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Abstract

The aim of this freeware is to provide computational µ and skew µ methods for
analysing the robust stability and performance properties of an uncertain closed loop,
subject to LTI parametric uncertainties, neglected dynamics and to some extent uncer-
tain time-delays. It could also be considered as a software complement to the book in
[5] (G. Ferreres, A practical approach to robustness analysis with aeronautical applica-
tions, Kluwer Academic/Plenum Publishers, 1999). This toolbox includes basic routines
to compute upper and lower bounds of classical but also skew µ, for both complex and
real uncertainties. Several types of algorithms (exponential-time and polynomial-time)
are made available. Unlike most other available robustness analysis tools, this toolbox
also contains fully automated procedures which allows a non specialist to obtain guaran-
teed stability or performance robustness margins. Finally, different realistic engineering
applications are included (missile, rigid and flexible aircraft, telescope mock-up), which
illustrates the efficiency and the reliability of the proposed tools.

Available on the web pages http://www.cert.fr/dcsd/idco/perso/Biannic/mypage.html and
http://www.cert.fr/dcsd/idco/perso/Ferreres/index.html

LICENSE AGREEMENT, DISCLAIMER:
• You are free to use any of the files here for personal or academic use. The express permission
of the author is required for commercial use.
• You can redistribute the toolbox and its manual without modification provided that it is for
a non commercial purpose. Redistribution in any commercial form including CD-ROM or any
other media is hereby forbidden, unless with the express written permission of the author.
• Neither the author nor ONERA accept any responsibility or liability with regard to this
software that is licensed on an ”as is” basis. There will be no duty on author or ONERA to
correct any errors or defects in the software.
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1 Introduction

Acronyms: LHP (Left Half Plane), LFR (Linear Fractional Representation), LFT (Linear Frac-
tional Transformation), LTI (Linear Time Invariant), RHP (Right Half Plane), s.s.v. (struc-
tured singular value).

The aim of this freeware is to provide computational µ and skew µ methods for analysing the
robustness properties of an uncertain closed loop, subject to LTI parametric uncertainties, ne-
glected dynamics and uncertain time-delays. Consider a closed loop subject to different model
uncertainties, and assume that the nominal closed loop (i.e. without model uncertainties) is
asymptotically stable or more generally satisfies a stability or performance criterion. The issue
is to estimate the robustness margin, i.e. the maximal amount of model uncertainties for which
the closed loop is stable or satisfies this criterion.

Since the introduction of µ at the beginning of the Eighties [3, 13], the s.s.v. µ and its
extensions, especially skew µ, have proven to be efficient tools for solving such problems, as
testified by realistic engineering applications (see e.g. [5] and included references, as well as the
applicative examples of this toolbox).

Nevertheless many µ based techniques, which were proposed in the litterature, are not yet
available as reliable computational tools. This software represents our own effort to bring some
of these techniques from theory into reality. This especially concerns different works in [2, 1]
and techniques described in [5], which gathers different works in [8, 6, 7, 9] (the list is not ex-
haustive). As a matter of fact this toolbox could also be considered as a software complement
to [5].

Note that extensive tests were performed1, so that this software should be rather reliable.
Nevertheless unavoidable bugs are still possible, please report them to the authors if you en-
couter one (or more!).

As a first step before the application of robustness tools the open loop plant model, with
uncertainties in its physical parameters, must be put under a standard LFT form. We suppose
in this toolbox that this LFT form was already computed, using e.g. the free LFR Toolbox in
[10]. Finally a few words about the limitations of the Skew Mu Toolbox:

• This software only deals with robustness analysis problems, the robust control design
problem is not considered here.

• Only the case of continuous-time systems is dealt with, and the closed loop and model
uncertainties are supposed to be LTI. The case of time-varying and/or nonlinear model
uncertainties is not accounted for.

1Even if our applicative examples essentially deal with non-repeated parametric uncertainties tests were
performed using different structures of ∆, including the case of real, complex and mixed model perturbations,
and the case of repeated real and complex scalars.
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• The LMI Control Toolbox is required as an LMI solver, as well as the basic Control System
Toolbox (and Simulink to some extent). No other toolbox is a priori necessary, especially
the µ Analysis and Synthesis one, even if this toolbox can reveal useful in some situations:
our methods for computing µ bounds may be less efficient than the ones proposed in this
toolbox, noting that the µ Analysis and Synthesis Toolbox only deals with classical µ
problems, not skew µ ones. See section 5.1 for more details. Other µ tools can also be
found in the Robust Control Toolbox and in the LMI Control Toolbox.

Despite the above limitations our sofware should prove to be useful in many practical examples,
and different extensions are forecast in future versions.

2 Implementation of the toolbox

The implementation of the toolbox should be very easy. No compilation of mex file is required,
just *.m files are used:

• Just type ”unzip SMT.zip” to unzip the downloaded file. A directory SMT will be created.

• Go to this directory and launch Matlab.

• Launch first thing to do.m, and then demo mu.m or demo skew mu.m for demos. This
function will ask whether the µ Analysis and Synthesis Toolbox is available on the com-
puter.

3 Technical preliminaries

This section introduces the µ framework. See [5] for a more detailed presentation.
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3.1 the standard interconnection structure M - ∆

M(s)-

�∆(s)

Figure 1: Standard interconnection structure.

The starting point of this toolbox is the standard interconnection structure M(s) - ∆(s)
of figure 1, see [5] for the obtention of such a structure. Consider indeed an LTI closed loop
subject to parametric uncertainties and neglected dynamics. It is most generally possible to
transform a specific uncertain closed loop into this standard interconnection structure: the
transfer matrix M(s) contains the dynamics of the nominal closed loop (i.e. the closed loop
without any model uncertainty) and the way the various model perturbations enter the closed
loop. On the other hand, all model perturbations are gathered in the uncertain transfer matrix
∆(s), which has the following block diagonal structure:

∆(s) = diag(∆1(s), . . . , ∆m(s), δ1Iq1
, . . . , δnIqn

) (1)

∆(s) is called a structured model perturbation. ∆i(s) is a block of neglected dynamics wich is
assumed to satisfy the H∞ constraint:

‖∆i(s)‖∞ ≤ 1 (2)

δi is a real parametric uncertainty which is assumed to satisfy δi ∈ [−1, 1]. These model
uncertainties are obviously normalized. A template W (s) is specified, so that the true neglected
dynamics is W (s)∆(s), while the uncertain parameter is p = p0 + αδ. p0 is the nominal value,
and α is a weighting factor. If e.g. α = 0.1, δ ∈ [−1, 1] means that p varies between ± 10 %.

Since the poles of M(s) coincide with the poles of the nominal closed loop M(s) is assumed
to be asymptotically stable (no pole on the RHP or even on the imaginary axis). let B∆(s)
the unit ball:

B∆(s) = {∆(s) | ‖∆(s)‖∞ < 1} (3)

This means that all blocks of neglected dynamics satisfy (2) and all δi ∈ [−1, 1]. The robustness
margin km is defined as the maximal amount of model uncertainties, for which the closed loop
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is stable, i.e. the maximal value of k for which the closed loop of figure 1 (and thus the
original uncertain closed loop which was put under such a standard form) is stable for all
∆(s) ∈ kB∆(s). In the µ context the robustness margin km is computed as:

km =
1

maxω∈[0,+∞) µ(M(jω))
(4)

µ(M(jω)) is the s.s.v. associated to complex matrix M(jω) and to structure (1) of the model
perturbation. Note finally that a block of neglected dynamics ∆i(s) becomes a full complex
block at frequency ω, and that constraint (2) becomes at this frequency:

σ(∆i(jω)) ≤ 1 (5)

3.2 Definition of µ

The ω dependence is left out in the following: the complex matrix M represents the value of
the transfer matrix M(s) at s = jω, while the model perturbation ∆ is an uncertain complex
matrix, which also represents the value of the uncertain transfer matrix ∆(s) at s = jω.

A mixed structured perturbation ∆ is a free complex matrix with the following specific
structure:

∆ = diag(δr
1Ik1

, . . . , δr
mr

Ikmr
, δc

1Ikmr+1
, . . . , δc

mc
Ikmr+mc

,∆C
1 , . . . ,∆C

mC
) (6)

With classical notations [4], ∆ contains real scalars δr
i (which represent the parametric uncer-

tainties), complex scalars δc
j and full complex blocks ∆C

q ∈ Ckmr+mc+q,kmr+mc+q (which typically
represent the neglected dynamics). The integers mr, mc, mC and ki define the structure of the
perturbation. A real scalar δr

i Iki
(resp. a complex scalar δc

i Ikmr+i
) is said to be repeated if the

integer ki (resp. kmr+i) is strictly greater than one.
∆ is said to be a complex model perturbation if it only contains complex scalars and full

complex blocks. Conversely, ∆ is a real model perturbation if it only contains real scalars. ∆
is finally a mixed model perturbation when it simultaneously contains real and complex uncer-
tainties.

The unit ball B∆ is introduced in the space of the structured perturbation ∆:

B∆ = {∆ / σ(∆) ≤ 1} (7)

The s.s.v. is now defined as:

µ∆(M) = 1/min(k / ∃∆ ∈ kB∆ with det(I − M∆) = 0) (8)

= 0 if no (k, ∆) exists

Remarks:
(i) The notation µ∆(M) indicates that this value simultaneously depends on complex matrix



6

M and on the structure of the model perturbation ∆. For the sake of simplicity, we will often
drop out the ∆ dependence, i.e. simply note µ(M).
(ii) The singularity of matrix I −M(jω0)∆ indicates the presence on the imaginary axis at jω0

of a pole of the standard interconnection structure M(s) − ∆. In this context, with reference
to equation (4), the robustness margin, initially defined as the maximal amount of model
uncertainties, for which the closed loop poles remain inside the LHP, can be reinterpreted as
the size of the smallest destabilizing model perturbation, i.e. the one which brings one closed
loop pole on the imaginary axis, i.e. on the border of the LHP.

3.3 Definition of the skew s.s.v. ν

∆ is now split as ∆ = diag(∆1, ∆2), where ∆1 and ∆2 are two mixed structured perturbations.
M is partitioned in the same way as:

M =

[

M11 M12

M21 M22

]

(9)

The skew s.s.v. ν(M) is defined as:

ν(M) = 1/min(k / ∃∆ = diag(∆1, k∆2) with ∆i ∈ B∆i

and det(I − M∆) = 0)

= 0 if no (k, ∆1, ∆2) exists (10)

When computing µ, the unit ball B∆ is expanded (or shrunk) by factor k until the matrix
I − M∆ becomes singular for a structured perturbation inside kB∆. When computing ν, the
unit ball B∆2 (in the space of perturbations ∆2) is expanded (or shrunk) by factor k, but the
structured perturbation ∆1 remains now inside its unit ball B∆1.

Remark: ν(M) takes an infinite value if and only if µ∆1
(M11) ≥ 1. This means that there

exists ∆1 with σ(∆1) ≤ 1 and det(I −Mdiag(∆1, 0)) = 0, or equivalently det(I −M11∆1) = 0.

3.4 Robust performance problems

Performance can be defined in two different ways. In the case of a real model perturbation, a
first solution is to study the robustness of the location of the closed loop poles despite parametric
uncertainties. In the general context of a mixed model perturbation, a second and more classical
solution consists in checking whether a frequency domain template on a closed loop transfer
matrix remains satisfied despite model uncertainties. In the first issue, performance is rather
defined in the time domain, whereas performance is defined in the frequency domain in the
second one.
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3.4.1 Ω stability
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Figure 2: Robustness of a pole placement.

In the case of a real model perturbation, it is possible to study the robustness of the location
of the closed loop poles in other regions than the LHP. This is especially the case of a truncated
sector (see figure 2). Performance can be defined in this context by minimal values ξmin and
αmin for the damping ratio ξ and the degree of stability α 2. To some extent, these specifications
correspond to requirements on the rise time and overshoot of the closed loop step response, or
on the time needed to reject an unmeasured disturbance or a non zero initial condition.

In this context the robustness margin, defined as the maximal amount of model uncertainties
for which the closed loop poles remain inside the truncated sector, can still be computed with
a frequency domain approach (4). But the s.s.v. is computed on the border of the truncated
sector, instead of the border of the LHP, i.e. the imaginary axis.

Remarks:
(i) Nominal closed loop poles (i.e. those of M(s)) must belong to the truncated sector.
(ii) Neglected dynamics are undefined outside the imaginary axis.

2the degree α of stability of a state matrix A is defined as α = maxi Re(λi(A)), where λi(A) is an eigenvalue
of A.
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3.4.2 H∞ performance
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Figure 3: Augmented µ problem for robust performance analysis.

In the spirit of H∞ control, performance is achieved if a closed loop transfer matrix T (s)
satisfies a frequency domain template W (s) at all frequencies ω:

σ(W (jω)T (jω)) < 1 (11)

Assume now the presence of uncertainties in the closed loop, so that T (s) is an LFT:

T (s) = Fl(M(s), ∆U (s))

(i.e. the transfer between w and z in figure 3). ∆U(s) is most generally a mixed model per-
turbation, containing parametric uncertainties and neglected dynamics. Assume moreover that
W (s) is included in Fl(M(s), ∆U (s)) to alleviate the notations.
The nominal closed loop is assumed to satisfy the performance property at ω, i.e. :

σ(Fl(M(jω), 0)) < 1 (12)

The robust performance problem consists in computing the maximal amount of uncertainties,
for which closed loop performance is still achieved. The problem is thus to compute the maximal
size of the mixed model perturbation ∆U(jω), for which the following relation remains satisfied:

σ(Fl(M(jω), ∆U(jω))) < 1 (13)

Here again the problem is solved at each frequency ω. This robust performance problem
can be equivalently transformed into an augmented robust stability problem, involving an ad-
ditional fictitious full complex block (which is called a fictitious performance block) ∆P . On
figure 3 ∆P is connected to the inputs and outputs w and z, so that the standard interconnec-
tion structure of figure 1 is obtained with ∆ = diag(∆P , ∆U). Computing the maximal amount
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of uncertainties, for which closed loop performance is achieved is a skew µ problem in which the
fictitious performance block ∆P is maintained inside its unit ball while the size of the model
perturbation ∆U is maximised.

Remark: the performance block ∆P can be structured. Assume that Fl(M, ∆U) is a Two
Inputs Two Outputs transfer matrix, and we are just interested in both direct SISO transfer
functions (i.e. the transfer function between the 1st input and output, and the transfer function
between the 2d input and output). In order to find the worst-case simultaneous degradation of
the performance on these 2 transfer functions just choose ∆P = diag(δc

1, δ
c
2), where each δc

i is a
complex scalar.

3.5 Computational difficulties

• A common practice for solving (4) is to compute the s.s.v. µ(M(jω)) at each point of a fre-
quency gridding (ωi)i∈[1,N ]. When choosing a sufficiently fine frequency gridding, good results
are obtained in many practical examples. Nevertheless a specific problem appears in the context
of flexible systems: narrow and high peaks may indeed be obtained on the plot of µ(M(jω))
as a function of frequency ω. The use of a frequency gridding reveals unreliable in such a case:
the risk is to miss a narrow and high peak on the µ plot, and thus to overevaluate the robust-
ness properties of the closed loop (by underevaluating the value of the maximal s.s.v. over the
frequency range). In the context of this new and difficult problem, we propose in section 5.2
two methods for computing a reliable estimate of µ(M(jω)) as a function of ω.

• Computing the exact value of the s.s.v. is an NP hard problem, so that the computational
burden of the algorithms, which compute the exact value of µ, is necessarily an exponential
function of the size of the problem. It is consequently impossible in practice to compute the
exact value of µ for large dimension problems. A usual solution is to compute µ upper and
lower bounds instead of the exact value. The associated algorithms can be exponential-time
(like the algorithms which compute the exact value of µ), or more interestingly polynomial-
time. Even if it is not possible to guarantee a priori the gap between the µ bounds when using
polynomial-time algorithms, good results are usually obtained in practical realistic examples:
this will be illustrated in the following.

• From a computational point of view, a (skew) µ upper bound is typically obtained as the so-
lution of a convex or quasi-convex optimization problem, namely an LMI problem. Conversely,
the methods which compute a µ lower bound are generally heuristic, and the computational
burden is typically required to be low. The most classical solution consists in solving in an
heuristic way a non convex optimisation problem: indeed a µ lower bound typically corre-
sponds to a local optimum of this non convex optimisation problem, whereas the exact value
of µ corresponds to the global optimum of this optimisation problem.
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• The pratical usefulness of the µ bounds is now explained. For the sake of clarity, we re-
strict our attention to the case of a real model perturbation ∆ = diag(δiIqi

). Let D the unit
hypercube:

D = {δ = [δ1 . . . δn] | δi ∈ R and |δi| ≤ 1} (14)

D corresponds to the unit ball in the specific context of a real model perturbation. An upper
bound µ of µ(M) gives a sufficient condition of nonsingularity of the matrix I −M∆, which is
thus guaranteed to be nonsingular for all parametric uncertainties ∆ inside (1/µ)D. An upper
bound µ of the s.s.v. thus gives a lower bound kL of the robustness margin:

kL = min
ω∈[0, ∞)

1

µ(M(jω))
(15)

In the context of a robust stability problem in the presence of parametric uncertainties, robust
stability of the closed loop can thus be guaranteed inside the hypercube kLD in the space of
uncertain parameters.

Conversely, a lower bound µ of µ(M) gives a sufficient condition of singularity of the matrix
I − M∆, i.e. there exists a real model perturbation ∆∗ ∈ (1/µ)D, with I − M∆∗ singular
(in the context of a robust stability problem, ∆∗ is a destabilizing model perturbation). The
usefulness of a µ lower bound is twofold. As a first point, µ gives a measure of the conservatism
of the upper bound µ, by examining the tightness of the interval [µ, µ] which contains the
exact value of µ. As a second point, an associated worst-case model perturbation ∆∗ is usually
provided with µ by the computational algorithm.

4 Content of the toolbox

4.1 Applicative examples

The toolbox contains the following complementary applications:

• De Gaston and Safonov’s example [2]: this very simple example only contains 3 non-
repeated parametric uncertainties, and the order of M(s) is 3. It is especially useful for
a demo since the application of our µ tools is (very) fast on it.

• Longitudinal missile [12]: the structured model perturbation ∆ contains 4 non-repeated
parametric uncertainties, a block of neglected dynamics and a performance block. The
order of M(s) is 19. Simpler sub-problems can be considered (e.g. only with parametric
uncertainties), see the following subsection. See also section 12 for the computation of
worst-case MIMO gain, phase and delay margins in the presence of the 4 non-repeated
parametric uncertainties.
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• Lateral rigid airplane [5]: the structured model perturbation ∆ contains 14 non-repeated
parametric uncertainties, and the order of M(s) is 9. In all above 3 examples µ bounds
can be computed on a frequency gridding. But in the case of the lateral rigid airplane, the
large number of parametric uncertainties prohibits the use of exponential-time methods.

• Lateral rigid + flexible airplane [5]: the structured model perturbation ∆ contains 20 non-
repeated parametric uncertainties, and the order of M(s) is 46. Because of the flexible
model it becomes difficult to compute µ bounds on a frequency gridding.

• Telescope mock-up [5]: the structured model perturbation ∆ contains 20 non-repeated
parametric uncertainties, and the order of M(s) is 70. Because of the highly flexible
model it becomes impossible to compute µ bounds on a frequency gridding. A challenging
problem when considering the large number of parametric uncertainties and the order of
M(s).

All examples above correspond to robust stability problems (inside the LHP or truncated
sector), except the missile example which also contains a robust performance problem. More
details on these applications can be found in [5] and included references (see also the README
file in the directory Applications). We detail in the following subsection the missile problem.

4.2 More on the missile example

W1

W2
-

--

-
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?- - - h

-

-

�

- q

q

+

-

+
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h

6

ǫ ǫf

Figure 4: Closed loop missile system with uncertainties.
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The issue is to analyse the stability and performance properties of the closed loop missile in
the presence of uncertainties in its 4 physical parameters and in the face of neglected dynamics,
namely a high frequency bending mode. To this aim, the parametrically uncertain missile model
was first transformed into the standard LFT structure Fu(H(s), ∆1), where ∆1 gathers the
parametric uncertainties. On the other hand, the bending mode is represented by an additive
model perturbation ∆2(s) and its template 1/W1(s) is extracted from [12]. The uncertain
closed loop missile is presented in figure 4, where K(s) represents the feedback controller and
Hact(s) the actuator. Two outputs η and q are used by K(s). In the context of H∞ control,
the frequency domain performance is finally defined through the sensitivity function S, i.e. the
transfer function between the commanded acceleration ηc and the tracking error ǫ = ηc − η. A
frequency domain template 1/W2(s) is to be satisfied, i.e. performance is obtained if the H∞

norm of the transfer function between the commanded acceleration ηc and the filtered tracking
error ǫf is less than 1.

4.3 Computational methods

M or µ or LHP or µ lower or real, complex polynomial
M(s) skew µ sector up. bound or mixed or exp. time

mu lb with freq.m M(s) µ sector lower real polynomial
mu max 1.m M(s) skew µ LHP upper mixed polynomial
mu max 2.m M(s) skew µ LHP upper mixed polynomial

mixed mu lb freq.m M(s) skew µ sector lower mixed polynomial
mixed mu lb.m M skew µ sector lower mixed polynomial
mixed mu ub.m M skew µ sector upper mixed polynomial

mu dailey.m M skew µ sector lower real exponential
mu zd.m M skew µ sector upper real exponential

worst case margin.m M(s) skew µ LHP upper mixed polynomial

Table 1: characteristics of the (skew) µ methods.

In a few words, the toolbox contains the following computational methods for µ:

• With a frequency gridding: classical mixed µ lower and upper bounds (mixed mu ub.m,
mixed mu lb.m), exponential-time real µ upper and lower bounds (mu zd.m, mu dailey.m).
All these routines can also be called via mu frequency gridding.m. See also the function
mixed mu lb freq.m.

• Computation of a guaranteed (skew) mixed µ upper bound on a frequency interval:
mu max 1.m and mu max 2.m.



13

• Computation of a real µ lower bound with a mixed frequency/state-space approach:
mu lb with freq.m.

• With a frequency gridding, computation of worst-case values of MIMO gain, phase
and delay margins in the presence of parametric uncertainties and neglected dynamics:
worst case margin.m. See section 12 for more details.

demo mu.m and demo skew mu.m essentially call robust.m, which is an interactive interface to
mu frequency gridding.m, mu lb with freq.m, mu max 1.m and mu max 2.m. Noting that
these routines can also be independently called. The table above summarizes the characteristics
of the (skew) µ methods. M (resp. M(s)) means that the input argument of the routine is
a complex matrix M (resp. a dynamic transfer matrix M(s)). µ means that the routine
only deals with classical µ problems, while skew µ means that the routine deals with classical
and skew µ problems. In the same way LHP means that the routine only deals with robust
stability problems inside the LHP, while sector means that the routine deals with robust stability
problems inside the LHP and truncated sector. Finally real, complex and mixed refer to the
nature of the structured model perturbation.

4.4 Important details

4.4.1 description of the structure of ∆

The structure of ∆ is described by blk. The first two colums of blk follow the format of the µ
Analysis and Synthesis Toolbox. Each line of blk describes a component of ∆, i.e. a block of
neglected dynamics, a (repeated) complex scalar or a (repeated) real scalar:

• If blk(i,1:2)=[n m], where n and m are strictly positive integers, this means that the ith
block of ∆ is a block of neglected dynamics, whose size is (n,m).

• If blk(i,1:2)=[n 0], where n is a strictly positive integer, the ith block of ∆ is a repeated
complex scalar δIn.

• If blk(i,1:2)=[-n 0], where n is a strictly positive integer, the ith block of ∆ is a repeated
real scalar δIn.

blk(i,1:2)=[-n m], where n and m are strictly positive integers, is not allowed (it would corre-
spond to a full real block). The third column of blk describes the potentially skew nature of the
uncertainty. If blk(i,3)=0 the ith block must be maintained inside the unit ball. If blk(i,3)=1
its size is free.

Note finally that M and ∆ are supposed to be square in the interconnection
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structure M - ∆. But a rectangular block of neglected dynamics can be encoun-
tered. In this context the interconnection structure M - ∆ can be transformed into
a new one, M2 - ∆2, where M2 and ∆2 are square. The idea is just to add zero lines
or columns in M . This is automatically done with the routine square m.m.

4.4.2 choice of the frequency gridding

The choice of the frequency gridding, on which µ bounds are computed, is not especially
complex, but it is user-dependent. The issue is just not to miss a critical µ peak. This gridding
usually consists of the zero frequency and of N logarithmically spaced points between ωmin (a
non-zero value) and ωmax. ωmin (resp. ωmax) should correspond to a very low (resp. very high)
frequency. These obviously depend on the nature of the closed loop plant. As an example,
since a missile is much faster than a transport airplane, ωmax can be chosen as 100 rad/s for
the airplane, but 1000 for the missile. It can be worthwhile to inspect the frequencies of the
nominal closed loop poles in order to determine ωmin and ωmax.

5 Some information on computational methods

This section gives some information on the computational methods. See the included references
for more details.

5.1 Computation of the mixed µ lower and upper bounds

Concerning the computation of a mixed µ lower bound, our toolbox implements the original
power algorithm in [14] (see [5] for the extension of this power algorithm to skew µ problems).
The idea is to solve an equation x = f(x) with power iterations, i.e. to look for the limit of
xk+1 = f(xk). If the algorithm converges, a µ lower bound is obtained. Moreover the limit
depends on the value of x0. The original power algorithm in [14] was improved, see especially
[11], but these improvements are not implemented in our software, so that our power algorithm
is not as efficient as the power algorithm in the µ Analysis and Synthesis Toolbox. It shoud be
noted however, that the latter does not handle skew µ problems, unlike ours.Note also that both
power algorithms generally fail to converge in the presence of a purely real model perturbation,
in which case the µ lower bound is taken as zero.

Concerning the computation of a mixed (skew) µ upper bound, our toolbox implements an
LMI solution which uses the LMI solver of the LMI Control Toolbox (see [4] for the mixed µ
upper bound and [8] for the extension to skew µ). Problems can be encountered with largely
repeated real or complex scalars δIn, since the number of scalar optimization parameters in
the LMI grows as n2, i.e. the computational burden can become cumbersome if n is too large.
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A specific technique was developed in the µ Analysis and Synthesis Toolbox to reduce this
computational burden in this context: the idea is to achieve a trade-off between the accuracy
of the µ upper bound (i.e. its closeness to the minimal value, which would be provided by an
LMI solver) and the computational burden.

Remarks:
(i) In our routines mixed mu lb.m and mixed mu ub.m, in the context of a classical µ prob-
lem, it is possible to call the routine mu.m (computation of a µ lower or upper bound, if the
µ Analysis and Synthesis Toolbox is available on the computer) as well as the LMI Control
Toolbox routine mubnd.m (computation of a µ upper bound). see the help of mixed mu lb.m
and mixed mu ub.m for details.
(ii) Since the power algorithm in the µ Analysis and Synthesis Toolbox generally works better
than ours, it is used in our toolbox whenever it is possible. Obviously, if the µ Analysis and
Synthesis Toolbox is not available on the computer, our power algorithm is always used. Oth-
erwise, the power algorithm in the µ Analysis and Synthesis Toolbox is used for all classical µ
problems (in mu frequency gridding.m and mu lb with freq.m), and our algorithm is used
only for skew µ ones. Nevertheless, note that our power algorithm provides satisfactory results
in the examples of section 11, where a mixed (skew) µ lower bound is to be computed on a
frequency gridding. But our power algorithm is rather slower than the one in the µ Analysis
and Synthesis Toolbox.
(iii) The convergence properties of our power algorithm are better in the case of a classical µ
problem, than in the case of a skew µ one. This is due to the introduction of an additional
scaling factor in the power algorithm, as explained in [5].
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5.2 Computation of a guaranteed µ upper bound on a frequency
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Figure 5: µ for De Gaston and Safonov’s example.

In the context of flexible systems, a reliable robustness margin can be obtained by computing
guaranteed µ upper bounds βi on frequency intervals [ωi, ωi+1], i.e. one can guarantee that:

µ(M(jω)) ≤ βi ∀ω ∈ [ωi, ωi+1] (16)

It now becomes impossible to miss a µ peak, and a guaranteed upper bound of the maximal
value of µ over the frequency range can be deduced. Two different methods are available in
mu max 1.m [6, 9] and mu max 2.m [8]. Most generally, mu max 1.m provides less conser-
vative results with a lower computational burden. Indeed, the initial frequency gridding is
refined inside mu max 1.m, i.e. µ peaks are automatically detected3. Moreover mu max 2.m
solves a skew µ problem in which appears the repeated real scalar δωIn, where δω is the fre-
quency (treated as an uncertainty) and n is the order of M(s). Thus, as indicated in the above
subsection, the computational burden can be very high if n is too large.

3In the context of the classical mixed µ upper bound (or its extension to skew µ), the issue is to compute
D, G scaling matrices, which are valid at the two extremal frequencies, and to check a posteriori that these
D, G scaling matrices are also valid inside the associated interval. If not the interval is split into two smaller
intervals.
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Figure 6: µ for the rigid aircraft example.

Note nevertheless that figure 5, which corresponds to De Gaston and Safonov’s example,
suggests that mu max 2.m does not necessarily provide a µ upper bound, which is more con-
servative than the mixed µ upper bound computed with the function mixed mu ub.m on a fine
frequency gridding (when it is possible to use such a gridding). Note indeed that the guaranteed
µ upper bound on the critical frequency interval (i.e. the one corresponding to the maximal
value of µ) nearly coincides with the maximal µ upper bound, computed on a frequency grid-
ding, over the same interval. The same type of results is obtained on the rigid aircraft example:
see figure 6.

Remarks:
(i) See the help of mu max 1.m and mu max 2.m and [8, 6, 5, 9] for more details.
(ii) These 2 routines only deal with robust stability problems inside the LHP. Indeed, robust
stability inside a truncated sector appears useful for rigid systems, not for flexible ones.

5.3 Exponential-time real µ methods

mu dailey.m and mu zd.m propose methods for computing lower or upper bounds of µ at a
given frequency in the special case of non-repeated real uncertainties. Since these methods are
exponential-time their application is limited to about 10 or 12 uncertain parameters. Despite
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all these limitations these methods are worthwhile in the context of a real µ problem with a
limited number of uncertainties (see especially the missile application).

mu dailey.m is an implementation of Dailey’s method in [1], while mu zd.m uses a Zero
Exclusion Test combined with the Mapping Theorem [15], as initially proposed in [2] (note nev-
ertheless that no branch and bound is implemented in mu zd.m, the issue is just to compute a
µ upper bound).

Remarks:
(i) At the zero frequency (and also at very low frequencies) mu dailey.m willingly provides
no result (because matrix M(jω) is real, and not complex at the zero frequency). Conversely,
mu zd.m provides the exact value of µ at the zero frequency.
(ii) When using mu dailey.m, if the µ lower bound is less than 1e-3 it is taken as zero. Con-
versely, when using mu zd.m, if the µ upper bound is less than 1e-3 it is taken as 1e-3.

5.4 Computation of a µ lower bound with a mixed
frequency/state-space approach

mu lb with freq.m implements the method proposed in [7]. See the help of this routine
for a presentation of the technique. Simply note that 4 related methods are proposed in
mu lb with freq.m, but the most valuable ones are the 2th and 4th ones, as indicated in
section 8. Note also that only real parametric uncertainties are dealt with (no complex uncer-
tainties), and only classical µ problems (no skew µ one). Indeed, the power algorithm in section
5.1 especially fails to converge in the context of a purely real model perturbation.

6 Introduction to the applicative sections

The following sections will present the computational methods through different applicative
examples:

• (robust stability in the presence of 4 parametric uncertainties) The missile example only
contains 4 parametric uncertainties, so that exponential-time methods can be used. It is
possible to study robust stability inside the LHP or truncated sector.

• (robust stability in the presence of 14 parametric uncertainties) The rigid airplane contains
14 parametric uncertainties, so that only polynomial-time methods can be used now.

• (robust stability in the presence of 20 parametric uncertainties) The telescope mock-up
example is highly flexible, so that it is no more possible to compute µ on a frequency
gridding.
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• Skew µ problems are illustrated on the missile example through 2 robust stability and
performance problems.

• The last section explains on the missile example how to compute estimates of worst-case
MIMO gain, phase and delay margins.

Note finally that demo mu.m and demo skew mu.m can be used to compare methods in many
other situations than the ones described above and below.
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7 Missile: robust stability

Robust stability in the presence of the 4 parametric uncertainties is studied in this section, i.e.
neither the neglected dynamics nor the performance block are considered here.

7.1 Robust stability in the LHP
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Figure 7: µ for the missile example (robust stability inside the LHP).

The above figure presents the results provided by mixed mu ub.m (mixed µ upper bound),
mu zd.m (exponential-time upper bound) and mu dailey.m (exponential-time lower bound).
Both upper bounds are close, except at low frequencies where the highest is the mixed µ upper
bound. Noting moreover that both µ upper bounds are equal to 0.125 at the zero frequency.
It can be concluded that µ is discontinuous at this frequency. The exponential-time lower
and upper bounds are (very) close, so that the exact value of µ is around 0.05 at very low
frequencies. But it is 0.125 at the zero frequency (the exponential-time upper bound coincides
with the exact value at this specific frequency). Note moreover that the exponential-time upper
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bound is discontinuous, but not the mixed µ upper bound. As a conclusion, at least in the case
of a purely real model perturbation it is important to compute µ bounds at the zero frequency
and at very low frequencies.

The maximal value of µ is 0.125 at the zero frequency, so that robust stability can be
guaranteed for ± 40 % of uncertainty in the stability derivatives (i.e. the physical parameters
of the missile model). Parametric uncertainties were indeed normalised by a weighting factor
0.05, so that the robustness margin is 0.05

0.125
.

7.2 Robust stability in a truncated sector
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Figure 8: µ for the missile example (robust stability inside a truncated sector).
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The poles of the nominal closed loop are:

Eigenvalue Damping Freq. (rad/s)

-4.94e-01 1.00e+00 4.94e-01

-5.00e-01 1.00e+00 5.00e-01

-7.55e+00 1.00e+00 7.55e+00

-7.56e+00 + 9.48e+00i 6.23e-01 1.21e+01

-7.56e+00 - 9.48e+00i 6.23e-01 1.21e+01

-2.60e+01 + 1.14e+01i 9.15e-01 2.84e+01

-2.60e+01 - 1.14e+01i 9.15e-01 2.84e+01

-1.16e+02 1.00e+00 1.16e+02

-9.43e+01 + 1.14e+02i 6.37e-01 1.48e+02

-9.43e+01 - 1.14e+02i 6.37e-01 1.48e+02

-1.04e+02 + 1.07e+02i 6.97e-01 1.49e+02

-1.04e+02 - 1.07e+02i 6.97e-01 1.49e+02

-1.80e+02 + 2.71e+01i 9.89e-01 1.82e+02

-1.80e+02 - 2.71e+01i 9.89e-01 1.82e+02

It is thus possible to study robust stability inside a truncated sector with -0.3 for the minimal
degree of stability and 0.4 for the minimal damping ratio (remember the nominal closed loop
poles must belong to the truncated sector).

In the above figure the same discontinuity problem appears at the zero frequency: µ is
0.123 at this frequency, and at low frequencies the highest bound is the mixed µ upper bound.
Exponential-time lower and upper bounds are very close at all frequencies, and the maximal
value of µ is computed with a nearly perfect accuracy: at the critical frequency 13.664 rad/s,
the µ lower bound is 0.241 while the µ upper bounds are 0.245 and 0.248. This means that
robust stability is guaranteed for ± 20 % of uncertainty in the stability derivatives (0.2041 =
0.05
0.245

).
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8 Rigid airplane: robust stability in the LHP
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Figure 9: µ for the rigid airplane example (robust stability inside the LHP).

We consider 14 parametric uncertainties in the stability derivatives. When using a frequency
gridding the sole method which can be used is now mixed mu ub.m. The power algorithm
in mixed mu lb.m (which computes a mixed µ lower bound) generally provides no result in
the context of a purely real model perturbation, and there are too many uncertainties for
exponential-time methods in mu zd.m and mu dailey.m. The maximal value of the µ upper
bound is obtained as:

Maximal value of mu = 0.229 at w = 0.687 rad/s

Since the weighting factor on the parametric uncertainties is 10 %, this means that robust
stability is guaranteed for ± 44 % of uncertainty in the stability derivatives (0.4367 = 0.1

0.229
).

mixed mu lb with freq.m is then used to compute a µ lower bound. The aim of this rou-
tine is not to compute a µ lower bound as a function of frequency, but to compute a lower
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bound of the maximal value of µ. This routine can be used in two different ways:

• If the µ upper bound was first computed as a function of frequency, then the potential
conservatism can be evaluated by the routine mixed mu lb with freq.m which can be applied
around the critical frequency, corresponding to the highest peak of the µ upper bound (here
0.68 rad/s). In this context the 4 possible methods in mixed mu lb with freq.m nearly give
the same result:

Maximal value of mu = 0.184 at omega = 0.634 rad/s (method=1)

Maximal value of mu = 0.184 at omega = 0.623 rad/s (method=2)

Maximal value of mu = 0.179 at omega = 0.626 rad/s (method=3)

Maximal value of mu = 0.184 at omega = 0.634 rad/s (method=4)

The gap between the lower and upper bounds of the maximal value of µ over the frequency
range is satisfactory (19 %). The stars on figure 9 represent the µ lower bounds.

• If nothing can be guessed about the critical frequency mixed mu lb with freq.m is applied
on a large frequency interval, namely between 0.01 and 100 rad/s (and the zero frequency).
In this new context the 4 possible methods in mixed mu lb with freq.m may give different
results. To keep a low computational burden the number of frequency points is limited to 5
(frequencies are thus 0, 0.01, 0.1, 1, 10 and 100). Here is the result obtained with the 2d
method:

1: reg. mu problem at 0.00 rad/s --> mu = 0.14 - imag. axis crossed at 0.00 rad/s

2: reg. mu problem at 0.01 rad/s --> mu = 0.14 - imag. axis crossed at 0.00 rad/s

3: reg. mu problem at 0.10 rad/s --> mu = 0.16 - imag. axis crossed at 0.33 rad/s

4: reg. mu problem at 1.00 rad/s --> mu = 0.18 - imag. axis crossed at 0.62 rad/s

5: reg. mu problem at 10.00 rad/s --> mu = 0.008 - imag. axis crossed at 6.99 rad/s

6: reg. mu problem at 100.00 rad/s --> mu = 0.018 - imag. axis crossed at 35.77 rad/s

A µ lower bound is obtained as a function of frequency (e.g. 0.14 at zero, or 0.16 at 0.33 rad/s),
but note that these frequencies are not the same as the ones of the initial gridding. Thus, even
if the initial rough frequency gridding does not contain the critical frequency, this one can be
detected with our method. Here is the maximal µ lower bound obtained with the 4 methods:

Maximal value of mu = 0.144 at omega = 0.206 rad/s (method=1)

Maximal value of mu = 0.184 at omega = 0.623 rad/s (method=2)

Maximal value of mu = 0.135 at omega = 0.228 rad/s (method=3)

Maximal value of mu = 0.144 at omega = 0.206 rad/s (method=4)

The 2d method gives the best results, see [7] for an explanation. Note nevertheless that much
better results are obtained when choosing 30 points between 0.01 and 100 rad/s (and the zero
frequency):
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Maximal value of mu = 0.183 at omega = 0.624 rad/s (method=1)

Maximal value of mu = 0.183 at omega = 0.623 rad/s (method=2)

Maximal value of mu = 0.178 at omega = 0.611 rad/s (method=3)

Maximal value of mu = 0.183 at omega = 0.624 rad/s (method=4)

Remarks:
(i) In some situations the 4th method gives better results than the 2d one.
(ii) It would be possible to study in the same way robust stability inside the truncated sector.
(iii) The above results were obtained using the power algorithm of the µ Analysis and Synthesis
toolbox inside mu lb with freq.m. If this toolbox is not available on the computer our power
algorithm can be used, but the algorithm is slower and results are generally not as good as
those obtained with the power algorithm of the µ Analysis and Synthesis toolbox. Here again,
the most interesting methods are the 2d and 4th ones, and best results are obtained with the
2d or 4th method depending on the example.
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9 Back to the missile example
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Figure 10: µ for the missile example (robust stability inside a truncated sector).
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Figure 11: µ for the missile example (robust stability inside a truncated sector).

Misleading conclusions may be drawn with mu lb with freq.m. To illustrate this let’s go
back to section 7.2. Figure 10 corresponds to the exponential-time µ upper bound on a frequency
gridding (the zero frequency + 100 points between 0.1 and 1000 rad/s + 30 additional points),
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noting that the same problem occurs with the mixed µ upper bound. The stars correspond to
µ lower bounds computed with mu lb with freq.m (20 points between 0.1 and 1000 rad/s and
the zero frequency - 4th method). The µ lower bound seems greater than the µ upper bound
around 80 rad/s! This is due to the use of a frequency gridding. Indeed, when refining the
frequency gridding around the secondary peak the problem disappears: see figure 11.
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10 Telescope mock-up: robust stability
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Figure 12: µ for the telescope mock-up example.

The above figure presents the application of mu max 1.m to the telescope mock-up example.
The initial frequency gridding only consists of the zero frequency and 10 points between 0.1
and 2000 rad/s. This very rough gridding is then refined inside the routine. Note the very fine
peaks on the µ plot. Note also that since it is impossible to directly represent on a logarithmic
axis a guaranteed µ upper bound β on the frequency interval [0, 0.1 rad/s], a diamond is simply
plotted at the point (0.1, β).

The maximal value is obtained as 46.557 between 1101.019 rad/s and 1103.489 rad/s. This
means that robust stability inside the LHP is guaranteed for ± 2 % of uncertainty in the
frequencies of the bending modes (0.0215 = 1

46.557
). A µ lower bound is then computed by

applying mu lb with freq.m on the critical frequency interval (10 points between 1101.019
rad/s and 1103.489 rad/s - 4th method). A µ lower bound is obtained as 46.253 at omega =
1103.309 rad/s (see the star on the figure). maximal µ lower and upper bounds nearly coincide.
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11 Missile: skew µ problems

11.1 Robust stability in the presence of parametric uncertainties
and neglected dynamics
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Figure 13: µ for the missile example (robust stability).

We now go back to the missile example. In this subsection one studies robust stability in
the LHP, in the presence of parametric uncertainties and neglected dynamics. Robust stability
is first analysed with the µ tool (see figure 13; the upper curve is the mixed µ upper bound,
the lower one is the mixed µ lower bound). The maximal value of the mixed µ upper bound is
0.236 at 216.552 rad/s, so that the maximal uncertainty in the stability derivatives is 5/0.236 =
21.18% (remember the weighting factor on the parametric uncertainties is 5 %). The result is
nearly non-conservative, because of the very small gap between the µ lower and upper bounds
at the critical frequency (lower and upper bounds nearly coincide at high frequencies).

However, the controller must tolerate a given amount of neglected dynamics, as defined by
the template. It is thus logical to maintain this uncertainty inside its unit ball in our analysis
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problem. The maximal value of the mixed skew µ upper bound is obtained as 0.125 at the zero
frequency, so that the maximal uncertainty in the stability derivatives becomes 5/0.125 = 40%
(see figure 14).
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Figure 14: skew µ for the missile example (robust stability).

More precisely, figure 13 also presents the mixed µ lower bound provided by the power
algorithm in the µ Analysis and Synthesis Toolbox, while figure 15 presents the mixed µ lower
bound provided by our power algorithm for the same problem. The result of these 2 figures
is not really satisfactory. In the same way figure 14 presents the mixed skew µ lower bound
provided by our power algorithm. Here again the result is not satisfactory. Nevertheless, the
mixed µ problem of this section is very close to a real µ one at low and middle frequencies, so
that the power algorithms logically fail to converge at these frequencies. Much better results
are obtained in the next subsection, which corresponds to a true mixed µ problem.



31

10
−1

10
0

10
1

10
2

10
3

0

0.05

0.1

0.15

0.2

0.25

rad/s

m
u

Figure 15: µ for the missile example (robust stability).
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11.2 Robust performance
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Figure 16: skew µ for the missile example (robust performance).

The issue is to compute the maximal amount of model uncertainties (parametric uncer-
tainties and neglected dynamics), for which the frequency-domain template on the sensitivity
function S(s) is still satisfied. The mixed skew µ upper bound is computed as a function of
frequency in the above figure (the lower curve corresponds to the skew mixed µ lower bound).
The maximal value is obtained as 0.488 at 11.830 rad/s. The result is quite satisfactory, since
the lower and upper bounds nearly coincide at this frequency. Robust performance is thus
guaranteed for ± 10 % of uncertainties in the stability derivatives (0.102 = 0.05

0.488
).

Note that the skew µ lower bound is rather satisfactory in the above figure. When applying
classical µ tools to the same problem the two following figures are obtained, either with the
power algorithm in the µ Analysis and Synthesis Toolbox, or with ours4. The results provided
by both power algorithms are quite satisfactory.

4More precisely mu frequency gridding.m uses mixed mu lb freq.m, which itself calls mixed mu lb.m.
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Figure 17: µ for the missile example (robust performance).
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Figure 18: µ for the missile example (robust performance).
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12 Computation of robust gain, phase and delay margins

Consider again the closed loop missile system of figure 4, without the block ∆2 of neglected
dynamics, i.e. one just keeps the 4 parametric uncertainties in ∆1. An uncertain time-delay
(or gain or phase) is introduced at the plant input, and 2 other time-delays (or gains or phases)
are introduced at the 2 plant outputs.

Let δ the vector of 4 parametric uncertainties. For a given value of δ, let e.g. τ(δ) the
delay margin associated to the closed loop, i.e. robust stability can be guaranteed for all three
time delays belonging to [0, τ(δ)] (with independent variations). The worst-case delay margin
is defined as minδ∈D τ(δ), i.e. the worst case value of the margin when δ belongs to the unit
hypercube D (see equation (14) for a definition of D). Worst-case gain and phase margins are
defined in the same way.

A small gain approach is used, as detailed in [5]. A skew µ problem is to be solved. Nev-
ertheless, in this reference, if the phase margin is [−A, A] at a frequency ω, the delay margin
is deduced as [−A/ω, A/ω]. The present toolbox proposes an improved solution, in which the
delay margin corresponds to an interval [0, τmax]. To this aim, if the initial delay margin was
computed as [−A/ω, A/ω], fixed time-delays e−jA/2 are added to the nominal closed loop at
frequency ω, and the small gain theorem is once again applied (more precisely a skew µ problem
is once again to be solved). To reduce the computational burden this is done only at critical
frequencies, where the delay margin is the smallest.

Remarks:
(i) More generally it is possible to compute worst-case margins in the presence of a mixed
model perturbation ∆ which is maintained inside its unit ball.
(ii) In the following demo delays.m calls the main routine worst case margin.m, which itself
calls skew mu ub bis.m or mu ub.m. See the help of worst case margin.m.

We first compute with demo delays.m estimates of the gain, phase and delay margins in
the case of the nominal closed loop, without parametric uncertainties. The following result is
obtained:

w = 35.232 rad/s --> worst-case phase margin = 18.388 degrees

w = 82.143 rad/s --> worst-case delay margin = 6.326e-03 s

w = 25.826 rad/s --> worst-case lower gain margin = 0.690

w = 47.138 rad/s --> worst-case upper gain margin = 1.448

Using our improved technique it is then possible to increase the delay margin up to 8.270e-03
s (the minimal value of the margin over frequency is now obtained at 47.138 rad/s), i.e. a
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significant increase of 24 % with a low additional computational burden.
demo delays bis.m is used to compute a destabilizing value of the delays (still without para-

metric uncertainties). A sinusoidal response is obtained for 9.7 ms, an unbounded one for 9.8
ms. More precisely this worst-case corresponds to 9.8 ms for the delay at the plant input, 0 s for
the delay at the first plant output, and 9.8 ms for the delay at the second plant output. Note
the reasonable gap between the lower and upper bounds of the delay margin (14.7 % between
8.27 ms and 9.7 ms). The gap corresponding to the non-improved delay margin is much higher
(35 % between 6.326 ms and 9.7 ms). This suggest that with our improved technique, the use
of the small gain theorem is not especially conservative.

We now compute the worst-case gain, phase and delay margins, when parametric uncertain-
ties vary between ± 15 % (remember the robust stability margin is about 40 %). The following
result is obtained:

w = 14.829 rad/s --> worst-case phase margin = 16.236 degrees

w = 78.428 rad/s --> worst-case delay margin = 5.566e-03 s

w = 17.028 rad/s --> worst-case lower gain margin = 0.737

w = 14.829 rad/s --> worst-case upper gain margin = 1.394

It is then possible to increase the worst-case delay margin up to 7.762e-03 s (the minimal value
of the margin over frequency is now obtained at 49.370 rad/s), i.e. a significant increase of 28
% with a low additional computational burden.
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