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Abstract

This second version contains several improvements of the toolbox. It moreover contains
additional tools for the treatement of largely repeated parametric uncertainties. The more
repeated the parametric uncertainties are, the higher the computational requirement is
when computing the mixed µ upper bound with an LMI solver. Nevertheless the routine
mu.m of the µ Analysis and Synthesis Toolbox provides a (suboptimal) value of the
mixed µ upper bound with a reasonable computational requirement at a single frequency
point. On the basis of mu.m we propose different efficient methods, either to eliminate
frequency intervals inside which µ is guaranteed to be below a given threshold, or to
compute a guaranteed µ upper bound over a union of frequency intervals. Note that this
document only contains additional notes w.r.t. the first one, which should be read before.

Available on the web pages :

http://www.cert.fr/dcsd/idco/perso/Biannic/mypage.html
http://www.cert.fr/dcsd/idco/perso/Ferreres/index.html

LICENSE AGREEMENT, DISCLAIMER:
• You are free to use any of the files here for personal or academic use. The express permission
of the author is required for commercial use.
• You can redistribute the toolbox and its manual without modification provided that it is for
a non commercial purpose. Redistribution in any commercial form including CD-ROM or any
other media is hereby forbidden, unless with the express written permission of the authors.
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• Neither the authors nor ONERA accept any responsibility or liability with regard to this
software that is licensed on an ”as is” basis. There will be no duty on author or ONERA to
correct any errors or defects in the software.
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1 Structure of the document

Acronyms: LHP (Left Half Plane), LFR (Linear Fractional Representation), LFT (Linear Frac-
tional Transformation), LTI (Linear Time Invariant), RHP (Right Half Plane), s.s.v. (struc-
tured singular value).

The document is structured as follows. The second section describes miscellaneous im-
provements with respect to the first version of the Skew Mu Toolbox. The third section, which
is the main one, proposes two computational methods for the case of largely repeated para-
metric uncertainties. The first technique eliminates frequency intervals inside which the (skew)
s.s.v. is guaranteed to be less than a given value, while the second one computes a guaranteed
µ upper bound over a union of frequency intervals [4, 3, 2], noting that this second technique is
not applicable to skew µ problems. In both cases the computational burden is minimised, and
the routine mu.m of the µ Analysis and Synthesis Toolbox is used as a basis. The 4th section
summarises the methods to compute bounds of the (skew) s.s.v. either at a single frequency
point, or on a frequency interval. The last section proposes examples of calls to the main
routines of the toolbox. Remember all these routines can also be interactively called with the
routine robust.m, whose interface is very simple: if M(s)−∆(s) is the standard interconnection
structure, it’s enough to enter the structure of the model perturbation ∆(s) and a state-space
representation of M(s).

2 Improvements

Note as a preliminary that at least Matlab 6.1 must be used. The LMI Control Toolbox is
required as an LMI solver, as well as the basic Control System Toolbox (and Simulink to some
extent). The µ Analysis and Synthesis Toolbox is not necessary, but a few computational tools
can not be used without it. Here is a summary of the modifications w.r.t. the first version of
the toolbox:

• first thing to do.m, which defined the Matlab path in the first version, is replaced by
path2SMT.m, whose content is to be adjusted by the user as a preliminary, before using
the toolbox. No question is asked concerning the availability of the µ Analysis and
Synthesis Toolbox, its existence is automatically detected inside the routines.

• The directory Mu max is deeply modified :

– Mu max/mu max 1.m, which computes a guaranteed µ upper bound over a union
of frequency intervals, is extended to the case of a truncated sector (the preliminary
version only dealt with the Left Half Plane). As in the whole toolbox the degree of
stability alfa is negative for a stable plant.
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– Mu max/mu max 2.m still only deals with the LHP, but routines Mu max/mu max 1f.m
and Mu max/mu max 3.m, which did not exist in the first version (see the next
section), deal with the LHP and with a truncated sector.

– Sub-routines (calc interval.m and testdg.m) related to the scalings validation prob-
lem have been extended to handle the case of a truncated sector.

– Specific Sub-routines of mu max 3.m have been added to perform specific operations
(reduction, length computation or bounding) on a list of intervals. These routines
are : reduc tab.m, length tab.m and bnd interval.m.

• A directory Mu elim is added, corresponding to the elimination of frequency intervals
inside which the (skew) s.s.v. is guaranteed to be less than a given value. The main
routine is mu elim.m, which only deals with the LHP.

• Routines/skew mu ub.m and Routines/skew mu ub bis.m are modified for the special
case of some robust performance problems. In the case of skew µ problems, if the part
of the model perturbation ∆ whose size is free is just a full complex block or a non-
repeated complex scalar (while the remaining part of ∆ is maintained inside its unit
ball), it’s useless to solve a generalized eigenvalue problem with the LMI Control Toolbox.
Minimizing a linear objective is enough.

• The structure of the subdirectories is deeply modified. The directory Delays no more
exists. Its content is now in the main directory SMTv2, except worst case margin.m
in the directory Routines which is slightly modified. Moreover the directories Routines 1,
Routines 2 no musyn and Routines 2 with musyn are merged into a single one Routines.
Inside this directory, routines calc freq resp.m, mixed mu lb.m, mixed mu ub.m and
mu frequency gridding.m are (slightly) modified, while gen grid.m and mu ub2.m are
added.

• In the Applications directory, a new .mat file has been added : Applications/generic rep unc.mat.
It contains a high-order system (n = 60) with poorly damped flexible modes. Further-
more, the structure ∆ describes highly repeated parametric uncertainties. This challeng-
ing example was built by following a specific procedure which is similar to what can be
found in demo ACC98.m (see the main directory). It is devoted to illustrate “LMI free”
techniques which are available in Mu max/mu max 1f.m and Mu max/mu max 3.m.

3 The case of largely repeated uncertainties

Let M(s) − ∆(s) the standard interconnection structure. If ∆(s) contains repeated real or
complex uncertainties δiIqi, the more repeated the scalar uncertainties are (i.e. the larger
the qi are), the larger the computational time of the LMI solver is. A solution is to use the
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routine mu.m of the µ Analysis and Synthesis Toolbox, which provides a (suboptimal) value of
the mixed µ upper bound with a reasonable computational requirement at a single frequency
point: an option of mu.m enables to tune the degree of (sub)optimality of the result (see the
help of this routine), and the less suboptimal the result is, the larger the computational time
is. On the basis of mu.m we propose either to eliminate frequency intervals, inside which the
s.s.v. µ is guaranteed to be less than a given value, or to compute a guaranteed µ upper bound
over a union of frequency intervals. In both cases the computational burden is minimised.

3.1 Elimination of frequency intervals satisfying a µ test

We just give the principle of the method, the reader is referred to the help of the routine
mu elim.m for further details. The issue is to eliminate frequency intervals, inside which
µ(M(jω)) is guaranteed to be less than a given value γ. To this aim a suboptimal value µ0 of
the mixed µ upper bound is computed at a frequency point ω0, as well as associated D0, G0

scaling matrices. Assume that µ0 < γ, and let µD,G(M(jω)) the value of the mixed µ upper
bound at frequency ω, for a given value (D, G) of scaling matrices. The maximal size frequency
interval around ω0 is computed, inside which µD0,G0(M(jω)) is less than γ: thus µ(M(jω)) is
less than γ on this frequency interval. A suboptimal value µ1 of the mixed µ upper bound is
then computed at a new frequency point ω1 . . .

Remarks:
(i) It appears that suboptimal values of the mixed µ upper bound provide better results than
an optimal one, i.e. the frequency interval around ω0, inside which µD0,G0(M(jω)) is less than
γ, is larger. But if the value is too suboptimal, it may happen that µ0 ≥ γ. As a consequence,
in the routine mu elim.m, the choice of the option of mu.m is crucial: our experience is that
good results are obtained with opt = ’f’, ’u’ or ’c’, while opt = ’C’ which corresponds to a
higher accuracy is not advised. it is moreover possible to add complex uncertainties to the
original one, i.e. the scaling matrices, which are computed for the new regularised problem, are
suboptimal for the original one. The tuning parameter epsilon of mu elim.m corresponds to
the quantity of complex uncertainties. epsilon = 0.01 (i.e. 1 %) is advised, but in some cases
very bad results are obtained when introducing complex uncertainties, so that epsilon = 0 is
to be chosen.
(ii) The case of skew µ is very simple to handle, since the skew s.s.v. ν(M) is less than γ if the

classical s.s.v. µ(

[
I 0
0 γ

]
M) is less than 1 (the partition

[
I 0
0 γ

]
corresponds to the parts of

the structured model perturbation ∆, which are maintained inside the unit ball or whose size
is free). It just becomes a classical µ test.
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3.2 Computation of the maximal value of µ

In this second version of the Toolbox, 4 different routines are now available to compute a reliable
estimate of the maximal value of µ over a frequency range (from which the robustness margin is
immediately deduced). As already mentioned, routines mu max 1.m and mu max 2.m already
existed in the previous version of the Toolbox. They are both based on the LMI solver.

We focus here on mu max 1f.m and more specifically on mu max 3.m which have been
developed essentially to cope with largely repeated uncertainties in high-order (flexible) systems.

• Routine mu max 1f.m and mu max 1.m are based on the same algorithm. In both
cases, a µ upper-bound is computed so as to be valid simultaneously at two distinct (but
rather close) frequency points. Consequently the associated scaling matrices (D and G)
are suboptimal which makes them more “robust” versus frequency variations and greatly
improves the performances of the frequency elimination technique. However, in the new
implementation mu max 1f.m, the computation is based on mu.m. Consequently, this
routine may still be applied for largely repeated uncertainties.

• Routine mu max 3.m implements a more sophisticated algorithm (see [1] for more de-
tails), which uses an improved frequency elimination technique. Thus, larger frequency
intervals may be eliminated at each step and the computational-time is further reduced.
Note that the main purpose of this routine is to compute the maximum value of a µ
upper-bound over a frequency range. Therefore, secondary peaks will not be necessarily
detected. If such an information is required, tuning options can be used (see the help
of the function). Moreover, the accuracy may also be improved by switching to LMI
techniques on the most critical frequency segments. This option is to be avoided in case
of largely repeated uncertainties.

Note that these new routines are not applicable to skew µ problems, since the routine mu.m
only computes classical µ bounds, not skew µ ones.
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4 Summary of the routines

M or µ or LHP or µ lower or real, complex polynomial
M(s) skew µ sector up. bound or mixed or exp. time

mu lb with freq.m M(s) µ sector lower real polynomial
mu max 1.m M(s) skew µ sector upper mixed polynomial
mu max 1f.m M(s) µ sector upper mixed polynomial
mu max 2.m M(s) skew µ LHP upper mixed polynomial
mu max 3.m M(s) µ sector upper mixed polynomial
mu elim.m M(s) skew µ LHP upper mixed polynomial

mixed mu lb freq.m M(s) skew µ sector lower mixed polynomial
mixed mu lb.m M skew µ sector lower mixed polynomial
mixed mu ub.m M skew µ sector upper mixed polynomial

mu dailey.m M skew µ sector lower real exponential
mu zd.m M skew µ sector upper real exponential

worst case margin.m M(s) skew µ LHP upper mixed polynomial

Table 1: characteristics of the (skew) µ methods.

In a few words, the toolbox contains the following computational methods for µ:

• With a frequency gridding: classical mixed µ lower and upper bounds (mixed mu ub.m,
mixed mu lb.m), exponential-time real µ upper and lower bounds (mu zd.m, mu dailey.m).
All these routines can also be called via mu frequency gridding.m. See also the function
mixed mu lb freq.m.

• Computation of a guaranteed (skew) mixed µ upper bound on a frequency interval:
mu max 1.m, mu max 1f.m, mu max 2.m and mu max 3.m.

• Elimination of frequency intervals, inside which the (skew) s.s.v. is guaranteed to be less
than a given value, with mu elim.m.

• Computation of a real µ lower bound with a mixed frequency/state-space approach:
mu lb with freq.m.

• With a frequency gridding, computation of worst-case values of MIMO gain, phase
and delay margins in the presence of parametric uncertainties and neglected dynamics:
worst case margin.m.
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5 Calls to the routines: examples

5.1 Classical µ problems (see also the file calls mu.m)

This Toolbox includes many different routines to solve classical µ problems (see Table 1).
These routines may be called on some specific examples via calls mu.m or using the interactive
demo : demo mu.m. In this subsection, we propose to focus on the newly developed func-
tion mu max 3.m which is devoted to classical µ problems involving high-order plants with
numerous and possibly largely repeated uncertainties.

The aim of this subsection is to illustrate two ways of using the routine to compute the
robustness margin of a flight control system applied to a flexible aircraft.

5.1.1 Standard call of mu max 3.m

In this standard call, neither any initial frequency gridding, nor any option is specified. The
Matlab command lines are given below :

>> load flexible_airplane_m_delta;
>> [mub,tab_mu,tab_puls] = mu_max_3(sys_M,blk);

Here, a frequency gridding with 20 points is generated automatically (using the function
gen grid.m). Note that the gridding is automatically refined near flexible modes. Then, stan-
dard options are used :

• µ upper-bounds are computed using mu.m. Then, a switch to LMI iterations is performed
on critical segments,

• the frequency elimination phase attempts to eliminate all frequency intervals where the
µ can be proved to remain below the highest upper-bound computed so far.

While execution is beeing performed, the following informations are displayed :

• Iteration number,

• Number of remaining intervals. Note that this number may increase, when the elimination
technique fails. In that case indeed, an additional frequency point has to be considered,

• The µ upper-bound : This the highest value of µ which has been computed so far,



9

• Reliability of the upper-bound : The highest µ upper-bound which has been computed
after n iterations is clearly reliable only if all intervals can be eliminated. Consequently
the reliablity is simply given as the ratio between the total length of intervals which could
be eliminated and the length of the whole frequency range.

On our proposed example we obtained :

Computations will be performed on one frequency segment :
--> SEGMENT = [ 0.00 , 100.00 ] - standard stability constraint

----------------------------------------------------------------------
Iteration | Remaining Intervals | mu Upper-bound so far | reliability
----------------------------------------------------------------------

1 | 20 | 0.000 | 0.00%
2 | 21 | 0.000 | 0.00%
3 | 22 | 1.766 | 0.14%

...............................................................
35 | 8 | 4.502 | 18.50%

...............................................................
40 | 6 | 4.816 | 19.38%
41 | 5 | 4.816 | 100.00%
41 | 0 | 4.816 | 100.00%

----------------------------------------------------------------------

#############################
Switched to LMI iterations

#############################

Number of decision variables in LMI step : 20

****** Recompute peak 1 = 4.816 on [ 13.35 , 13.41 ] ******
----------------------------------------------------------------------
Iteration | Remaining Intervals | mu Upper-bound so far | reliability
----------------------------------------------------------------------

1 | 1 | 4.501 | 0.00%
2 | 2 | 4.566 | 0.00%

...............................................................
5 | 0 | 4.586 | 100.00%

----------------------------------------------------------------------

Remarks:
(i) Note that a switch to LMI iterations was possible here, since the number of decision vari-
ables associated to scaling matrices D and G was limited (Nvar = 20). This step has permitted
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to further reduce the µ upper-bound (from 4.8 to 4.6) without any large impact on the global
computational-time since only 5 LMI iterations were required. This low number of iterations
can be easily explained since the main iterations (based on mu.m) have permitted to identify
a very small-size critical segment.
(ii) As indicated before iterations start, the computation is performed on one frequency seg-
ment, along the imaginary axis. We recall that the routine may also be applied on the borderline
of a truncated sector. In that case, computations are performed along two segments. Standard
stability constraint is considered first. Then, the damping constraint is treated.

The results are displayed on figure (1). Clearly, if the highest value of the upper-bound was
computed with a high accuracy level. But, this is not the case of secondary peaks.
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Figure 1: Fast computation of the robustness margin

5.1.2 Refined computations using mu max 3.m

Refined computations may be achieved by specifying an initial frequency gridding, and set-
ting options in order to put limitations on the frequency elimination technique. The Matlab
command lines now read (see the help of the function for more informations) :

>> puls=logspace(-1,2,100); % initial frequency gridding
>> options(1)=0; % initial value for upper-bound
>> options(2)=2; % mixed approach (switch to LMIs on critical segment)
>> options(3)=1; % refined computation of secondary peaks
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>> options(4)=-1; % plots results on a new figure
>> [mub,tab_mu,tab_puls] = mu_max_3(sys_M,blk,puls,options);

Of course, the number of iterations (and thus the computational-time) will be much higher
in this case. More that 100 iterations are needed here. The corresponding results are plotted
on figure (2). In this case, secondary peaks are much more precisely detected.
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Figure 2: Refined computation of secondary peaks

5.1.3 Frequency elimination using mu max 3.m

While it is not mainly devoted to such tasks, the routine may also be used to check wether the
maximum value of the µ upper-bound is below a specified target. For example if we want to
check that the µ upper-bound between 0 and 100 rad/s is below 5, then the following Matlab
sequence is to be considered :

>> puls=[0 100]; % very rough gridding : only extremal points
>> options(1)=5; % initial upper-bound to be checked
>> options(2)=1; % mu.m based computation without switching to LMIs
>> options(3)=0; % fast computation (secondary peaks ignored)
>> options(4)=0; % no plot
>> [mub,tab_mu,tab_puls] = mu_max_3(sys_M,blk,puls,options);

and we obtain the following result :
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----------------------------------------------------------------------
Iteration | Remaining Intervals | mu Upper-bound so far | reliability
----------------------------------------------------------------------

1 | 1 | 5.000 | 78.02%
2 | 1 | 5.000 | 78.02%
3 | 2 | 5.000 | 87.69%
4 | 3 | 5.000 | 88.15%
5 | 2 | 5.000 | 91.26%
6 | 2 | 5.000 | 99.66%
7 | 1 | 5.000 | 99.66%
8 | 2 | 5.000 | 100.00%
8 | 0 | 4.964 | 100.00%

----------------------------------------------------------------------

which shows that the frequency segment [0 100] has been cleared after 8 iterations, without
increasing the initial µ upper-bound.

Note that specific tools also exist in the Toolbox to perform such a test (see subsection 3.1).
These tools are more general since they handle the case of skew uncertainties.

5.1.4 The case of largely repeated uncertainties

To conclude this subsection, we now focus on the case of largely repeated uncertainties for which
the routine mu max 3.m was specifically developed. A challenging example is proposed in the
Toolbox (see in Applications directory : generic rep unc.mat). The plant has 60 states which
correspond to badly damped flexible modes. Moreover, it contains 4 repeated uncertainties :

>> load generic_rep_unc;
>> blk

blk =

-10 0 1
-10 0 1
-8 0 1
-2 0 1

The routine is then applied with default options on this example, by the following commande
line :

>> [mub,tab_mu,tab_puls] = mu_max_3(sys_M,blk);

The following result is obtained :
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Computations will be performed on one frequency segment :
--> SEGMENT = [ 0.00 , 100.00 ] - standard stability constraint

----------------------------------------------------------------------
Iteration | Remaining Intervals | mu Upper-bound so far | reliability
----------------------------------------------------------------------

1 | 20 | 0.000 | 0.00%
2 | 21 | 0.000 | 0.00%
3 | 22 | 0.950 | 2.61%
4 | 25 | 0.950 | 34.13%
5 | 6 | 0.950 | 34.13%

..............................................................
34 | 10 | 25.384 | 37.56%
35 | 9 | 25.384 | 37.56%
36 | 7 | 25.384 | 99.99%
37 | 1 | 62.296 | 100.00%
37 | 0 | 62.296 | 100.00%

----------------------------------------------------------------------

#############################
Switched to LMI iterations

#############################

Number of decision variables in LMI step : 268
Computational-time is estimated too high
Switch to LMI has then been aborted.
You may however perform this refined computation by calling mu_max_3 again
by specifying the most critical segments in puls, and using options(2)=0

The main iterations (based on mu.m) were performed in 20 s (on a Sun Blade 1500 Work-
station) which is extremely fast despite the complexity of the problem. Although the LMI
iterations could not be performed here, it should be emphasized that the computed µ upper-
bound is not very conservative. A lower-bound computation (using mu lb witfreq.m) produced
the following result : µ = 61.06. The gap between the two bounds is then approximately 2%
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5.2 Skew µ problems (see also the file calls skew mu.m)
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