Counter-intutitive and unexpected behaviors in some cases ⇒
validity of DS rule has become very questionable over the years ... at least
for highly conflicting cases.

and
∀X "= ∅ ∈ 2Θ

mDS(X) !
m12...s(X)

1−K12...s
(37)

where the conjunctive agreement on X is given by:

m12...s(X) !
∑

X1,X2,...,Xs∈2Θ

X1∩X2∩...∩Xs=X

m1(X1)m2(X2) . . .ms(Xs) (38)

and where the global conflict is given by:

K12...s !
∑

X1,X2,...,Xs∈2Θ

X1∩X2∩...∩Xs=∅

m1(X1)m2(X2) . . .ms(Xs) (39)

When K12...s = 1, the s sources are in total conflict and their combination cannot be computed with DS rule because Eq. (37) is
mathematically not defined due to 0/0 indeterminacy [4]. DS rule is commutative and associative which makes it very attractive
from engineering implementation standpoint.

It has been proved in [4] that the vacuous bbamv(.) is a neutral element for DS rule because [m⊕mv](.) = [mv⊕m](.) = m(.)
for any bba m(.) defined on 2Θ. This property looks reasonable since a total ignorant source should not impact the fusion result
because it brings no information that can be helpful for the discrimination between the elements of the power set 2Θ.

IV. ANALYSIS OF COMPATIBILITY OF DEMPSTER’S RULE WITH BAYES RULE

To analyze the compatibility of Dempster’s rule with Bayes rule, we need to work in the probabilistic framework because
Bayes fusion rule has been developed only in this theoretical framework. So in the sequel, we will manipulate only probability
mass functions (pmfs), related with Bayesian bba’s in the Belief Function framework. This perfectly justifies the restriction of
singleton bba as a prior bba since we want to manipulate prior probabilities to make a fair comparison of results provided by
both rules. If Dempster’s rule is a true (consistent) generalization of Bayes fusion rule, it must provide same results as Bayes
rule when combining Bayesian bba’s, otherwise Dempster’s rule cannot be fairly claimed to be a generalization of Bayes fusion
rule. In this section, we analyze the real (partial or total) compatibility of Dempster’s rule with Bayes fusion rule. Two important
cases must be analyzed depending on the nature of the prior information P (X) one has in hands for performing the fusion of
the sources. These sources to combine will be characterized by the following Bayesian bba’s:









m1(.) ! {m1(θi) = P (X = xi|Z1), i = 1, 2, . . . , N}
...

...
...

ms(.) ! {ms(θi) = P (X = xi|Zs), i = 1, 2, . . . , N}
(40)

The prior information is characterized by a given bba denoted as m0(.) that can be defined either on 2Θ, or only on Θ if we want
to deal for the needs of our analysis with a Bayesian prior. In the latter case, if m0(.) ! {m0(θi) = P (X = xi), i = 1, 2, . . . , N}
then m0(.) plays the same role as the prior pmf P (X) in the probabilistic framework.

When considering a non vacuous prior m0(.) "= mv(.), we denote Dempster’s combination of s sources symbolically as:

mDS(.) = DS(m1(.), . . . ,ms(.);m0(.))

When the prior bba is vacuous m0(.) = mv(.) then m0(.) has no impact on Dempster’s fusion result, and so we denote
symbolically Dempster’s rule as:

mDS(.) = DS(m1(.), . . . ,ms(.);mv(.))

= DS(m1(.), . . . ,ms(.))

A. Case 1: Uniform Bayesian prior

It is important to note that Dempster’s fusion formula proposed by Shafer in [4] and recalled in Eq. (37) makes no real
distinction between the nature of sources to combine (if they are posterior or prior information). In fact, the formula (37) reduces
exactly to Bayes rule given in Eq. (27) if the bba’s to combine are Bayesian and if the prior information is either uniform or
vacuous. Stated otherwise the following functional equality holds

DS(m1(.), . . . ,ms(.);m0(.)) ≡
Bayes(P (X |Z1), . . . , P (X |Zs);P (X)) (41)

Dempsterʼs rule of combination

A. Belief functions

Let Θ be a frame of discernment of a problem under consideration. More precisely, the set

Θ = {θ1, θ2, . . . , θN}

consists of a list of N exhaustive and exclusive elements θi, i = 1, 2, . . . , N . Each θi represents a possible state related to
the problem we want to solve. The exhaustivity and exclusivity of elements of Θ is referred as Shafer’s model of the frame Θ.
A basic belief assignment (bba), also called a belief mass function,

m(.) : 2Θ → [0, 1]

is a mapping from the power set of Θ (i.e. the set of subsets of Θ), denoted 2Θ, to [0, 1], that verifies the following conditions
[4]:

m(∅) = 0 and
∑

X∈2Θ

m(X) = 1 (35)

The quantity m(X) represents the mass of belief exactly committed to X . An element X ∈ 2Θ is called a focal element if
and only if m(X) > 0. The set F(m) ! {X ∈ 2Θ|m(X) > 0} of all focal elements of a bba m(.) is called the core of the
bba. A bba m(.) is said Bayesian if its focal elements are singletons of 2Θ. The vacuous bba characterizing the total ignorance
denoted4 θ1 ∪ θ2 ∪ . . . ∪ θN is defined by

mv(.) : 2Θ → [0; 1] such that

mv(X) = 0 if X %= Θ, and mv(θ1 ∪ θ2 ∪ . . . ∪ θN ) = 1

From any bba m(.), the belief function Bel(.) and the plausibility function Pl(.) are defined for ∀X ∈ 2Θ as:
{

Bel(X) =
∑

Y ∈2Θ|Y⊆X m(Y )

Pl(X) =
∑

Y ∈2Θ|X∩Y $=∅ m(Y )
(36)

Bel(X) represents the whole mass of belief that comes from all subsets of Θ included in X . It is interpreted as the lower
bound of the probability of X , i.e. Pmin(X).

Bel(.) is subadditive since
∑

θi∈Θ Bel(θi) ≤ 1.

Pl(X) represents the whole mass of belief that comes from all subsets of Θ compatible with X (i.e., those intersecting X).
Pl(X) is interpreted as the upper bound of the probability of X , i.e. Pmax(X).

Pl(.) is superadditive since
∑

θi∈Θ Pl(θi) ≥ 1.

Bel(X) and Pl(X) are classically seen [4] as lower and upper bounds of an unknown probability P (.), and one has the
following inequality satisfied

∀X ∈ 2Θ, Bel(X) ≤ P (X) ≤ Pl(X)

. The belief function Bel(.) (and the plausibility function Pl(.)) built from any Bayesian bba m(.) can be interpreted as a
(subjective) conditional probability measure provided by a given source of evidence, because if the bba m(.) is Bayesian the
following equality always holds [4]: Bel(X) = Pl(X) = P (X).

B. Dempster’s rule of combination

Dempster’s rule of combination, denoted DS rule5 is a mathematical operation, represented symbolically by ⊕, which
corresponds to the normalized conjunctive fusion rule. Based on Shafer’s model of Θ, the combination of s > 1 independent
and distinct sources of evidences characterized by their bba m1(.), . . . , ms(.) related to the same frame of discernment Θ is
denoted mDS(.) = [m1 ⊕ . . .⊕ms](.). The quantity mDS(.) is defined mathematically as follows:

mDS(∅) ! 0

4The set {θ1, θ2, . . . , θN} and the complete ignorance θ1 ∪ θ2 ∪ . . . ∪ θN are both denoted Θ in DST.
5We denote it DS rule because it has been proposed historically by Dempster [2], [3], and widely promoted by Shafer in the development of DST [4].
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Basics of DST
Dempster-Shafer rule

Definition: To combine two distinct and equi-reliable sources of evidences
m1(.) and m2(.) defined on the same frame Θ, Shafer proposed Dempster’s
rule defined by mDS(∅) = 0, and ∀X ∈ 2Θ \ {∅} by

mDS(X) = [m1 ⊕ m2](X) =
m12(X)

1 − K12
(3)

with m12(X) �
�

X1,X2∈2Θ

X1∩X2=X

m1(X1)m2(X2)

� �� �
Conjunctive fusion

and K12 � m12(∅) =
�

X1,X2∈2Θ

X1∩X2=∅

m1(X1)m2(X2)

� �� �
Conflict level

DS rule = normalized conjunctive fusion rule

Properties: extension to n > 2 sources; associativity; commutativity;
neutrality of vacuous bba [m ⊕ mv ](.) = m(.)

Conditioning: m(.) combined with mZ (.) focused on Z (i.e. mZ (Z ) = 1) with
DS rule yields m(X |Z ) = [m ⊕ mZ ](X) = [mZ ⊕ m](X) and
Pl(X |Z ) = Pl(X ∩ Z )/Pl(Z ) (similar to Conditioning rule for probas).

Drawbacks: Counter-intutitive and unexpected behaviors in some cases ⇒
validity of DS rule has become very questionable over the years ... at least
for highly conflicting cases.
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DS rule = normalized conjunctive fusion rule

Properties: extension to n > 2 sources; associativity; commutativity;
neutrality of vacuous bba [m ⊕ mv ](.) = m(.)

Conditioning: m(.) combined with mZ (.) focused on Z (i.e. mZ (Z ) = 1) with
DS rule yields m(X |Z ) = [m ⊕ mZ ](X) = [mZ ⊕ m](X) and
Pl(X |Z ) = Pl(X ∩ Z )/Pl(Z ) (similar to Conditioning rule for probas).

Drawbacks: Counter-intutitive and unexpected behaviors in some cases ⇒
validity of DS rule has become very questionable over the years ... at least
for highly conflicting cases.

Because of this, DS rule has often been interpreted as a 
generalization of Bayes rule.

 Belief functions and DST

Comments on DS rule of combination
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Drawbacks of DS rule of combination

 Belief functions and DST

DS rule is mathematically not defined when conlict is total (K=1).

DS rule doesnʼt behave well not only in high conflicting case 
[Zadeh 1979], but even in low conflicting case 
[Dezert-Wang-Tchamova 2012]

DS rule is not a generalization of Bayes rule because it is 
incompatible with Bayes rule when the prior is not uniform, 
nor vacuous [Dezert-Tchamova-Han-Tacnet 2013].
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Zadehʼs example (1979)

PCR5 versus Bayes’ formula
for combining probability densities

(working notes V3)

1 Principles of estimation

m1(θ1) = 1 − e1 m1(θ2) = 0 m1(θ3) = e1

m2(θ1) = 0 m2(θ2) = 1 − e2 m2(θ3) = e2

Let’s consider x an hidden/unknown (scalar or vector-valued) quantity called parameter1 and some obser-
vation z of x. This means that z is a function (not necessarily known) of x, i.e. z = h(x). An estimator is a
function of z which transforms the observation z into an estimate x̂(z) of x in some sense. Closer x̂(z) is to
x for a given distance measure, better is the estimator. For notation convenience, we will use x̂ instead x̂(z)
when no confusion is possible. According [?], an optimal estimator is a computational algorithm that processes
observations to yield an estimate of a variable of interest that minimizes a certain error criterion. In tracking
applications, the parameter x is usually time-varying and it corresponds to the state of a dynamic system under
interest. The estimation process uses knowledge or modeling about the evolution the state of the dynamic
system and the probabilistic characterization of the random factors and the prior information. The estimation
error x̃ corresponding to x̂ is

x̃ ! x − x̂

Models for estimation of x [?]:

• Bayesian approach: The unknown parameter x to estimate from observation is considered as a random
variable with a given prior density function p(x). With this model, a realization of x according to p(x) is
assumed to have occured and this value stays constant during the observation process. We would like for
each measurement to have an estimate that converges in some sense to the corresponding realization of
x, and this should hold for all x.

1For simplicity, we assume x being time invariant.

1

(this is our hybrid modelM one wants to deal with), then one uses the hybrid DSm rule for sets:

mI
M(θ1 ∩ θ2) = 0

and

mI
M(θ1 ∪ θ2) = (0.16, 0.58]

, the others imprecise masses are not changed. In other words, one gets now with hybrid DSm rule applied to imprecise

beliefs:

A ∈ DΘ mI
M(A) = [mI

1 ⊕ mI
2](A)

θ1 [0.04, 0.10]∪ [0.12, 0.15]
θ2 [0, 0.40]∪ [0.42, 0.48]

θ1 ∩ θ2
M
≡ ∅ 0

θ1 ∪ θ2 (0.16, 0.58]

m(θ3) = ε1ε2 m(θ1 ∩ θ2) = (1 − ε1)(1 − ε2) m(θ1 ∩ θ3) = (1 − ε1)ε2 m(θ2 ∩ θ3) = (1 − ε2)ε1

m(θ3) = ε1ε2 m(θ1 ∪ θ2) = (1 − ε1)(1 − ε2) m(θ1 ∪ θ3) = (1 − ε1)ε2 m(θ2 ∪ θ3) = (1 − ε2)ε1

m(θ3) = e1e2 m(θ1 ∩ θ2) = (1 − e1)(1 − e2) m(θ1 ∩ θ3) = (1 − e1)e2 m(θ2 ∩ θ3) = (1 − e2)e1

m(θ3) = e1e2 m(θ1 ∪ θ2) = (1 − e1)(1 − e2) m(θ1 ∪ θ3) = (1 − e1)e2 m(θ2 ∪ θ3) = (1 − e2)e1

m(θ3) =
e1e2

(1 − e1) · 0 + 0 · (1 − e2) + e1e2
= 1

2 Foundations of the DST and DSmT

2.1 The DST and the Shafer’s model

The Shafer’s model, denoted hereM0(Θ), on which is based the Dempster-Shafer Theory, assumes an exhaustive and
exclusive frame of discernment of the problem under consideration Θ = {θ1, θ2, . . . , θn}. The model requires actually
that an ultimate refinement of the problem is possible so that θi can always be well precisely defined/identified in such

a way that we are sure that they are exclusive and exhaustive. From this model, a basic belief assignment (bba) mi(.) :
2Θ → [0, 1] such thatmi(∅) = 0 and

∑

A∈2Θ mi(A) = 1 associated to a given body of evidence Bi is defined, where 2Θ

is the power set ofΘ, i.e. the set of all subsets ofΘ. Within DST, the fusion (combination) of two independent sources of
evidence B1 and B2 is obtained through the Dempster’s rule of combination [9] : [m1 ⊕ m2](∅) = 0 and ∀B *= ∅ ∈ 2Θ:

[m1 ⊕ m2](B) =

∑

X∩Y =B m1(X)m2(Y )

1 −
∑

X∩Y =∅ m1(X)m2(Y )
(1)

The notation
∑

X∩Y =B represents the sum over all X, Y ∈ 2Θ such that X ∩ Y = B. The Dempster’s sum
m(.) ! [m1⊕m2](.) is considered as a basic belief assignment if and only if the denominator in equation (1) is non-zero.
The term k12 !

∑

X∩Y =∅ m1(X)m2(Y ) is called degree of conflict between the sources B1 and B2. When k12 = 1, the
Dempster’s summ(.) does not exist and the bodies of evidences B1 and B2 are said to be in full contradiction. This rule

of combination can be extended easily for the combination of n > 2 independent sources of evidence. The DST, although
very attractive because of its solid mathematical ground, presents however several weaknesses and limitations because of

the Shafer’s model itself (which does not necessary hold in some fusion problems involving continuous and ill-defined

concepts), the justification of the Dempster’s rule of combination frequently subject to criticisms, but mainly because

of counter-intuitive results given by the Dempster’s rule when the conflict between sources becomes important. Several

classes of infinite counter-examples to the Dempster’s rule can be found in [13]. To overcome these limitations, Jean Dez-

ert and Florentin Smarandache propose a new mathematical theory based on other models (free or hybrid DSm models)

with new reliable rules of combinations able to deal with any kind of sources ( imprecises, uncertain and paradoxist, i.e.

highly conflicting). This is presented in next subsections.

DS fusion

114 CHAPTER 5. COUNTER-EXAMPLES TO DEMPSTER’S RULE OF COMBINATION

5.3.2 Generalization with Θ = {θ1, θ2, θ3}

Let’s consider 0 < ε1, ε2 < 1 be two very tiny positive numbers (close to zero), the frame of discernment

be Θ = {θ1, θ2, θ3}, have two experts (independent sources of evidence s1 and s2) giving the belief masses

m1(θ1) = 1 − ε1 m1(θ2) = 0 m1(θ3) = ε1

m2(θ1) = 0 m2(θ2) = 1 − ε2 m2(θ3) = ε2

From now on, we prefer to use matrices to describe the masses, i.e.



1 − ε1 0 ε1

0 1 − ε2 ε2





• Using Dempster’s rule of combination, one gets

m(θ3) =
(ε1ε2)

(1 − ε1) · 0 + 0 · (1 − ε2) + ε1ε2
= 1

which is absurd (or at least counter-intuitive). Note that whatever positive values for ε1, ε2 are,

Dempster’s rule of combination provides always the same result (one) which is abnormal. The only

acceptable and correct result obtained by Dempster’s rule is really obtained only in the trivial case

when ε1 = ε2 = 1, i.e. when both sources agree in θ3 with certainty which is obvious.

• Using the DSm rule of combination based on free-DSm model, one gets m(θ3) = ε1ε2, m(θ1 ∩ θ2) =

(1 − ε1)(1 − ε2), m(θ1 ∩ θ3) = (1 − ε1)ε2, m(θ2 ∩ θ3) = (1 − ε2)ε1 and the others are zero which

appears more reliable/trustable.

• Going back to Shafer’s model and using the hybrid DSm rule of combination, one gets m(θ3) = ε1ε2,

m(θ1 ∪ θ2) = (1 − ε1)(1 − ε2), m(θ1 ∪ θ3) = (1 − ε1)ε2, m(θ2 ∪ θ3) = (1 − ε2)ε1 and the others are

zero.

Note that in the special case when ε1 = ε2 = 1/2, one has

m1(θ1) = 1/2 m1(θ2) = 0 m1(θ3) = 1/2 and m2(θ1) = 0 m2(θ2) = 1/2 m2(θ3) = 1/2

Dempster’s rule of combinations still yields m(θ3) = 1 while the hybrid DSm rule based on the same

Shafer’s model yields now m(θ3) = 1/4, m(θ1 ∪ θ2) = 1/4, m(θ1 ∪ θ3) = 1/4, m(θ2 ∪ θ3) = 1/4 which is

normal.

5.3.3 Generalization with Θ = {θ1, θ2, θ3, θ4}

Let’s consider 0 < ε1, ε2, ε3 < 1 be three very tiny positive numbers, the frame of discernment be

Θ = {θ1, θ2, θ3, θ4}, have two experts giving the mass matrix



1 − ε1 − ε2 0 ε1 ε2

0 1 − ε3 0 ε3





DS rule provides same result whatever the positive values of e1 and e2 are !!! 
DS is not numerically robust to slight input changes.

k12 = (1− e1)(1− e2) + (1− e1)e2 + e1(1− e2) = 1− e1e2

If e1 = 0.1 and e2 = 0.1, then k12 = 1− 0.01 = 0.99 (high conf.)

 Belief functions and DST

High conflict case

Bayesian BBAs
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Zadehʼs example — Numerical robustness analysis of DS rule

DS result

 Belief functions and DST

DS rule is not robust to slight input changes
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On the validity of DST
A very emblematic example

1 Emblematic example1: Θ = {A,B,C} and two informative sources.
Focal elem. \ bba’s m1(.) != mv (.) m2(.) != mv (.)

A a 0
A ∪ B 1 − a b1
C 0 1 − b1 − b2

A ∪ B ∪ C 0 b2

a ∈ [0, 1], and b1, b2 > 0
such that b1 + b2 ∈ [0,1]

2 Conjunctive fusion and conflict:
m12(A) = m1(A)m2(A ∪ B) +m1(A)m2(A ∪ B ∪ C) = a(b1 + b2)
m12(A ∪ B) = m1(A ∪ B)m2(A ∪ B) +m1(A ∪ B)m2(A ∪ B ∪ C)

= (1− a)(b1 + b2)
K12 = m12(∅) = m1(A)m2(C) +m1(A ∪ B)m2(C)

= a(1− b1 − b2) + (1− a)(1 − b1 − b2)
= 1− b1 − b2

(conflict can take any low or high value) (4)
3 Dempster-Shafer fusion: Normalization by 1− K12 = b1 + b2

mDS(A) =
m12(A)
1− K12

=
a(b1 + b2)
b1 + b2

= a = m1(A)

mDS(A ∪ B) =
m12(A ∪ B)
1− K12

=
(1− a)(b1 + b2)

b1 + b2
= 1− a = m1(A ∪ B)

mDS(.) = [m1 ⊕m2](.) = m1(.) even if m2(.) "= mv (.)

Conjunctive fusion

m12(A ∪B) = m1(A ∪B)m2(A ∪B) +m1(A ∪B)m2(A ∪B ∪ C) = (1− a)(b1 + b2)

m12(A) = m1(A)m2(A ∪B) +m1(A)m2(A ∪B ∪ C) = a(b1 + b2)

Conflicting mass

The conflict can be chosen as low as we want.

 Belief functions and DST

Low conflict case

114 CHAPTER 5. COUNTER-EXAMPLES TO DEMPSTER’S RULE OF COMBINATION

5.3.2 Generalization with Θ = {θ1, θ2, θ3}

Let’s consider 0 < ε1, ε2 < 1 be two very tiny positive numbers (close to zero), the frame of discernment

be Θ = {θ1, θ2, θ3}, have two experts (independent sources of evidence s1 and s2) giving the belief masses

m1(θ1) = 1 − ε1 m1(θ2) = 0 m1(θ3) = ε1

m2(θ1) = 0 m2(θ2) = 1 − ε2 m2(θ3) = ε2

From now on, we prefer to use matrices to describe the masses, i.e.



1 − ε1 0 ε1

0 1 − ε2 ε2





• Using Dempster’s rule of combination, one gets

m(θ3) =
(ε1ε2)

(1 − ε1) · 0 + 0 · (1 − ε2) + ε1ε2
= 1

which is absurd (or at least counter-intuitive). Note that whatever positive values for ε1, ε2 are,

Dempster’s rule of combination provides always the same result (one) which is abnormal. The only

acceptable and correct result obtained by Dempster’s rule is really obtained only in the trivial case

when ε1 = ε2 = 1, i.e. when both sources agree in θ3 with certainty which is obvious.

• Using the DSm rule of combination based on free-DSm model, one gets m(θ3) = ε1ε2, m(θ1 ∩ θ2) =

(1 − ε1)(1 − ε2), m(θ1 ∩ θ3) = (1 − ε1)ε2, m(θ2 ∩ θ3) = (1 − ε2)ε1 and the others are zero which

appears more reliable/trustable.

• Going back to Shafer’s model and using the hybrid DSm rule of combination, one gets m(θ3) = ε1ε2,

m(θ1 ∪ θ2) = (1 − ε1)(1 − ε2), m(θ1 ∪ θ3) = (1 − ε1)ε2, m(θ2 ∪ θ3) = (1 − ε2)ε1 and the others are

zero.

Note that in the special case when ε1 = ε2 = 1/2, one has

m1(θ1) = 1/2 m1(θ2) = 0 m1(θ3) = 1/2 and m2(θ1) = 0 m2(θ2) = 1/2 m2(θ3) = 1/2

Dempster’s rule of combinations still yields m(θ3) = 1 while the hybrid DSm rule based on the same

Shafer’s model yields now m(θ3) = 1/4, m(θ1 ∪ θ2) = 1/4, m(θ1 ∪ θ3) = 1/4, m(θ2 ∪ θ3) = 1/4 which is

normal.

5.3.3 Generalization with Θ = {θ1, θ2, θ3, θ4}

Let’s consider 0 < ε1, ε2, ε3 < 1 be three very tiny positive numbers, the frame of discernment be

Θ = {θ1, θ2, θ3, θ4}, have two experts giving the mass matrix



1 − ε1 − ε2 0 ε1 ε2

0 1 − ε3 0 ε3




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On the validity of DST
A very emblematic example

1 Emblematic example1: Θ = {A,B,C} and two informative sources.
Focal elem. \ bba’s m1(.) != mv (.) m2(.) != mv (.)

A a 0
A ∪ B 1 − a b1
C 0 1 − b1 − b2

A ∪ B ∪ C 0 b2

a ∈ [0, 1], and b1, b2 > 0
such that b1 + b2 ∈ [0,1]

2 Conjunctive fusion and conflict:
m12(A) = m1(A)m2(A ∪ B) +m1(A)m2(A ∪ B ∪ C) = a(b1 + b2)
m12(A ∪ B) = m1(A ∪ B)m2(A ∪ B) +m1(A ∪ B)m2(A ∪ B ∪ C)

= (1− a)(b1 + b2)
K12 = m12(∅) = m1(A)m2(C) +m1(A ∪ B)m2(C) (4)

3 Dempster-Shafer fusion: Normalization by 1− K12 = b1 + b2

mDS(A) =
m12(A)
1− K12

=
a(b1 + b2)
b1 + b2

= a = m1(A)

mDS(A ∪ B) =
m12(A ∪ B)
1− K12

=
(1− a)(b1 + b2)

b1 + b2
= 1− a = m1(A ∪ B)

mDS(.) = [m1 ⊕m2](.) = m1(.) even if m2(.) "= mv (.)

1Many examples like this one can be generated [9]
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A a 0
A ∪ B 1 − a b1
C 0 1 − b1 − b2

A ∪ B ∪ C 0 b2

a ∈ [0, 1], and b1, b2 > 0
such that b1 + b2 ∈ [0,1]

2 Conjunctive fusion and conflict:
m12(A) = m1(A)m2(A ∪ B) +m1(A)m2(A ∪ B ∪ C) = a(b1 + b2)
m12(A ∪ B) = m1(A ∪ B)m2(A ∪ B) +m1(A ∪ B)m2(A ∪ B ∪ C)

= (1− a)(b1 + b2)
K12 = m12(∅) = m1(A)m2(C) +m1(A ∪ B)m2(C) (4)

3 Dempster-Shafer fusion: Normalization by 1− K12 = b1 + b2

mDS(A) =
m12(A)
1− K12

=
a(b1 + b2)
b1 + b2

= a = m1(A)

mDS(A ∪ B) =
m12(A ∪ B)
1− K12

=
(1− a)(b1 + b2)

b1 + b2
= 1− a = m1(A ∪ B)

mDS(.) = [m1 ⊕m2](.) = m1(.) even if m2(.) "= mv (.)

1Many examples like this one can be generated [9]

Contradiction
in DST

foundations

On the validity of DS rule

1 Important emblematic example Many examples like this one do exist [?]
Θ = {A,B,C} and 2 equi-reliable non vacuous sources with

Focal elem. \ bba’s m1(.) != mv (.) m2(.) != mv (.)
A a 0

A ∪ B 1 − a b1
C 0 1 − b1 − b2

A ∪ B ∪ C 0 b2

a ∈ [0, 1], and b1, b2 > 0 such that b1 + b2 ∈ [0, 1]
2 Dempster-Shafer fusion of sources

m12(A) = m1(A)m2(A ∪ B) + m1(A)m2(A ∪ B ∪ C) = a(b1 + b2)
m12(A ∪ B) = m1(A ∪ B)m2(A ∪ B) + m1(A ∪ B)m2(A ∪ B ∪ C) = (1− a)(b1 + b2)

K12 = m12(∅) = 1 − b1 − b2 (conflicting mass can take any low or high value)
After normalizing by 1 − K12 = b1 + b2, one gets with Dempster’s rule

mDS(A) = m12(A)/(1 − K12) =
a(b1 + b2)
b1 + b2

= a = m1(A)

mDS(A ∪ B) = m12(A ∪ B)/(1− K12) =
(1− a)(b1 + b2)

b1 + b2
= 1− a = m1(A ∪ B)

mDS(.) = [m1 ⊕m2](.) = m1(.) even if m2(.) "= mv (.)
The informative source m2(.) doesn’t count⇒ Dictatorial power of DS rule
The level of conflict K12 doesn’t matter in the result.

Our claim: Such behavior is unreasonable and unacceptable

 Belief functions and DST

Dezert-Tchamova example (contʼd)

m12(A ∪B) = m1(A ∪B)m2(A ∪B) +m1(A ∪B)m2(A ∪B ∪ C) = (1− a)(b1 + b2)

m12(A) = m1(A)m2(A ∪B) +m1(A)m2(A ∪B ∪ C) = a(b1 + b2)

Normalization by 1−K12 = b1 + b2After normalization by one gets, with DS rule

Such fusion result is very counter intuitive
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Example where DS rule is incompatible with Bayes rule

A. Case 1: Uniform Bayesian prior

It is important to note that Dempster’s fusion formula proposed by Shafer in [4] and recalled in Eq. (37) makes no real
distinction between the nature of sources to combine (if they are posterior or prior information). In fact, the formula (37) reduces
exactly to Bayes rule given in Eq. (27) if the bba’s to combine are Bayesian and if the prior information is either uniform or
vacuous. Stated otherwise the following functional equality holds

DS(m1(.), . . . ,ms(.);m0(.)) ≡ Bayes(P (X |Z1), . . . , P (X |Zs);P (X))

as soon as all bba’s mi(.), i = 1, 2, . . . , s are Bayesian and coincide with P (X |Zi), P (X) is uniform, and either the prior bba
m0(.) is vacuous (m0(.) = mv(.)), or m0(.) is the uniform Bayesian bba.

Example 3: Let us consider Θ(X) = {x1, x2, x3} with two distinct sources providing the following Bayesian bba’s






m1(x1) = P (X = x1|Z1) = 0.2
m1(x2) = P (X = x2|Z1) = 0.3
m1(x3) = P (X = x3|Z1) = 0.5

and







m2(x1) = P (X = x1|Z2) = 0.5
m2(x2) = P (X = x2|Z2) = 0.1
m2(x3) = P (X = x3|Z2) = 0.4

• If m0(.) the vacuous bba

that is m0(x1 ∪ x2 ∪ x3) = 1, then one will get





















mDS(x1) = 1
1−Kvacuous

12
m1(x1)m2(x1)m0(x1 ∪ x2 ∪ x3)

= 1
1−0.670.2 · 0.5 · 1 = 0.10

0.33 ≈ 0.3030

mDS(x2) = 1
1−Kvacuous

12
m1(x2)m2(x2)m0(x1 ∪ x2 ∪ x3)

= 1
1−0.670.3 · 0.1 · 1 = 0.03

0.33 ≈ 0.0909

mDS(x3) = 1
1−Kvacuous

12
m1(x3)m2(x3)m0(x1 ∪ x2 ∪ x3)

= 1
1−0.670.5 · 0.4 · 1 = 0.20

0.33 ≈ 0.6061

with

Kvacuous
12 = 1−m1(x1)m2(x1)m0(x1 ∪ x2 ∪ x3)

−m1(x2)m2(x2)m0(x1 ∪ x2 ∪ x3)

−m1(x3)m2(x3)m0(x1 ∪ x2 ∪ x3) = 0.67

• If m0(x1) = m0(x2) = m0(x3) = 1/3 (uniform bba)
























mDS(x1) = 1
1−Kuniform

12

m1(x1)m2(x1)m0(x1)

= 1
1−0.890.2 · 0.5 · 1/3 = 0.10/3

0.11 ≈ 0.3030

mDS(x2) = 1
1−Kuniform

12

m1(x2)m2(x2)m0(x2)

= 1
1−0.890.3 · 0.1 · 1/3 = 0.03/3

0.11 ≈ 0.0909

mDS(x3) = 1
1−Kuniform

12

m1(x3)m2(x3)m0(x3)

= 1
1−0.890.5 · 0.4 · 1/3 = 0.20/3

0.11 ≈ 0.6061

where the degree of conflict when m0(.) is Bayesian and uniform is now given by

Kuniform
12 = 0.89

.

Clearly Kuniform
12 %= Kvacuous

12 , but the fusion results obtained with two distinct priors m0(.) (vacuous or uniform) are the
same because of the algebraic simplification by 1/3 in Dempster’s fusion formula when using uniform Bayesian bba. When
combining Bayesian bba’s m1(.) and m2(.), the vacuous prior and uniform prior m0(.) have therefore no impact on the result.
Indeed, they contain no information that may help to prefer one particular state xi with respect to the other ones, even if the
level of conflict is different in both cases. So, the level of conflict doesn’t matter at all in such Bayesian case. As already stated,
what really matters is only the distribution of relative agreement factors. It can be easily verified that we obtain same results
when applying Bayes Eq. (15), or (17).

Only in such very particular cases (i.e. Bayesian bba’s, and vacuous or Bayesian uniform priors), Dempster’s rule is fully
consistent with Bayes fusion rule. So the claim that Dempster’s is a generalization of Bayes rule is true in this very particular

with informative prior bba/pmf:

Bayes rule

DS rule

cases. So, the level of conflict doesn’t matter at all in such Bayesian case. As already stated, what really matters is only the
distribution of relative agreement factors. It can be easily verified that we obtain same results when applying Bayes Eq. (15), or
(17).

Only in such very particular cases (i.e. Bayesian bba’s, and vacuous or Bayesian uniform priors), Dempster’s rule is fully
consistent with Bayes fusion rule. So the claim that Dempster’s is a generalization of Bayes rule is true in this very particular
case only, and that is why such claim has been widely used to defend Dempster’s rule and DST thanks to its compatibility
with Bayes fusion rule in that very particular case. Unfortunately, such compatibility is only partial and not general because it
is not longer valid when considering the more general cases involving non uniform Bayesian prior bba’s as shown in the next
subsection.

B. Case 2: Non uniform Bayesian prior

Let us consider Dempster’s fusion of Bayesian bba’s with a Bayesian non uniform priorm0(.). In such case it is easy to check
from the general structures of Bayes fusion rule (17) and Dempster’s fusion rule (37) that these two rules are incompatible. Indeed,
in Bayes rule one divides each posterior source mi(xj) by s

√

m0(xj), i = 1, 2, . . . s, whereas the prior source m0(.) is combined
in a pure conjunctive manner by Dempster’s rule with the bba’s mi(.), i = 1, 2, . . . s, as if m0(.) was a simple additional source.
This difference of processing prior information between the two approaches explains clearly the incompatibility of Dempster’s
rule with Bayes rule when Bayesian prior bba is not uniform. This incompatibility is illustrated in the next simple example.
Mahler and Fixsen have already proposed in [23], [24], [25] a modification of Dempster’s rule to force it to be compatible with
Bayes rule when combining Bayesian bba’s. The analysis of such modified Dempster’s rule is out of the scope of this paper.

s

√

m0(xj)

Example 4: Let us consider the same frame Θ(X), and same bba’s m1(.) and m2(.) as in the Example 3. Suppose that the
prior information is Bayesian and non uniform as follows:







m0(x1) = P (X = x1) = 0.6
m0(x2) = P (X = x2) = 0.3
m0(x3) = P (X = x3) = 0.1

Applying Bayes rule (13) yields:







P (x1|Z1 ∩ Z2) = A2(x1)
GA2

= 0.2·0.5/0.6
2.2667 = 0.1667

2.2667 ≈ 0.0735

P (x2|Z1 ∩ Z2) = A2(x2)
GA2

= 0.3·0.1/0.3
2.2667 = 0.1000

2.2667 ≈ 0.0441

P (x3|Z1 ∩ Z2) = A2(x3)
GA2

= 0.5·0.4/0.1
2.2667 = 2.0000

2.2667 ≈ 0.8824

Applying Dempster’s rule yields mDS(xi) #= P (xi|Z1 ∩ Z2) because:








mDS(x1) = 1
1−0.9110 · 0.2 · 0.5 · 0.6 = 0.060

0.089 ≈ 0.6742

mDS(x2) = 1
1−0.9110 · 0.3 · 0.1 · 0.3 = 0.009

0.089 ≈ 0.1011

mDS(x3) = 1
1−0.9110 · 0.5 · 0.4 · 0.1 = 0.020

0.089 ≈ 0.2247

Therefore, one has in general6:

DS(m1(.), . . . ,ms(.);m0(.)) #= Bayes(P (X |Z1), . . . , P (X |Zs);P (X))

V. CONCLUSIONS
In this paper, we have analyzed in details the expression and the properties of Bayes rule of combination based on statistical

conditional independence assumption, as well as the emblematic Dempster’s rule of combination of belief functions introduced
by Shafer in his Mathematical Theory of evidence. We have clearly explained from a theoretical standpoint, and also on simple
examples, why Dempster’s rule is not a generalization of Bayes rule in general. The incompatibility of Dempster’s rule with
Bayes rule is due to its impossibility to deal with non uniform Bayesian priors in the same manner as Bayes rule does. Dempster’s
rule turns to be compatible with Bayes rule only in two very particular cases: 1) if all the Bayesian bba’s to combine (including
the prior) focus on same state (i.e. there is a perfect conjunctive consensus between the sources), or 2) if all the bba’s to combine
(excluding the prior) are Bayesian, and if the prior bba cannot help to discriminate a particular state of the frame of discernment
(i.e. the prior bba is either vacuous, or Bayesian and uniform). Except in these two very particular cases, Dempster’s rule is
totally incompatible with Bayes rule. Therefore, Dempster’s rule cannot be claimed to be a generalization of Bayes fusion rule,
even when the bba’s to combine are Bayesian.
6but in the very degenerate case when manipulating deterministic Bayesian bba’s, which is of little practical interest from the fusion standpoint.

Dempster’s rule to force it to be compatible with Bayes
rule when combining Bayesian bba’s. The analysis of such
modified Dempster’s rule is out of the scope of this paper.

Example 4: Let us consider the same frame Θ(X), and same
bba’s m1(.) and m2(.) as in the Example 3. Suppose that
the prior information is Bayesian and non uniform as follows:
m0(x1) = P (X = x1) = 0.6, m0(x2) = P (X = x2) = 0.3
and m0(x3) = P (X = x3) = 0.1. Applying Bayes rule (12)
yields:










P (x1|Z1 ∩ Z2) = A2(x1)
GA2

= 0.2·0.5/0.6
2.2667 = 0.1667

2.2667 ≈ 0.0735

P (x2|Z1 ∩ Z2) = A2(x2)
GA2

= 0.3·0.1/0.3
2.2667 = 0.1000

2.2667 ≈ 0.0441

P (x3|Z1 ∩ Z2) = A2(x3)
GA2

= 0.5·0.4/0.1
2.2667 = 2.0000

2.2667 ≈ 0.8824











P (x1|Z1 ∩ Z2) = 0.2·0.5/0.6
2.2667 = 0.1667

2.2667 ≈ 0.0735

P (x2|Z1 ∩ Z2) = 0.3·0.1/0.3
2.2667 = 0.1000

2.2667 ≈ 0.0441

P (x3|Z1 ∩ Z2) = 0.5·0.4/0.1
2.2667 = 2.0000

2.2667 ≈ 0.8824

Applying Dempster’s rule yields mDS(xi) #= P (xi|Z1 ∩ Z2)
because:










mDS(x1) = 1
1−0.9110 · 0.2 · 0.5 · 0.6 = 0.060

0.089 ≈ 0.6742

mDS(x2) = 1
1−0.9110 · 0.3 · 0.1 · 0.3 = 0.009

0.089 ≈ 0.1011

mDS(x3) = 1
1−0.9110 · 0.5 · 0.4 · 0.1 = 0.020

0.089 ≈ 0.2247

Therefore, one has in general6:

DS(m1(.), . . . ,ms(.);m0(.)) #=
Bayes(P (X |Z1), . . . , P (X |Zs);P (X)) (38)

V. CONCLUSIONS

In this paper, we have analyzed in details the expression
and the properties of Bayes rule of combination based on
statistical conditional independence assumption, as well as the
emblematic Dempster’s rule of combination of belief functions
introduced by Shafer in his Mathematical Theory of evidence.
We have clearly explained from a theoretical standpoint, and
also on simple examples, why Dempster’s rule is not a gen-
eralization of Bayes rule in general. The incompatibility of
Dempster’s rule with Bayes rule is due to its impossibility to
deal with non uniform Bayesian priors in the same manner
as Bayes rule does. Dempster’s rule turns to be compatible
with Bayes rule only in two very particular cases: 1) if all the
Bayesian bba’s to combine (including the prior) focus on same
state (i.e. there is a perfect conjunctive consensus between the
sources), or 2) if all the bba’s to combine (excluding the prior)
are Bayesian, and if the prior bba cannot help to discriminate a
particular state of the frame of discernment (i.e. the prior bba is
either vacuous, or Bayesian and uniform). Except in these two
very particular cases, Dempster’s rule is totally incompatible
with Bayes rule. Therefore, Dempster’s rule cannot be claimed
to be a generalization of Bayes fusion rule, even when the bba’s
to combine are Bayesian.

6but in the very degenerate case when manipulating deterministic Bayesian
bba’s, which is of little practical interest from the fusion standpoint.
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cases. So, the level of conflict doesn’t matter at all in such Bayesian case. As already stated, what really matters is only the
distribution of relative agreement factors. It can be easily verified that we obtain same results when applying Bayes Eq. (15), or
(17).

Only in such very particular cases (i.e. Bayesian bba’s, and vacuous or Bayesian uniform priors), Dempster’s rule is fully
consistent with Bayes fusion rule. So the claim that Dempster’s is a generalization of Bayes rule is true in this very particular
case only, and that is why such claim has been widely used to defend Dempster’s rule and DST thanks to its compatibility
with Bayes fusion rule in that very particular case. Unfortunately, such compatibility is only partial and not general because it
is not longer valid when considering the more general cases involving non uniform Bayesian prior bba’s as shown in the next
subsection.

B. Case 2: Non uniform Bayesian prior

Let us consider Dempster’s fusion of Bayesian bba’s with a Bayesian non uniform priorm0(.). In such case it is easy to check
from the general structures of Bayes fusion rule (17) and Dempster’s fusion rule (37) that these two rules are incompatible. Indeed,
in Bayes rule one divides each posterior source mi(xj) by s

√

m0(xj), i = 1, 2, . . . s, whereas the prior source m0(.) is combined
in a pure conjunctive manner by Dempster’s rule with the bba’s mi(.), i = 1, 2, . . . s, as if m0(.) was a simple additional source.
This difference of processing prior information between the two approaches explains clearly the incompatibility of Dempster’s
rule with Bayes rule when Bayesian prior bba is not uniform. This incompatibility is illustrated in the next simple example.
Mahler and Fixsen have already proposed in [23], [24], [25] a modification of Dempster’s rule to force it to be compatible with
Bayes rule when combining Bayesian bba’s. The analysis of such modified Dempster’s rule is out of the scope of this paper.

s

√

m0(xj)

Example 4: Let us consider the same frame Θ(X), and same bba’s m1(.) and m2(.) as in the Example 3. Suppose that the
prior information is Bayesian and non uniform as follows: m0(x1) = P (X = x1) = 0.6, m0(x2) = P (X = x2) = 0.3 and
m0(x3) = P (X = x3) = 0.1. Applying Bayes rule (13) yields:









P (x1|Z1 ∩ Z2) = A2(x1)
GA2

= 0.2·0.5/0.6
2.2667 = 0.1667

2.2667 ≈ 0.0735

P (x2|Z1 ∩ Z2) = A2(x2)
GA2

= 0.3·0.1/0.3
2.2667 = 0.1000

2.2667 ≈ 0.0441

P (x3|Z1 ∩ Z2) = A2(x3)
GA2

= 0.5·0.4/0.1
2.2667 = 2.0000

2.2667 ≈ 0.8824

Applying Dempster’s rule yields mDS(xi) #= P (xi|Z1 ∩ Z2) because:








mDS(x1) = 1
1−0.9110 · 0.2 · 0.5 · 0.6 = 0.060

0.089 ≈ 0.6742

mDS(x2) = 1
1−0.9110 · 0.3 · 0.1 · 0.3 = 0.009

0.089 ≈ 0.1011

mDS(x3) = 1
1−0.9110 · 0.5 · 0.4 · 0.1 = 0.020

0.089 ≈ 0.2247

Therefore, one has in general6:

DS(m1(.), . . . ,ms(.);m0(.)) #= Bayes(P (X |Z1), . . . , P (X |Zs);P (X))

V. CONCLUSIONS

In this paper, we have analyzed in details the expression and the properties of Bayes rule of combination based on statistical
conditional independence assumption, as well as the emblematic Dempster’s rule of combination of belief functions introduced
by Shafer in his Mathematical Theory of evidence. We have clearly explained from a theoretical standpoint, and also on simple
examples, why Dempster’s rule is not a generalization of Bayes rule in general. The incompatibility of Dempster’s rule with
Bayes rule is due to its impossibility to deal with non uniform Bayesian priors in the same manner as Bayes rule does. Dempster’s
rule turns to be compatible with Bayes rule only in two very particular cases: 1) if all the Bayesian bba’s to combine (including
the prior) focus on same state (i.e. there is a perfect conjunctive consensus between the sources), or 2) if all the bba’s to combine
(excluding the prior) are Bayesian, and if the prior bba cannot help to discriminate a particular state of the frame of discernment
(i.e. the prior bba is either vacuous, or Bayesian and uniform). Except in these two very particular cases, Dempster’s rule is
totally incompatible with Bayes rule. Therefore, Dempster’s rule cannot be claimed to be a generalization of Bayes fusion rule,
even when the bba’s to combine are Bayesian.
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Bayesian BBA

 Belief functions and DST

DS rule is incompatible with Bayes rule in general. 
DS rule is compatible with Bayes rule only if the prior is uniform or vacuous.

[Dezert/Tchamova/Han/Tacnet 2013]
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Major innovations of DST

- New combination rule for belief functions (DS rule)
- New appealing mathematical formalism of (quantitative) belief functions
- Important paradigm shift for modeling uncertainty

... but BF and DST have never been fully accepted by a part of scientific 
community mainly because

- Independence between sources of evidence has never been well defined

- Doubts on the validity of DS rule

- Good experimental protocol to validate DST and DS rule is lacking

See Zadeh 1979,Yager 1983, Lemmer 1985, Dubois 1986, Pearl 1988,Voorbraak 1991, 
Wang 1994, Walley 1996, Fixsen et al. 1997, Gelman 2006, Dezert & al. 2012, etc

 Belief functions and DST
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What we have shown

- the problem of validity of DST is not due to conflict level, but the absolute 
truth interpretation of proposition by Shafer for each source.

- the conflict (high or low) can be totally ignored through DS rule.

- the dictatorial power of DS rule to fuse equi-reliable sources of evidence.

 Belief functions and DST

Recommendation

BF are mathematically appealing and well defined, but donʼt use DS rule to 
combine them, even in low conflicting situations.

- In [Dezert-Tchamova 2014], we have proved a logical contradiction in the 
foundations of DST.
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How to better prevent troubles in fusion of sources of evidence ?

Some tricks to reduce troubles with DS rule

Switch to new better (more efficient) techniques to fusion vague, 
uncertain, imprecise, conflicting quantitative and qualitative information 
fusion for static or dynamic problematics.

1) Apply ad-hoc thresholdings on the conflict to accept (or reject) DS result.

2) Modify input BBAs, or apply discounting techniques on sources. 
    - How to be sure that no problem will occur with DS rule after discounting ? 
    - How to discount sources when no statistical data is available ?

3) Mix the two previous strategies.

 Belief functions and DST

This is what DSmT proposes.



22

Part 2

Introduction to DSmT
(Dezert-Smarandache Theory) 
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DSmT versus DST in shortContradiction
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Fundamental theorem

Shafer’s interpretation: A source can provide absolute truth from partial
knowledge, observation, experience, ...

Our interpretation: A source can provide only a relative truth from
partial knowledge, observation, experience, ...

Shafer’s interpretation yields to a logical contradiction in foundations of DST
which can be stated as follows

Theorem : Dempster-Shafer Theory is wrong because its foundation is
based on an inherent logical contradiction in Dempster-Shafer rule of
combination.

Contradiction
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Simple
examples

On the
validity of
DS rule
A more
emblematic
example

DST
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theorem

Proof of the
theorem

Conclusions

Fundamental theorem

Shafer’s interpretation: A source can provide absolute truth from partial
knowledge, observation, experience, ...

Our interpretation: A source can provide only a relative truth from
partial knowledge, observation, experience, ...

Shafer’s interpretation yields to a logical contradiction in foundations of DST
which can be stated as follows

Theorem : Dempster-Shafer Theory is wrong because its foundation is
based on an inherent logical contradiction in Dempster-Shafer rule of
combination.

... but such interpretation yields a logical contradiction in 
DST foundations and counter-intuitive/disputable results in 
applications.

Introduction to DSmT 

This new interpretation makes differences in the way to 
process belief functions.
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Main references

http://www.onera.fr/fr/staff/jean-dezert
http://www.smarandache.com/DSmT.htm

F. Smarandache, J. Dezert (Eds), Advances and 
applications of DSmT for information fusion, Vols. 
1-4, 2004, 2006, 2009 & 2015.

Free toolboxes

http://bfasp.iutlan.univ-rennes1.fr/wiki/index.php/Toolboxes
http://martin.iutlan.univ-rennes1.fr/Doc/GeneralBeliefFunctionsFramework.tar

Free e-books

Introduction to DSmT 

http://www.onera.fr/fr/staff/jean-dezert
http://www.onera.fr/fr/staff/jean-dezert
http://www.smarandache.com/DSmT.htm
http://www.smarandache.com/DSmT.htm
http://bfasp.iutlan.univ-rennes1.fr/wiki/index.php/Toolboxes
http://bfasp.iutlan.univ-rennes1.fr/wiki/index.php/Toolboxes
http://martin.iutlan.univ-rennes1.fr/Doc/GeneralBeliefFunctionsFramework.tar
http://martin.iutlan.univ-rennes1.fr/Doc/GeneralBeliefFunctionsFramework.tar
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Why to use DSmT

It is a natural extension of the belief function framework to work with
 - different models for the frame (not only Shaferʼs model)
 - with (possibly imprecise) quantitative belief functions
 - with qualitative belief functions (expressed as labels)
 - new PCR rules of combination, and conditioning
 - new probabilistic transformation for decision-making support

- provides better results in fusion applications than DST
- deals with static and dynamic frames in a same general framework
- can cover broader fields of applications (because of more flexibility)

What is DSmT

Drawback of DSmT

- its higher complexity (from theoretical and implementation standpoints)

Introduction to DSmT 
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Free DSm model 

No constraint on elements of the frame 

Hybrid DSm model 

Shaferʼs model = specific hybrid model
All exhaustive elements of the frame are known to be 
truly exclusive (i.e. a «refinement» is implicitly done)

We introduce integrity constraints into 
the free DSm model. 

Parts can have vague boundaries

Parts have precise boundaries

Introduction to DSmT 
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Abstract – This paper presents in detail the generalized pig-

nistic transformation (GPT) succinctly developed in the Dezert-

Smarandache Theory (DSmT) framework as a tool for decision

process. The GPT allows to provide a subjective probability mea-

sure from any generalized basic belief assignment given by any

corpus of evidence. We mainly focus our presentation on the 3D

case and provide the complete result obtained by the GPT and its

validation drawn from the probability theory.

Keywords: Dezert-Smarandache Theory (DSmT), Dempster-

Shafer Theory,pignistic transformation, subjective probability,

pignistic probability, plausible and paradoxical reasoning, DSm

cardinality, hybrid model, data fusion, decision-making, conflict,

processing.

1 Introduction

In the recent theory of plausible and paradoxical reason-

ing (DSmT) developed by Dezert and Smarandache [2, 10],

a new generalized pignistic transformation has been pro-

posed to construct a subjective probability measure P{.}
from any generalized basic belief assignmentm(.) defined
over the hyper-power set DΘ. In reference [2], a simple

example of such generalized pignistic transformation has

been presented only for the case n = |Θ| = 2. In this
paper, we present the complete derivation of this pignistic

transformation for the case n = |Θ| = 3 and we generalize
the result. Before introducing the GPT, it is however nec-

essary to briefly present the DSmT [1, 2, 3, 4, 5, 10] with

respect to the Dempster-Shafer Theory (DST) [9].

2 Foundations of the DST and DSmT

2.1 The DST and the Shafer’s model

The Shafer’s model, denoted here M0(Θ), on which is
based the Dempster-Shafer Theory, assumes an exhaustive

and exclusive frame of discernment of the problem under

consideration Θ = {θ1, θ2, . . . , θn}. The model requires
actually that an ultimate refinement of the problem is pos-

sible so that θi can always be well precisely defined/iden-

tified in such a way that we are sure that they are exclu-

sive and exhaustive. From this model, a basic belief as-

signment (bba) mi(.) : 2Θ → [0, 1] such that mi(∅) = 0

∗Partial support by the COST action 274 TARSKI acknowl-

edged.

and
∑

A∈2Θ mi(A) = 1 associated to a given body of evi-
dence Bi is defined, where 2Θ is the power set ofΘ, i.e. the
set of all subsets of Θ. Within DST, the fusion (combina-
tion) of two independent sources of evidence B1 and B2 is

obtained through the Dempster’s rule of combination [9] :

[m1 ⊕ m2](∅) = 0 and ∀B %= ∅ ∈ 2Θ:

[m1 ⊕ m2](B) =

∑

X∩Y =B m1(X)m2(Y )

1 −
∑

X∩Y =∅ m1(X)m2(Y )
(1)

The notation
∑

X∩Y =B represents the sum over all

X, Y ∈ 2Θ such that X ∩ Y = B. The Dempster’s sum
m(.) ! [m1⊕m2](.) is considered as a basic belief assign-
ment if and only if the denominator in equation (1) is non-

zero. The term k12 !
∑

X∩Y =∅ m1(X)m2(Y ) is called
degree of conflict between the sources B1 and B2. When

k12 = 1, the Dempster’s sum m(.) does not exist and the
bodies of evidences B1 and B2 are said to be in full con-

tradiction. This rule of combination can be extended eas-

ily for the combination of n > 2 independent sources of
evidence. The DST, although very attractive because of its

solid mathematical ground, presents however several weak-

nesses and limitations because of the Shafer’s model itself

(which does not necessary hold in some fusion problems in-

volving continuous and ill-defined concepts), the justifica-

tion of the Dempster’s rule of combination frequently sub-

ject to criticisms, but mainly because of counter-intuitive

results given by the Dempster’s rule when the conflict be-

tween sources becomes important. Several classes of infi-

nite counter-examples to the Dempster’s rule can be found

in [13]. To overcome these limitations, Jean Dezert and

Florentin Smarandache propose a new mathematical theory

based on other models (free or hybrid DSm models) with

new reliable rules of combinations able to deal with any

kind of sources ( imprecises, uncertain and paradoxist, i.e.

highly conflicting). This is presented in next subsections.

2.2 The DSmT based on the free DSmModel

The foundations of the DSmT (Dezert-Smarandache The-

ory) is to abandon the Shafer’s model (i.e. the exclusivity

constraint between θi of Θ) just because for some fusion
problems it is impossible to define/characterize the problem

in terms of well-defined/precise and exclusive elements.

The free DSm model, denotedMf (Θ), on which is based

Finite set of exhaustive elements 
(discrete/continuous/fuzzy/relative concepts)

|2Θref = SΘ � (Θ,∪,∩, c(.))| > |DΘ = (Θ,∪,∩)| > |2Θ = (Θ,∪)|

GΘ represents the generic notation either for 2Θ, SΘ or DΘ including eventually integrity constraints.

A ∩B A B A ∪B
m(.) 0.4 0.2 0.1 0.3

Table I
QUANTITATIVE INPUTS FOR EXAMPLE 5

A B C A ∪B A ∪ C B ∪ C A ∪B ∪ C
m(.) 0.35 0.25 0.02 0.20 0.07 0.05 0.06

Table II
QUANTITATIVE INPUTS FOR EXAMPLE 5

A B C A ∪B A ∪ C B ∪ C A ∪B ∪ C
m(.) 0.10 0 0.20 0.30 0.10 0 0.30

Table III
QUANTITATIVE INPUTS FOR EXAMPLE 5

We consider the hybrid DSm model in which all intersections of elements of Θ are empty, but A ∩ B. In this case, GΘ

reduces to 9 elements {∅, A∩B, A, B,C, A∪B, A∪C, B ∪C, A∪B ∪C}. The input masses of focal elements are given by
m(A ∩B) = 0.20, m(A) = 0.10, m(C) = 0.20, m(A ∪B) = 0.30, m(A ∪ C) = 0.10, and m(A ∪B ∪ C) = 0.10. In order
to apply Sudano’s and Cuzzolin’s mappings, we need to work on the refined frame Θref with Shafer’s model as depicted on
Figure 1 and masses given in the Table XV.

A ∩B ≡ D� A ≡ A� ∪D� C ≡ C�

m(.) 0.2 0.1 0.2

Table IV
QUANTITATIVE INPUTS ON THE REFINED FRAME FOR EXAMPLE 8

A ∪B ≡ A� ∪B� ∪D� A ∪ C ≡ A� ∪ C� ∪D� A ∪B ∪ C ≡ A� ∪B� ∪ C� ∪D�

m(.) 0.3 0.1 0.1

Table V
QUANTITATIVE INPUTS ON THE REFINED FRAME FOR EXAMPLE 8

One sees from the Table XVI that DSmP�→0 provides the best results in term of PIC metric. The refined frame has been
defined as: Θref = {A� � A \ (A ∩B), B� � B \ (A ∩B), C � � C, D� � A ∩B} according to Figure 1.

DSmP�(A) =
m(A) + � · C(A)
m(A) + � · C(A)

· m(A) +
0

m(B) + � · C(B)
· m(B) +

m(A) + � · C(A)
m(A) + m(B) + � · C(A ∪B)

· m(A ∪ B) (1)

DSmP�(B) =
0

m(A) + � · C(A)
· m(A) +

m(B) + � · C(B)
m(B) + � · C(B)

· m(B) +
m(B) + � · C(B)

m(A) + m(B) + � · C(A ∪B)
· m(A ∪ B) (2)

DSmP�(A∪B) =
m(A) + � · C(A)
m(A) + � · C(A)

·m(A) +
m(B) + � · C(B)
m(B) + � · C(B)

·m(B) +
m(A) + m(B) + � · C(A ∪B)
m(A) + m(B) + � · C(A ∪B)

·m(A∪B) (3)

Since we use Shafer’s model, C(A) = C(B) = 1 and C(A ∪B) = 2,

the previous expressions reduce to

Super-power set = power set of the refined frame

Power sets, Hyper-power set (Dedekindʼs lattice) and Super-power sets

Fusion spaces

Introduction to DSmT 
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Belief functions in DSmT

m(.) : GΘ → [0, 1] m(∅) = 0
�

A∈GΘ

m(A) = 1and

where GΘ is the fusion space (i.e. 2Θ, DΘ, or SΘ = 2Θrefined)

Bel(A) =
�

B⊆A
B∈GΘ

m(B) Pl(A) =
�

B∩A �=∅
B∈GΘ

m(B)

One can also define qualitative BBAʼs (using labels), and imprecise 
admissible (quantitative or qualitative) BBAʼs - see [DSmTBooks]

Introduction to DSmT 

and
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Why using new fusion rules in DSmT

To not increase the uncertainty in the fusion of BBAs more than justified

Proportional Conflict Redistribution (PRC) rules of DSmT

Fact: Decision-makers/humans donʼt like to take decision under uncertainty.
Uncertainty reduction is sought thank to an efficient fusion process.

To circumvent problems of DS rule

Exploit separately information entailed in all partial conflicts 
(and not use directly the whole conflicting mass).

PCR5/6  transfers the partial conflicting masses to the elements involved 
in the partial conflict proportionally to masses m1(.) and m2(.) of 
elements involved in the partial conflict ONLY.

Introduction to DSmT 
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The Fusion challenge:

Principle of PCR rules of combination

1 - Apply the conjunctive rule

2 - Calculate the total or partial conflicting masses

3 - Redistribute the (total or partial) conflicting mass proportionally on non-
empty sets according to the integrity constraints one has for the FoD

Example:

The proportional transfer of conflicting mass can be done in many ways.

- PCR rule #5 (PCR5) proposed by Smarandache & Dezert [DSmTBook3]
- PCR rule #6 (PCR6) proposed by Martin & Osswald [DSmTBook3]

Introduction to DSmT 

PCR5 = PCR6  for combining 2 sources

PCR5 ≠ PCR6  for combining s>2 sources
Which one is better? Why?
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The Fusion challenge:

Combining two BBAs with PCR5/6 rules

Example:

The PCR5 and PCR6 fusion rules simplify greatly and coincide for the combination of two sources (s = 2). In such simplest
case, one always gets the resulting bba mPCR5/6(.) = mPCR6

1,2 (.) = mPCR5
1,2 (.) expressed as mPCR5/6(∅) = 0 and for all X "= ∅

in GΘ

mPCR5/6(X) =
∑

X1,X2∈GΘ

X1∩X2=X

m1(X1)m2(X2)+

∑

Y ∈GΘ\{X}
X∩Y=∅

[
m1(X)2m2(Y )

m1(X) +m2(Y )
+

m2(X)2m1(Y )

m2(X) +m1(Y )
] (8)

mPCR5/6(X) =
∑

X1,X2∈2Θ

X1∩X2=X

m1(X1)m2(X2)+

∑

Y ∈2Θ\{X}
X∩Y=∅

[
m1(X)2m2(Y )

m1(X) +m2(Y )
+

m2(X)2m1(Y )

m2(X) +m1(Y )
] (9)

mPCR5/6(X) =
∑

X1,X2∈2Θ

X1∩X2=X

m1(X1)m2(X2) +
∑

Y ∈2Θ\{X}
X∩Y=∅

[
m1(X)2m2(Y )

m1(X) +m2(Y )
+

m2(X)2m1(Y )

m2(X) +m1(Y )
]

where all denominators in (9) are different from zero. If a denominator is zero, that fraction is discarded. All propositions/sets
are in a canonical form.

Example 1: See [2], Vol.2, Chap. 1 for more examples.

Let’s consider the frame of discernment Θ = {A,B} of exclusive elements. Here Shafer’s model holds so that GΘ = 2Θ =
{∅, A,B,A ∪B}. We consider two sources of evidences providing the following bba’s

m1(A) = 0.6 m1(B) = 0.3 m1(A ∪B) = 0.1

m2(A) = 0.2 m2(B) = 0.3 m2(A ∪B) = 0.5

Then the conjunctive consensus yields :
m12(A) = 0.44 m12(B) = 0.27 m12(A ∪B) = 0.05

with the conflicting mass
m12(A ∩B = ∅) = m1(A)m2(B) +m1(B)m2(A)

= 0.18 + 0.06 = 0.24

One sees that only A and B are involved in the derivation of the conflicting mass, but not A∪B. With PCR5/6, one redistributes
the partial conflicting mass 0.18 to A and B proportionally with the masses m1(A) and m2(B) assigned to A and B respectively,
and also the partial conflicting mass 0.06 to A and B proportionally with the masses m2(A) and m1(B) assigned to A and B
respectively, thus one gets two weighting factors of the redistribution for each corresponding set A and B respectively. Let x1

be the conflicting mass to be redistributed to A, and y1 the conflicting mass redistributed to B from the first partial conflicting
mass 0.18. This first partial proportional redistribution is then done according

x1

0.6
=

y1
0.3

=
x1 + y1
0.6 + 0.3

=
0.18

0.9
= 0.2

whence x1 = 0.6 · 0.2 = 0.12, y1 = 0.3 · 0.2 = 0.06. Now let x2 be the conflicting mass to be redistributed to A, and
y2 the conflicting mass redistributed to B from the second the partial conflicting mass 0.06. This second partial proportional
redistribution is then done according

x2

0.2
=

y2
0.3

=
x2 + y2
0.2 + 0.3

=
0.06

0.5
= 0.12

whence x2 = 0.2 · 0.12 = 0.024, y2 = 0.3 · 0.12 = 0.036. Thus one finally gets:
mPCR5/6(A) = 0.44 + 0.12 + 0.024 = 0.584

mPCR5/6(B) = 0.27 + 0.06 + 0.036 = 0.366

mPCR5/6(A ∪B) = 0.05 + 0 = 0.05

With PCR5

mPCR5(A) = 0.50 + 0.12 = 0.62
mPCR5(B) = 0.12 + 0.06 = 0.18
mPCR5(A ∪ B) = 0.20 + 0 = 0.20

We did not take into consideration the sum of masses of columnA, i.e. m1(A)+ m2(A) = 0.6+ 0.2 = 0.8, since clearly
m2(A) = 0.2 has no impact on the conflicting mass. In this second example, the result obtained by PCR5 is different
from WAO, PCR1, PCR2, PCR3 and PCR4 which are given by

With PCR1 or WAO With PCR2

mPCR1(A) = 0.572 mPCR2(A) ≈ 0.631
mPCR1(B) = 0.147 mPCR2(B) ≈ 0.169

mPCR1(A ∪ B) = 0.281 mPCR2(A ∪ B) = 0.20

With PCR3 With PCR4

mPCR3(A) ≈ 0.631 mPCR4(A) ≈ 0.645
mPCR3(B) ≈ 0.169 mPCR4(B) ≈ 0.155

mPCR3(A ∪ B) = 0.20 mPCR4(A ∪ B) = 0.20

7.3.3 A two-source example 3

Let’s go further modifying this time the previous example and considering:

A B A ∪ B
m1(.) 0.6 0.3 0.1

m2(.) 0.2 0.3 0.5

m12(.) 0.44 0.27 0.05

The conflicting mass k12 = m12(A ∩ B) = m1(A)m2(B) + m1(B)m2(A) = 0.18 + 0.06 = 0.24 is now different
from the two previous examples, which means that m2(A) = 0.2 andm1(B) = 0.3 did make an impact on the conflict;
why?, because m2(A)m1(B) = 0.2 · 0.3 = 0.06 was added to the conflicting mass. Therefore A and B are involved in

the conflict (A ∪ B is not involved), hence only A and B deserve a part of the conflicting mass, A ∪ B does not deserve.

With PCR5, one redistributes the partial conflicting mass 0.18 to A and B proportionally with the masses m1(A) and
m2(B) assigned to A and B respectively, and also the partial conflicting mass 0.06 to A and B proportionally with the

masses m2(A) and m1(B) assigned to A and B respectively, thus one gets two weighting factors of the redistribution

for each corresponding set A and B respectively. Let x1 be the conflicting mass to be redistributed to A, and y1 the

conflicting mass redistributed to B from the first partial conflicting mass 0.18. This first partial proportional redistribution

is then done according x1/0.6 = y1/0.3 = (x1 + y1)/(0.6 + 0.3) = 0.18/0.9 = 0.2 whence x1 = 0.6 · 0.2 = 0.12,
y1 = 0.3 ·0.2 = 0.06. Now let x2 be the conflicting mass to be redistributed toA, and y2 the conflicting mass redistributed

to B from second the partial conflicting mass 0.06. This second partial proportional redistribution is then done according

x2/0.2 = y2/0.3 = (x2 + y2)/(0.2+0.3) = 0.06/0.5 = 0.12 whence x2 = 0.2 · 0.12 = 0.024, y2 = 0.3 · 0.12 = 0.036.
Thus, one gets now:

With PCR5

mPCR5(A) = 0.44 + 0.12 + 0.024 = 0.584
mPCR5(B) = 0.27 + 0.06 + 0.036 = 0.366

mPCR5(A ∪ B) = 0.05 + 0 = 0.05

The result is different from PCR1, PCR2, PCR3 and PCR4 since one has7:

With PCR1 With PCR2 ∼PCR3
mPCR1(A) = 0.536 mPCR2(A) ≈ 0.577
mPCR1(B) = 0.342 mPCR2(B) ≈ 0.373

mPCR1(A ∪ B) = 0.122 mPCR2(A ∪ B) = 0.05

With PCR4 With Dempster’s rule

mPCR4(A) ≈ 0.589 mDS(A) ≈ 0.579
mPCR4(B) ≈ 0.361 mDS(B) ≈ 0.355

mPCR4(A ∪ B) = 0.05 mDS(A ∪ B) ≈ 0.066

One clearly sees that mDS(A ∪ B) gets some mass from the conflicting mass although A ∪ B does not deserve any part

of the conflicting mass since A ∪ B is not involved in the conflict (only A and B are involved in the conflicting mass).

Dempster’s rule appears to us less exact than PCR5.

7The verification is left to the reader.

Example

A ∪ B ∪ C in minC version a), and worse in minC version b) to A, B, C, A ∪ B, A ∪ C, B ∪ C and A ∪ B ∪ C (see

example in section 5). PCR4 rule improves this and redistributes the mass m(C ∩ (A ∪ B)) to C and A ∪ B only, since

only them were involved in the conflict: i.e. m12(C ∩ (A ∪ B)) = m1(C)m2(A ∪ B) + m2(C)m1(A ∪ B), clearly the
other elements A, B, A∪B ∪C that get some mass in minC were not involved in the conflict C ∩ (A∪B). If at least one
conjunctive rule result is null, then the partial conflicting mass which involved this set is redistributed proportionally to the

column sums corresponding to each set. Thus PCR4 does a more exact redistribution than both minC versions (versions a)

and b) explicated in section 5. The PCR4 rule partially extends Dempster’s rule in the sense that instead of redistributing

the total conflicting mass as within Dempster’s rule, PCR4 redistributes partial conflicting masses, hence PCR4 does

a better refined redistribution than Dempster’s rule; PCR4 and Dempster’s rule coincide for Θ = {A,B}, in Shafer’s
model, with s ≥ 2 sources, and such that m12...s(A) > 0, m12...s(B) > 0, and m12...s(A ∪ B) = 0. Thus according to
authors opinion, PCR4 rule redistributes better than Dempster’s rule since in PCR one goes on partial conflicting, while

Dempster’s rule redistributes the conflicting mass to all non-empty sets whose conjunctive mass is nonzero, even those

not involved in the conflict.

10.2 The PCR4 formula

The PCR4 formula for s = 2 sources: ∀X ∈ G \ {∅}

mPCR4(X) = m12(X) · [1 +
�

Y ∈G
c(Y ∩X)=∅

m12(X ∩ Y )
m12(X) + m12(Y )

] (29)

withm12(X) andm12(Y ) nonzero. m12(.) corresponds to the conjunctive consensus, i.e.

m12(X) �
�

X1,X2∈G
X1∩X2=X

m1(X1)m2(X2) .

If at least one ofm12(X) orm12(Y ) is zero, the fraction is discarded and the massm12(X ∩ Y ) is transferred to X and

Y proportionally with respect to their non-zero column sum of masses; if both their column sums of masses are zero, then

one transfers to the partial ignoranceX∪Y ; if even this partial ignorance is empty then one transfers to the total ignorance.

Let G = {X1, . . . , Xn} �= ∅ (G being either the power-set or hyper-power set depending on the model we want to

deal with), n ≥ 2, ∀X �= ∅, X ∈ G, the general PCR4 formula for s ≥ 2 sources is given by ∀X ∈ G \ {∅}

mPCR4(X) = m12...s(X) · [1 +
s−1�

k=1

SPCR4(X, k)] (30)

with

SPCR4(X, k) �
�

Xi1 ,...,Xik
∈G\{X}

{i1,...,ik}∈Pk({1,2,...,n})
c(X∩Xi1∩...∩Xik

)=∅

m12...s(X ∩Xi1 ∩ . . . ∩Xik)
m12...s(X) +

�k
j=1 m12...s(Xij )

(31)

with allm12...s(X),m12...s(X1), . . . ,m12...s(Xn) nonzero and where the first term of the right side of (30) corresponds to
the conjunctive consensus between s sources (i.e. m12...s(.)). If at least one ofm12...s(X),m12...s(X1), . . . ,m12...s(Xn)
is zero, the fraction is discarded and the mass m12...s(X ∩ X1 ∩ X2 ∩ . . . ∩ Xk) is transferred to X , X1, . . . , Xk

proportionally with respect to their corresponding column sums in the mass matrix.

10.3 Example for PCR4 versus minC

Let’s consider Θ = {A,B}, Shafer’s model and the the two following bbas:

m1(A) = 0.6 m1(B) = 0.3 m1(A ∪B) = 0.1

m2(A) = 0.2 m2(B) = 0.3 m2(A ∪B) = 0.5

Then the conjunctive consensus yields :

m12(A) = 0.44 m12(B) = 0.27 m12(A ∪B) = 0.05

with the conflicting mass

k12 = m12(A ∩B) = m1(A)m2(B) + m1(B)m2(A) = 0.24

21

See [DSmTBooks] for general formulas

With PCR5

mPCR5(A) = 0.50 + 0.12 = 0.62
mPCR5(B) = 0.12 + 0.06 = 0.18
mPCR5(A ∪ B) = 0.20 + 0 = 0.20

We did not take into consideration the sum of masses of columnA, i.e. m1(A)+ m2(A) = 0.6+ 0.2 = 0.8, since clearly
m2(A) = 0.2 has no impact on the conflicting mass. In this second example, the result obtained by PCR5 is different
from WAO, PCR1, PCR2, PCR3 and PCR4 which are given by

With PCR1 or WAO With PCR2

mPCR1(A) = 0.572 mPCR2(A) ≈ 0.631
mPCR1(B) = 0.147 mPCR2(B) ≈ 0.169

mPCR1(A ∪ B) = 0.281 mPCR2(A ∪ B) = 0.20

With PCR3 With PCR4

mPCR3(A) ≈ 0.631 mPCR4(A) ≈ 0.645
mPCR3(B) ≈ 0.169 mPCR4(B) ≈ 0.155

mPCR3(A ∪ B) = 0.20 mPCR4(A ∪ B) = 0.20

7.3.3 A two-source example 3

Let’s go further modifying this time the previous example and considering:

A B A ∪ B
m1(.) 0.6 0.3 0.1

m2(.) 0.2 0.3 0.5

m12(.) 0.44 0.27 0.05

The conflicting mass k12 = m12(A ∩ B) = m1(A)m2(B) + m1(B)m2(A) = 0.18 + 0.06 = 0.24 is now different from
the two previous examples, which means thatm2(A) = 0.2 andm1(B) = 0.3 did make an impact on the conflict; why?,
because m2(A)m1(B) = 0.2 · 0.3 = 0.06 was added to the conflicting mass. Therefore A and B are involved in the

conflict (A ∪ B is not involved), hence only A and B deserve a part of the conflicting mass, A ∪ B does not deserve.

With PCR5, one redistributes the partial conflicting mass 0.18 to A and B proportionally with the massesm1(A) and
m2(B) assigned to A and B respectively, and also the partial conflicting mass 0.06 to A and B proportionally with the

massesm2(A) andm1(B) assigned to A and B respectively, thus one gets two weighting factors of the redistribution for

each corresponding set A and B respectively.

Let x1 be the conflicting mass to be redistributed to A, and y1 the conflicting mass redistributed to B from the first partial

conflicting mass 0.18.

This first partial proportional redistribution is then done according

x1/0.6 = y1/0.3 = (x1 + y1)/(0.6 + 0.3) = 0.18/0.9 = 0.2

whence x1 = 0.6 · 0.2 = 0.12, y1 = 0.3 · 0.2 = 0.06.

Let x2 be the conflicting mass to be redistributed to A, and y2 the conflicting mass redistributed to B from second the

partial conflicting mass 0.06.

This second partial proportional redistribution is then done according

x2/0.2 = y2/0.3 = (x2 + y2)/(0.2 + 0.3) = 0.06/0.5 = 0.12

whence x2 = 0.2 · 0.12 = 0.024, y2 = 0.3 · 0.12 = 0.036.
Thus, one gets now:

With PCR5

mPCR5(A) = 0.44 + 0.12 + 0.024 = 0.584
mPCR5(B) = 0.27 + 0.06 + 0.036 = 0.366

mPCR5(A ∪ B) = 0.05 + 0 = 0.05

With PCR5

mPCR5(A) = 0.50 + 0.12 = 0.62
mPCR5(B) = 0.12 + 0.06 = 0.18
mPCR5(A ∪ B) = 0.20 + 0 = 0.20

We did not take into consideration the sum of masses of columnA, i.e. m1(A)+ m2(A) = 0.6+ 0.2 = 0.8, since clearly
m2(A) = 0.2 has no impact on the conflicting mass. In this second example, the result obtained by PCR5 is different
from WAO, PCR1, PCR2, PCR3 and PCR4 which are given by

With PCR1 or WAO With PCR2

mPCR1(A) = 0.572 mPCR2(A) ≈ 0.631
mPCR1(B) = 0.147 mPCR2(B) ≈ 0.169

mPCR1(A ∪ B) = 0.281 mPCR2(A ∪ B) = 0.20

With PCR3 With PCR4

mPCR3(A) ≈ 0.631 mPCR4(A) ≈ 0.645
mPCR3(B) ≈ 0.169 mPCR4(B) ≈ 0.155

mPCR3(A ∪ B) = 0.20 mPCR4(A ∪ B) = 0.20

7.3.3 A two-source example 3

Let’s go further modifying this time the previous example and considering:

A B A ∪ B
m1(.) 0.6 0.3 0.1

m2(.) 0.2 0.3 0.5

m12(.) 0.44 0.27 0.05

The conflicting mass k12 = m12(A ∩ B) = m1(A)m2(B) + m1(B)m2(A) = 0.18 + 0.06 = 0.24 is now different from
the two previous examples, which means thatm2(A) = 0.2 andm1(B) = 0.3 did make an impact on the conflict; why?,
because m2(A)m1(B) = 0.2 · 0.3 = 0.06 was added to the conflicting mass. Therefore A and B are involved in the

conflict (A ∪ B is not involved), hence only A and B deserve a part of the conflicting mass, A ∪ B does not deserve.

With PCR5, one redistributes the partial conflicting mass 0.18 to A and B proportionally with the massesm1(A) and
m2(B) assigned to A and B respectively, and also the partial conflicting mass 0.06 to A and B proportionally with the

massesm2(A) andm1(B) assigned to A and B respectively, thus one gets two weighting factors of the redistribution for

each corresponding set A and B respectively.

Let x1 be the conflicting mass to be redistributed to A, and y1 the conflicting mass redistributed to B from the first partial

conflicting mass 0.18.

This first partial proportional redistribution is then done according

x1/0.6 = y1/0.3 = (x1 + y1)/(0.6 + 0.3) = 0.18/0.9 = 0.2

whence x1 = 0.6 · 0.2 = 0.12, y1 = 0.3 · 0.2 = 0.06.
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This second partial proportional redistribution is then done according
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Thus, one gets now:

With PCR5

mPCR5(A) = 0.44 + 0.12 + 0.024 = 0.584
mPCR5(B) = 0.27 + 0.06 + 0.036 = 0.366

mPCR5(A ∪ B) = 0.05 + 0 = 0.05

�
x1 = 0.6 · 0.2 = 0.12
y1 = 0.3 · 0.2 = 0.06�
x2 = 0.2 · 0.12 = 0.024
y2 = 0.3 · 0.12 = 0.036

The PCR5 and PCR6 fusion rules simplify greatly and coincide for the combination of two sources (s = 2). In such simplest
case, one always gets the resulting bba mPCR5/6(.) = mPCR6

1,2 (.) = mPCR5
1,2 (.) expressed as mPCR5/6(∅) = 0 and for all X "= ∅

in GΘ

mPCR5/6(X) =
∑

X1,X2∈GΘ

X1∩X2=X

m1(X1)m2(X2)+

∑

Y ∈GΘ\{X}
X∩Y=∅

[
m1(X)2m2(Y )

m1(X) +m2(Y )
+

m2(X)2m1(Y )

m2(X) +m1(Y )
] (8)

mPCR5/6(X) =
∑

X1,X2∈2Θ

X1∩X2=X

m1(X1)m2(X2)+

∑

Y ∈2Θ\{X}
X∩Y=∅
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m1(X) +m2(Y )
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m2(X)2m1(Y )

m2(X) +m1(Y )
] (9)
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X∩Y=∅
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m2(X)2m1(Y )

m2(X) +m1(Y )
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where all denominators in (9) are different from zero. If a denominator is zero, that fraction is discarded. All propositions/sets
are in a canonical form.

Example 1: See [2], Vol.2, Chap. 1 for more examples.

Let’s consider the frame of discernment Θ = {A,B} of exclusive elements. Here Shafer’s model holds so that GΘ = 2Θ =
{∅, A,B,A ∪B}. We consider two sources of evidences providing the following bba’s

m1(A) = 0.6 m1(B) = 0.3 m1(A ∪B) = 0.1

m2(A) = 0.2 m2(B) = 0.3 m2(A ∪B) = 0.5
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with the conflicting mass
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One sees that only A and B are involved in the derivation of the conflicting mass, but not A∪B. With PCR5/6, one redistributes
the partial conflicting mass 0.18 to A and B proportionally with the masses m1(A) and m2(B) assigned to A and B respectively,
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be the conflicting mass to be redistributed to A, and y1 the conflicting mass redistributed to B from the first partial conflicting
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The mass put on 
ignorance with PCR5/6 
is lower than with DST
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The Fusion challenge:

Example:

A ∪ B ∪ C in minC version a), and worse in minC version b) to A, B, C, A ∪ B, A ∪ C, B ∪ C and A ∪ B ∪ C (see

example in section 5). PCR4 rule improves this and redistributes the mass m(C ∩ (A ∪ B)) to C and A ∪ B only, since

only them were involved in the conflict: i.e. m12(C ∩ (A ∪ B)) = m1(C)m2(A ∪ B) + m2(C)m1(A ∪ B), clearly the
other elements A, B, A∪B ∪C that get some mass in minC were not involved in the conflict C ∩ (A∪B). If at least one
conjunctive rule result is null, then the partial conflicting mass which involved this set is redistributed proportionally to the

column sums corresponding to each set. Thus PCR4 does a more exact redistribution than both minC versions (versions a)

and b) explicated in section 5. The PCR4 rule partially extends Dempster’s rule in the sense that instead of redistributing

the total conflicting mass as within Dempster’s rule, PCR4 redistributes partial conflicting masses, hence PCR4 does

a better refined redistribution than Dempster’s rule; PCR4 and Dempster’s rule coincide for Θ = {A,B}, in Shafer’s
model, with s ≥ 2 sources, and such that m12...s(A) > 0, m12...s(B) > 0, and m12...s(A ∪ B) = 0. Thus according to
authors opinion, PCR4 rule redistributes better than Dempster’s rule since in PCR one goes on partial conflicting, while

Dempster’s rule redistributes the conflicting mass to all non-empty sets whose conjunctive mass is nonzero, even those

not involved in the conflict.

10.2 The PCR4 formula

The PCR4 formula for s = 2 sources: ∀X ∈ G \ {∅}

mPCR4(X) = m12(X) · [1 +
�

Y ∈G
c(Y ∩X)=∅

m12(X ∩ Y )
m12(X) + m12(Y )

] (29)

withm12(X) andm12(Y ) nonzero. m12(.) corresponds to the conjunctive consensus, i.e.

m12(X) �
�

X1,X2∈G
X1∩X2=X

m1(X1)m2(X2) .

If at least one ofm12(X) orm12(Y ) is zero, the fraction is discarded and the massm12(X ∩ Y ) is transferred to X and

Y proportionally with respect to their non-zero column sum of masses; if both their column sums of masses are zero, then

one transfers to the partial ignoranceX∪Y ; if even this partial ignorance is empty then one transfers to the total ignorance.

Let G = {X1, . . . , Xn} �= ∅ (G being either the power-set or hyper-power set depending on the model we want to

deal with), n ≥ 2, ∀X �= ∅, X ∈ G, the general PCR4 formula for s ≥ 2 sources is given by ∀X ∈ G \ {∅}

mPCR4(X) = m12...s(X) · [1 +
s−1�

k=1

SPCR4(X, k)] (30)

with

SPCR4(X, k) �
�

Xi1 ,...,Xik
∈G\{X}

{i1,...,ik}∈Pk({1,2,...,n})
c(X∩Xi1∩...∩Xik

)=∅

m12...s(X ∩Xi1 ∩ . . . ∩Xik)
m12...s(X) +

�k
j=1 m12...s(Xij )

(31)

with allm12...s(X),m12...s(X1), . . . ,m12...s(Xn) nonzero and where the first term of the right side of (30) corresponds to
the conjunctive consensus between s sources (i.e. m12...s(.)). If at least one ofm12...s(X),m12...s(X1), . . . ,m12...s(Xn)
is zero, the fraction is discarded and the mass m12...s(X ∩ X1 ∩ X2 ∩ . . . ∩ Xk) is transferred to X , X1, . . . , Xk

proportionally with respect to their corresponding column sums in the mass matrix.

10.3 Example for PCR4 versus minC

Let’s consider Θ = {A,B}, Shafer’s model and the the two following bbas:

m1(A) = 0.6 m1(B) = 0.3 m1(A ∪B) = 0.1

m2(A) = 0.2 m2(B) = 0.3 m2(A ∪B) = 0.5

Then the conjunctive consensus yields :

m12(A) = 0.44 m12(B) = 0.27 m12(A ∪B) = 0.05

with the conflicting mass

k12 = m12(A ∩B) = m1(A)m2(B) + m1(B)m2(A) = 0.24

21

Shaferʼs model

Letʼs consider the partial conflicting mass.

• The difference between PCR5 and PCR6 fusion rules

For the two sources case, PCR5 and PCR6 fusion rules coincide. As soon as three (or more) sources are involved in the fusion
process, PCR5 and PCR6 differ in the way the proportional conflict redistribution is done. For example, let’s consider three
sources with bba’s m1(.), m2(.) and m3(.), A ∩ B = ∅ for the model of the frame Θ, and m1(A) = 0.6, m2(B) = 0.3,
m3(B) = 0.1.

m1(A) = 0.6 m1(B) = 0.3 m1(A ∪B) = 0.1

m2(A) = 0.2 m2(B) = 0.3 m2(A ∪B) = 0.5

m3(A) = 0.7 m3(B) = 0.1 m3(A ∪B) = 0.2

– With PCR5, the mass
m1(A)m2(B)m3(B) = 0.6 · 0.3 · 0.1 = 0.018

corresponding to a conflict is redistributed back to A and B only with respect to the following proportions respectively: xPCR5
A =

0.01714 and xPCR5
B = 0.00086 because the proportionalization requires

xPCR5
A

m1(A)
=

xPCR5
B

m2(B)m3(B)
=

m1(A)m2(B)m3(B)

m1(A) +m2(B)m3(B)

that is
xPCR5
A

0.6
=

xPCR5
B

0.03
=

0.018

0.6 + 0.03
≈ 0.02857

Thus
{

xPCR5
A = 0.60 · 0.02857 ≈ 0.01714

xPCR5
B = 0.03 · 0.02857 ≈ 0.00086

– With the PCR6 fusion rule, the partial conflicting mass m1(A)m2(B)m3(B) = 0.6 · 0.3 · 0.1 = 0.018 is redistributed back to
A and B only with respect to the following proportions respectively: xPCR6

A = 0.0108 and xPCR6
B = 0.0072 because the PCR6

proportionalization is done as follows:

xPCR6
A

m1(A)
=

xPCR6
B

m2(B) +m3(B)
=

m1(A)m2(B)m3(B)

m1(A) + (m2(B) +m3(B))

that is
xPCR6
A

0.6
=

xPCR6
B

0.3 + 0.1
=

0.018
0.6 + (0.3 + 0.1)

= 0.018

and therefore with PCR6, one gets finally the following redistributions to A and B:
{

xPCR6
A = 0.6 · 0.018 = 0.0108

xPCR6
B = (0.3 + 0.1) · 0.018 = 0.0072

In [2], Vol. 2, Chap. 2, Martin and Osswald have proposed PCR6 based on intuitive considerations and the authors have
shown through simulations that PCR6 is more stable than PCR5 in term of decision for combining s > 2 sources of evidence.
Based on these results and the relative ”simplicity” of implementation of PCR6 over PCR5, PCR6 has been considered more
interesting/efficient than PCR5 for combining 3 (or more) sources of evidences.

III. CONSISTENCY OF PCR6 WITH THE AVERAGING RULE

In this section we show why we also consider PCR6 as better than PCR5 for combining bba’s. But here, our argumentation is
not based on particular simulation results and decision-making as done by Martin and Osswald, but on a theoretical analysis of
the structure of PCR6 fusion rule itself. In particular, we show the full consistency of PCR6 rule with the averaging fusion rule
used to empirically estimate probabilities in random experiments. For doing this, it is necessary to simplify the original PCR6
fusion formula (6). Such simplification has already been proposed in [12] and the PCR6 fusion rule can be in fact rewritten as

mPCR6
1,2,...,s(∅) = 0

• The difference between PCR5 and PCR6 fusion rules

For the two sources case, PCR5 and PCR6 fusion rules coincide. As soon as three (or more) sources are involved in the fusion
process, PCR5 and PCR6 differ in the way the proportional conflict redistribution is done. For example, let’s consider three
sources with bba’s m1(.), m2(.) and m3(.), A ∩ B = ∅ for the model of the frame Θ, and m1(A) = 0.6, m2(B) = 0.3,
m3(B) = 0.1.

m1(A) = 0.6 m1(B) = 0.3 m1(A ∪B) = 0.1
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– With PCR5, the mass
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Introduction to DSmT 
Example of difference between PCR5 and PCR6 rules
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The Fusion challenge:

Example:

Advantages PCR5/6 rules work with any conflict, and outperfom DS rule.

Drawbacks Complexity, non-associativity

Introduction to DSmT 

This theorem does not hold for PCR5 (but in s=2 case), nor for DS rule.

Why PCR6 is better than PCR5 and DS rule

PCR6 can be used to estimate correctly frequentist probas in 
random binary experiment. DS and PCR5 do not work.

– With the PCR6 fusion rule, the partial conflicting mass
m1(A)m2(B)m3(B) = 0.6 · 0.3 · 0.1 = 0.018 is redistributed
back to A and B only with respect to the following proportions
respectively: xPCR6

A = 0.0108 and xPCR6
B = 0.0072 because

the PCR6 proportionalization is done as follows:

xPCR6
A

m1(A)
=

xPCR6
B

m2(B) +m3(B)
=

m1(A)m2(B)m3(B)

m1(A) + (m2(B) +m3(B))

that is
xPCR6
A

0.6
=

xPCR6
B

0.3 + 0.1
=

0.018
0.6 + (0.3 + 0.1)

= 0.018

and therefore with PCR6, one gets finally the following
redistributions to A and B:

{

xPCR6
A = 0.6 · 0.018 = 0.0108

xPCR6
B = (0.3 + 0.1) · 0.018 = 0.0072

In [2], Vol. 2, Chap. 2, Martin and Osswald have proposed
PCR6 based on intuitive considerations and the authors have
shown through simulations that PCR6 is more stable than
PCR5 in term of decision for combining s > 2 sources of
evidence. Based on these results and the relative ”simplicity”
of implementation of PCR6 over PCR5, PCR6 has been
considered more interesting/efficient than PCR5 for combining
3 (or more) sources of evidences.

III. CONSISTENCY OF PCR6 WITH THE AVERAGING RULE

In this section we show why we also consider PCR6
as better than PCR5 for combining bba’s. But here, our
argumentation is not based on particular simulation results
and decision-making as done by Martin and Osswald, but on
a theoretical analysis of the structure of PCR6 fusion rule
itself. In particular, we show the full consistency of PCR6 rule
with the averaging fusion rule used to empirically estimate
probabilities in random experiments. For doing this, it is
necessary to simplify the original PCR6 fusion formula (6).
Such simplification has already been proposed in [12] and the
PCR6 fusion rule can be in fact rewritten as

mPCR6
1,2,...,s(∅) = 0

mPCR6
1,2,...,s(X) = m1,2,...,s(X)+

s−1
∑

k=1

∑

Xi1
,Xi2

,...,Xik
∈2Θ\X

(
⋂k

j=1 Xij
)∩X=∅

∑

(i1,i2,...,ik)∈Ps({1,...,s})

[mi1(X) +mi2(X) + . . .+mik(X)]·

·
mi1(X) . . .mik(X)mik+1(Xik+1) . . .mis(Xis )

mi1(X) + . . .+mik(X) +mik+1(Xik+1) + . . .+mis(Xis )
(10)

where Ps({1, . . . , s}) is the set of all permutations of
the elements {1, 2, . . . , s}. It should be observed that Xi1 ,
Xi2 ,. . .,Xis may be different from each other, or some of them
equal and others different, etc.

We wrote this PCR6 general formula (10) in the style of
PCR5, different from Arnaud Martin & Christophe Oswald’s

notations, but actually doing the same thing. In order not
to complicate the formula of PCR6, we did not use more
summations or products after the third Sigma.

We now are able to establish the consistency of general
PCR6 formula with the Averaging fusion rule for the case of
binary bba’s through the following theorem 1.

Theorem: When s ≥ 2 sources of evidences provide binary
bba’s on 2Θ whose total conflicting mass is 1, then the PCR6
fusion rule coincides with the averaging fusion rule. Otherwise,
PCR6 and the averaging fusion rule provide in general different
results.

Proof 1: All s ≥ 2 bba’s are assumed binary, i.e. m(X) = 0
or 1 (two numerical values 0 and 1 only are allowed) for any
bba m(.) and for any set X in the focal elements. A focal
element in this case is an element X such that at least one of
the s binary sources assigns a mass equals to 1 to X . Let’s
suppose the focal elements are F1, F2,. . . , Fn.. Then the set
of bba’s to combine can be expressed as in the Table I. where

Table I. LIST OF BBA’S TO COMBINE.

bba’s \ Focal elem. F1 F2 . . . Fn

m1(.) ! ! . . . !
m2(.) ! ! . . . !

...
...

...
...

...
ms(.) ! ! . . . !

• all ! are 0’s or 1’s;

• on each row there is only a 1 (since the sum of
all masses of a bba is equal to 1) and all the other
elements are 0’s;

• also each column has at least an 1 (since all elements
are focals; and if there was a column corresponding
for example to the set Fp having only 0’s, then it
would result that the set Fp is not focal, i.e. that all
m(Fp) = 0).

Using PCR6, we first need to apply the conjunctive rule
to all s sources, and the result is a sum of products of the
form m1(X1)m2(X2) . . .ms(Xs) where X1, X2,. . . ,Xs, are
the focal elements F1, F2,. . . ,Fn in various permutations, with
s ≥ n. If s > n some focal elements Xi are repeated in
the productm1(X1)m2(X2) . . .ms(Xs). But there is only one
product of the form m1(X1)m2(X2) . . .ms(Xs) = 1 which
is not equal to zero, i.e. that product which has each factor
equals to ”1” (i.e. the product that collects from each row the
existing single 1). Since the total conflicting mass is equal to
1, it means that this product represents the total conflict. In
this case the PCR6 formula (10) becomes

mPCR6
1,2,...,s(X) = 0+

s−1∑

k=1

∑

Xi1
,Xi2

,...,Xik
∈GΘ\X

(
⋂k

j=1 Xij
)∩X=∅

∑

(i1,i2,...,ik)∈Ps({1,...,s})

[1 + 1 + . . .+ 1] ·
1 · 1 · . . . · 1 · 1 · . . . · 1

1 + 1 + . . .+ 1 + 1 + . . .+ 1
(11)
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Example:
The coin random flip experiment

Compatibility of PCR6 with frequentist probabilities

IV. APPLICATION TO PROBABILITY ESTIMATION

Let’s review a simple coin tossing random experiment.
When we flip a coin [13], there are two possible outcomes. The
coin could land showing a head (H) or a tail (T). The list of all
possible outcomes is called the sample space and correspond
to the frame Θ = {H,T }. There exist many interpretations
of probability [14] that are out of the scope of this paper. We
focus here on the estimation of the probability measure P (H)
of a given coin (biased or not) based on n outcomes of a coin
tossing experiment. The long-run frequentist interpretation of
probability [15] considers that the probability of an event
A is its relative frequency of occurrence over time after
repeating the experiment a large number of times under similar
circumstances, that is

P (A) = lim
n→∞

n(A)

n
(13)

where n(A) denotes the number of occurrences of an event
A in n > 0 trials. In practice however, we usually estimate
the probability of an event A based only on a limited number
of data (observations) that are available, and so we estimate
the idealistic P (A) defined in (13), by classical Laplace’s
probability definition

P̂ (A|n(A), n) =
n(A)

n
(14)

Naturally, P̂ (A) ≥ 0 because n(A) ≥ 0 and n > 0, and
P̂ (A) ≤ 1 because we cannot get n(A) > n in a series of
n trials. P (A) + P (Ā) = 1 because n(A)

n + n(Ā)
n = n(A)

n +
n−n(A)

n = 1 where Ā is the complement of A in the sample
space.

It is interesting to note that the classical estimation of the
probability measure given by (14) corresponds in fact to the
simple averaging fusion rule of distinct pieces of evidence
represented by binary masses. For example, let’s take a coin
and flip it n = 8 times and assume for instance that we observe
the following series of outcomes {o1 = H, o2 = H, o3 =
T, o4 = H, o5 = T, o6 = H, o7 = H, o8 = T }, so that
n(H) = 5 and n(T ) = 3. Then these observations can be
associated with distinct sources of evidences providing to the
following basic (binary) belief assignments:

Table VII. OUTCOMES OF A COIN TOSSING EXPERIMENT.

bba’s \ Focal elem. H T
m1(.) 1 0
m2(.) 1 0
m3(.) 0 1
m4(.) 1 0
m5(.) 0 1
m6(.) 1 0
m7(.) 1 0
m8(.) 0 1

It is clear that the probability estimate in (14) equals the
averaging fusion rule (2) and in such example because

P̂ (H |{o1, o2, . . . , o8}) =
n(H)

n
=

5

8
by eq. (14)

=
1

8
(1 + 1 + 0 + 1 + 0 + 1 + 1 + 0)

= mAverage
1,2,...,8 (H) by eq. (2)

P̂ (T |{o1, o2, . . . , o8}) =
n(T )

n
=

3

8
by eq. (14)

=
1

8
(0 + 0 + 1 + 0 + 1 + 0 + 0 + 1)

= mAverage
1,2,...,8 (T ) by eq. (2)

Because all the bba’s to combine here are binary and are in
total conflict, our theorem 1 of Section III applies, and PCR6
fusion rule in this case coincides with the averaging fusion
rule. Therefore we can use PCR6 to estimate the probabilities
that the coin will land on H or T at the next toss given the
series of observations. More precisely,
{

mPCR6
1,2,...,8(H) = mAverage

1,2,...,8 (H) = P̂ (H |{o1, o2, . . . , o8})

mPCR6
1,2,...,8(T ) = mAverage

1,2,...,8 (T ) = P̂ (T |{o1, o2, . . . , o8})

We must insist on the fact that Dempster-Shafer (DS) rule
of combination (II-B) cannot be used at all in such very simple
case to estimate correctly the probability measure because
DS rule doesn’t work (because of division by zero) in total
conflicting situations. PCR5 rule can be applied to combine
these 8 bba’s but is unable to provide a consistent result with
the classical probability estimates because one will get

xH

1 · 1 · 1 · 1 · 1
=

yT

1 · 1 · 1
=

m1,2,...,8(∅)

(1 · 1 · 1 · 1 · 1) + (1 · 1 · 1)
=

1

1 + 1
= 0.5

and therefore the PCR5 fusion result is
{

mPCR5
1,2,...,8(H) = xH = 0.5 #= (mPCR6

1,2,...,8(H) = 5/8)
mPCR5

1,2,...,8(T ) = yT = 0.5 #= (mPCR6
1,2,...,8(T ) = 3/8)

Remark: The PCR6 fusion result is valid if and only if
PCR6 rule is applied globally, and not sequentially. If PCR6
is sequentially applied, it becomes equivalent with PCR5
sequentially applied and it will generate incorrect results for
combining s > 2 sources of evidence. Because of the ability
of PCR6 to estimate frequentist probabilities in a random
experiment, we strongly recommend PCR6 rather than PCR5
as soon as s ≥ 2 bba’s have to be combined altogether.

V. CONCLUSIONS AND CHALLENGE

In this paper, we have proved that PCR6 fusion rule
coincides with the Averaging Rule when the bba’s to combine
are binary and in total conflict. Because of such nice property,
PCR6 is able to provide a frequentist probability measure
of any event occurring in a random experiment, contrariwise
to other fusion rules like DS rule, PCR5 rule, etc. Except
the Averaging Rule of course since it is the basis of the
frequentist probability interpretation. In a more general context
with non-binary bba’s, PCR6 is quite complicate to apply to
combine globally s > 2 sources of evidences, and a general
recursive formula of PCR6 would be very convenient. It can
be mathematically reformulated as follows: Let R be a fusion
rule and assume we have s sources that provide m1, m2, . . . ,
ms−1, ms respectively on a fusion space GΘ. Find a function
(or an operator) T such that: T (R(m1,m2, . . .ms−1),ms) =
R(m1,m2, . . . ,ms−1,ms), or by simplifying the notations
T (Rs−1,ms) = Rs, where Ri means the fusion rule R applied
to i masses all together. For example, if R equals the Averaging
Rule, the function T is defined according to the relation (3)
by T (Rs−1,ms) =

s−1
s Rs−1 +

1
sms = Rs, and if R equals

n(A) = number of successes of event A

n>0 is the number of random experiments

IV. APPLICATION TO PROBABILITY ESTIMATION

Let’s review a simple coin tossing random experiment.
When we flip a coin [13], there are two possible outcomes. The
coin could land showing a head (H) or a tail (T). The list of all
possible outcomes is called the sample space and correspond
to the frame Θ = {H,T }. There exist many interpretations
of probability [14] that are out of the scope of this paper. We
focus here on the estimation of the probability measure P (H)
of a given coin (biased or not) based on n outcomes of a coin
tossing experiment. The long-run frequentist interpretation of
probability [15] considers that the probability of an event
A is its relative frequency of occurrence over time after
repeating the experiment a large number of times under similar
circumstances, that is

P (A) = lim
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where n(A) denotes the number of occurrences of an event
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the probability of an event A based only on a limited number
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It is interesting to note that the classical estimation of the
probability measure given by (14) corresponds in fact to the
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represented by binary masses. For example, let’s take a coin
and flip it n = 8 times and assume for instance that we observe
the following series of outcomes {o1 = H, o2 = H, o3 =
T, o4 = H, o5 = T, o6 = H, o7 = H, o8 = T }, so that
n(H) = 5 and n(T ) = 3. Then these observations can be
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following basic (binary) belief assignments:
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PCR6 rule is applied globally, and not sequentially. If PCR6
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total conflict, our theorem 1 of Section III applies, and PCR6
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We must insist on the fact that Dempster-Shafer (DS) rule
of combination (II-B) cannot be used at all in such very simple
case to estimate correctly the probability measure because
DS rule doesn’t work (because of division by zero) in total
conflicting situations. PCR5 rule can be applied to combine
these 8 bba’s but is unable to provide a consistent result with
the classical probability estimates because one will get

xH

1 · 1 · 1 · 1 · 1
=

yT

1 · 1 · 1
=

m1,2,...,8(∅)

(1 · 1 · 1 · 1 · 1) + (1 · 1 · 1)
=

1

1 + 1
= 0.5

and therefore the PCR5 fusion result is
{

mPCR5
1,2,...,8(H) = xH = 0.5 #= (mPCR6

1,2,...,8(H) = 5/8)
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Remark: The PCR6 fusion result is valid if and only if
PCR6 rule is applied globally, and not sequentially. If PCR6
is sequentially applied, it becomes equivalent with PCR5
sequentially applied and it will generate incorrect results for
combining s > 2 sources of evidence. Because of the ability
of PCR6 to estimate frequentist probabilities in a random
experiment, we strongly recommend PCR6 rather than PCR5
as soon as s ≥ 2 bba’s have to be combined altogether.

V. CONCLUSIONS AND CHALLENGE

In this paper, we have proved that PCR6 fusion rule
coincides with the Averaging Rule when the bba’s to combine
are binary and in total conflict. Because of such nice property,
PCR6 is able to provide a frequentist probability measure
of any event occurring in a random experiment, contrariwise
to other fusion rules like DS rule, PCR5 rule, etc. Except
the Averaging Rule of course since it is the basis of the
frequentist probability interpretation. In a more general context
with non-binary bba’s, PCR6 is quite complicate to apply to
combine globally s > 2 sources of evidences, and a general
recursive formula of PCR6 would be very convenient. It can
be mathematically reformulated as follows: Let R be a fusion

We observe {o1 = H, o2 = H, o3 = T, o4 = H, o5 = T, o6 = H, o7 = H, o8 = T }

, so that n(H) = 5 and n(T ) = 3. Then these observations can be associated with distinct sources of evidences providing to
the following basic (binary) belief assignments:

Table VII. OUTCOMES OF A COIN TOSSING EXPERIMENT.

bba’s \ Focal elem. H T
m1(.) 1 0
m2(.) 1 0
m3(.) 0 1
m4(.) 1 0
m5(.) 0 1
m6(.) 1 0
m7(.) 1 0
m8(.) 0 1

It is clear that the probability estimate in (??) equals the averaging fusion rule (??) and in such example because

P̂ (H |{o1, o2, . . . , o8}) =
n(H)

n
=

5

8
by eq. (??)

=
1

8
(1 + 1 + 0 + 1 + 0 + 1 + 1 + 0)

= mAverage
1,2,...,8 (H) by eq. (??)

P̂ (T |{o1, o2, . . . , o8}) =
n(T )

n
=

3

8
by eq. (??)

=
1

8
(0 + 0 + 1 + 0 + 1 + 0 + 0 + 1)

= mAverage
1,2,...,8 (T ) by eq. (??)

Because all the bba’s to combine here are binary and are in total conflict, our theorem 1 of Section ?? applies, and PCR6
fusion rule in this case coincides with the averaging fusion rule. Therefore we can use PCR6 to estimate the probabilities that
the coin will land on H or T at the next toss given the series of observations. More precisely,

{

mPCR6
1,2,...,8(H) = mAverage

1,2,...,8 (H) = P̂ (H |{o1, o2, . . . , o8})

mPCR6
1,2,...,8(T ) = mAverage

1,2,...,8 (T ) = P̂ (T |{o1, o2, . . . , o8})

We must insist on the fact that Dempster-Shafer (DS) rule of combination (??) cannot be used at all in such very simple
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1,2,...,8(H) = 5/8)
mPCR5

1,2,...,8(T ) = yT = 0.5 != (mPCR6
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Remark: The PCR6 fusion result is valid if and only if PCR6 rule is applied globally, and not sequentially. If PCR6 is sequentially
applied, it becomes equivalent with PCR5 sequentially applied and it will generate incorrect results for combining s > 2 sources
of evidence. Because of the ability of PCR6 to estimate frequentist probabilities in a random experiment, we strongly recommend
PCR6 rather than PCR5 as soon as s ≥ 2 bba’s have to be combined altogether.
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Complexity of BF

How to reduce complexity for combining BF

Implement fusion rules with sampling techniques [DSmT Book 3,Chap6]

Approximate BBA by simpler ones
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1 Introduction

(|2Θ| = 2n) < (|DΘ| = d(n)) < (|2Θref | = 22n−1)

|Θ| = n |2Θ| = 2n |DΘ| = d(n) |2Θref | = 22n−1

2 4 5 23 = 8
3 8 19 27 = 128
4 16 167 215 = 32768
5 32 7580 231 = 2147483648

[m1 ⊕ m2 ⊕ m3](.)
︸ ︷︷ ︸

Optimal Fusion

"= [m1 ⊕ m2] ⊕ m3](.)
︸ ︷︷ ︸

Suboptimal fusion

"= m1 ⊕ [m2 ⊕ m3](.)
︸ ︷︷ ︸

Suboptimal fusion

"= m2 ⊕ [m1 ⊕ m3](.)
︸ ︷︷ ︸

Suboptimal fusion

In the recent theory of plausible and paradoxical reasoning (DSmT) developed by Dezert and Smarandache [2, 10],

a new generalized pignistic transformation has been proposed to construct a subjective probability measure P{.} from
any generalized basic belief assignment m(.) defined over the hyper-power set DΘ. In reference [2], a simple example

of such generalized pignistic transformation has been presented only for the case n = |Θ| = 2. In this paper, we present
the complete derivation of this pignistic transformation for the case n = |Θ| = 3 and we generalize the result. Before
introducing the GPT, it is however necessary to briefly present the DSmT [1, 2, 3, 4, 5, 10] with respect to the Dempster-

Shafer Theory (DST) [9].

[m1 ⊕ m2 ⊕ m3](.)
︸ ︷︷ ︸

Optimal Fusion

"= [(m1 ⊕ m2) ⊕ m3](.)
︸ ︷︷ ︸

Suboptimal fusion

"= [m1 ⊕ (m2 ⊕ m3)](.)
︸ ︷︷ ︸

Suboptimal fusion

"= [m2 ⊕ (m1 ⊕ m3)](.)
︸ ︷︷ ︸

Suboptimal fusion

m(.) : 2Θ → [0, 1]

m(∅) = 0 and
∑

A∈2Θ

m(A) = 1

Bel(A) =
∑

B∈2Θ,B⊆A

m(B)

Pl(A) =
∑

B∈2Θ,B∩A %=∅

m(B) = 1 − Bel(Ā)
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Simplest method keeps only singletons as focal elements and 
normalize, but we loose information on partial ignorances

Pignistic transform redistributes mass of partial ignorances equally 
to singletons included in them [Smets 1990]

!"
#$

!"
#$

!"
#$

!"
θ1

#$
θ2

% θ3

<12>

<3>

<2><1>

Then, one gets the following list of elements (with their

DSm cardinal) for the restrictedDΘ taking into account the

integrity constraints of this hybrid model:

A ∈ DΘ CM(A)
α0 ! ∅ 0
α1 ! θ1 ∩ θ2 1
α2 ! θ3 1
α3 ! θ1 2
α4 ! θ2 2
α5 ! θ1 ∪ θ2 3
α6 ! θ1 ∪ θ3 3
α7 ! θ2 ∪ θ3 3
α8 ! θ1 ∪ θ2 ∪ θ3 4

Table 2: CM(A) for the chosen hybrid modelM

2.4.4 A 3D example with the Shafer’s model

Consider now the same 3D case but with all exclusivity

constraints on θi, i = 1, 2, 3. This corresponds to the

3D Shafer’s model M0 presented in the following Venn

diagram.

!"
#$

!"
#$

!"
#$

!"
θ1

#$
θ2

% θ3<3>

<2><1>

Then, one gets the following list of elements (with their

DSm cardinal) for the restricted DΘ, which coincides nat-

urally with the classical power-set 2Θ:

A ∈ (DΘ ≡ 2Θ) CM0(A)
α0 ! ∅ 0
α1 ! θ1 1
α2 ! θ2 1
α3 ! θ3 1
α4 ! θ1 ∪ θ2 2
α5 ! θ1 ∪ θ3 2
α6 ! θ2 ∪ θ3 2
α7 ! θ1 ∪ θ2 ∪ θ3 3

Table 3: CM(A) for the 3D Shafer’s modelM0

3 The Pignistic Transformation

We follow here the Smets’ point of view [14] about the

assumption that beliefs manifest themselves at two mental

levels: the credal level where beliefs are entertained and the

pignistic level where belief are used to make decisions. Pig-

nistic terminology has been coined by Philippe Smets and

comes from pignus, a bet in Latin. The probability func-

tions, usually used to quantify beliefs at both levels, are

actually used here only to quantify the uncertainty when a

decision is really necessary, otherwise we argue as Philippe

Smets does, that beliefs are represented by belief functions.

To take a rational decision, we propose to transform beliefs

into pignistic probability functions through the Generalized

Pignistic Transformation (GPT) which will be presented in

the sequel. We first recall the classical Pignistic Transfor-

mation based on the DST and then we generalize it within

the DSmT framework.

3.1 Classical Pignistic Transformation

When a decision must be taken, we use the expected util-

ity theory which requires to construct a probability function

P{.} from basic belief functionm(.) [14]. This is achieved
by the so-called classical Pignistic Transformation1 as fol-

lows (see [13] for justification):

P{A} =
∑

X∈2Θ

|X ∩ A|

|X |
m(X) (8)

where |A| denotes the number of worlds in the set A (with

convention |∅|/|∅| = 1, to define P{∅}). P{A} corre-
sponds to BetP (A) in the Smets notation [14]. Decisions
are achieved by computing the expected utilities of the acts

using the subjective/pignistic P{.} as the probability func-
tion needed to compute expectations. Usually, one uses the

maximum of the pignistic probability as decision criterion.

The max. of P{.} is often considered as a prudent betting
decision criterion between the two other alternatives (max

of plausibility or max. of credibility which appears to be

respectively too optimistic or too pessimistic). It is easy to

show that P{.} is indeed a probability function (see [13]).

3.2 Generalized Pignistic Transformation

3.2.1 Definition

To take a rational decision within the DSmT framework,

it is then necessary to generalize the Classical Pignistic

Transformation in order to construct a Pignistic Probabil-

ity function from any generalized basic belief assignment

m(.) drawn form the DSm rule of combination (the classic
or hybrid rule). This Generalized Pignistic Transformation

(GPT) is defined by: ∀A ∈ DΘ,

P{A} =
∑

X∈DΘ

CM(X ∩ A)

CM(X)
m(X) (9)

1We don’t divide here m(X) by 1 − m(∅) as in the P. Smets’
formulation just because m(∅) = 0 in the DSmT framework, un-
less there is a solid necessity to justify to do it.

Approximate a BBA by a simpler one (probabilistic transforms)

DSmP transform redistributes mass of partial ignorances proportionally 
to masses of singletons included in them [Dezert-Smarandache 2008]

Qualitative BetP and DSmP are possible. Other transforms exist.
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Example BetP versus DSmP

m(θ1) = 0.2, m(θ3) = 0.5, m(θ1 ∪ θ2) = 0.1, m(θ1 ∪ θ2 ∪ θ3) = 0.2











Bel(θ1) = m(θ1) = 0.2

Bel(θ2) = m(θ2) = 0

Bel(θ3) = m(θ3) = 0.5











Bel(θ1 ∪ θ2) = m(θ1) +m(θ2) +m(θ1 ∪ θ2) = 0.3

Bel(θ1 ∪ θ3) = m(θ1) +m(θ3) +m(θ1 ∪ θ3) = 0.7

Bel(θ2 ∪ θ3) = m(θ2) +m(θ3) +m(θ2 ∪ θ3) = 0.5

Bel(θ1∪θ2∪θ3) = Pl(θ1∪θ2∪θ3) = m(θ1)+m(θ2)+m(θ3)+m(θ1∪θ2)+m(θ1∪θ3)+m(θ2∪θ3)+m(θ1 ∪θ2∪θ3) = 1

m(θ1) = 0.2, m(θ3) = 0.5, m(θ1 ∪ θ2) = 0.1, m(θ1 ∪ θ2 ∪ θ3) = 0.2










Pl(θ1) = m(θ1) +m(θ1 ∪ θ2) +m(θ1 ∪ θ3) +m(θ1 ∪ θ2 ∪ θ3) = 0.2 + 0.1 + 0 + 0.2 = 0.5

Pl(θ2) = m(θ2) +m(θ1 ∪ θ2) +m(θ2 ∪ θ3) +m(θ1 ∪ θ2 ∪ θ3) = 0 + 0.1 + 0 + 0.2 = 0.3

Pl(θ3) = m(θ3) +m(θ1 ∪ θ3) +m(θ2 ∪ θ3) +m(θ1 ∪ θ2 ∪ θ3) = 0.5 + 0 + 0 + 0.2 = 0.7











Pl(θ1 ∪ θ2) = Bel(θ1 ∪ θ2) +m(θ1 ∪ θ3) +m(θ2 ∪ θ3) +m(Θ) = 0.5

Pl(θ1 ∪ θ3) = Bel(θ1 ∪ θ3) +m(θ1 ∪ θ2) +m(θ2 ∪ θ3) +m(Θ) = 1

Pl(θ2 ∪ θ3) = Bel(θ2 ∪ θ3) +m(θ1 ∪ θ2) +m(θ1 ∪ θ3) +m(Θ) = 0.8

Pl(θ1 ∪ θ2 ∪ θ3) = m(θ1) +m(θ2) +m(θ3) +m(θ1 ∪ θ2) +m(θ1 ∪ θ3) +m(θ2 ∪ θ3) +m(θ1 ∪ θ2 ∪ θ3) = 1

Pl(X) = 1−Bel(X̄)

m(θ1) = 0.2, m(θ3) = 0.7











Bel(θ1) = Pl(θ1) = 0.3

Bel(θ2) = Pl(θ2) = 0

Bel(θ3) = Pl(θ3) = 0.7











Bel(θ1 ∪ θ2) = Pl(θ1 ∪ θ2) = 0.3

Bel(θ1 ∪ θ3) = Pl(θ1 ∪ θ3) = 1

Bel(θ2 ∪ θ3) = Pl(θ2 ∪ θ3) = 0.7

Bel(θ1 ∪ θ2 ∪ θ3) = Pl(θ1 ∪ θ2 ∪ θ3) = 1

BetP (θ1) = m(θ1) +
1

2
m(θ1 ∪ θ2) =

DSmPε=0.001(θ2) = m(θ2) +
m(θ2) + ε

m(θ1) +m(θ2) + 2ε
·m(θ1 ∪ θ2) = 0.2508































DSmPε=0.001(∅) = 0

DSmPε=0.001(θ1 ∩ θ2) = 0

DSmPε=0.001(θ1) = m(θ1) +
m(θ1)+ε

m(θ1)+m(θ2)+2ε ·m(θ1 ∪ θ2) = 0.7492

DSmPε=0.001(θ2) = m(θ2) +
m(θ2)+ε

m(θ1)+m(θ2)+2ε ·m(θ1 ∪ θ2) = 0.2508

DSmPε=0.001(θ1 ∪ θ2) = m(θ1) +m(θ2) +m(θ1 ∪ θ2) = 1

With BetP

With DSmP

DSmP�(θi) = m(θi)

+ (m(θi) + �)
�

X∈2Θ

X⊃θi
C(X)≥2

m(X)�

Y ∈2Θ

Y⊂X
C(Y )=1

m(Y ) + � · C(X)
(12)

The probabilities of (partial or total) ignorances are then
obtained from the additivity property of the probabilities of
elementary exclusive elements, i.e. for i, j = 1, . . . , n, i �= j,
DSmP�(θi ∪ θj) = DSmP�(θi) + DSmP�(θj), etc.

VI. PIC METRIC FOR THE EVALUATION OF THE
TRANSFORMATIONS

Following Sudano’s approach [17], [18], [21], we adopt the
Probabilistic Information Content (PIC) criteria as a metric
depicting the strength of a critical decision by a specific
probability distribution which is an essential measure in any
threshold-driven automated decision system. The PIC value
is actually nothing but the dual of the normalized Shannon
entropy as we will show. A PIC value of one indicates the
total knowledge (i.e. minimal entropy) or information to make
a correct decision (one hypothesis has a probability value
of one and the rest of zero). A PIC value of zero indicates
that the knowledge or information to make a correct decision
does not exist (all the hypothesis have an equal probability
value), i.e. one has the maximal entropy. The PIC criteria will
be used in our analysis in order to compare and order the
performances of the different pignistic transformations through
several numerical examples in the next sections. We just briefly
recall here what Shannon entropy and PIC measure are and
their tight relationship.

A. Shannon entropy

Shannon entropy, usually expressed in bits (binary digits),
of a discrete probability measure P{.} over a discrete finite
set Θ = {θ1, . . . , θn} is defined by5 [12]:

H(P ) � −
n�

i=1

P{θi} log2(P{θi}) (13)

H(P ) measures the randomness/uncertainty carried by any
discrete probability measure P{.}. H(P ) is maximal for the
uniform probability measure over Θ, i.e. when P{θi} = 1/n

for i = 1, 2, . . . , n. In that case, one gets:

H(P ) = Hmax = −
n�

i=1

1
n

log2(
1
n

) = log2(n)

H(P ) is minimal for a totally deterministic probability
measure, i.e. for any P{.} such that P{θi} = 1 for some
i ∈ {1, 2, . . . , n} and P{θj} = 0 for j �= i.

5with common convention 0 log2 0 = 0, see [1].

B. The PIC metric

The Probabilistic Information Content (PIC) of a discrete
probability measure P{.} over a discrete finite set Θ =
{θ1, . . . , θn} is defined by [18]:

PIC(P ) = 1 +
1

Hmax
·

n�

i=1

P{θi} log2(P{θi}) (14)

The PIC metric is nothing but the dual of the normal-
ized Shannon entropy metric and thus is actually unitless. It
actually measures the Information content of a probabilistic
source characterized by the probability measure P{.}. The
PIC(P ) metric takes its values in [0, 1] and is maximum, i.e.
PIC(P ) = PICmax = 1 for any deterministic probability
measures. PIC(P ) = PICmin = 0 when the probability
measure is uniform over the frame Θ, i.e. P{θi} = 1/n for
i = 1, 2, . . . , n. The simple relationships between H(P ) and
PIC(P ) are :

PIC(P ) = 1− H(P )
Hmax

(15)

H(P ) = Hmax · (1− PIC(P )) (16)

VII. EXAMPLES ON A 2D FRAME

A. Example 1 (Shafer’s model and a general source)

Let’s consider the 2D frame Θ = {A, B} with Shafer’s
model (i.e. A ∩ B = ∅) and the non-Bayesian quantitative
belief assignments (mass) given in Table I. In this example
since one adopts Shafer’s mode for the frame Θ, G

Θ coincides
with 2Θ, i.e. G

Θ = 2Θ = {∅, A,B, A ∪B}.

A B A ∪B
m(.) 0.3 0.1 0.6

Table I
QUANTITATIVE INPUTS FOR EXAMPLE VII-A

• Classical pignistic probability:

BetP (A) = m(A) +
1
2
m(A ∪B) = 0.3 + (0.6/2) = 0.60

BetP (B) = m(B) +
1
2
m(A ∪B) = 0.1 + (0.6/2) = 0.40

Since we are working with Shafer’s model, the generalized
pignistic probability given by (3) coincides with the classical
pignistic probability measure.

• Sudano’s probabilities:
Applying Sudano’s probabilities formulas (4)-(8), one gets:
- Probability PrP l(.):

PrP l(A) = 0.9 · [0.3/0.9 + 0.6/(0.9 + 0.7)] = 0.6375
PrP l(B) = 0.7 · [0.1/0.7 + 0.6/(0.9 + 0.7)] = 0.3625

m(θ1) = 0.2, m(θ3) = 0.5, m(θ1 ∪ θ2) = 0.1, m(θ1 ∪ θ2 ∪ θ3) = 0.2











Bel(θ1) = m(θ1) = 0.2

Bel(θ2) = m(θ2) = 0

Bel(θ3) = m(θ3) = 0.5











Bel(θ1 ∪ θ2) = m(θ1) +m(θ2) +m(θ1 ∪ θ2) = 0.3

Bel(θ1 ∪ θ3) = m(θ1) +m(θ3) +m(θ1 ∪ θ3) = 0.7

Bel(θ2 ∪ θ3) = m(θ2) +m(θ3) +m(θ2 ∪ θ3) = 0.5

Bel(θ1∪θ2∪θ3) = Pl(θ1∪θ2∪θ3) = m(θ1)+m(θ2)+m(θ3)+m(θ1∪θ2)+m(θ1∪θ3)+m(θ2∪θ3)+m(θ1 ∪θ2∪θ3) = 1

m(θ1) = 0.2, m(θ3) = 0.5, m(θ1 ∪ θ2) = 0.1, m(θ1 ∪ θ2 ∪ θ3) = 0.2










Pl(θ1) = m(θ1) +m(θ1 ∪ θ2) +m(θ1 ∪ θ3) +m(θ1 ∪ θ2 ∪ θ3) = 0.2 + 0.1 + 0 + 0.2 = 0.5

Pl(θ2) = m(θ2) +m(θ1 ∪ θ2) +m(θ2 ∪ θ3) +m(θ1 ∪ θ2 ∪ θ3) = 0 + 0.1 + 0 + 0.2 = 0.3

Pl(θ3) = m(θ3) +m(θ1 ∪ θ3) +m(θ2 ∪ θ3) +m(θ1 ∪ θ2 ∪ θ3) = 0.5 + 0 + 0 + 0.2 = 0.7











Pl(θ1 ∪ θ2) = Bel(θ1 ∪ θ2) +m(θ1 ∪ θ3) +m(θ2 ∪ θ3) +m(Θ) = 0.5

Pl(θ1 ∪ θ3) = Bel(θ1 ∪ θ3) +m(θ1 ∪ θ2) +m(θ2 ∪ θ3) +m(Θ) = 1

Pl(θ2 ∪ θ3) = Bel(θ2 ∪ θ3) +m(θ1 ∪ θ2) +m(θ1 ∪ θ3) +m(Θ) = 0.8

Pl(θ1 ∪ θ2 ∪ θ3) = m(θ1) +m(θ2) +m(θ3) +m(θ1 ∪ θ2) +m(θ1 ∪ θ3) +m(θ2 ∪ θ3) +m(θ1 ∪ θ2 ∪ θ3) = 1

Pl(X) = 1−Bel(X̄)

m(θ1) = 0.2, m(θ3) = 0.7











Bel(θ1) = Pl(θ1) = 0.3

Bel(θ2) = Pl(θ2) = 0

Bel(θ3) = Pl(θ3) = 0.7











Bel(θ1 ∪ θ2) = Pl(θ1 ∪ θ2) = 0.3

Bel(θ1 ∪ θ3) = Pl(θ1 ∪ θ3) = 1

Bel(θ2 ∪ θ3) = Pl(θ2 ∪ θ3) = 0.7

Bel(θ1 ∪ θ2 ∪ θ3) = Pl(θ1 ∪ θ2 ∪ θ3) = 1































BetP (∅) = 0

BetP (θ1 ∩ θ2) = 0

BetP (θ1) = m(θ1) + 1
2m(θ1 ∪ θ2) = 0.6

BetP (θ2) = m(θ2) +
1
2m(θ1 ∪ θ2) = 0.4

BetP (θ1 ∪ θ2) = m(θ1) +m(θ2) +m(θ1 ∪ θ2) = 1

θ1

θ2

θ3

m(θ1) = 0.2, m(θ3) = 0.5, m(θ1 ∪ θ2) = 0.1, m(θ1 ∪ θ2 ∪ θ3) = 0.2











Bel(θ1) = m(θ1) = 0.2

Bel(θ2) = m(θ2) = 0

Bel(θ3) = m(θ3) = 0.5











Bel(θ1 ∪ θ2) = m(θ1) +m(θ2) +m(θ1 ∪ θ2) = 0.3

Bel(θ1 ∪ θ3) = m(θ1) +m(θ3) +m(θ1 ∪ θ3) = 0.7

Bel(θ2 ∪ θ3) = m(θ2) +m(θ3) +m(θ2 ∪ θ3) = 0.5

Bel(θ1∪θ2∪θ3) = Pl(θ1∪θ2∪θ3) = m(θ1)+m(θ2)+m(θ3)+m(θ1∪θ2)+m(θ1∪θ3)+m(θ2∪θ3)+m(θ1 ∪θ2∪θ3) = 1

m(θ1) = 0.2, m(θ3) = 0.5, m(θ1 ∪ θ2) = 0.1, m(θ1 ∪ θ2 ∪ θ3) = 0.2










Pl(θ1) = m(θ1) +m(θ1 ∪ θ2) +m(θ1 ∪ θ3) +m(θ1 ∪ θ2 ∪ θ3) = 0.2 + 0.1 + 0 + 0.2 = 0.5

Pl(θ2) = m(θ2) +m(θ1 ∪ θ2) +m(θ2 ∪ θ3) +m(θ1 ∪ θ2 ∪ θ3) = 0 + 0.1 + 0 + 0.2 = 0.3

Pl(θ3) = m(θ3) +m(θ1 ∪ θ3) +m(θ2 ∪ θ3) +m(θ1 ∪ θ2 ∪ θ3) = 0.5 + 0 + 0 + 0.2 = 0.7











Pl(θ1 ∪ θ2) = Bel(θ1 ∪ θ2) +m(θ1 ∪ θ3) +m(θ2 ∪ θ3) +m(Θ) = 0.5

Pl(θ1 ∪ θ3) = Bel(θ1 ∪ θ3) +m(θ1 ∪ θ2) +m(θ2 ∪ θ3) +m(Θ) = 1

Pl(θ2 ∪ θ3) = Bel(θ2 ∪ θ3) +m(θ1 ∪ θ2) +m(θ1 ∪ θ3) +m(Θ) = 0.8

Pl(θ1 ∪ θ2 ∪ θ3) = m(θ1) +m(θ2) +m(θ3) +m(θ1 ∪ θ2) +m(θ1 ∪ θ3) +m(θ2 ∪ θ3) +m(θ1 ∪ θ2 ∪ θ3) = 1

Pl(X) = 1−Bel(X̄)

m(θ1) = 0.2, m(θ3) = 0.7











Bel(θ1) = Pl(θ1) = 0.3

Bel(θ2) = Pl(θ2) = 0

Bel(θ3) = Pl(θ3) = 0.7











Bel(θ1 ∪ θ2) = Pl(θ1 ∪ θ2) = 0.3

Bel(θ1 ∪ θ3) = Pl(θ1 ∪ θ3) = 1

Bel(θ2 ∪ θ3) = Pl(θ2 ∪ θ3) = 0.7

Bel(θ1 ∪ θ2 ∪ θ3) = Pl(θ1 ∪ θ2 ∪ θ3) = 1































BetP (∅) = 0

BetP (θ1 ∩ θ2) = 0

BetP (θ1) = m(θ1) + 1
2m(θ1 ∪ θ2) = 0.6

BetP (θ2) = m(θ2) +
1
2m(θ1 ∪ θ2) = 0.4

BetP (θ1 ∪ θ2) = m(θ1) +m(θ2) +m(θ1 ∪ θ2) = 1

θ1

θ2

θ3

m(θ1) = 0.2, m(θ3) = 0.5, m(θ1 ∪ θ2) = 0.1, m(θ1 ∪ θ2 ∪ θ3) = 0.2











Bel(θ1) = m(θ1) = 0.2

Bel(θ2) = m(θ2) = 0

Bel(θ3) = m(θ3) = 0.5











Bel(θ1 ∪ θ2) = m(θ1) +m(θ2) +m(θ1 ∪ θ2) = 0.3

Bel(θ1 ∪ θ3) = m(θ1) +m(θ3) +m(θ1 ∪ θ3) = 0.7

Bel(θ2 ∪ θ3) = m(θ2) +m(θ3) +m(θ2 ∪ θ3) = 0.5

Bel(θ1∪θ2∪θ3) = Pl(θ1∪θ2∪θ3) = m(θ1)+m(θ2)+m(θ3)+m(θ1∪θ2)+m(θ1∪θ3)+m(θ2∪θ3)+m(θ1 ∪θ2∪θ3) = 1

m(θ1) = 0.2, m(θ3) = 0.5, m(θ1 ∪ θ2) = 0.1, m(θ1 ∪ θ2 ∪ θ3) = 0.2










Pl(θ1) = m(θ1) +m(θ1 ∪ θ2) +m(θ1 ∪ θ3) +m(θ1 ∪ θ2 ∪ θ3) = 0.2 + 0.1 + 0 + 0.2 = 0.5

Pl(θ2) = m(θ2) +m(θ1 ∪ θ2) +m(θ2 ∪ θ3) +m(θ1 ∪ θ2 ∪ θ3) = 0 + 0.1 + 0 + 0.2 = 0.3

Pl(θ3) = m(θ3) +m(θ1 ∪ θ3) +m(θ2 ∪ θ3) +m(θ1 ∪ θ2 ∪ θ3) = 0.5 + 0 + 0 + 0.2 = 0.7











Pl(θ1 ∪ θ2) = Bel(θ1 ∪ θ2) +m(θ1 ∪ θ3) +m(θ2 ∪ θ3) +m(Θ) = 0.5

Pl(θ1 ∪ θ3) = Bel(θ1 ∪ θ3) +m(θ1 ∪ θ2) +m(θ2 ∪ θ3) +m(Θ) = 1

Pl(θ2 ∪ θ3) = Bel(θ2 ∪ θ3) +m(θ1 ∪ θ2) +m(θ1 ∪ θ3) +m(Θ) = 0.8

Pl(θ1 ∪ θ2 ∪ θ3) = m(θ1) +m(θ2) +m(θ3) +m(θ1 ∪ θ2) +m(θ1 ∪ θ3) +m(θ2 ∪ θ3) +m(θ1 ∪ θ2 ∪ θ3) = 1

Pl(X) = 1−Bel(X̄)

m(θ1) = 0.2, m(θ3) = 0.7











Bel(θ1) = Pl(θ1) = 0.3

Bel(θ2) = Pl(θ2) = 0

Bel(θ3) = Pl(θ3) = 0.7











Bel(θ1 ∪ θ2) = Pl(θ1 ∪ θ2) = 0.3

Bel(θ1 ∪ θ3) = Pl(θ1 ∪ θ3) = 1

Bel(θ2 ∪ θ3) = Pl(θ2 ∪ θ3) = 0.7

Bel(θ1 ∪ θ2 ∪ θ3) = Pl(θ1 ∪ θ2 ∪ θ3) = 1































BetP (∅) = 0

BetP (θ1 ∩ θ2) = 0

BetP (θ1) = m(θ1) + 1
2m(θ1 ∪ θ2) = 0.6

BetP (θ2) = m(θ2) +
1
2m(θ1 ∪ θ2) = 0.4

BetP (θ1 ∪ θ2) = m(θ1) +m(θ2) +m(θ1 ∪ θ2) = 1

θ1

θ2

θ1 ∪ θ2

Bigger entropy

Lower entropy

m(θ1) = 0.2, m(θ3) = 0.5, m(θ1 ∪ θ2) = 0.1, m(θ1 ∪ θ2 ∪ θ3) = 0.2











Bel(θ1) = m(θ1) = 0.2

Bel(θ2) = m(θ2) = 0

Bel(θ3) = m(θ3) = 0.5











Bel(θ1 ∪ θ2) = m(θ1) +m(θ2) +m(θ1 ∪ θ2) = 0.3

Bel(θ1 ∪ θ3) = m(θ1) +m(θ3) +m(θ1 ∪ θ3) = 0.7

Bel(θ2 ∪ θ3) = m(θ2) +m(θ3) +m(θ2 ∪ θ3) = 0.5

Bel(θ1∪θ2∪θ3) = Pl(θ1∪θ2∪θ3) = m(θ1)+m(θ2)+m(θ3)+m(θ1∪θ2)+m(θ1∪θ3)+m(θ2∪θ3)+m(θ1 ∪θ2∪θ3) = 1

m(θ1) = 0.2, m(θ3) = 0.5, m(θ1 ∪ θ2) = 0.1, m(θ1 ∪ θ2 ∪ θ3) = 0.2










Pl(θ1) = m(θ1) +m(θ1 ∪ θ2) +m(θ1 ∪ θ3) +m(θ1 ∪ θ2 ∪ θ3) = 0.2 + 0.1 + 0 + 0.2 = 0.5

Pl(θ2) = m(θ2) +m(θ1 ∪ θ2) +m(θ2 ∪ θ3) +m(θ1 ∪ θ2 ∪ θ3) = 0 + 0.1 + 0 + 0.2 = 0.3

Pl(θ3) = m(θ3) +m(θ1 ∪ θ3) +m(θ2 ∪ θ3) +m(θ1 ∪ θ2 ∪ θ3) = 0.5 + 0 + 0 + 0.2 = 0.7











Pl(θ1 ∪ θ2) = Bel(θ1 ∪ θ2) +m(θ1 ∪ θ3) +m(θ2 ∪ θ3) +m(Θ) = 0.5

Pl(θ1 ∪ θ3) = Bel(θ1 ∪ θ3) +m(θ1 ∪ θ2) +m(θ2 ∪ θ3) +m(Θ) = 1

Pl(θ2 ∪ θ3) = Bel(θ2 ∪ θ3) +m(θ1 ∪ θ2) +m(θ1 ∪ θ3) +m(Θ) = 0.8

Pl(θ1 ∪ θ2 ∪ θ3) = m(θ1) +m(θ2) +m(θ3) +m(θ1 ∪ θ2) +m(θ1 ∪ θ3) +m(θ2 ∪ θ3) +m(θ1 ∪ θ2 ∪ θ3) = 1

Pl(X) = 1−Bel(X̄)

m(θ1) = 0.2, m(θ3) = 0.7











Bel(θ1) = Pl(θ1) = 0.3

Bel(θ2) = Pl(θ2) = 0

Bel(θ3) = Pl(θ3) = 0.7











Bel(θ1 ∪ θ2) = Pl(θ1 ∪ θ2) = 0.3

Bel(θ1 ∪ θ3) = Pl(θ1 ∪ θ3) = 1

Bel(θ2 ∪ θ3) = Pl(θ2 ∪ θ3) = 0.7

Bel(θ1 ∪ θ2 ∪ θ3) = Pl(θ1 ∪ θ2 ∪ θ3) = 1































BetP (∅) = 0

BetP (θ1 ∩ θ2) = 0

BetP (θ1) = m(θ1) + 1
2m(θ1 ∪ θ2) = 0.6

BetP (θ2) = m(θ2) +
1
2m(θ1 ∪ θ2) = 0.4

BetP (θ1 ∪ θ2) = m(θ1) +m(θ2) +m(θ1 ∪ θ2) = 1

θ1

θ2

θ3

H(BetP)=0.9710 bits

H(DSmP)=0.8125 bits

Shannonʼs entropy

Shaferʼs
model

Introduction to DSmT 
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2001 - Jousselmeʼs distance - A strict metric proved in [Bouchard et al. in 2013]

1993 - Tessemʼs distance  - Not a strict metric [Han et al. 2012]

2011 - Dissimilarity based on Fuzzy-Membership Function (FMF)

Introduction to DSmT 

Approximate BBA using distances



39

using Wassersteinʼs distance of interval numbers

because belief intervals BI=[Bel(.),Pl(.]=[a,b] are just interval numbers. 

2014 - Euclidean belief interval based distance

2014 - Chebyshev belief interval based distance

[Han-Dezert-Yang 2014]

Introduction to DSmT 
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result makes more sense because

seems not very reasonable (m2 makes no preference for choice, 
whereas m3 prefers the 3rd element)

Jousselme distance

Tessemʼs (BetP) distance
not intuitively acceptable because m1 different of m2 but dT(m1,m2)=0.

New belief interval distances

Example

Introduction to DSmT 
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Decision-making using belief functions

Pessimistic attitude:   Max of Bel(.) Optimistic attitude:   Max of Pl(.)
Common attitude: Use a probabilistic transformation to estimate a subjective 
proba measure P(.) in [Bel(.),Pl(.)]. Typically max of BetP, or max of DSmP. 

General decision-making problem
States of the nature

Alternatives
benefit/payoff matrix 

When probabilities are known, decision is done under risk.
When those probabilities becomes subjective, the prospect
theory (subjective expected utility theory - SEUT) [12] can
apply :

• the objective utility (e.g. cost) u(rk) is replaced by a
subjective function (value) denoted v(u(rk)) ;

• the objective weighting p(rk) is replaced by a subjective
function π(p(rk)).

v(·) is the felt subjective value in response of the expected
cost of the considered action, and π(·) is the felt weighting
face to the objective probability of the realisation of the result.
Prospect theory shows that the function v(·) is asymmetric:
loss causes a negative reaction intensity stronger than the pos-
itive reaction caused by the equivalent gain. This corresponds
to an aversion to risky choices in the area of earnings and a
search of risky choices in the area of loss.
In a MCDM context, information imperfection concerns

both the evaluation of the alternatives (in any context of
certainty, risk or ignorance) and the uncertainty or lack of
knowledge about the possible states of the world. Uncertainty
and imprecision in multi-criteria decision models has been
early considered [16]. Different kinds of uncertainty can be
considered: on the one hand the internal uncertainty is linked
to the structure of the model and the judgmental inputs re-
quired by the model, on the other hand the external uncertainty
refers to lack of knowledge about the consequences about a
particular choice.

B. Objectives and goals
Several decision support methods exist to consider both

information imperfection, sources heterogeneity, reliability,
conflict and the different states of the world when evaluating
the alternatives as summarized on figure 2. A more complete
review can be found in [28]. Here we just remind some
recent examples of methods mixing MCDM approaches and
Evidential Reasoning1(ER).

Figure 2. Information imperfection in the different decision support methods

• Dempster-Shafer-based AHP (DS-AHP) has introduced
a merging of Evidential Reasoning (ER) with Analytic

1Evidential Reasoning refers to the use of belief functions as theoretical
background, not to a specific theory of belief functions (BF) aimed for
combining, or conditioning BF. Actually, Dempster-Shafer Theory (DST) [21],
Dezert-Smarandache Theory (DSmT) [22], and Smets’ TBM [25] are different
approaches of Evidential Reasoning.

Hierachy Process (AHP) [19] to consider the imprecision
and the uncertainty in evaluation of several alternatives.
The idea is to consider criteria as sources [1], [3] and
derive weights as discounting factors in the fusion process
[5];

• Dezert-Smarandache-based (DSmT-AHP) [8] takes into
account the partial uncertainty (disjunctions) between
possible alternatives and introduces new fusion rules,
based on Proportional Conflict Redistribution (PCR) prin-
ciple, which allow to consider differences between impor-
tance and reliability of sources [23];

• ER-MCDA [28], [29] is based on AHP, fuzzy sets theory,
possibility theory and belief functions theory too. This
method considers both imperfection of criteria evalua-
tions, importance and reliability of sources.

Introducing ignorance and uncertainty in a MCDM process
consists in considering that consequences of actions (Ai)
depend of the state of nature represented by a finite set
S = {S1, S2, . . . , Sn}. For each state, the MCDM method
provides an evaluation Cij . We assume that this evaluation
Cij done by the decision maker corresponds to the choice
of Ai when Sj occurs with a given (possibly subjective)
probability. The evaluation matrix is defined as C = [Cij ]
where i = 1, . . . , q and j = 1, . . . , n.















S1 · · · Sj · · · Sn

A1 C11 · · · C11 · · · C1n
...

...
Ai Ci1 · · · Cij · · · Cin
...

...
Aq Cq1 · · · Cqj · · · Cqn















= C (2)

Existing methods using evidential reasoning and MCDM
have, up to now, focused on the case of imperfect evaluation
of alternatives in a context of decision under certainty. In
this paper, we propose a new method for decision under
uncertainty that mixes MCDM principles, decision under
uncertainty principles and evidential reasoning. For this
purpose, we propose a framework that considers uncertainty
and imperfection for scenarii corresponding to the state of
the world.

This paper is organized as follows. In section II, we
briefly recall the basis of DSmT. Section III presents two
existing methods for MCDM under uncertainty using belief
functions theory: DSmT-AHP as an extension of Saaty’s multi-
criteria decision method AHP , and Yager’s Ordered Weighted
Averaging (OWA) approach for decision making with belief
structures. The contribution of this paper concerns the section
IV where we describe an alternative to the classical OWA,
called cautious OWA method, where evaluations of alternatives
depend on more or less uncertain scenarii. The flexibility
and advantages of this COWA method are also discussed.
Conclusions and perspectives are given in section V.

How to select the best alternative A* given C matrix 
and the knowledge one has on the states of the nature?
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Decision under certainty

Decision under risk

If we know the true state of nature is Sj take

If we know all probas pj=P(Sj), then compute 
expected benefits

Decision under ignorance

difficult, because in general the reliability and importance discounting approaches do not commute, but when αi = βi = 1. In
order to deal both with reliabilities and importances factors and because of the non commutativity of these discountings, two
methods have also been proposed in [23] and not reported here.

B. Yager’s OWA approach
Let’s introduce Yager’s OWA approach [33] for decision making with belief structures. One considers a collection of q

alternatives belonging to a set A = {A1, A2, . . . , Aq} and a finite set S = {S1, S2, . . . , Sn} of states of the nature. We
assume that the payoff/gain Cij of the decision maker in choosing Ai when Sj occurs are given by positive (or null) numbers.
The payoffs q × n matrix is defined by C = [Cij ] where i = 1, . . . , q and j = 1, . . . , n as in eq. (2). The decision-making
problem consists in choosing the alternative A∗ ∈ A which maximizes the payoff to the decision maker given the knowledge
on the state of the nature and the payoffs matrix C. A∗ ∈ A is called the best alternative or the solution (if any) of the
decision-making problem. Depending the knowledge the decision-maker has on the states of the nature, he/she is face on
different decision-making problems:

1 – Decision-making under certainty: only one state of the nature is known and certain to occur, say Sj .

Then the decision-making solution consists in choosing

A∗ = Ai∗ with i∗ ! argmax
i

{Cij}

.

2 – Decision-making under risk: the true state of the nature is unknown but one knows all the probabilities pj = P (Sj),
j = 1, . . . , n of the possible states of the nature. In this case, we use the maximum of expected values for decision-making.

For each alternative Ai, we compute its expected payoff

E[Ci] =
∑

j

pj · Cij

then we choose
A∗ = Ai∗ with i∗ ! argmax

i
{E[Ci]}

3 – Decision-making under ignorance: one assumes no knowledge about the true state of the nature but that it belongs to S.

Yager proposes to use the OWA operator assuming a given decision attitude taken by the decision-maker.

Given a set of values/payoffs c1, c2, ..., cn, OWA consists in choosing a normalized set of weighting factors W =
[w1, w2, . . . wn] where wj ∈ [0, 1] and

∑

j wj = 1 and for any set of values c1, c2, ..., cn compute OWA(c1, c2, . . . , cn)
as

OWA(c1, c2, . . . , cn) =
∑

j

wj · bj

where bj is the jth largest element in the collection c1, c2, ..., cn.

OWA operator is a simple weighted average of ordered values of a variable.

For each alternative Ai, i = 1, . . . , q:
1) choose a weighting vector Wi = [wi1, wi2, . . . win]
2) compute its OWA value

Vi ! OWA(Ci1, Ci2, . . . , Cin) =
∑

j

wij · bij

where bij is the jth largest element in the collection of payoffs Ci1, Ci2,. . . , Cin.
3) as for decision-making under risk, choose

A∗ = Ai∗ with i∗ ! argmax
i

{Vi}

difficult, because in general the reliability and importance discounting approaches do not commute, but when αi = βi = 1. In
order to deal both with reliabilities and importances factors and because of the non commutativity of these discountings, two
methods have also been proposed in [23] and not reported here.

B. Yager’s OWA approach
Let’s introduce Yager’s OWA approach [33] for decision making with belief structures. One considers a collection of q

alternatives belonging to a set A = {A1, A2, . . . , Aq} and a finite set S = {S1, S2, . . . , Sn} of states of the nature. We
assume that the payoff/gain Cij of the decision maker in choosing Ai when Sj occurs are given by positive (or null) numbers.
The payoffs q × n matrix is defined by C = [Cij ] where i = 1, . . . , q and j = 1, . . . , n as in eq. (2). The decision-making
problem consists in choosing the alternative A∗ ∈ A which maximizes the payoff to the decision maker given the knowledge
on the state of the nature and the payoffs matrix C. A∗ ∈ A is called the best alternative or the solution (if any) of the
decision-making problem. Depending the knowledge the decision-maker has on the states of the nature, he/she is face on
different decision-making problems:

1 – Decision-making under certainty: only one state of the nature is known and certain to occur, say Sj .

Then the decision-making solution consists in choosing

A∗ = Ai∗ with i∗ ! argmax
i

{Cij}

.

2 – Decision-making under risk: the true state of the nature is unknown but one knows all the probabilities pj = P (Sj),
j = 1, . . . , n of the possible states of the nature. In this case, we use the maximum of expected values for decision-making.

For each alternative Ai, we compute its expected payoff

E[Ci] =
∑

j

pj · Cij

then we choose
A∗ = Ai∗ with i∗ ! argmax

i
{E[Ci]}

3 – Decision-making under ignorance: one assumes no knowledge about the true state of the nature but that it belongs to S.

Yager proposes to use the OWA operator assuming a given decision attitude taken by the decision-maker.

Given a set of values/payoffs c1, c2, ..., cn, OWA consists in choosing a normalized set of weighting factors W =
[w1, w2, . . . wn] where wj ∈ [0, 1] and

∑

j wj = 1 and for any set of values c1, c2, ..., cn compute OWA(c1, c2, . . . , cn)
as

OWA(c1, c2, . . . , cn) =
∑

j

wj · bj

where bj is the jth largest element in the collection c1, c2, ..., cn.

OWA operator is a simple weighted average of ordered values of a variable.

For each alternative Ai, i = 1, . . . , q:
1) choose a weighting vector Wi = [wi1, wi2, . . . win]
2) compute its OWA value

Vi ! OWA(Ci1, Ci2, . . . , Cin) =
∑

j

wij · bij

where bij is the jth largest element in the collection of payoffs Ci1, Ci2,. . . , Cin.
3) as for decision-making under risk, choose

A∗ = Ai∗ with i∗ ! argmax
i

{Vi}

If we donʼt know probabilities pj=P(Sj), use Yagerʼs OWA 
(Ordered Weighted Averaging) approach (1988).

Decision under uncertainty

If we have only a BBA defined on the power-set 2S, where S={S1, S2,..., Sn}, 
Yager proposed extended OWA.

difficult, because in general the reliability and importance discounting approaches do not commute, but when αi = βi = 1. In
order to deal both with reliabilities and importances factors and because of the non commutativity of these discountings, two
methods have also been proposed in [23] and not reported here.

B. Yager’s OWA approach
Let’s introduce Yager’s OWA approach [33] for decision making with belief structures. One considers a collection of q

alternatives belonging to a set A = {A1, A2, . . . , Aq} and a finite set S = {S1, S2, . . . , Sn} of states of the nature. We
assume that the payoff/gain Cij of the decision maker in choosing Ai when Sj occurs are given by positive (or null) numbers.
The payoffs q × n matrix is defined by C = [Cij ] where i = 1, . . . , q and j = 1, . . . , n as in eq. (2). The decision-making
problem consists in choosing the alternative A∗ ∈ A which maximizes the payoff to the decision maker given the knowledge
on the state of the nature and the payoffs matrix C. A∗ ∈ A is called the best alternative or the solution (if any) of the
decision-making problem. Depending the knowledge the decision-maker has on the states of the nature, he/she is face on
different decision-making problems:

1 – Decision-making under certainty: only one state of the nature is known and certain to occur, say Sj .

Then the decision-making solution consists in choosing

A∗ = Ai∗ with i∗ ! argmax
i

{Cij}

.

2 – Decision-making under risk: the true state of the nature is unknown but one knows all the probabilities pj = P (Sj),
j = 1, . . . , n of the possible states of the nature. In this case, we use the maximum of expected values for decision-making.

For each alternative Ai, we compute its expected payoff

E[Ci] =
∑

j

pj · Cij

then we choose
A∗ = Ai∗ with i∗ ! argmax

i
{E[Ci]}

3 – Decision-making under ignorance: one assumes no knowledge about the true state of the nature but that it belongs to S.

Yager proposes to use the OWA operator assuming a given decision attitude taken by the decision-maker.

Given a set of values/payoffs c1, c2, ..., cn, OWA consists in choosing a normalized set of weighting factors W =
[w1, w2, . . . wn] where wj ∈ [0, 1] and

∑

j wj = 1 and for any set of values c1, c2, ..., cn compute OWA(c1, c2, . . . , cn)
as

OWA(c1, c2, . . . , cn) =
∑

j

wj · bj

where bj is the jth largest element in the collection c1, c2, ..., cn.

OWA operator is a simple weighted average of ordered values of a variable.

For each alternative Ai, i = 1, . . . , q:
1) choose a weighting vector Wi = [wi1, wi2, . . . win]
2) compute its OWA value

Vi ! OWA(Ci1, Ci2, . . . , Cin) =
∑

j

wij · bij

where bij is the jth largest element in the collection of payoffs Ci1, Ci2,. . . , Cin.
3) as for decision-making under risk, choose

A∗ = Ai∗ with i∗ ! argmax
i

{Vi}

and take
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Yagerʼs OWA for decision under ignorance pj=P(Sj) are unknown

Step 1 (Decisional attitude) Choose a normalized set of weights
 wi1, ..., win with wi1 +...+ win=1

Step 2 (Evaluation) Compute the weighted average of ordered benefits for 
each row (alternative) i=1,2, ...q 

difficult, because in general the reliability and importance discounting approaches do not commute, but when αi = βi = 1. In
order to deal both with reliabilities and importances factors and because of the non commutativity of these discountings, two
methods have also been proposed in [23] and not reported here.

B. Yager’s OWA approach
Let’s introduce Yager’s OWA approach [33] for decision making with belief structures. One considers a collection of q

alternatives belonging to a set A = {A1, A2, . . . , Aq} and a finite set S = {S1, S2, . . . , Sn} of states of the nature. We
assume that the payoff/gain Cij of the decision maker in choosing Ai when Sj occurs are given by positive (or null) numbers.
The payoffs q × n matrix is defined by C = [Cij ] where i = 1, . . . , q and j = 1, . . . , n as in eq. (2). The decision-making
problem consists in choosing the alternative A∗ ∈ A which maximizes the payoff to the decision maker given the knowledge
on the state of the nature and the payoffs matrix C. A∗ ∈ A is called the best alternative or the solution (if any) of the
decision-making problem. Depending the knowledge the decision-maker has on the states of the nature, he/she is face on
different decision-making problems:

1 – Decision-making under certainty: only one state of the nature is known and certain to occur, say Sj .

Then the decision-making solution consists in choosing

A∗ = Ai∗ with i∗ ! argmax
i

{Cij}

.

2 – Decision-making under risk: the true state of the nature is unknown but one knows all the probabilities pj = P (Sj),
j = 1, . . . , n of the possible states of the nature. In this case, we use the maximum of expected values for decision-making.

For each alternative Ai, we compute its expected payoff

E[Ci] =
∑

j

pj · Cij

then we choose
A∗ = Ai∗ with i∗ ! argmax

i
{E[Ci]}

3 – Decision-making under ignorance: one assumes no knowledge about the true state of the nature but that it belongs to S.

Yager proposes to use the OWA operator assuming a given decision attitude taken by the decision-maker.

Given a set of values/payoffs c1, c2, ..., cn, OWA consists in choosing a normalized set of weighting factors W =
[w1, w2, . . . wn] where wj ∈ [0, 1] and

∑

j wj = 1 and for any set of values c1, c2, ..., cn compute OWA(c1, c2, . . . , cn)
as

OWA(c1, c2, . . . , cn) =
∑

j

wj · bj

where bj is the jth largest element in the collection c1, c2, ..., cn.

OWA operator is a simple weighted average of ordered values of a variable.

For each alternative Ai, i = 1, . . . , q:
1) choose a weighting vector Wi = [wi1, wi2, . . . win]
2) compute its OWA value

Vi ! OWA(Ci1, Ci2, . . . , Cin) =
∑

j

wij · bij

where bij is the jth largest element in the collection of payoffs Ci1, Ci2,. . . , Cin.
3) as for decision-making under risk, choose

A∗ = Ai∗ with i∗ ! argmax
i

{Vi}

bij is the jth largest element in the collection of benefit {Ci1, ... Cin}

difficult, because in general the reliability and importance discounting approaches do not commute, but when αi = βi = 1. In
order to deal both with reliabilities and importances factors and because of the non commutativity of these discountings, two
methods have also been proposed in [23] and not reported here.

B. Yager’s OWA approach
Let’s introduce Yager’s OWA approach [33] for decision making with belief structures. One considers a collection of q

alternatives belonging to a set A = {A1, A2, . . . , Aq} and a finite set S = {S1, S2, . . . , Sn} of states of the nature. We
assume that the payoff/gain Cij of the decision maker in choosing Ai when Sj occurs are given by positive (or null) numbers.
The payoffs q × n matrix is defined by C = [Cij ] where i = 1, . . . , q and j = 1, . . . , n as in eq. (2). The decision-making
problem consists in choosing the alternative A∗ ∈ A which maximizes the payoff to the decision maker given the knowledge
on the state of the nature and the payoffs matrix C. A∗ ∈ A is called the best alternative or the solution (if any) of the
decision-making problem. Depending the knowledge the decision-maker has on the states of the nature, he/she is face on
different decision-making problems:

1 – Decision-making under certainty: only one state of the nature is known and certain to occur, say Sj .

Then the decision-making solution consists in choosing

A∗ = Ai∗ with i∗ ! argmax
i

{Cij}

.

2 – Decision-making under risk: the true state of the nature is unknown but one knows all the probabilities pj = P (Sj),
j = 1, . . . , n of the possible states of the nature. In this case, we use the maximum of expected values for decision-making.

For each alternative Ai, we compute its expected payoff

E[Ci] =
∑

j

pj · Cij

then we choose
A∗ = Ai∗ with i∗ ! argmax

i
{E[Ci]}

3 – Decision-making under ignorance: one assumes no knowledge about the true state of the nature but that it belongs to S.

Yager proposes to use the OWA operator assuming a given decision attitude taken by the decision-maker.

Given a set of values/payoffs c1, c2, ..., cn, OWA consists in choosing a normalized set of weighting factors W =
[w1, w2, . . . wn] where wj ∈ [0, 1] and

∑

j wj = 1 and for any set of values c1, c2, ..., cn compute OWA(c1, c2, . . . , cn)
as

OWA(c1, c2, . . . , cn) =
∑

j

wj · bj

where bj is the jth largest element in the collection c1, c2, ..., cn.

OWA operator is a simple weighted average of ordered values of a variable.

For each alternative Ai, i = 1, . . . , q:
1) choose a weighting vector Wi = [wi1, wi2, . . . win]
2) compute its OWA value

Vi ! OWA(Ci1, Ci2, . . . , Cin) =
∑

j

wij · bij

where bij is the jth largest element in the collection of payoffs Ci1, Ci2,. . . , Cin.
3) as for decision-making under risk, choose

A∗ = Ai∗ with i∗ ! argmax
i

{Vi}Step 3 (Decision) Select
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Example of OWA for decision under ignorance

Best choice = A3

All alternatives have 
same score

Best choice = A3

Best choice = A2

(we take the min value per row)

(balance between min and max values per row)

Introduction to DSmT 
pj=P(Sj)are unknown
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OWA for decision under uncertainty

Step 2 (Evaluation) For each benefit subrow Mik associated to a focal 
element Xk of BBA m(.) compute the benefit of Vik of Ai by

Compute generalized expected benefits 

pj=P(Sj) are unknown, but we have a BBA m(.) defined on the powerset 
2S, of states S={S1, S2,..., Sn}

,
V2 = OWA(1, 10, 20, 30) = 30

and
V3 = OWA(30, 10, 2, 5) = 30

. All alternatives offer the same expected payoff and thus the final decision must be chosen randomly or purely ad-hoc since
there is no best alternative.
If one adopts the normative attitude in choosing

W1 = W2 = W3 = [1/4, 1/4, 1/4, 1/4]

(i.e. one assumes that all states of nature are equiprobable), then one gets:

V1 = OWA(10, 0, 20, 30) = 60/4

,
V2 = OWA(1, 10, 20, 30) = 61/4

and
V3 = OWA(30, 10, 2, 5) = 47/4

. The final decision will be the alternative V2 since it offers the best expected payoff.

4 – Decision-making under uncertainty: this corresponds to the general case where the knowledge on the states of the
nature is characterized by a belief structure.

One assumes a knowledge on the frame S of the different states of the nature is given by a bba m(.) : 2S → [0, 1]. This
case includes all previous cases depending on the choice of m(.). Decision under certainty is characterized by m(Sj) = 1;
Decision under risk is characterized by m(s) > 0 for some states s ∈ S; Decision under full ignorance is characterized by
m(S1 ∪ S2 ∪ . . . ∪ Sn) = 1, etc.

Yager’s OWA for decision-making under uncertainty combines the schemes used for decision making under risk and ignorance.
It is based on the derivation of a generalized expected value Ci of payoff for each alternative Ai as follows:

Ci =
r

∑

k=1

m(Xk)Vik

where r is the number of focal elements of the belief structure (S,m(.)).
m(Xk) is the mass of belief of the focal element Xk ∈ 2S , and Vik is the payoff we get when we select Ai and the state

of the nature lies in Xk.

The derivation of Vik is done similarly as for the decision making under ignorance when restricting the states of the nature
to the subset of states belonging to Xk only.

Therefore for Ai and a focal element Xk, instead of using all payoffs Cij , we consider only the payoffs in the set

Mik = {Cij |Sj ∈ Xk}

and
Vik = OWA(Mik)

for some decision-making attitude chosen a priori. Once generalized expected values Ci, i = 1, 2, . . . , q are computed, we
select the alternative which has its highest Ci as the best alternative (i.e. the final decision).

The principle of this method is very simple, but its implementation can be quite greedy in computational resources specially
if one wants to adopt a particular attitude for a given level of optimism, specially if the dimension of the frame S is large: one
needs to compute by mathematical programming the weighting vectors generating the optimism level having the maximum of
entropy. As illustrative example, we take Yager’s example3 [33] with a pessimistic, optimistic and normative attitudes.

3There is a mistake/typo error in original Yager’s example [33].

,
V2 = OWA(1, 10, 20, 30) = 30

and
V3 = OWA(30, 10, 2, 5) = 30

. All alternatives offer the same expected payoff and thus the final decision must be chosen randomly or purely ad-hoc since
there is no best alternative.
If one adopts the normative attitude in choosing

W1 = W2 = W3 = [1/4, 1/4, 1/4, 1/4]

(i.e. one assumes that all states of nature are equiprobable), then one gets:

V1 = OWA(10, 0, 20, 30) = 60/4

,
V2 = OWA(1, 10, 20, 30) = 61/4

and
V3 = OWA(30, 10, 2, 5) = 47/4

. The final decision will be the alternative V2 since it offers the best expected payoff.

4 – Decision-making under uncertainty: this corresponds to the general case where the knowledge on the states of the
nature is characterized by a belief structure.

One assumes a knowledge on the frame S of the different states of the nature is given by a bba m(.) : 2S → [0, 1]. This
case includes all previous cases depending on the choice of m(.). Decision under certainty is characterized by m(Sj) = 1;
Decision under risk is characterized by m(s) > 0 for some states s ∈ S; Decision under full ignorance is characterized by
m(S1 ∪ S2 ∪ . . . ∪ Sn) = 1, etc.

Yager’s OWA for decision-making under uncertainty combines the schemes used for decision making under risk and ignorance.
It is based on the derivation of a generalized expected value Ci of payoff for each alternative Ai as follows:

Ci =
r

∑

k=1

m(Xk)Vik

where r is the number of focal elements of the belief structure (S,m(.)).
m(Xk) is the mass of belief of the focal element Xk ∈ 2S , and Vik is the payoff we get when we select Ai and the state

of the nature lies in Xk.

The derivation of Vik is done similarly as for the decision making under ignorance when restricting the states of the nature
to the subset of states belonging to Xk only.

Therefore for Ai and a focal element Xk, instead of using all payoffs Cij , we consider only the payoffs in the set

Mik = {Cij |Sj ∈ Xk}

and
Vik = OWA(Mik)

for some decision-making attitude chosen a priori. Once generalized expected values Ci, i = 1, 2, . . . , q are computed, we
select the alternative which has its highest Ci as the best alternative (i.e. the final decision).

The principle of this method is very simple, but its implementation can be quite greedy in computational resources specially
if one wants to adopt a particular attitude for a given level of optimism, specially if the dimension of the frame S is large: one
needs to compute by mathematical programming the weighting vectors generating the optimism level having the maximum of
entropy. As illustrative example, we take Yager’s example3 [33] with a pessimistic, optimistic and normative attitudes.

3There is a mistake/typo error in original Yager’s example [33].

and

,
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W1 = W2 = W3 = [1/4, 1/4, 1/4, 1/4]

(i.e. one assumes that all states of nature are equiprobable), then one gets:

V1 = OWA(10, 0, 20, 30) = 60/4

,
V2 = OWA(1, 10, 20, 30) = 61/4

and
V3 = OWA(30, 10, 2, 5) = 47/4

. The final decision will be the alternative V2 since it offers the best expected payoff.

4 – Decision-making under uncertainty: this corresponds to the general case where the knowledge on the states of the
nature is characterized by a belief structure.

One assumes a knowledge on the frame S of the different states of the nature is given by a bba m(.) : 2S → [0, 1]. This
case includes all previous cases depending on the choice of m(.). Decision under certainty is characterized by m(Sj) = 1;
Decision under risk is characterized by m(s) > 0 for some states s ∈ S; Decision under full ignorance is characterized by
m(S1 ∪ S2 ∪ . . . ∪ Sn) = 1, etc.

A∗ = Ai∗ with i∗ = argmax
i

E[Ci]
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It is based on the derivation of a generalized expected value Ci of payoff for each alternative Ai as follows:

E[Ci] =
r
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where r is the number of focal elements of the belief structure (S,m(.)).
m(Xk) is the mass of belief of the focal element Xk ∈ 2S , and Vik is the payoff we get when we select Ai and the state

of the nature lies in Xk.

The derivation of Vik is done similarly as for the decision making under ignorance when restricting the states of the nature
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. The final decision will be the alternative V2 since it offers the best expected payoff.
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m(S1 ∪ S2 ∪ . . . ∪ Sn) = 1, etc.
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Yager’s OWA for decision-making under uncertainty combines the schemes used for decision making under risk and ignorance.
It is based on the derivation of a generalized expected value Ci of payoff for each alternative Ai as follows:

E[Ci] =
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where r is the number of focal elements of the belief structure (S,m(.)).
m(Xk) is the mass of belief of the focal element Xk ∈ 2S , and Vik is the payoff we get when we select Ai and the state

of the nature lies in Xk.

The derivation of Vik is done similarly as for the decision making under ignorance when restricting the states of the nature
to the subset of states belonging to Xk only.

Therefore for Ai and a focal element Xk, instead of using all payoffs Cij , we consider only the payoffs in the set

Mik = {Cij |Sj ∈ Xk}

and
Vik = OWA(Mik)

for some decision-making attitude chosen a priori. Once generalized expected values Ci, i = 1, 2, . . . , q are computed, we
select the alternative which has its highest Ci as the best alternative (i.e. the final decision).

The principle of this method is very simple, but its implementation can be quite greedy in computational resources specially
if one wants to adopt a particular attitude for a given level of optimism, specially if the dimension of the frame S is large: one

Step 1 (Decisional attitude) Choose a normalized set of weights
 wi1, ..., win with wi1 +...+ win=1

Step 3 (Decision) Select



46

Example of OWA for decision under uncertainty

sub-payoff 
matrices

Introduction to DSmT 



47

OWA Example (contʼd)

Best choice = A1

Pessimistic attitude One takes the min value by row

needs to compute by mathematical programming the weighting vectors generating the optimism level having the maximum of
entropy. As illustrative example, we take Yager’s example3 [?] with a pessimistic, optimistic and normative attitudes.
Example 2: Let’s take states S = {S1, S2, S3, S4, S5} with associated bba

m(S1 ∪ S3 ∪ S4) = 0.6

,
m(S2 ∪ S5) = 0.3

and
m(S1 ∪ S2 ∪ S3 ∪ S4 ∪ S5) = 0.1

. Let’s also consider alternatives A = {A1, A2, A3, A4} and the payoffs matrix:

C =









7 5 12 13 6
12 10 5 11 2
9 13 3 10 9
6 9 11 15 4









(9)

The r = 3 focal elements of m(.) are
X1 = S1 ∪ S3 ∪ S4

,
X2 = S2 ∪ S5

and
X3 = S1 ∪ S2 ∪ S3 ∪ S4 ∪ S5

. X1 and X2 are partial ignorances and X3 is the full ignorance. One considers the following submatrix (called bags by Yager)
for the derivation of Vik , for i = 1, 2, 3, 4 and k = 1, 2, 3.

M(X1) =









M11

M21

M31

M41









=









7 12 13
12 5 11
9 3 10
6 11 15









M(X2) =









M12

M22

M32

M42









=









5 6
10 2
13 9
9 4









M(X3) =









M13

M23

M33

M43









=









7 5 12 13 6
12 10 5 11 2
9 13 3 10 9
6 9 11 15 4









= C

• Using pessimistic attitude, and applying the OWA operator on each row of M(Xk) for k = 1 to r, one gets finally4:

V (X1) = [V11, V21, V31, V41]
t = [7, 5, 3, 6]t

,
V (X2) = [V12, V22, V32, V42]

t = [5, 2, 9, 4]t

and
V (X3). = [V13, V23, V33, V43]

t = [5, 2, 3, 4]t

. Applying formula (??) for i = 1, 2, 3, 4 one gets finally the following generalized expected values using vectorial notation:

[C1, C2, C3, C4]
t =

r=3
∑

k=1

m(Xk) · V (Xk) = [6.2, 3.8, 4.8, 5.2]t

According to these values, the best alternative to take is A1 since it has the highest generalized expected payoff.

3There is a mistake/typo error in original Yager’s example [?].
4where Xt denotes the transpose of X .

needs to compute by mathematical programming the weighting vectors generating the optimism level having the maximum of
entropy. As illustrative example, we take Yager’s example3 [?] with a pessimistic, optimistic and normative attitudes.
Example 2: Let’s take states S = {S1, S2, S3, S4, S5} with associated bba
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X1 = S1 ∪ S3 ∪ S4

,
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and
X3 = S1 ∪ S2 ∪ S3 ∪ S4 ∪ S5
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for the derivation of Vik , for i = 1, 2, 3, 4 and k = 1, 2, 3.
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
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
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5 6
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13 9
9 4






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M13
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
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
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




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• Using pessimistic attitude, and applying the OWA operator on each row of M(Xk) for k = 1 to r, one gets finally4:

V (X1) = [V11, V21, V31, V41]
t = [7, 5, 3, 6]t

,
V (X2) = [V12, V22, V32, V42]

t = [5, 2, 9, 4]t

and
V (X3). = [V13, V23, V33, V43]

t = [5, 2, 3, 4]t

. Applying formula (??) for i = 1, 2, 3, 4 one gets finally the following generalized expected values using vectorial notation:

[C1, C2, C3, C4]
t =

r=3
∑

k=1

m(Xk) · V (Xk) = [6.2, 3.8, 4.8, 5.2]t

According to these values, the best alternative to take is A1 since it has the highest generalized expected payoff.

3There is a mistake/typo error in original Yager’s example [?].
4where Xt denotes the transpose of X .

needs to compute by mathematical programming the weighting vectors generating the optimism level having the maximum of
entropy. As illustrative example, we take Yager’s example3 [?] with a pessimistic, optimistic and normative attitudes.
Example 2: Let’s take states S = {S1, S2, S3, S4, S5} with associated bba
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and
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,
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and
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• Using pessimistic attitude, and applying the OWA operator on each row of M(Xk) for k = 1 to r, one gets finally4:

V (X1) = [V11, V21, V31, V41]
t = [7, 5, 3, 6]t

,
V (X2) = [V12, V22, V32, V42]

t = [5, 2, 9, 4]t

and
V (X3). = [V13, V23, V33, V43]

t = [5, 2, 3, 4]t

. Applying formula (??) for i = 1, 2, 3, 4 one gets finally the following generalized expected values using vectorial notation:

[C1, C2, C3, C4]
t =

r=3
∑

k=1

m(Xk) · V (Xk) = [6.2, 3.8, 4.8, 5.2]t

According to these values, the best alternative to take is A1 since it has the highest generalized expected payoff.

3There is a mistake/typo error in original Yager’s example [?].
4where Xt denotes the transpose of X .

needs to compute by mathematical programming the weighting vectors generating the optimism level having the maximum of
entropy. As illustrative example, we take Yager’s example3 [33] with a pessimistic, optimistic and normative attitudes.
Example 2: Let’s take states S = {S1, S2, S3, S4, S5} with associated bba

m(S1 ∪ S3 ∪ S4) = 0.6

,
m(S2 ∪ S5) = 0.3

and
m(S1 ∪ S2 ∪ S3 ∪ S4 ∪ S5) = 0.1

. Let’s also consider alternatives A = {A1, A2, A3, A4} and the payoffs matrix:

C =









7 5 12 13 6
12 10 5 11 2
9 13 3 10 9
6 9 11 15 4









(9)

The r = 3 focal elements of m(.) are
X1 = S1 ∪ S3 ∪ S4

,
X2 = S2 ∪ S5

and
X3 = S1 ∪ S2 ∪ S3 ∪ S4 ∪ S5

. X1 and X2 are partial ignorances and X3 is the full ignorance. One considers the following submatrix (called bags by Yager)
for the derivation of Vik , for i = 1, 2, 3, 4 and k = 1, 2, 3.

M(X1) =









M11

M21

M31

M41









=









7 12 13
12 5 11
9 3 10
6 11 15









M(X2) =









M12

M22

M32

M42









=









5 6
10 2
13 9
9 4









M(X3) =









M13

M23

M33

M43









=









7 5 12 13 6
12 10 5 11 2
9 13 3 10 9
6 9 11 15 4









= C

• Using pessimistic attitude, and applying the OWA operator on each row of M(Xk) for k = 1 to r, one gets finally4:

V (X1) = [V11, V21, V31, V41]
t = [7, 5, 3, 6]t

,
V (X2) = [V12, V22, V32, V42]

t = [5, 2, 9, 4]t

and
V (X3). = [V13, V23, V33, V43]

t = [5, 2, 3, 4]t

. Applying formula (III-B) for i = 1, 2, 3, 4 one gets finally the following generalized expected values using vectorial notation:









E[C1]
E[C2]
E[C3]
E[C4]









=
r=3
∑

k=1

m(Xk) · V (Xk) =









6.2
3.8
4.8
5.2









3There is a mistake/typo error in original Yager’s example [33].
4where Xt denotes the transpose of X .

W =

�
0
1

�

Introduction to DSmT 



48

OWA Example (contʼd) Optimistic attitude One takes the max value by row

Best choice = A4Best choice = A4

[C1, C2, C3, C4]
t =

r=3
∑

k=1

m(Xk) · V (Xk) = [6.2, 3.8, 4.8, 5.2]t

According to these values, the best alternative to take is A1 since it has the highest generalized expected payoff.
• Using optimistic attitude, one takes the max value of each row, and applying OWA on each row of M(Xk) for k = 1 to

r, one gets:
V (X1) = [V11, V21, V31, V41]

t = [13, 12, 10, 15]t

,
V (X2) = [V12, V22, V32, V42]

t = [6, 10, 13, 9]t

, and
V (X3) = [V13, V23, V33, V43]

t = [13, 12, 13, 15]t

.








E[C1]
E[C2]
E[C3]
E[C4]









=
r=3
∑

k=1

m(Xk) · V (Xk) =









10.9
11.4
11.2
13.2









One finally gets
[C1, C2, C3, C4]

t = [10.9, 11.4, 11.2, 13.2]t

and the best alternative to take with optimistic attitude is A4 since it has the highest generalized expected payoff.
• Using normative attitude, one takes W1 = W2 = W3 = W4 = [1/|Xk|, 1/|Xk|, . . . , 1/|Xk|] where |Xk| is the cardinality

of the focal element Xk under consideration. The number of elements in Wi is equal to |Xk|. The generalized expected values
are

[C1, C2, C3, C4]
t = [8.91, 8.20, 8.58, 9.25]t

and the best alternative with the normative attitude is A4 (same as with optimistic attitude) since it has the highest generalized
expected payoff.

C. Using expected utility theory
In this section, we propose to use a much simpler approach than OWA Yager’s approach for decision making under uncertainty.

The idea is to approximate the bba m(.) by a subjective probability measure through a given probabilistic transformation. We
suggest to use either BetP or (better) DSmP transformations for doing this as explained in [22] (Vol.3, Chap. 3). Let’s take
back the previous example and compute the BetP (.) and DSmPε(.) values from m(.). One gets the same values in this
particular example for any ε > 0 because we don’t have singletons as focal elements of m(.), which is normal. Here

BetP (S1) = DSmP (S1) = 0.22

,
BetP (S2) = DSmP (S2) = 0.17

,
BetP (S3) = DSmP (S3) = 0.22

,
BetP (S4) = DSmP (S4) = 0.22

and
BetP (S5) = DSmP (S2) = 0.17

. Based on these probabilities, we can compute the expected payoffs for each alternative as for decision making under risk
(e.g. for C1, we get 7 · 0.22 + 5 · 0.17 + 12 · 0.22 + 13 · 0.22 + 6 · 0.17 = 8.91). For the 4 alternatives, we finally get:

EBetP [C] = EDSmP [C] = [8.91, 8.20, 8.58, 9.25]t

According to these values, one sees that the best alternative with this pignistic or DSm attitude is A4 (same as with Yager’s
optimistic or normative attitudes) since it offers the highest pignistic or DSm expected payoff. This much simpler approach
must be used with care however because there is a loss of information through the approximation of the bba m(.) into any
subjective probability measure. Therefore, we do not recommend to use it in general.

(A4 is also chosen
 with normative attitude)

needs to compute by mathematical programming the weighting vectors generating the optimism level having the maximum of
entropy. As illustrative example, we take Yager’s example3 [?] with a pessimistic, optimistic and normative attitudes.
Example 2: Let’s take states S = {S1, S2, S3, S4, S5} with associated bba

m(S1 ∪ S3 ∪ S4) = 0.6

,
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and
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C =









7 5 12 13 6
12 10 5 11 2
9 13 3 10 9
6 9 11 15 4









(9)

The r = 3 focal elements of m(.) are
X1 = S1 ∪ S3 ∪ S4

,
X2 = S2 ∪ S5

and
X3 = S1 ∪ S2 ∪ S3 ∪ S4 ∪ S5

. X1 and X2 are partial ignorances and X3 is the full ignorance. One considers the following submatrix (called bags by Yager)
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


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






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







7 12 13
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6 11 15









M(X2) =









M12

M22

M32

M42









=









5 6
10 2
13 9
9 4









M(X3) =









M13

M23

M33

M43









=









7 5 12 13 6
12 10 5 11 2
9 13 3 10 9
6 9 11 15 4









= C

• Using pessimistic attitude, and applying the OWA operator on each row of M(Xk) for k = 1 to r, one gets finally4:
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t = [5, 2, 9, 4]t

and
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. Applying formula (??) for i = 1, 2, 3, 4 one gets finally the following generalized expected values using vectorial notation:
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t =

r=3
∑

k=1

m(Xk) · V (Xk) = [6.2, 3.8, 4.8, 5.2]t

According to these values, the best alternative to take is A1 since it has the highest generalized expected payoff.

3There is a mistake/typo error in original Yager’s example [?].
4where Xt denotes the transpose of X .
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Introduction to DSmT 
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Cautious OWA (COWA) method [Tacnet-Dezert 2011]

Problem with Yagerʼs OWA approach

The final result strongly depends on the decisional attitude. 
How to choose it among the infinite number of possible attitudes?

Use jointly the two most extreme attitudes (pessimistic and 
optimistic) to be more cautious.

Pessimistic and optimistic generalized expected benefits allow to 
build belief intervals, and to get BBAs that are combined with 
PCR6 to get combined BBA to take final decision..

Introduction to DSmT 

Yager defined an index of optimism and proposed to compute wi 
from it using max-entropy principle.

How to deal with decisional attitude choice ?

Improvement of COWA (having lower complexity) [Han-Dezert-Tacnet 2012]
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Introduction to DSmT 

DSmT for Multi-criteria decision-making

Extension of Saatyʼs Analytic Hierarchy Process (AHP) with BF, 
PCR rules and importance discounting technique.

DSm-AHP method

Soft-ELECTRE method
Improvement of Royʼs ELECTRE method to assign alternatives into a set
of predetermined categories based on BF and PCR rules.

Dezert J., Tacnet J.-M., Sigmoidal Model for Belief Function-based Electre Tri method,
Belief 2012, Compiègne, May 2012.

Dezert J., Tacnet J.-M., Soft ELECTRE TRI outranking method based on belief functions, 
Proc. Of  Fusion 2012, Singapore, July 2012.

Dezert J., Tacnet J.-M., Evidential Reasoning for Multi-Criteria Analysis based on DSmT-AHP,
ISAHP 2011, Italy, June 2011.

Dezert J, Tacnet J.-M., Batton-Hubert M., Smarandache F., Multi-criteria decision making based on DSmT/AHP,
Proc. of International Workshop on Belief Functions, Brest, France, April 2-4, 2010.
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Introduction to DSmT 

DSmT for quality assessment of optimal data association

J. Dezert, K. Benameur, L. Ratton, J.-F. Grandin, On the Quality Estimation of Optimal 
Multiple Criteria Data Association Solutions, in Proc. of Fusion 2015, Washington D.C, 
USA, July 6-9, 2015.

Dezert J., Benameur K., On the quality of optimal assignment for data association,
 Proc. of Belief 2014 Conf. Oxford, UK, Sept. 26-29, 2014.

Dezert J., Tchamova A., Konstantinova P., The Impact of the Quality Estimation of 
Optimal Assignment for Data Association in a Multitarget Tracking Context,
in preparation for CYBERNETICS AND INFORMATION TECHNOLOGIES Journal.

Basic idea: Find the 1st and 2nd best optimal optimal assigments. Detect the 
instability of solutions and use them to estimate the quality of 1st best optimal 
assignment thanks to BF and PCR6 rule of combination. 
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Part 3

Some applications of DSmT
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Applications of DSmT

~ 25 Ph.D Thesis, and 220 papers by colleagues during 2004--2014 

Target tracking and recognition
Satellite imaging (classification and change detection)

Biometrics (fingerprint and face recognition)

Medical imaging (classification and diagnosis)

Robotics (SLAM)

OCR (Signature verification)

Failure detection

MCDM and risk management
Image fusion

see http://www.onera.fr/staff/jean-dezert?page=3

http://www.onera.fr/staff/jean-dezert?page=3
http://www.onera.fr/staff/jean-dezert?page=3
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Applications of DSmT

DSmT for Target tracking and recognition

298 CHAPTER 13. ESTIMATION OF TARGET BEHAVIOR TENDENCIES USING DSMT

is supported by Approaching model, because that mode corresponds to the minimum entropies values,

which means that it is the more informative one.
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Figure 13.7: Evolution of the pignistic entropy for updated states.

The Approaching model is dominant, because the measured amplitude values during these scans stable

reside in the state Big, as it is obvious from the fuzzification interface (fig.13.2). In the same time, Reced-

ing model supports the overlapping region S ∩ B, which is transition towards the state Small. Between

scans 16th and 90th the Receding model becomes dominant since the variations of amplitude changes

are minimal and their amplitude values stable support the state Small. During these scans Approaching

model has a small reaction to the measurement statistics, keeping paradoxical state S ∩ B.What it is

interesting and important to note is that between scans 16th and 30th the difference of entropies between

Approaching and Receding models increases, a fact, that makes us to be increasingly sure that the Re-

ceding mode is becoming dominant. Then, between scans 75th and 90th the difference of these entropies

is decreasing, which means that we are less and less sure, that Receding model remain still dominant.

After switching scan 91th the Approaching model becomes dominant one, until scan 100th. In general the

reaction of the considered models to the changes of target motion is not immediate, because the whole

behavior estimation procedure deals with vague propositions Small, Big, and sequences of amplitude

values at consecutive scans often reside stable in one and the same states.

Comparing the results in figure 13.6 with the results in figure 13.5, it is evident, that although some

disorder in the estimated behavior tendencies, one can make approximately correct decision due to the

possibility of DSmT to deal with conflicts and that way to contribute for a better understanding of target

behavior and evaluation of the threat.

Estimation of target behavior tendencies
[Tchamova et. al 2003]

Generalized data association for MTT in clutter
[Tchamova et. al 2004-2006]

14.6.SIMULATIONRESULTS319

Figure14.6:PerformanceofTrackingAlgorithmwithKinematicsOnlyDataAssociation

14.6.2Simulationresults:Fourcloselyspacedtargets

Figure14.7showstheperformanceoftheimplementedtrackingalgorithmwithkinematicsonlydata

association.Onecanseethatthefourcloselyspacedmovinginparalleltargetslosetheproperdirections

andthetracksswitch.

Figure14.7:PerformanceofTrackingAlgorithmwithKinematicsOnlyDataAssociation

Sonar amplitude meas+ + fuzzy rules + DSmT for updating

MTT with kinematics and attribute measurements

Performance improvment of Multitarget Tracking using 
DSmT [Tchamova et al. 2005-2006]

Improvement of Multiple Ground Targets Tracking with 
GMTI Sensor and Fusion of Identification Attributes [B. 
Pannetier et al. 2008]
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Applications of DSmT

DSmT for Target tracking and recognition

On the Quality of Optimal Assignment for data association 
[J. Dezert,et al. Belief 2014]

On the Quality Estimation of Optimal Multiple Criteria Data Association Solutions 
[J. Dezert,et al. Fusion2015]

A PCR-BIMM filter For Maneuvering Target Tracking 
[Dezert-Pannetier 2010]

Multiple Ground Target Tracking and Classification with DSmT
 [B. Pannetier et al. 2010]

Tracking Applications with Fuzzy-Based Fusion Rules 
[Tchamova-Dezert 2013]
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Applications of DSmT

DSmT for Target tracking and recognition

A Sequential Monte-Carlo and DSmT Based 
Approach for Conflict Handling in case of 
Multiple target Tracking [Sun,Bentabet 2008]

An Improved Radar Emitter Recognition 
Method Based on Dezert-Smarandache Theory 
[Chen et al. 2015]
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Applications of DSmT

DSmT for Target tracking and recognition
MS Particle filtering with PCR5 for target tracking 
[Kirchner & al. 2007]

We restrict bba to be Bayesian and we extend PCR5 to work on a continuous frame

PCR5 versus Bayes’ formula
for combining probability densities

(working notes V3)

1 Principles of estimation
Case 1 : m2(.) = m1(.)

Case 2 : m2(.) != m1(.)

m1(.) ≡ p1(.)

m2(.) ≡ p2(.)

m2(.) = m1(.)

mPCR5(.)

m∩(.) = m1(.)m2(.)/Cte

m1(θ1) = 1 − e1 m1(θ2) = 0 m1(θ3) = e1

m2(θ1) = 0 m2(θ2) = 1 − e2 m2(θ3) = e2

• Step 2: compute all the conflicting masses (partial and/or total).

Let’s consider x an hidden/unknown (scalar or vector-valued) quantity called parameter1 and some obser-
vation z of x. This means that z is a function (not necessarily known) of x, i.e. z = h(x). An estimator is a
function of z which transforms the observation z into an estimate x̂(z) of x in some sense. Closer x̂(z) is to
x for a given distance measure, better is the estimator. For notation convenience, we will use x̂ instead x̂(z)
when no confusion is possible. According [1], an optimal estimator is a computational algorithm that processes
observations to yield an estimate of a variable of interest that minimizes a certain error criterion. In tracking
applications, the parameter x is usually time-varying and it corresponds to the state of a dynamic system under

1For simplicity, we assume x being time invariant.
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function of z which transforms the observation z into an estimate x̂(z) of x in some sense. Closer x̂(z) is to
x for a given distance measure, better is the estimator. For notation convenience, we will use x̂ instead x̂(z)
when no confusion is possible. According [1], an optimal estimator is a computational algorithm that processes

1For simplicity, we assume x being time invariant.

1

Distributed passive sensor tracking context.
Robustness to bad initialization
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Applications of DSmT
DSmT for Target tracking and recognition

Target Type Tracking [Dezert, Tchamova et al. 2006]

2 targets sequentially 
observed and classified 
with

Cargo

(PCR5)

Fighter

(DS)

(PCR5)

Fighter Type TrackingCargo Type Tracking



59

Applications of DSmT
DSmT for Satellite imaging (classification and change detection)

Land cover change prediction for pollution prevention
[Corgne et al. 2004 + Ph D Thesis]

380 CHAPTER 17. APPLICATION OF DSMT FOR LAND COVER CHANGE PREDICTION

Land use for winter 2001/2002 (from

remote sensing data)
Prediction (rate)

bare soils 266 fields 121 (0.46 %)

covered soils 1588 fields 1239 (0.78 %)

Total 1856 fields 1360 (0.73 %)

Table 17.3: Performance of hybrid DSm rule for land prediction

.

Figure 17.3: Prediction performance with the hybrid DSm rule on the Yar watershed (Brittany).

Satellite image fusion using DSmT 
[Bouakache,Belhadj-Aissa,Mercier 2009]

Application of DSm Theory for SAR image change detection
[Hachicha et al. 2009]
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Applications of DSmT
DSmT for Satellite imaging (classification and change detection)

Dynamic Evidential Reasoning for Change Detection 
in Remote Sensing Images [Liu et al. 2011]

Before Earthquake After Earthquake at t1 After Earthquake at t2

On the SAR change detection review and optimal decision 
[Hachicha et al. 2014]

Multisource Fusion/Classification Using ICM* and DSmT with New Decision Rule 
[Elhassouny et al. 2012]

New contributions into the Dezert-Smarandache theory: 
Application to remote sensing image classification
[Haouas et al. 2014] forest classification

* ICM = Iterated Conditional Mode
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Applications of DSmT
DSmT for recognition and classification

Image segmentation and target classification based on 
real radar data and PCR rules [Martin, Osswald 2006]

Automatic Aircraft Recognition using DSmT and HMM 
[Li et al. 2014]
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Applications of DSmT

DSmT for Medical imaging (classification and diagnosis)

Multimodal information retrieval based on DSmT. Application to 
computer-aided medical diagnosis [Quellec et al. 2008-2009]

Case retrieval in medical databases by fusing heterogeneous information 
[Quellec et al.2001]

Diabetic Retinopathy Database Digital Database for Screening Mammography

Applications: Retinopathy and breast cancer detection
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Applications of DSmT

DSmT for Biometrics (fingerprint and face recognition)

Unification of Evidence Theoretic Fusion 
Algorithms: A Case Study in Level-2 and 
Level-3 Fingerprint Feature [Vatsa et al. 2008]

Gallery Images Probe Images
Example of conflicting data – Face recognition algorithm accepts and fingerprint

recognition algorithm rejects

Probe Images

Biometric match score fusion based on DSmT 
[Vatsa 2008]

Quality-Augmented Fusion of Level-2 and 
Level-3 Fingerprint Information using DSm 
Theory [Vatsa et al. 2008]

Integrated Multilevel Image Fusion and 
Match Score Fusion of Visible and Infrared 
Face Images for Robust Face Recognition 
[Singh et al. 2008]
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Applications of DSmT
DSmT for Robotics (SLAM)
Robot Map building from Sonar Sensors and DSmT
[Li, Dezert et al. 2006]
Robot Map building and self Localization on 
real sonar data based on PCR5 [Li & al. 2007]

Environment Perception Using Grid Occupancy Estimation with Belief Functions 
[Dezert,Moras Pannetier 2015]

We use (Z)PCR6 to update 
grid perception to make 
mapping for long-term 
navigation and detect mobile 
objects. Real experiment 
with LIDAR sensor.

Occupancy Grid Mapping Based on DSmT for Dynamic Environment 
Perception [Zhou et al. 2013, 2015]
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Applications of DSmT

DSmT for OCR (signature & handwritten address verification)

Handwritten Digit Recognition Based On a DSmT-SVM Parallel Combination 
[Abbas et al. 2012]

The Effective Use of the DSmT for Multi-Class 
Classification [Abbas et al. 2015]

A DSmT Based Combination Systems 
for Handwritten Signature Verification 
[Abbas et al. 2012]

SVM-DSmT Combination for Off-Line
Signature Verification [Abbas et al. 2012]
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Applications of DSmT

DSmT for sensor fusion
Decision Level Multiple Cameras Fusion Using Dezert-Smarandache Theory, 
[Garcia, Altamirano 2009]

DSmT Applied to Seismic and Acoustic 
Sensor Fusion [Blasch,Dezert,Valin 2011]
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Applications of DSmT
DSmT for image processing
Edge Detection in Color Images Based on DSmT [Dezert, Liu, Mercier 2011]

We use RGB channels of color image, and in each pixel of a layer we compute its 
BBA to belong (or not) to an edge thank to gradient values.

We use sigmoidal modeling with chosen [te,tn] detection threshold uncertainty.

We use PCR5 to combine the 3 BBA  altogether.
We use max of DSmP to make final decision.

PCR5

PCR5 
Edge 
detector
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Applications of DSmT

DSmT for failure detection

System and method for combining diagnostic evidences for turbine engine 
fault detection [US Patent 7337086, Honeywell Int. Inc.,  Feb, 2008]

Developing a monitoring system for long-distance 
pipeline leakage incorporating fusion of 
conflicting evidences [Adair et al. 2015]

One Fusion Approach of Fault Diagnosis Based on Rough Set Theory
and Dezert-Smarandache Theory [Su et al. 2012]

Contextual reliability discounting in welding process 
diagnostic based on DSmT [Jamrozik 2014]
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Applications of DSmT

DSmT for resource/sensor management
Power and resource aware distributed smart fusion
 [Kadambe 2004]

400 CHAPTER 18. POWER AND RESOURCE AWARE DISTRIBUTED SMART FUSION

18.3.2.1.2 Energy based detector An energy based detector is also used for the verification of

improvement in decision accuracy when the value of information based fusion architecture is used. This

detector is developed by BAE, Austin [3]; also as part of the SensIT program. A brief description of this

detector is provided below.

For every block of a given signal the energy of the down sampled version of the power spectral density

is computed. For the computation of the power spectral density, 1024 point FFT is used. This energy is

compared with a threshold value. Whenever the energy is above the threshold it was declared that the

target was detected. The threshold value is adaptively changed based on the background energy.

18.3.2.2 Experimental details

The above described classifier and detector, and measures of value of information and the fusion algorithm

which uses these measures while deciding when to and when not to fuse information were implemented

and were tested using real data that was obtained by distributing sensor nodes along the east-west and

south-north road at Twentynine Palms, CA during one of the field tests (SITEX’02) as shown in Figure

18.7. These sensor nodes are manufactured by Sensoria. On each sensor node, three sensors - acoustic,

seismic and IR sensors, a four channel data acquisition board and a processing board are available. These

nodes also have communication capabilities. For more details on the sensor node, refer to [14].

Figure 18.7: Sensor node distribution at Twenty nine Palms, CA

Optimization of disparate DSN architecture to minimize power 
consumption and optimize target detection and classification.

Map regenerating forest stands based on DST and DSmT 
combination rules [Mora,Fournier,Foucher 2009]

Automatic goal allocation for a planetary rover with 
DSmT [Vasile,Ceriotti 2009] 

Utilizing classifier conflict for sensor management 
and user interaction [Van Norden, Jonker 2009] 
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Applications of DSmT

Situation analysis and threat assessment

Fusion of ESM allegiance reports using 
DSmT [Djiknavorian,Valin, Grenier 2009]

Attribute information evaluation in C&C 
systems, [Krenc & Kawalec 2009]

Maritime surveillance and threat 
assessment [Van Norden 2010]

Processing of information in C2 systems
[Krenc 2010]

Threat assessment of a possible Vehicle-Born Improvised Explosive Device 
using DSmT [Dezert,Smarandache 2010]

Intelligent Alarm Classification Based on DSmT [Tchamova,Dezert 2012]

Application of New Absolute and Relative Conditioning Rules in Threat 
Assessment [Krenc, Smarandache 2013]



Thank you for your attention.
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