Metaheuristics for Multi-objective Optimization: A Unified View

Prof. El-Ghazali Talbi

http://www.lifl.fr/~talbi
El-ghazali.talbi@univ-lille1.fr
Outline

• Multi-objective optimization: definitions, problems, etc

• A unified view of multi-objective metaheuristics

• Landscapes and performance analysis

• Software framework for multi-objective optimization: ParadisEO-MOEO
Multiobjective Optimization Problem (MOP)

\[
\text{(MOP)} = \begin{cases}
\text{« min »} f(x) = (f_1(x), f_2(x), \ldots, f_n(x)) \\
\text{s. t.} \quad x \in X
\end{cases}
\]

- \(n \geq 2 \) objective functions \((f_1, f_2, \ldots, f_n)\)
- \(x \in X \) is a decision vector
- \(X \) is the feasible set in the decision space
- \(Z \) is the feasible set in the objective space
Pareto dominance [Pareto 1896]

An objective vector \(z \in \mathbb{Z} \) dominates an objective vector \(z' \in \mathbb{Z} \) iff

\[
\begin{align*}
\forall i & \in \{1, \ldots, n\}, \ z_i \leq z_i' \\
\exists j & \in \{1, \ldots, n\}, \ z_j < z_j'
\end{align*}
\]

Non-dominated solution
(eligible, efficient, non inferior, Pareto optimal)
Multi-objective Optimization Problem (MOP)

- **X:** decision space
- **Z:** objective space
- **Pareto front**
- **Efficient solution**
- **Non-dominated vector**
- **Dominated vector**

Graphical Representation:
- Decision space (x_1 vs. x_2)
- Objective space (f_1 vs. f_2)
- Efficient set
- Non-dominated vector
- Dominated vector
Multi-objective optimization problems

Academic problems
- Continuous optimization: ZDT, CTP, DTLZ,
- Combinatorial optimization problems
 - Polynomially problems (assignment, spanning tree, shortest path)
 - NP-hard problems (TSP, QAP, knapsack, routing, scheduling)

Real-life applications
- Engineering design
- Environment and energetics
- Networks
- Control
- Bioinformatics and computational biology
- Transportation and logistics
Resolution Approaches

Multiobjective optimization as a part of the decision making process:

A priori
- Decision Maker (DM) before the resolution process

A posteriori
- Decision Maker (DM) after the resolution process

Interactive
- Decision Maker (DM) during the resolution process
Resolution Methodologies

- **Exact Methods**
 - Problems of small size or specific structure

- **Metaheuristics**
 - Find a good approximation of the efficient set (or Pareto front)
 - Metaheuristics able to find multiple non-dominated solutions in a single run
What is a Good Approximation?

Approximating an efficient set is itself a bi-objective problem

- Min the distance to the Pareto front
 ➔ well-converged efficient set approximation

- Max the diversity in the objective space (and/or decision space)
 ➔ well-diversified efficient set approximation

What is a Good Approximation?

well-converged

well-diversified

AND

well-converged

AND

well-diversified
The number of multi-objective metaheuristics is growing exponentially!

- Very active research in the last two decades
- For each metaheuristic (e.g. EA, PSO, LS, TS, SA, ACO):
 - Hundreds of different designs
 - Hundreds of different implementations

- Give you the Catalog of the proposed algorithms: I don’t like it
 - May be bigger than a dictionary

- May have:
 - MO Evolutionary Algorithm 1 # MO Evolutionary Algorithm 2
 - MO Evolutionary Algorithm = MO Scatter Search 1 = MO PSO 1
 - MO Local Search 1 # MO Local Search 2
 - MO Iterated Local Search = MO GRASP
Just some algorithms: Compare with all those algorithms!

MACS MO-CMA-ES WBGA MOMGA COMPETants
PESA PESA2 MODE MOSS MOGLS RDGA PAES
NPGA MO-PACO MOPS0 VEGA moRBC
Micro-GA MOTS IBMOLS E-MOEA
MOGP MOACO MIDEA NSGA NSGA-II
MONACO PLS-1 PLS-2 SPEA SPEA-2
MOEA SEEA MOSA NSGA NPGA
RM-MEDA ACOAMO SACO SSPMO DMLS
FASTPGA MEA IBEA MOGA DMLs
MOES ANQ P-ACO MOLS MOSA-2
MOAQ DMOEA MOEA-D RWGA MOACOM
Motivations

➤ A unified view

- Design and Implementation
 - Problem-dependent
 - Multi-objective-specific
 - Metaheuristic-specific

- Fine-grained decomposition of search mechanisms

- Common terminology and classification
 - Comparison of approaches (experimental analysis)
 - New approaches

Diagram:

- Metaheuristics for multiobjective optimization
 - Population based
 - Single solution based
 - ParadisEO-MOEO
 - Combinatorial and continuous MOP
A unified design view
Development process of a multi-objective metaheuristic

- Design concepts for metaheuristics
 - Representation
 - Constraint handling
 - Operators, and so on

- Design concepts for multiobjective metaheuristics
 - Fitness assignment
 - Diversity preserving
 - Elitism

- Implementation of a multiobjective metaheuristic
 - From scratch or no reuse
 - Code reuse
 - Design and code reuse (e.g., software framework ParadisEO-MOEO)

Landscape analysis
Parameter tuning
Performance evaluation
Design issues of multi-objective metaheuristics

• **Fitness assignment**
 • Guide the search towards Pareto optimal solutions for a better convergence.

• **Diversity preserving**
 • Generate a diverse set of Pareto solutions in the objective space and/or the decision space.

• **Elitism:**
 • Preservation and use of elite solutions.
 • Allows a robust, fast and a monotonically improving performance of a metaheuristic
Fitness Assignment

• **Scalar** approaches
 • Transformation to mono-objective problem(s)

• **Criterion-based** approaches
 • Each objective is treated separately

• **Dominance-based** approaches
 • The concept of dominance is used

• **Indicator-based** approaches
 • Use performance indicators to drive the search
Scalar approaches

• Aggregation methods
• Weighted metrics

• Goal programming
• ε-constraint approach
• Achievement functions

\begin{align*}
f(x) &= \sum_{i=1}^{n} \lambda_i f_i(x), \quad x \in S \\
(MOP(\lambda, z)) &\left\{ \begin{array}{l}
 \min(\sum_{j=1}^{n} \lambda_j |f_j(x) - z_j|^p)^{\frac{1}{p}} \\
 \text{s.c. } x \in S
\end{array} \right.

(MCOP(\bar{z})) &\left\{ \begin{array}{l}
 \min(\sum_{j=1}^{n} \lambda_j \delta_j) \\
 \text{s.c. } f_j(x) - \delta_j \leq \bar{z}_j, \quad j \in [1, n] \\
 \delta_j \geq 0, \quad j \in [1, n] \\
 x \in S
\end{array} \right.

(MOP(\lambda, z)) &\left\{ \begin{array}{l}
 \min \max_{j \in [1, n]} [w_j(f_j(x) - \bar{z}_j)] + \rho \sum_{j=1}^{n} (f_j(x) - \bar{z}_j) \\
 \text{s.c. } x \in S
\end{array} \right.

(1.16)

\begin{align*}
&\begin{cases}
 \min \alpha \\
 \text{s.c. } x \in S \\
 f_i(x) \leq z *_i + \alpha \lambda_i, \quad i = 1, \ldots, n \\
 \sum_{i=1}^{n} \lambda_i = 1
\end{cases}
\end{align*}
Aggregation Metaheuristics

- **Weights**: Static, Multiple, Dynamic, Adaptive
- **Genetic algorithms** [Hajela et Lin 92]
 - Individual representation: solution + λ
 - Goal: generating various Pareto solutions
- **Simulated annealing** [Serafini 92]
 - Acceptance probability
- **Tabu search** [Dahl et al. 95]
- **Hybrid metaheuristics** [Talbi 98]
 - Greedy algorithm + Simulated annealing [Tuyttens 98]
 - Genetic algorithm (Local search) [Ishibuchi et Murata 98]
 - Selection with different weights
 - Local search on the produced individual (same weights)
Criterion-based Approaches: Sequential

- **Sequential approach**: Objectives are handled in sequential
- **Lexicographic selection** (priority order)
 - Tabu search, Genetic algorithms [Fourman 85]
 - Evolutionary strategies [Kursawe 91], …
Criterion-based Approaches: Parallel

- **Parallel approach**: Objectives are handled in parallel
- **Parallel selection** (VEGA) [Schaffer 85]

![Diagram](population -> sub-population 1 -> sub-population n -> population)

- **Multi-sexual reproduction** [Lis & Eiben 96]
 - One class per objective
 - Reproduction (crossover) over several individuals
- **Ant colonies (pheromone/objective)**
 - Tends to ignore compromised solutions
Dominance-based Approaches

• Dominance relation used during the fitness assignment process:
 • Pareto dominance
 • Weak dominance
 • Strict dominance
 • ε-dominance [Helbig & Pateva 1994]
 • g-dominance [Molina et al. 2009]
 • Guided domination
 • Fuzzy dominance
 • ...
Fitness assignment: Pareto ranking

- Pareto-based fitness assignment strategies
 - Dominance rank \(\text{(e.g. used in MOGA)} \)
 - Number of solutions which dominates the solution
 - Dominance depth \(\text{(e.g. used in NSGA and NSGA-II)} \)
 - Dominance count \(\text{(e.g. combined with dominance rank in SPEA and SPEA2)} \)
 - Number of solutions dominated by the solution
Indicator-Based Fitness Assignment

[Zitzler & Künzli 04]

Solutions compared on the basis of a binary quality indicator I

Fitness $(A) = \text{usefulness of } A \text{ according to the optimization goal } (I)$

$$\arg \min_{A \in \Omega} I(A, R)$$

where Ω represents the space of all efficient set approximations.

Examples of binary quality indicators:

- Additive epsilon indicator (I_{ε^+})
- Hypervolume indicator (I_{HD})
Diversity

Multi-modal optimization: locating every optima of the problem

- Independent iterative executions
- Sequential niching
 - Iterative execution with a penalization of the optima already found
- Parallel niching (sharing, crowding)
 - Only one execution
Diversity: Statistical density estimation

• Kernel methods (sharing)
 • Neighborhood of a solution in term of a function taking a distance as argument

• Nearest neighbour techniques
 • Distance of a solution to its k^{th} nearest neighbour

• Histograms
 • Space divided onto neighbourhoods by an hypergrid

→ decision / objective space
Elitism

• Archive
 • External set storing non dominated solutions
 • Update criteria: size, convergence, diversity

• The archive can be involved in the search process:
 • Elitist selection
Elitism

- **No archive**
 - Current approximation contained in the main population

- **Unbounded archive**
 - All nondominated solutions

- **Bounded archive**
 - A reasonable number of nondominated solutions

- **Fixed-size archive**
 - cf. SPEA2 [Zitzler et al. 2001]
A Model for Evolutionary Algorithms

Main issues

• Problem-dependent components
 representation, initialization, evaluation, variation (recombination, mutation)

• Multi-objective specific components
 fitness assignment, diversity preservation, archiving

• Metaheuristic specific components
 selection, replacement, stopping condition
EMO Algorithms as Instances of the Model

<table>
<thead>
<tr>
<th>Components</th>
<th>NSGA-II</th>
<th>SPEA2</th>
<th>IBEA</th>
<th>SEEA</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>[Deb et al. 02]</td>
<td>[Zitzler et al. 01]</td>
<td>[Zitzler and Künzli 04]</td>
<td>[Lefooghe et al. 10]</td>
</tr>
<tr>
<td>fitness assignment</td>
<td>dominance-depth</td>
<td>dom-count + dom-rank</td>
<td>quality indicator</td>
<td>none</td>
</tr>
<tr>
<td>diversity preservation</td>
<td>crowding distance</td>
<td>k<sup>th</sup> nearest neighbor</td>
<td>none</td>
<td>none</td>
</tr>
<tr>
<td>archiving</td>
<td>none</td>
<td>fixed-size archive</td>
<td>none</td>
<td>unbounded</td>
</tr>
<tr>
<td>selection</td>
<td>binary tournament</td>
<td>elitist selection</td>
<td>binary tournament</td>
<td>elitist selection</td>
</tr>
<tr>
<td>replacement</td>
<td>elitist replacement</td>
<td>generational replacement</td>
<td>elitist replacement</td>
<td>generational replacement</td>
</tr>
<tr>
<td>stopping condition</td>
<td>number of generations</td>
<td>number of generations</td>
<td>number of generations</td>
<td>user-defined</td>
</tr>
</tbody>
</table>
A Model for Dominance-based Local Search (DMLS)

Main issues

• Problem dependent components
 representation, initialization, evaluation, neighborhood, incremental evaluation

• Multi-objective specific components
 dominance relation, archiving

• Metaheuristic specific components
 current set selection, neighborhood exploration, stopping condition
DMLA Algorithms as Instances of the Model

<table>
<thead>
<tr>
<th>Components</th>
<th>PLS-1 [Paquete et al. 04]</th>
<th>PLS-2 [Talbi et al. 01]</th>
<th>PAES [Knowles & Corne 00]</th>
<th>moRBC [Aguire & Anaka 05]</th>
</tr>
</thead>
<tbody>
<tr>
<td>dominance relation</td>
<td>Pareto</td>
<td>Pareto</td>
<td>Pareto</td>
<td>Pareto</td>
</tr>
<tr>
<td>archiving</td>
<td>unbounded</td>
<td>unbounded</td>
<td>bounded hypergrid</td>
<td>bounded crowding</td>
</tr>
<tr>
<td>current set selection</td>
<td>partial 1 random sol.</td>
<td>exhaustive all solutions</td>
<td>partial µ solutions</td>
<td>partial 1 solution</td>
</tr>
<tr>
<td>neighborhood exploration</td>
<td>exhaustive all neighbors</td>
<td>exhaustive all neighbors</td>
<td>partial λ random neighbors</td>
<td>partial 1 dominating neighbor</td>
</tr>
<tr>
<td>stopping condition</td>
<td>natural all sol. visited</td>
<td>natural all sol. visited</td>
<td>user-defined</td>
<td>natural all sol. visited</td>
</tr>
</tbody>
</table>
Landscapes and Performance Analysis
Performance indicators

• Unary / Binary indicators

• Known Pareto optimal set / Unknown

• Cardinality, Distance, Volume

• Parameter less / additional parameters: reference point, ideal point, Nadir point, reference set, …
Performance indicators: Properties

• Monotonicity

• Objective scale independence

• Computational complexity

• Classification:
 • Convergence
 • Diversity (dispersion, extension)
 • Hybrid
PO known

• Absolute efficiency (convergence)
 • Proportion of Pareto solutions within PO*
 \[AE = \frac{|PO^* \cap PO|}{|PO|} \]

• Distance (PO*, PO)
 • Worst distance
 \[WD = \max(d(PO^*, y)), y \in PO \]
 • Mean distance
 \[MD = \frac{\sum_{y \in PO} d(PO^*, y)}{|PO|} \]

• Uniformity
 d(PO*, y) = \min(d(x, y)), x \in PO*
 d(x, y) = \sum_{i=1}^{n} \lambda_i |f_i(x) - f_j(y)|
 \[DIV = \frac{WD}{MD} \]
PO unknown

- **Relative efficiency**: number of solutions from A dominated by B

\[A \neq B \]
\[ND(A \cup B) = A \]

- A weakly better than B

\[ND(A \cup B) = B \]
\[A \cap ND(A \cup B) = \emptyset \]

- B better than A

\[ND(A \cup B) = A \]
\[B - ND(A \cup B) \neq \emptyset \]

- A strongly better than B

\[A \text{ and } B \text{ can't be compared} \]
PO unknown: Convergence

Contribution: Evaluating the quality of the solutions from a set towards another one

\[Cont(PO_1/PO_2) = \frac{|C|/2 + |W_1| + |N_1|}{|C| + |W_1| + |N_1| + |W_2| + |N_2|} \]

Ex: if \(PO_1 = PO_2 \) then \(CONT(PO_1/PO_2) = 0.5 \)

if \(PO_1 > PO_2 \) then \(CONT(PO_1/PO_2) = 1 \)

- \(Cont(O,X) = 0.7 \)
- \(Cont(X,O) = 0.3 \)

\(C=4 \)
\(W_1=4 - N_1=1 \)
\(W_2=0 - N_2=1 \)
PO unknown: Diversity

- **Entropy**: builds a niche around every solution of \(\text{ND}(\text{PO}_1 \cup \text{PO}_2) = \text{PO}^* \)
 - \(E(\text{PO}_1, \text{PO}_2) \) : diversity of the solutions of \(\text{PO}_1 \) in comparison of those in the niches of \(\text{PO}^* \)

\[
E(\text{PO}_1, \text{PO}_2) = \frac{-1}{\ln(\gamma)} \sum_{i=1}^{\text{PO}^*} \left(\frac{1}{N_i} \ln \frac{n_i}{\| \text{PO}_1 \|} \right)
\]

![Diagram](Diagram.png)
PO unknown: Hybrid

- S-metric / Hypervolume
 \[\text{[Zitzler 99]}\]

Size of the objective space enclosed by PO* and a reference point Z^ref
Other indicators

• **Generational distance** (convergence)

\[I_{GD}^t(A, R) = \frac{\left(\sum_{u \in A} \min_{v \in R} \| F(u) - F(v) \|^2 \right)^{1/2}}{|R|} \]

• **Extent** (diversity)

\[I_{ex}(A) = \left(\sum_{i=1}^{n} \max_{u, u' \in A} || f_i(u) - f_i(u') || \right)^{1/2} \]

• **Spread** (diversity)

\[I_S = \frac{\sum_{u \in A} |\{u' \in A : \| F(u) - F(u') \| > \sigma \}|}{|A| - 1} \]

• **E-indicator** (convergence)

\[I_{\epsilon+}(A, B) = \min_{\epsilon \in \mathbb{R}} \{ \forall z \in B, \exists z' \in A : z_i' - \epsilon \leq z_i, \forall 1 \leq i \leq n \} \]
Performance indicators

<table>
<thead>
<tr>
<th>Indicator</th>
<th>Goal</th>
<th>Monotone</th>
<th>Complexity</th>
<th>Parameter</th>
<th>[] , Min-Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contribution</td>
<td>Conv.</td>
<td>Mon.</td>
<td>$O(</td>
<td>A</td>
<td>\cdot</td>
</tr>
<tr>
<td>Gen. Dist.</td>
<td>Conv.</td>
<td>No</td>
<td>$O(</td>
<td>A</td>
<td>\cdot</td>
</tr>
<tr>
<td>ϵ - indicator</td>
<td>Conv.</td>
<td>Mon.</td>
<td>$O(n \cdot</td>
<td>A</td>
<td>\cdot</td>
</tr>
<tr>
<td>I_p</td>
<td>Conv.</td>
<td>Mon.</td>
<td>$O(</td>
<td>A</td>
<td>\cdot</td>
</tr>
<tr>
<td>I_{ad}</td>
<td>Conv.</td>
<td>No</td>
<td>$O(</td>
<td>A</td>
<td>\cdot</td>
</tr>
<tr>
<td>Spread</td>
<td>Div.</td>
<td>No</td>
<td>$O(</td>
<td>A</td>
<td>^2)$</td>
</tr>
<tr>
<td>Extent</td>
<td>Div.</td>
<td>No</td>
<td>$O(</td>
<td>A</td>
<td>^2)$</td>
</tr>
<tr>
<td>B. Entropy</td>
<td>Div.</td>
<td>No</td>
<td>$O((</td>
<td>R</td>
<td>+</td>
</tr>
<tr>
<td>U. Entropy</td>
<td>Div.</td>
<td>No</td>
<td>$O(</td>
<td>A</td>
<td>\cdot \mu^n)$</td>
</tr>
<tr>
<td>Hypervolume</td>
<td>Hybrid</td>
<td>Strict</td>
<td>$O(</td>
<td>A</td>
<td>^n)$</td>
</tr>
<tr>
<td>R-metrics</td>
<td>Hybrid</td>
<td>Mon.</td>
<td>$O(n \cdot</td>
<td>\Lambda</td>
<td>\cdot</td>
</tr>
</tbody>
</table>
Landscapes

How to describe a Pareto front?

- Convexity / Concave Pareto fronts
- Multi-modality and deceptive attractors
- Isolated optimum (Flat space)
- Continuous / Discontinuous
- Uniform distribution
Benchmarks: ZDT

- Convexity versus non-convexity of the Pareto optimal front (ZDT1 versus ZDT2).

- Discontinuities and gaps in the Pareto-optimal front (ZDT1 or ZDT2 versus ZDT3).

- Multiple locally Pareto optimal fronts towards the globally Pareto optimal front (ZDT1 versus ZDT4).

- Isolation and deception of the globally Pareto optimal front (ZDT1 versus ZDT5).

- Non-uniform density of solutions across the Pareto optimal front (ZDT2 versus ZDT6).
Supported / Non supported
Landscapes

Aggregation: supported solutions only

Convexity: Proportion of Pareto solutions belonging to the convex hull

Complexity: $O(n \log(n))$

- Non-dominated solutions
- Unsupported solutions
- Convex hull
- Dominated solutions
Multi-objectivization

A way to improve solving single-objective optimization problems

- **Objective function decomposition**
 - Several sub-objectives (separate conflicting goals)
 - Reduce the number of local optima

- **Helper objectives**
 - Adding new objectives correlated with the main objective
 - Break plateaus of the landscape \(\rightarrow\) smooth landscape
Development process of a multi-objective metaheuristic

- **Design concepts for metaheuristics**
 - Representation
 - Constraint handling
 - Operators, and so on

- **Design concepts for multiobjective metaheuristics**
 - Fitness assignment
 - Diversity preserving
 - Elitism

- **Implementation of a multiobjective metaheuristic**
 - From scratch or no reuse
 - Code reuse
 - Design and code reuse (e.g., software framework ParadisEO–MOEO)
Framework for multi-objective metaheuristics: ParadisEO

- parallel and distributed metaheuristics
- single solution-based Metaheuristics (LS, SA, TS, TA, VNS, ILS)
- population-based metaheuristics (GA, GP, ES, EDA, PSO, ...)
- multiobjective metaheuristics

ParadisEO-PEO

ParadisEO-MO

ParadisEO-MOEO

ParadisEO-EO

http://paradiseo.gforge.inria.fr
ParadisEO

• Design and code reuse
 • Conceptual separation between the solution methods and the problem to be solved

• Flexibility and adaptability
 • Adding or updating other optimization methods, search mechanisms, operators, representation…

• Utility
 • Broad range of methods, components, parallel and distributed models, hybridization mechanisms…

• Transparent and easy access to performance and robustness
 • Parallel and hybrid implementation transparent to the hardware platform

• Portability
 • Operating systems: Windows, Linux, MacOS
 • Material architectures: sequential, parallel, distributed

• Usability and efficiency
Software Frameworks/Libraries for multi-objective metaheuristics

<table>
<thead>
<tr>
<th>Framework/Library</th>
<th>Meta</th>
<th>Type</th>
<th>Metrics</th>
<th>Hybrid</th>
<th>Parallel</th>
<th>Language</th>
</tr>
</thead>
<tbody>
<tr>
<td>ParadisEO</td>
<td>S-meta</td>
<td>White</td>
<td>Many</td>
<td>Yes</td>
<td>Yes</td>
<td>C++</td>
</tr>
<tr>
<td></td>
<td>P-meta</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TEA</td>
<td>EA</td>
<td>White</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>C++</td>
</tr>
<tr>
<td>PISA</td>
<td>EA</td>
<td>Black</td>
<td>Many</td>
<td>No</td>
<td>No</td>
<td>Any</td>
</tr>
<tr>
<td>O. BEAGLE</td>
<td>EA</td>
<td>White</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>C++</td>
</tr>
<tr>
<td>MOMHLib++</td>
<td>EA,LS,SA</td>
<td>White</td>
<td>Many</td>
<td>Yes</td>
<td>No</td>
<td>C++</td>
</tr>
<tr>
<td>MOEA–Matlab</td>
<td>EA</td>
<td>Black</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Matlab</td>
</tr>
<tr>
<td>MALLBA</td>
<td>S-meta</td>
<td>White</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>C++</td>
</tr>
<tr>
<td></td>
<td>P-meta</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

S-meta: S-metaheuristics; P-meta: P-metaheuristics; White: white box software; Black: black box software; LS: local search; SA: simulated annealing; EA: evolutionary algorithms.
Multi-objective Metaheuristics

Multi-objective problem

Problem-dependent components
- Representation
- Evaluation
- Initialization
- Neighborhood
- Incremental evaluation
- Recombination
- Mutation

(shared by all metaheuristics)

Multiobjective-specific components
- Fitness assignment
- Diversity preservation
- Archiving

(shared by all multi-objective metaheuristics)
Implementation of an evolutionary algorithm

- Implement a representation
- Implement a population initialization strategy
- Implement a way of evaluating a solution
- Implement suitable variation operators
- Instantiate a fitness assignment strategy
- Instantiate a diversity preservation strategy
- Instantiate a selection strategy
- Instantiate a replacement strategy
- Instantiate an archive management strategy
- Instantiate a continuation strategy

Problem-specific components

Generic components

Multi-objective

Metaheuristic
Implementation

• Implement a representation
 • Implement a population initialization strategy
 • Implement a way of evaluating a solution
 • Implement suitable variation operators
 • Instantiate a fitness assignment strategy
 • Instantiate a diversity preservation strategy
 • Instantiate a selection strategy
 • Instantiate a replacement strategy
 • Instantiate an archive management strategy
 • Instantiate a continuation strategy
Representation

- evolving object
- Multi-objective evolving object
- vector-based representation
- vector of bits
- vector of integers
- vector of real values
- real-coded obj. values
- objective vector
- objective vector

moeoObjectiveVector

moeoRealObjectiveVector

moeoRealVector

moeoIntVector

moeoBitVector
Implementation

• Implement a representation
• Implement a population initialization strategy
• Implement a way of evaluating a solution
• Implement suitable variation operators
• Instantiate a fitness assignment strategy
• Instantiate a diversity preservation strategy
• Instantiate a selection strategy
• Instantiate a replacement strategy
• Instantiate an archive management strategy
• Instantiate a continuation strategy
Implementation

• Implement a representation
• Implement a population initialization strategy
• Implement a way of **evaluating** a solution
• Implement suitable variation operators
• Instantiate a fitness assignment strategy
• Instantiate a diversity preservation strategy
• Instantiate a selection strategy
• Instantiate a replacement strategy
• Instantiate an archive management strategy
• Instantiate a continuation strategy
Implementation

- Implement a representation
- Implement a population initialization strategy
- Implement a way of evaluating a solution
- Implement suitable variation operators
- Instantiate a fitness assignment strategy
- Instantiate a diversity preservation strategy
- Instantiate a selection strategy
- Instantiate a replacement strategy
- Instantiate an archive management strategy
- Instantiate a continuation strategy
Variation operators

⇒ variation operators must be embedded to an eoTransform object
Implementation

- Implement a representation
- Implement a population initialization strategy
- Implement a way of evaluating a solution
- Implement suitable variation operators
- Instantiate a **fitness** assignment strategy
- Instantiate a diversity preservation strategy
- Instantiate a selection strategy
- Instantiate a replacement strategy
- Instantiate an archive management strategy
- Instantiate a continuation strategy
Fitness Assignment

dummy
scalar approaches
indicator-based approaches
used in IBEA

moeoDummyFitnessAssignment
moeoScalarFitnessAssignment
moeoAggregationFitnessAssignment
moeoAchievementFitnessAssignment
moeoIndicatorBasedFitnessAssignment
moeoBinaryIndicatorBasedFitnessAssignment
moeoExpBinaryIndicatorBasedFitnessAssignment

moeoCriterionBasedFitnessAssignment
dominance-based approaches
used in MOGA
NSGA
NSGA-II
used in SPEA2

moeoDominanceBasedFitnessAssignment
moeoDominanceRankFitnessAssignment
moeoDominanceCountFitnessAssignment
moeoDominanceDepthFitnessAssignment
moeoDominanceCountRankingFitnessAssignment
Implementation

• Implement a representation
• Implement a population initialization strategy
• Implement a way of evaluating a solution
• Implement suitable variation operators
• Instantiate a fitness assignment strategy
• **Instantiate a diversity preservation strategy**
• Instantiate a selection strategy
• Instantiate a replacement strategy
• Instantiate an archive management strategy
• Instantiate a continuation strategy
Diversity Assignment

dummy

- used in MOGA & NSGA

- used in SPEA2

- used in NSGA-II
Implementation

• Implement a representation
• Implement a population initialization strategy
• Implement a way of evaluating a solution
• Implement suitable variation operators
• Instantiate a fitness assignment strategy
• Instantiate a diversity preservation strategy
• Instantiate a selection strategy
• Instantiate a replacement strategy
• Instantiate an archive management strategy
• Instantiate a continuation strategy
Selection

- deterministic tournament
- stochastic tournament
- random
- elitist
Implementation

• Implement a representation
• Implement a population initialization strategy
• Implement a way of evaluating a solution
• Implement suitable variation operators
• Instantiate a fitness assignment strategy
• Instantiate a diversity preservation strategy
• Instantiate a selection strategy
• Instantiate a replacement strategy
• Instantiate an archive management strategy
• Instantiate a continuation strategy
Replacement

- one-shot elitist
- iterative elitist
- generational
Implementation

• Implement a representation
• Implement a population initialization strategy
• Implement a way of evaluating a solution
• Implement suitable variation operators
• Instantiate a fitness assignment strategy
• Instantiate a diversity preservation strategy
• Instantiate a selection strategy
• Instantiate a replacement strategy
• Instantiate an archive management strategy
• Instantiate a continuation strategy
Archive
Dominance Relation

- **Pareto dominance**
- **weak dominance**
- **strict dominance**
- **ε-dominance**
- **g-dominance**
Implementation

• Implement a representation
• Implement a population initialization strategy
• Implement a way of evaluating a solution
• Implement suitable variation operators
• Instantiate a fitness assignment strategy
• Instantiate a diversity preservation strategy
• Instantiate a selection strategy
• Instantiate a replacement strategy
• Instantiate an archive management strategy
• Instantiate a continuation strategy
Performance Metrics

Online computation

- moeoMetric
 - moeoUnaryMetric
 - moeoBinaryMetric
 - moeoSolutionUnaryMetric
 - moeoVectorUnaryMetric
 - moeoHypervolumeMetric

- entropy
- contribution
- hypervolume difference
- hypervolume
- additive & multiplicative epsilon
- epsilon

hypervolume

General-Purpose EMO Algorithm
State-of-the-art EMO Algorithms

- To instantiate a state-of-the-art multi-objective metaheuristic for a novel continuous MOP

➤ The evaluation is the only component to be implemented
Conclusion

• **Unified view of** hybrid multi-objective metaheuristics

```
hybrid metaheuristics

level

- low-level
- high-level

mode

- relay
- teamwork

- relay
- teamwork
```

• **Low-level**: Functional composition of a single method.
• **High-level**: Different methods are self-contained.

• **Relay**: Pipeline fashion.
• **Teamwork**: Parallel cooperating agents.
Conclusion

• Unified view of parallel multi-objective metaheuristics

- **Algorithm-Level**: Cooperative self-contained metaheuristics: Problem independent
- **Iteration-Level**: Parallelization of a single step of the metaheuristic: Problem independent
- **Solution-Level**: Parallelization of the processing of a single solution: Problem dependent
Exercises: what has to be done (design & implementation ?

- From the mono-objective resolution to the multi-objective resolution
- From the application of NSGA-II to IBEA evolutionary algorithms
- From the application of NSGA-II evolutionary algorithm to particle swarm optimization MOPSO and multi-objective scatter search
- Design of interactive multi-objective metaheuristics
- Handling many-objective MOPs
- Design of multi-objective metaheuristics for MOP with uncertainties