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Atmospheric Turbulence:
Phase
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Phase Image



Atmospheric Turbulence:
Scintillation
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Pupil image Integrated intensity



Instrumentation



Measuring Atmospheric Turbulence:
SLODAR
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Credit: T. Butterley

Osborn et al., 
MNRAS, 406, 1405-1408, 2010

Butterley et al.,
MNRAS, submitted October 2019
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Measuring Atmospheric Turbulence:
STEREO-SCIDAR
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Osborn et al., 
MNRAS, 478(1), 825–834, 2018

Shepherd et al. 
MNRAS, 437(4), 3568-3577, 2013 

Osborn et al.
MNRAS, 464 (4), 3998 - 4007, 2016

Derie et al. 
ESO Messenger, 166, 41-66, 2017 

Osborn et al.
MNRAS, 478 (1), 825 - 834, 2018

Osborn et al.
MNRAS, 406(2), 1405-1408, 2010



Measuring Atmospheric Turbulence:
SHIMM
• Shack-hartmann sensor looking at a single 

bright ‘source’
• Turbulence strength, Coherence time
• Simple profile - ground / not ground - possible 

(not published)
• Isoplanatic angle possible
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Perera, 2017

Perera et al,
SPIE, 99093J, 2016



Measuring Atmospheric Turbulence:
STEREO-SCIDAR
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Farley et al., MNRAS, 481, 2018
• 10000+ profiles into 15
• Hierarchical clustering

Ollie Farley



Measuring Atmospheric Turbulence:
STEREO-SCIDAR
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Farley et al., MNRAS, 481, 2018
• 10000+ profiles into 15
• Hierarchical clustering
• Reflects variability of atmospheric turbulence

Ollie Farley



Measuring Atmospheric Turbulence:
Modelling tomographic AO
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Ollie Farley
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Turbulence 
Forecasts



Atmospheric Turbulence Modelling:
Paranal
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Osborn & Sarazin, 
MNRAS, 480(1), 1278-1299, 2018



Atmospheric Turbulence Modelling:
Paranal
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ECMWFSCIDAR

Osborn & Sarazin, 
MNRAS, 480(1), 1278-1299, 2018



Atmospheric Turbulence Modelling:
Paranal
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ECMWF 
turbulence 
model

Stereo-
SCIDAR

Osborn & Sarazin, 
MNRAS, 480(1), 1278-1299, 2018



Atmospheric Turbulence Modelling:
Global
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Turbulence Strength Scintillation



Atmospheric Turbulence Modelling:
Global Models

Seeing Scintillation
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• Working with Sukanta Basu to improve meteorological models
• Best global data available?



Atmospheric Turbulence Modelling:
Global Models
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Hufnagel-Valley
ECMWF global median



Atmospheric Turbulence Modelling:
Global Models
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Image: NASA



Atmospheric Turbulence Modelling:
Latitude Models
• Simple parametric latitude model
• Laser communications studies
• Site characterisation
• Instrument design
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ECMWF median

Parametric Latitude Model



Case Study:
Paris
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Turbulence Strength

Wind Speed



Case Study:
Paris
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!", !isoK

(" )"

(" = 0.1 ± 0.03 m
!" = 1.44 ± 0.37”
!isoK = 5.38 ± 1.16”
)" = 2.88 ± 1.7 ms
789 = 0.22 ± 0.09 789

At 500nm



Case Study:
Paris: Rytov Variance
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Weak

Strong

In this case we assume pointing to 
zenith, but results can be scaled



Atmospheric Parameters:
Rytov Variance and Scintillation Index
Different model depending on beam 
shape (impacts propagation)
• Downlink
– Assume plane at top of 

atmosphere
• Uplink
– Assume spherical (simpler) as in 

Andrews & Phillips or gaussian 
(more complex)
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Case Study:
Paris Scintillation Index
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Downlink Uplink



Atmospheric Parameters:
Aperture Averaging and Scintillation Index

• Scintillation Index as a function of receiver aperture size for a downlink plane 
wave in increasing Rytov variance conditions

• Aperture averaging is effective when the aperture is larger than the individual 
speckles
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Case Study:
Paris Scintillation Index
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No aperture 
averaging

With aperture 
averaging



Numerical 
Modelling



Features:
• Includes satellite motion (effective wind speed and 

variable zenith angle (propagation distance) during 
simulation)

• Physical propagation model of Gaussian and any 
other beamshapes

• Shack-Hartmann wavefront sensor or ‘magicAO’
• Laser guide star
• Modal AO system 
• Variable AO latency and frame rates
• Infinite phase screens
• Layer wind speed, direction and turbulence strength 

can vary during simulation
• Arbitrary transmitter and receiver geometries

Modelling – Monte-Carlo simulation:
Overview
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Problems:
• Theory for finite launch apertures
• Validation of performance using real 

turbulence profile and system parameters
• Understand architecture of potential AO 

systems



Case Study:
Paris

04/12/2019 28

Parameters used here:
• !=1064nm

• Ground station receiver diameter = 1m

• Ground station transmitter = 1 m

• Satellite receiver diameter = 0.2 m

• Satellite altitude = 2000 km

• Paris turbulence profile (compressed to 4 layers, "#, $iso, 
%# and &'( are conserved)

• Frame rate = 1kHz

• 4000 frames (4 seconds simulation time), limited by 
available computational time

• Assume perfect pointing



Modelling – Monte-Carlo simulation:
Uplink - Uncorrected
Transmitter Diameter = 1 m
Ground to LEO (2000 km)
Elevation = 90 degrees
Wavelength = 1064x10-9 m
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Modelling – Monte-Carlo simulation:
Uplink - AO Corrected
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AO corrected Uncorrected



Modelling – Monte-Carlo simulation:
Uplink - AO Corrected: 10” point ahead angle

04/12/2019 31

AO corrected UncorrectedAO corrected
10” point-ahead



Modelling – Monte-Carlo simulation:
Uplink – LGS corrected: 10” point ahead angle
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AO corrected UncorrectedAO corrected
10” point-ahead

LGS corrected uplink



Modelling – Monte-Carlo simulation:
Results
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Diffraction
Turbulence 

induced beam 
spread

Radial average long exposure  PSFReceived intensity distributions



Monte-Carlo Simulation:
Elevation angle
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Elevation angle = 10 degrees

AO correctedAO corrected
10” point-ahead

LGS corrected 
uplink



Monte-Carlo Simulation:
Transmitter Diameter
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Transmitter Diameter 
= 0.2m



Monte-Carlo Simulation:
AO latency
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Scintillation Index Received Intensity
Perfect AO

10” point-
ahead

Uncorrected



Monte-Carlo Simulation:
Point-ahead angles
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Transmitter Diameter = 0.2 mTransmitter Diameter = 1.0 m
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Conclusions:

Ongoing activities

• Working with meteorologists to improve global 
forecasts

• Developing instrumentation for strong turbulence 
and strong scintillation conditions

• Implementing / Developing theoretical models for 
optical propagation

• Using Monte-Carlo simulations to probe effect of 
atmosphere on optical links 

• Experimenting with novel mitigation technology, for 
example laser guide star tip/tilt correction (see Matt 
Townson) and photonics
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Linked Presentations:

Matthew Townson et al.:

“Retrieving Tip/Tilt from Laser Guide Stars 
with the LATTE Experiment”

Sukanta Basu:

“Mesoscale Modelling of Optical 
Turbulence in the Atmosphere: Quantifying the 
Impact of Ultra-High Vertical Resolution”

Baptiste Sinquin et al.:

“Data-based modelling of low-order modes 
for AO control: what do on-sky experiments tell 
us?”



Advertisements:
Opportunities
Assistant Professor in Advanced Instrumentation and Data Analysis:

(https://www.dur.ac.uk/jobs/recruitment/vacancies/phys20-4/)

Closing date 13th December 2019

Assistant Professor in Advanced Instrumentation (Fixed Term):
Closing date 20th January 2020

PhD Ground to space laser communications through atmospheric turbulence:
(https://www.findaphd.com/phds/project/ground-to-space-laser-communications-through-

atmospheric-turbulence/?p116214)

Closing date 31st January 2020

04/12/2019 39

https://www.dur.ac.uk/jobs/recruitment/vacancies/phys20-4/
https://www.findaphd.com/phds/project/ground-to-space-laser-communications-through-atmospheric-turbulence/?p116214

