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Discrete gradient calculation method

Discrete adjoint method. Parameters (1/2)

Framework: compressible flow simulation using finite volume method.
Discrete approach for sensitivity analysis

Notations

Volume mesh X , flowfield W (size nW )
Wall surface mesh S
Residual R, C 1 regular w.r.t. X and W – steady state: R(W ,X ) = 0
Vector of design parameters α (size nα), X (α) S(α) C 1 regular

Assumption of implicit function theorem

∀ (Wi ,Xi ) / R(Wi ,Xi ) = 0 (∂R/∂W )(Wi ,Xi ) 6= 0
Unique steady flow corresponding to a mesh
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Discrete gradient calculation method
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Discrete gradient calculation method

Discrete adjoint method. Parameters (2/2)

Functions of interest

Jk(α) = Jk(W (α),X (α)) k ∈ [1, nf ]
Flowfield and volume mesh linked by flow equations R(W (α),X (α)) = 0

Sensitivities dJk/dαi k ∈ [1, nf ] i ∈ [1, nα] to be computed

Discrete gradient computation methods

Finite differences – 2nα flow computations (non linear problems, size nW )
Direct differentiation method – nα linear systems (size nW )
Adjoint vector method – nf linear systems (size nW )
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Discrete gradient calculation method

Discrete adjoint method. Mesh (1/2)

Framework: compressible flow simulation using finite volume method.
Discrete approach for sensitivity analysis

Notations

Volume mesh X , flowfield W (size nW )
Wall surface mesh S
Residual R, C 1 regular w.r.t. X and W – steady state: R(W ,X ) = 0

Assumption of implicit function theorem

∀ (Wi ,Xi ) / R(Wi ,Xi ) = 0 (∂R/∂W )(Wi ,Xi ) 6= 0
Unique steady flow corresponding to a mesh
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Discrete gradient calculation method

Discrete adjoint method. Mesh (2/2)

Functions of interest

Jk(X ) = Jk(W ,X ) k ∈ [1, nf ]
Flowfield and volume mesh linked by flow equations R(W ,X ) = 0

Calculate dJk/dX k ∈ [1, nf ] to be computed

Discrete adjoint only gradient computation

Direct counterpart of adjoint-mesh requires calculation of dW /dX which is
nW × nX field ... not sustainable
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Discrete gradient calculation method

Direct differentiation method

Discrete equations for mechanics (set of nW non-linear equations )

R(W (α),X (α)) = 0

Differentiation with respect to αi i ∈ [1, nα]. Derivation of nα linear systems
of size nW

∂R

∂W

dW

dαi
= −(

∂R

∂X

dX

dαi
)

Calculation of derivatives

dJk
dαi

=
∂Jk
∂X

dX

dαi
+
∂Jk
∂W

dW

dαi
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Discrete gradient calculation method

Discrete adjoint parameter method (1/2)

Several ways of deriving the equations of discrete adjoint method. The
following also helps understanding continuous adjoint

Following equalities hold ∀λ ∈ RnW

λT
∂R

∂W

dW

dαi
+ λT (

∂R

∂X

dX

dαi
) = 0

dJk(α)

dαi
=
∂Jk
∂X

dX

dαi
+
∂Jk
∂W

dW

dαi
+ λT

∂R

∂W

dW

dαi
+ λT (

∂R

∂X

dX

dαi
)

dJk(α)

dαi
= (

∂Jk
∂W

+ λT
∂R

∂W
)
dW

dαi
+
∂Jk
∂X

dX

dαi
+ λT (

∂R

∂X

dX

dαi
)
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Discrete gradient calculation method

Discrete adjoint parameter method (2/2)

Vector λ defined in order to cancel the factor of the flow sensitivity dW
dαi

...

the adjoint equation

Then associated to Jk and denoted λk

∂Jk
∂W

+ λTk
∂R

∂W
= 0

Calculation of derivatives

∀i ∈ [1, nα]
dJk(α)

dαi
=
∂Jk
∂X

dX

dαi
+ λTk (

∂R

∂X

dX

dαi
)

∇αJk(α) =
∂Jk
∂X

dX

dα
+ λTk (

∂R

∂X

dX

dα
)

Method with nf and not nα linear systems (size nW ) to solve
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Discrete gradient calculation method

Iterative solution of direct and adjoint equation (1/5)

CFD teams tend to mimic the solution of steady state flow altough flow
equations are non-linear whereas direct/adjoint equations are linear

Storing the Jacobian of the scheme and sending to direct solver has been
done but is rare and is not tractable for large cases

Iterative resolution is much more common.

Newton/relaxation algorithm(
∂R

∂W

)(APP) T (
λ

(l+1)
k − λ(l)

k

)
= −

(
(
∂R

∂W
)Tλ

(l)
k + (

∂Jk
∂W

)T
)

p-iteration restarted GMRES (General Minimum RESidual)(
∂R

∂W

)T

λ
(l+1)
k = −(

∂Jk
∂W

)T initialized by λ
(l)
k
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Discrete gradient calculation method

Iterative solution of direct and adjoint equation (2/5)

Common Newton/relaxation algorithm for adjoint(
∂R

∂W

)(APP) T (
λ

(l+1)
k − λ(l)

k

)
= −

(
(
∂R

∂W
)Tλ

(l)
k + (

∂Jk

∂W
)T
)

Common Newton/relaxation algorithm for direct(
∂R

∂W

)(APP) (
(
dW

dαi
)(l+1) − (

dW

dαi
)(l)

)
= −

(
(
∂R

∂W
)
dW

dαi

(l)

+
∂R

∂X

dX

dαi

)

Defining an approximate Jacobian ( ∂R∂W )(APP) is an old subject in compressible
CFD (definition of implicit stages for backward-Euler schemes...)

upwind approximate linearization of convective flux
neglecting cross derivatives in linearization of viscous fluxes
...

Possibly adapting implicit stages and mutigrid algorithm (flow solver to
adjoint solver)
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Discrete gradient calculation method

Iterative solution of direct and adjoint equation (3/5)

GMRES algorithm for approximate solution of exact linear problem(
∂R

∂W

)T

λ
(l+1)
k = −(

∂Jk
∂W

)T

GMRES seeks the vector of minimal L2 residual on a Krylov space

With λ
(l)
k as initial guess,

r0 = −(
∂Jk
∂W

)T − (
∂R

∂W
)Tλ

(l)
k v0 = r0/||r0||

dimension p Krylov subspace K. Let us denote A = ( ∂R∂W )T

K = (v0,Av0,A
2v0, ...,A

p−1v0)
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Discrete gradient calculation method

Iterative solution of direct and adjoint equation (4/5)

GMRES algorithm for approximate solution of exact linear problem(
∂R

∂W

)T

λ
(l+1)
k = −(

∂Jk
∂W

)T

dimension p Krylov subspace K
Exact-Jacobian times vector is available in an adjoint code based on
Newton-relaxation

Compute Vp, orthogonal basis of K, solve the minimization for yp coordinates
on Vp, update with the approximate solution of linear system

λ
(l+1)
k = λ

(l)
k + Vpyp
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Discrete gradient calculation method

Iterative solution of direct and adjoint equation (5/5)

Right-preconditionned GMRES is GMRES for(
∂R

∂W

)T

M−1γ
(l+1)
k = −(

∂Jk
∂W

)T

∀l M−1γ
(l)
k = λ

(l)
k

v0 derived from λ
(l)
k (γ

(l)
k )

dimension p modified Krylov subspace and modified update ( A = ( ∂R∂W )T )

K = (v0, (AM
−1)v0, (AM

−1)2v0, ..., (AM
−1)p−1v0)

λ
(l+1)
k = λ

(l)
k + M−1Vpyp

Typical preconditionner (for elsA/Opt) are approximate-Jacobian
LU-relaxation or GMRES preconditionned with approximate-Jacobian
LU-relaxation
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Discrete gradient calculation method

Discrete adjoint mesh method (1/3)

Vector λk defined by
∂Jk
∂W

+ λTk
∂R

∂W
= 0

Calculation of derivatives

∀i ∈ [1, nf ]
dJk(α)

dαi
=
∂Jk
∂X

dX

dαi
+ λTk (

∂R

∂X

dX

dαi
)

∀i ∈ [1, nf ]
dJk(α)

dαi
= (

∂Jk
∂X

+ λTk
∂R

∂X
)
dX

dαi

Obvious mathematical factorization. Huge practical importance.
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Discrete gradient calculation method

Discrete adjoint mesh method (2/3)

Solve for adjoint vectors. CFD gradient computation code computes “only”

dJk
dX

=
∂Jk
∂X

+ λTk
∂R

∂X

The functional outputs sensitivities dJk(α)/dαi are calculated later by a
mesh/geometrical tool

Pros : CFD has no knowledge of parametrization. Huge memory savings
[Nielsen, Park 2005] Try several parametrization. Check dJk

dS with engineers

Cons: Matrix ∂R
∂X has to be explicitely computed (instead of ∂R

∂X
dX
dαi

computable by finite differences) Hard work...

Check adjoint-mesh mode dJk
dX by individual nodes displacement, flow

convergence, finite difference for function...
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Discrete gradient calculation method

Discrete adjoint mesh method (3/3)

Solve for adjoint vectors computes “only” and compute

dJk
dX

=
∂Jk
∂X

+ λTk
∂R

∂X

Cons: Matrix ∂R
∂X has to be explicitely computed (instead of ∂R

∂X
dX
dαi

computable by finite differences) Hard work...

How to calculate dJ̃k
dS ?

Explicit link between X and S

dJ̃k
dS

=
dJk

dX

dX

dS

dJk

dαi
=

[
dJk

dX

dX

dS

]
dS

dαi

Implicit link between X and S [Nielsen, Park 2005] adjoint equation for mesh
deformation
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Discrete gradient methods, intuition and checks
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Discrete gradient methods, intuition and checks

Intuition about / interpretation of adjoint vector ? (1/2)

Vector λ defined by
∂J

∂W
+ λT

∂R

∂W
= 0

Assume an arbitrary change δR (very small fixed numbers) in R. δW change
in W so that W + δW satisfies new discrete flow equations

(R + δR)(W + δW ,X ) = 0 [ R(W ,X ) + ] δR +
∂R

∂W
δW ' 0

Change in J due to change in flow δW

J(W + δW ,X ) ' J(W ,X ) + (
∂J

∂W
)δW δJ = − ∂J

∂W
(
∂R

∂W
)−1δR

Identification of λT

δJ = λT δR
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Discrete gradient methods, intuition and checks

Intuition about / interpretation of adjoint vector ? (2/2)

Vector λ defined by
∂J

∂W
+ λT

∂R

∂W
= 0

Assume an arbitrary change δR (very small fixed numbers) in R. δW change
in W so that W + δW satisfies new discrete flow equations. Change δJ in J
due to change in flow δW

δJ = λT δR

One tedious way to check one component of λ (in one cell) is to locally
perturbate the corresponding residual R (one cell, one component). Calculate
perturbed flow, perturbed function, function sensitivity, divide by residual
perturbation...

Interpretation of adjoint vector = “strong” in zones of strong influence on
the function of interest. [[ Restriction: remind that λ is not intrinsic. Only λ
times (derivtives of) R are ]]
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Discrete gradient methods, intuition and checks

Some intuitions about adjoint vector ? (1/5)

You can get understanding about adjoint from continuous adjoint where you
see backwards propagation wrt to flow equations and a source term on the
support of the function of interest. No time to give here an extensive
presentation

In 1D scalar toy problems

Time derivative
∂u

∂t
gets −∂λ

∂t
Backward time integration

Convection term
∂u

∂x
gets −∂λ

∂x
“Backward propagation” in adjoint state

In a simple 1D linear convection problem, the state variable is to be given at
initial time and inlet bound whereas the adjoint variable is to be given at final
time and outlet bound

Diffusion term
∂2u

∂x2
gets

∂2λ

∂x2
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Discrete gradient methods, intuition and checks

Some intuitions about adjoint vector ? (2/5)

Supersonic inviscid flow M∞ = 1.5 AoA = 1o

Figure: 513 × 513 mesh
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Discrete gradient methods, intuition and checks

Some intuitions about adjoint vector ? (3/5)

Supersonic inviscid flow M∞ = 1.5 AoA = 1o

Figure: iso-lines of Mach number
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Discrete gradient methods, intuition and checks

Some intuitions about adjoint vector ? (4/5)

Supersonic inviscid flow M∞ = 1.5 AoA = 1o

Figure: First component of adjoint vector for CDp
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Discrete gradient methods, intuition and checks

Some intuitions about adjoint vector ? (5/5)

Supersonic inviscid flow M∞ = 1.5 AoA = 1o

Figure: First component of adjoint vector for CDp (closer)
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Discrete gradient methods, intuition and checks

Checking direct differentiation method

Gradient vectors

∇αJk(α) =
∂Jk
∂X

dX

dα
+
∂Jk
∂W

dW

dα

First check the flow sensitivities (solution of direct equation) using finite
differences

R(W (α + δαi ),X (α + δαi )) = 0 R(W (α− δαi ),X (α− δαi )) = 0

dW

dαi
? ' W (α + δαi )−W (α− δαi )

2δαi

Then check the outputs sensitivities

dJk
dαi

? ' Jk(W (α + δαi ),X (α + δαi ))− Jk(W (α− δαi ),X (α + δαi ))

2δαi
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Discrete gradient methods, intuition and checks

Checking discrete adjoint-parameter method (1/2)

Checking adjoint method... much more difficult than checking direct
differentiation method.

If
dJk
dαi

<>
Jk (W (α+ δαi ),X (α+ δαi ))− Jk (W (α− δαi ),X (α+ δαi ))

2δαi

no easy checking procedure

In an iterative resolution method is used, of course the gradient accuracy

depends on the ( ∂R∂W )Tλ
(l)
k operation plus gathering of gradient terms
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Discrete gradient methods, intuition and checks

Verification of discrete adjoint-parameter method (2/2)

Interpretation of adjoint as sensitivity of function to residual may be used to
check λ.

δJ = λT δR

Rarely done (?)

With adjoint & direct iterative solvers in the same framework, with
well-checked direct solver, use duality checks. (U,V ) two column vectors of
RnW

UT (
∂R

∂W
)V =

(
UT (

∂R

∂W
)

)
adj−code

.V = UT .

(
(
∂R

∂W
)V

)
lin−code

Valid for individual flux routine. Valid for part of the interfaces (border, joins,
interior)... useful with elsA. Uncomment specific parts of elsA/Opt to run
duality tests.
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Discrete gradient methods, intuition and checks

Verification of discrete adjoint-mesh method

It is possible to compute a finite difference of reference

R(W (X + δXl),X + δXl) = 0 R(W (X − δXl),X − δXl) = 0

dJk
dXl
' Jk(W (X + δXl),X + δXl)− Jk(W (X − δXl),X − δXl)

2δXl

If adjoint vector is well checked but ajoint mesh sensitivity is wrong...

dJk
dX

=
∂Jk
∂X

+ λTk
∂R

∂X

bug is an explicit operation and should be found after some checks
(finite-difference for ∂R

∂X , ∂Jk
∂X ...)

If volume mesh sensitivity is correct but surface mesh sensitivity is not, check
dX

dS
and corresponding product
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Discrete adjoint for goal oriented mesh-refinement
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Discrete adjoint for goal oriented mesh-refinement

References and principle

References

Venditti and Darmofal formulas (stemms from Giles et al.)

Grid adaptation for functionnal outputs : application to two-dimensional
inviscid flows. JCP 176,40-69 (2002)

Anisotropic grid adaptation for functionnal outputs : application to
two-dimensional viscous flows. JCP 187,22-46 (2003)
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Discrete adjoint for goal oriented mesh-refinement

References and principle

Principle

direct problem: solve Au = f before computing gTu approximate solve
Auh ' f before computing gTuh

adjoint problem: solve AT v = g before computing f T v (= gTu) approximate
solve AT vh ' g before computing f T vh

what about error gT (u − uh) ?

gT (u − uh) = vTA(u − uh)

gT (u − uh) = vT
h A(u − uh) + (v − vh)TA(u − uh)

gT (u − uh) = vT
h (f − Auh) + (v − vh)TA(u − uh)
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Discrete adjoint for goal oriented mesh-refinement

Goal oriented mesh adaption
Objective & Notations

Get a good approximation Jh(Wh,Xh) from current level computations ???

Current level H mesh XH , flowfield WH , finite-volume equations for fluid
dynamics R(WH ,XH) = 0

Fine level h mesh Xh, flow field Wh, finite-volume equations for fluid
dynamics R(Wh,Xh) = 0

Aerodynamic coefficient J fine level J(Wh,Xh) , current level J(WH ,XH)

Abridged notations for this section

R(W ,XH) = RH(W ) R(W ,Xh) = Rh(W )

J(W ,XH) = JH(W ) J(W ,Xh) = Jh(W )
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Discrete adjoint for goal oriented mesh-refinement

Goal oriented mesh adaption
Venditti & Darmofal

Current level analysis RH(WH) = 0

Interpolated flow: W H
h

No fine level analysis allowed (but for checks)

Possibly current level adjoint for J λTH (∂RH

∂W ) = −( ∂J∂W )H

Interpolated adjoint vector (λHh )

Possibly adjoint equation at extrapolated flow

(λh
∣∣
W H

h

)T ( ∂Rh

∂Wh

∣∣∣
W H

h

) = − ∂Jh
∂Wh

∣∣∣
W H

h

Aerodynamic coefficient J

current level JH(WH)

fine level Jh(Wh) (unknown but in case of a check)

fine level for extrapolated flow Jh(W H
h )
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Discrete adjoint for goal oriented mesh-refinement

Goal oriented mesh adaption
Venditti & Darmofal

Exact formula

Jh(Wh) = Jh(W H
h ) + (λh

∣∣∣
W H

h

)TRh(W H
h ) +O(||Wh −W H

h ||2)

Useful formula for actual CFD

Jh(Wh) = Jh(WH
h ) + (λHh )TRh(WH

h )︸ ︷︷ ︸
computable correction

+ ((λh

∣∣∣
WH

h

)T − (λHh )T )Rh(WH
h )︸ ︷︷ ︸

error in computable correction

+O(||Wh −WH
h ||

2)

correction = what you would like to compute

error in correction = what is hopefully neglectible

NB Just the same formula from any other approximate field on fine grid
(badly converged, assimilated...)
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Discrete adjoint for goal oriented mesh-refinement

Demonstration

Taylor expansion of aerodynamic function J

Jh(Wh) = Jh(W H
h ) + (

∂J

∂W

∣∣∣
W H

h

)(Wh −W H
h ) +O(||Wh −W H

h ||2)

Adjoint-like equation

(λh
∣∣
W H

h

)T (
∂Rh

∂Wh

∣∣∣
W H

h

) = − ∂Jh
∂Wh

∣∣∣
W H

h

Expression of fine grid function value

Jh(Wh) = Jh(W H
h )− (λh

∣∣
W H

h

)T (
∂Rh

∂Wh

∣∣∣
W H

h

)(Wh −W H
h ) +O(||Wh −W H

h ||2)

Jh(Wh) = Jh(W H
h ) + (λh

∣∣∣
W H

h

)TRh(W H
h ) +O(||Wh −W H

h ||2)
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Discrete adjoint for goal oriented mesh-refinement

Error in computational correction
Three expressions

ECC1 =

((
λh

∣∣∣
W H

h

)T

− (λHh )T

)
Rh(W H

h )

Residual of adjoint equation at interpolated flow

Rλh (λ) =

[
∂Rh

∂Wh

∣∣∣∣∣
W H

h

]T
λ−

(
∂Jh
∂Wh

∣∣∣∣∣
W H

h

)T

=

[
∂Rh

∂Wh

∣∣∣∣∣
W H

h

]T
(λ− λh

∣∣
W H

h

)

ECC2 = ECC1 = −
(
Rλh (λHh )

)T [ ∂Rh

∂Wh

∣∣∣
W H

h

]−1

Rh(W H
h )

Use Rh(W H
h ) = Rh(W H

h )− Rh(Wh)

ECC3 =
(
Rλh (λHh )

)T
(Wh −W H

h ) ' ECC1−2
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Discrete adjoint for goal oriented mesh-refinement

Goal oriented mesh refinement stategy
Venditti & Darmofal

Method proposed by Venditti and Darmofal

New “function evaluation” Jh(W h
H) + λH T

h Rh(W H
h )

Reduce error in computable solution

ECC2 = −
(
Rλh (λHh )

)T [ ∂Rh

∂Wh

∣∣∣
W H

h

]−1

Rh(W H
h )

Reducing simultaneously Rλh (λHh ) and Rh(W H
h )

Successfully demonstrated in the articles quoted before
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Discrete adjoint for goal oriented mesh-refinement

Goal oriented mesh refinement stategy
Alternative approach

Alternative strategy if JH(WH) is close to Jh(W H
h )

General property
Jh(Wh) = Jh(W H

h ) + (λh
∣∣
W H

h

)TRh(W H
h ) +O(||Wh −W H

h ||2)

Specifically in this case
Jh(Wh) ' JH(WH) + (λh

∣∣
W H

h

)TRh(W H
h ) +O(||Wh −W H

h ||2)

The correction term is an indicator for goal-oriented mesh refinement (once
again, not the standard one)
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Discrete adjoint for goal oriented mesh-refinement

Research activities on adjoint method

J. Peter and R.P. Dwight. Computers and Fluids 2010

A. Dumont et al. AHS Journal 2011

J. Peter et al Computers and Fluids 2012

M. Nguyen-Dinh et al. European Journal of Mechanics B/Fluids 2014

G. Todarello et al. Journal of Computational Physics 2016

A. Resmini et al. International Journal for Numerical Methods in Fluids 2016

Last four articles propose a method for goal-oriented mesh adaptation

This method provides an error indicator based on for order changes in J when
nodes move individually in the polygon defined by their neighbors
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dJ/dX for mesh adaptation ? (1/2)

Is dJ/dX (vector field) or ||dJ/dX || valuable information for J-oriented mesh
adaptation ?

Research activity started 2012 at ONERA

||dJ/dX || times local characteristic size is a useful indicator for J-oriented
mesh adaptation
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Discrete adjoint for goal oriented mesh-refinement

dJ/dX for mesh adaptation ? (2/2)

Visualization of dJ/dX (vector field) or ||dJ/dX || (scalar field)

Analysis based on J(X + dX )− J(X ) ' (dJ/dX ).dX

Mesh (a) not well-suited for J calculation
Mesh (b) possibly well-suited for J calculation
Mesh (c) for J calculation. Questionable
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Discrete adjoint for goal oriented mesh-refinement

dJ/dX forJ-oriented unstructured mesh adaptation

ONERA elsA code [Cambier, Heib, Plot 2013]

Unstructured mesh. Roe-MUSCL scheme (van Albada limiting function)

Adjoint capability. θ-based refinement

Remeshing MMG2D/MMG3D [Dobrzynksi 2012]

Giovanni Todarello and Floris Vonck (Master of Science. TU Delft)

Series of caclulation and mesh adaptation for NACA0012. Transonic
M∞ = 0.85 AoA = 2o , M∞ = 0.95 AoA = 0o – and supersonic –
M∞ = 1.5 AoA = 1o – flow conditions

Final mesh compared to the one published in [Dwight 2008]

Also consistent with mesh obtained by [Venditti Darmofal 2002] reference method
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Discrete adjoint for goal oriented mesh-refinement

dJ/dX forJ-oriented unstructured mesh adaptation

NACA0012 AoA=1o , M=1.5 CLp calculation.

Roe-MUSCL scheme (van Albada limiting function)

Supersonic flow conditions. iso-Mach number lines (left), iso-λ1
CLp lines

(right)
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Discrete adjoint for goal oriented mesh-refinement

dJ/dX forJ-oriented unstructured mesh adaptation

NACA0012 AoA=1o , M=1.5 CLp calculation. Analysis of refined mesh zones

Roe-MUSCL scheme (van Albada limiting function)

Adapted meshes. Venditti and Darmofal’s method, proposed θ-indicator
method, Dwight’s method (left to right)
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Discrete adjoint for goal oriented mesh-refinement

dJ/dX forJ-oriented unstructured mesh adaptation

NACA0012 AoA=1o , M=1.5 CLp calculation.

Roe-MUSCL scheme (van Albada limiting function)

Comparison of convergence towards CLp limiting value ( CLp-lim = 0.05478 )
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dJ/dX forJ-oriented unstructured mesh adaptation

NACA0012 AoA=1o , M=1.5 CLp calculation. (Roe-MUSCL scheme van
Albada limiting function)

Analysis of adjoint field from simple waves theory for (continuous adjoint
equation of) supersonic flow

Three simple waves starting from function support (source term in
continuous adjoint equation) with theoretical angles derived from constant
flow assumption

Downwind bound of dense zones OK. Upwind bound ???
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Discrete adjoint for goal oriented mesh-refinement

dJ/dX forJ-oriented unstructured mesh adaptation

NACA0012 AoA=1o , M=1.5 CLp calculation. (Roe-MUSCL scheme van
Albada limiting function)

Low densitiy mesh zone upwind the section of shock-wave ?

Zone of constant supersonic flow. No refinement

In terms of θ-indicator, low ∂R/∂X
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Discrete adjoint for goal oriented mesh-refinement

dJ/dX forJ-oriented unstructured mesh adaptation

NACA0012 AoA=2o , M=0.85 CLp calculation. Analysis of adjoint field

Roe-MUSCL scheme (van Albada limiting function)

Transonic flow conditions. iso-Mach number lines (left), iso-λ1
CLp lines (right)
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Discrete adjoint for goal oriented mesh-refinement

dJ/dX forJ-oriented unstructured mesh adaptation

NACA0012 AoA=2o , M=.85 CLp calculation.

Roe-MUSCL scheme (van Albada limiting function)

Transonic flow conditions. Venditti and Darmofal’s method, proposed
θ-indicator method, Dwight’s method (left to right)

J. Peter (ONERA DMFN) Introduction to discrete adjoint November 2018 52 / 56
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dJ/dX forJ-oriented unstructured mesh adaptation

NACA0012 AoA=2o , M=.85 CLp calculation.

Roe-MUSCL scheme (van Albada limiting function)

Convergence towards CLp limiting value ( CLp-lim=0.6258 )
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dJ/dX forJ-oriented unstructured mesh adaptation

NACA0012 AoA=2o , M=0.85 CLp calculation. Analysis of adjoint field

Dense mesh zones

Strong gradient of flow = shock waves
Strong gradient of adjoint

Reason for hat-shaped zone of strong value / strong gradient of λCLp ?

λCLp (λ1
CLp) is the sensitivity of CLp to a change in explicit residual R (R1)

(reconverging flow-field)
Most often one interpretation of adjoint
Here actually coded in elsA
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dJ/dX forJ-oriented unstructured mesh adaptation

NACA0012 AoA=2o , M=0.85 CLp calculation. Analysis of adjoint field

Selection of points for explicit residual perturbation
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dJ/dX forJ-oriented unstructured mesh adaptation

NACA0012 AoA=2o , M=.85 CLp calculation. Analysis of adjoint field

Change of flow at point 5 and 7 due to explicit residual perturbation
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