

Invitation à la soutenance de thèse

RESTAURATION D'IMAGES CORRIGEES PAR OPTIQUE ADAPTATIVE POUR L'OBSERVATION ASTRONOMIQUE ET DE SATELLITES : APPROCHE MARGINALE PAR ECHANTILLONNAGE

ADAPTIVE-OPTICS-CORRECTED IMAGE RESTORATION FOR ASTRONOMICAL AND SATELLITE OBSERVATION: MARGINAL APPROACH BY STOCHASTIC SAMPLING

Alix Yan

Mercredi 04 octobre 2023 à 13h30

Observatoire de Paris, Salle du Conseil 77 Avenue Denfert Rochereau, 75014 Paris

Devant le jury composé de

Hervé Carfantan	IRAP	Rapporteur
Eric Thiébaut	CRAL	Rapporteur
Anne-Marie Lagrange	LESIA	Examinatrice
Céline Meillier	lCube	Examinatrice
Benoît Neichel	LAM	Examinateur
Laurent Mugnier	DOTA, ONERA	Directeur de thèse
Jean-François Giovannelli	IMS	Co-Directeur de thèse
Cyril Petit	DOTA, ONERA	Encadrant

Résumé

La restauration d'images corrigées par optique adaptative est particulièrement difficile, du fait de la méconnaissance de la réponse impulsionnelle du système optique (PSF pour *point spread function*) en plus des difficultés usuelles. Une approche efficace est de marginaliser l'objet en dehors du problème et d'estimer la PSF et les hyper-paramètres (liés à l'objet et au bruit) seuls avant la déconvolution. Des travaux récents ont appliqué cette déconvolution marginale, combinée à un modèle paramétrique de PSF, à des images astronomiques et de satellites. Cette thèse vise à proposer une extension de cette méthode. En particulier, nous utilisons un algorithme Monte-Carlo par chaînes de Markov (MCMC), afin d'inclure des incertitudes sur les paramètres et d'étudier leur corrélation a posteriori. Nous présentons des résultats détaillés obtenus sur des images astronomiques et de satellites, simulées et expérimentales. Nous présentons également des premiers éléments sur l'ajout d'une contrainte de support sur l'objet.

Mots clés

Restauration d'image, Optique adaptative, Déconvolution, Turbulence, Problèmes inverses