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Introduction. Need for Uncertainty Quantification

Need for (UQ)
Example I : drag evaluation

Deterministic drag of airplane in cruise

Total drag Cd at cruise nominal Mach number (M=0.82) Cd(0.82)
a/c shape satisfying constraints on lift, pitching moment, rolling moment...

Actually cruise flight Mach number varies

Waiting for landing slot
Speeding up to cope with pilot maximum flight time

→ Variable Mach number described by D(M)

Robust calculation of airplane cruise drag

Compute
∫
Cd(M)D(M)dM, instead of Cd(0.82)
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Introduction. Need for Uncertainty Quantification

Need for (UQ)
Example II : fan design

Fan operational conditions subject to changes in wind conditions

Manufacturing subject to tolerances

Robust design accounts for
variability of external parameters
tolerances for internal parameters

Figure: Robust design (from cenaero.be)
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Introduction. Need for Uncertainty Quantification

Need for (UQ)
Example III : validation process

Unkown data in experiment

Upwind Mach number (equivalent to far-field Mach number in free-stream)
not fully controled in wind tunnels dM = 0.001

Unknown physical constant needed in numerical model

Wall roughness constant (milled, brazed, eroded surface...)

Discrepancy in a computational/experimental validation process !

Compute the mean and standard deviation of the output(s) of interest due to
the uncertain inputs
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Introduction. Need for Uncertainty Quantification

(UQ) inputs and outputs
Definition of uncertain inputs

UNCERTAINTY QUANTIFICATION : describes the stochastic behaviour of
OUTPUTS of interest due to uncertain INPUTS

Overview of CFD actual uncertain INPUTS

Geometrical (manufacturing tolerance)
Operational: flow at boundaries (far field, injection...)
Reference: Proceedings of RTO-MP-AVT-147 – Evans T.P., Tattersall P. and

Doherty J.J.: Identification and quantification of uncertainty sources in aircraft

related CFD-computations - An industrial perspective. 2007.

Stochastic behaviour of OUTPUTS

(Most often) mean and variance
range = min and max possible values of outputs due to stochastic inputs
probability that an output exceeds a threshold
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Introduction. Need for Uncertainty Quantification

Three issues with (UQ)
1 terminology

Lack of agreement on the definition of “error”, “uncertainty”...

AIAA Guide G-077-1998 Uncertainty is a potential deficiency in any phase are
activity of the modeling process that is due to the lack of knowledge. Error is
a recognizable deficiency in any phase or activity of the modelling process
that is not due to the lack of knowledge

ASME Guide V& V 20 (in its simpler version adopted for the Lisbon
Workshops on CFD uncertainty) The validation comparison error is defined
as the difference between the simulation value and the experimental data
value. It is split in numerical, model, input and data errors (assumed to be
independant). Numerical (resp. input, model, data) uncertainty is a bound of
the absolute value of numerical (resp. input, model, data) error
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Introduction. Need for Uncertainty Quantification

Three issues with (UQ)
2 (UQ) validation and verification

(UQ) CFD-based exercise leads to standard deviation of some outputs

Compare this standard deviation to the discretization error

Richardson method, GCI...
Pierce et al. Venditti et al. adjoint based formulas for functional outputs

Compare this standard deviation to the modeling error

Run several (RANS) models
Run better models than (RANS)

Numerical (UQ) investigation only makes sense if standard deviation due to
uncertain inputs not much smaller than modelling or discretization error
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Introduction. Need for Uncertainty Quantification

Three issues with (UQ)
3 lack of shared well-defined problems ?

Quite difficult to get information from industry in order to define relevant
(UQ) exercises

Quite difficult to understand when industry uses (UQ) and when industry
uses multi-point analysis / optimization to deal with parameter variations

Do not only common problems with in-house CFD and chosen (UQ) method.
Also share

mathematical test cases with specific complexity
mathematical test cases derived from industrial cases (using surrogates)

or it is difficult/impossible to split the influence of discrepancies in CFD
methods and the one in (UQ) methods
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Introduction. Need for Uncertainty Quantification

Slides and lecture notes

ONERA involved in EU projects, RTO project on (UQ)

Provide accessible information for non-experts

Examples, illustrations, explicit 2D formulas...

Slides and lecture notes
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Probability basics, Monte-Carlo, surrogate-based Monte-Carlo

Basics of probability (1)

A classical introduction to probability basics involves

event (one dice value, one Mach number value)

a sample space Ω (all six dice values, interval of Mach number values)

set of events space A (σ-algebra) set of subsets of Ω, stable by union,
intersection, including null set ∅ and Ω

a probability function P on A such that P(Ω) = 1,P(∅) = 0, plus natural
properties for complementary parts and union of disjoint parts

OUT random variables X depending on the event ξ (like CDp or CLp of an airfoil
depending on the far-field Mach number through Navier-Stokes equations)
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Probability basics, Monte-Carlo, surrogate-based Monte-Carlo

Basics of probability (2)

Discrete example : regular 6-face Dice thrown once

event ξ = 1,2,3,4,5 or 6

sample space Ω ={1,2,3,4,5,6}
set of events (σ-algebra) F = null set plus all discrete sets of these numbers
{∅, {1}, {2}, {3}, {4}, {5}, {6}, {1, 2}, {1, 3}, {1, 4}, {1, 5}, {1, 6}, {2, 3} ...
{1, 2, 3, 4, 5, 6}}
probability function P : P(∅) = 0, P({1}) = 1./6., P({2}) = 1./6.,...
P({1, 2}) = 1./3., P({1, 3}) = 1./3 , P({1, 4}) = 1./3....
P({1, 2, 3, 4, 5, 6}) = 1.

random variables X , for example, dice value to the power three...
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Probability basics, Monte-Carlo, surrogate-based Monte-Carlo

Basics of probability (3)

Continuous example : Far-field Mach number in [0.81,0.85]

event ξ = a Mach number value in [0.81,0.85]

sample space Ω = [0.81,0.85]

set of events (σ-algebra) F = all subparts of [0.81,0.85]

probability function P. Probability of (union of) intervals I ∈ F
to be defined from a probability density function D, integrating D over I .

Example: Dφ(φ) =
35

32
(1.− φ2)3 φ ∈ [−1, 1] φ = (ξ − 0.83)/0.02

Dξ(ξ) =
1

0.02
Dφ(φ) =

1

0.02

35

32
(1.− (

ξ − 0.83

0.02
)2)3

possible random variables X = lift, drag, pitching moment of a wing... with
variable Mach number M∞(“event“ ξ) in the farfield
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Probability basics, Monte-Carlo, surrogate-based Monte-Carlo

Basics of probability (4)
Example of probability density functions

Set of probability density functions of β−distributions on [0,+1] with the α− 1
β − 1 convention for exponants

Dα,β(x) =
xα−1(1− x)β−1∫ 1

0
tα−1(1− t)β−1dt

x ∈ [0, 1]
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Probability basics, Monte-Carlo, surrogate-based Monte-Carlo

Need for (UQ)
Intrusive vs non-intrusive methods

Non-intrusive methods. No change in the analysis code

Post-processing of deterministic simulations

Intrusive methods. Changes in the analysis code

Stochastic expansion of state/primitive variables
Galerkin projections. Larger set of equations

Probably not feasible for large industrial codes
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Probability basics, Monte-Carlo, surrogate-based Monte-Carlo

Monte-Carlo – 1

Monte-Carlo mimics the law of the event in a series of calculations

Reference method for all uncertainty propagation methods

Generation of a sampling (ξ1, ξ2..., ξp..., ξN ...) of the p.d.f D(ξ)

Computation of corresponding flow fields W (ξp), p ∈ [1,N]

Computation of functional outputs J (ξp) = J(W (ξp),X (ξp))
Discrete estimation of mean and variance:

E(J ) =

∫
J (ξ)D(ξ)dξ ' J̄N =

1

N

p=N∑
p=1

J (ξp)

σ2
J = E((J − E(J ))2) =

∫
(J (ξ)− E(J ))2D(ξ)dξ ' σ2

JN
=

1

N − 1

p=N∑
p=1

(J (ξp)− J̄N)2

Need to quantify accuracy of estimation
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Probability basics, Monte-Carlo, surrogate-based Monte-Carlo

Monte-Carlo – 2
Accuracy of mean

Scalar case, variance σJ is known, N sampling size,
√
N J̄N−E(J )

σJ
 N (0, 1)

(Normal distribution)

Probability density function (p.d.f.) of N (0, 1)- DN (x) = 1√
2Π

e−
x2

2

Symmetric cumulative distribution function - ΦN (x) = 1√
2Π

∫ x

−x e
− t2

2 dt

With ε confidence : E (J ) ∈ [J̄N − uε
σJ√
N
, J̄N + uε

σJ√
N

] ε = 1√
2Π

∫ uε

−uε
e−

t2

2 dt

ε 0.5 0.9 0.95 0.99
uε 0.674 1.645 1.960 2.576

With 99% confidence :

E (J ) ∈ [J̄N − 2.576
σJ√
N
, J̄N + 2.576

σJ√
N

] (0.99 =
1√
2Π

∫ 2.576

−2.576

e−
t2

2 dt)
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Probability basics, Monte-Carlo, surrogate-based Monte-Carlo

Monte-Carlo – 3
Accuracy of mean

Scalar case, variance σJ is unknown, N sampling size,√
N J̄N−E(J )

σJN
 S(N − 1) – Student distribution

With ε confidence :

E (J ) ∈ [J̄N − uε(N−1)

σJN√
N
, J̄N + uε(N−1)

σJN√
N

]

uεN as function of ε and N found in tables. uεN decreases with N increasing

Student distribution converges to Normal distribution for large N

Tables for uεN−1

ε N 1 2 20 30 ∞
0.95 12.71 4.303 2.086 2.042 1.960
0.99 63.66 9.925 2.845 2.750 2.576

Figure: Value of uε(N−1) for Student distribution S(N − 1) N ≥ 2
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Probability basics, Monte-Carlo, surrogate-based Monte-Carlo

Monte-Carlo – 4
Accuracy of mean

Scalar case: variance σJ is unknown, N sampling size√
N J̄N−E(J )

σJN
 S(N − 1) – Student distribution

Student distribution S(N) probability density function:

DS(N)(x) =
Γ(N+1

2 )

Γ(N
2 )
√
NΠ

(1 +
x2

N
)−

N+1
2

(
Γ(u) =

∫ +∞

0

tu−1e−tdt

)

With ε confidence (ε ∈]0, 1.[):

E (J ) ∈ [J̄N − uε(N−1)

σJN√
N
, J̄N + uε(N−1)

σJN√
N

] ε =

∫ uεN−1

−uεN−1

DS(N−1)(t)dt
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Probability basics, Monte-Carlo, surrogate-based Monte-Carlo

Monte-Carlo – 5
Accuracy of estimation: variance (1) (skpd)

Scalar case: mean E (J ) is known

Estimation of variance

σ2
JN

=
1

N

i=N∑
i=1

(J (ξp)− E (J ))2

Chi-square χ2
N probability distribution defined on [0,∞[ with p.d.f. :

Dχ2
N

(x) =
1

Γ(N/2)2N/2
xN/2−1e−x/2

Chi-square cumulative d.f. :

Φχ2
N

(x) =

∫ x

0

Dχ2
N

(t)dt

Stochastic variable

N
S2
JN

σ2
J
 χ2

N
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Probability basics, Monte-Carlo, surrogate-based Monte-Carlo

Monte-Carlo – 6
Chi-square probabilistic density functions Dχ2

N
and cumulative density functions Φχ2

N
(skpd)
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Probability basics, Monte-Carlo, surrogate-based Monte-Carlo

Monte-Carlo – 7
Accuracy of variance (2) (skpd)

Scalar case: mean E (J ) is known - N
σ2
JN
σ2
J
 χ2

N

With ε = 1− α confidence :

Φ−1
χ2
N

(
α

2
) ≤ N

σ2
JN

σ2
J
≤ Φ−1

χ2
N

(1.− α

2
)

With ε = 1− α confidence :

σ2
J ∈ [N

σ2
JN

Φ−1
χ2
N

(1− α
2 )
,N

σ2
JN

Φ−1
χ2
N

(α2 )
]

x N 2 20 30
0.005 10.597 39.997 53.672
0.995 0.0100 7.434 13.787

Figure: Value of Φ−1

χ2
N

(x)
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Probability basics, Monte-Carlo, surrogate-based Monte-Carlo

Monte-Carlo – 8
Accuracy of variance (3) (skpd)

Application. With 99% confidence, depending on N number of samples

N = 2⇒ σ2
J ∈ [0.189 S2

J2
, 200 S2

J2
]

N = 20⇒ σ2
J ∈ [0.500 S2

J20
, 2.69 S2

J20
]

N = 30⇒ σ2
J ∈ [0.559 S2

J30
, 2.18 S2

J30
]

N = 100⇒ σ2
J ∈ [0.713 S2

J100
, 1.49 S2

J100
]

Convergence speed of bounds towards 1.

The cumulative distribution of the Chi-Square law ΦN(x) can be expressed as

Φχ2
N

(x) = 1
Γ(N/2)

∫ x/2

0

tN/2e−tdt =
γ(N/2, x/2)

Γ(N/2)
(γ lower incomplete Γ

function)

Check properties of (the inverse of) Φχ2
N

Check convergence speed of N/Φ−1
χ2
N

(1− α
2 ) and N/Φ−1

χ2
N

(α2 )
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Probability basics, Monte-Carlo, surrogate-based Monte-Carlo

Monte-Carlo – 9
Accuracy of variance (4) (skpd)

Scalar case: mean E (J ) is unknown - Stochastic variable

(N − 1)
σ2
JN
σ2
J
 χ2

N−1

With ε = (1− α) confidence :

σ2
J ∈ [(N − 1)

σ2
JN

Φ−1
χ2
N−1

(1− α
2 )
, (N − 1)

σ2
JN

Φ−1
χ2
N−1

(α2 )
]

x N 3 4 20 30
0.005 10.597 12.838 38.582 52.336
0.995 0.0100 0.0717 6.844 13.121

Figure: Value of Φ−1

χ2
N−1

(x)
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Probability basics, Monte-Carlo, surrogate-based Monte-Carlo

Monte-Carlo – 10
Cost issue. Regularity of output.

Typical realistic estimation of accuracy of mean estimated by Monte-Carlo is :

With a N point sampling, with 99% confidence :

E (J ) ∈ [J̄N − u0.99,(N−1)
σJN√
N
, J̄N + u0.99,(N−1)

σJN√
N

]

with u0.99,1 = 63.66, u0.99,2 = 9.925, u0.99,3 = 5.841, u0.99,9 = 3.250,
u0.99,19 = 2.861, u0.99,19 = 2.756,... decreasing with the number of samples,
N, towards limiting value 2.576.

Convergence speed of Monte-Carlo for mean value estimation is 1√
N

Increasing precision of Monte-Carlo estimation by a factor of 10 requires
multiplying the number of evaluations by a factor of 100

Extremely expensive if one evaluation requires numerical solution of
Euler or (RANS) equations
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Probability basics, Monte-Carlo, surrogate-based Monte-Carlo

Monte-Carlo – 11
Cost issue. Regularity of outputs

Convergence speed of Monte-Carlo for mean value estimation is 1√
N

Extremely expensive if one evaluation requires numerical solution of
Euler or (RANS) equations

Besides ouputs of CFD calculations are often very regular functions of the
parameters of interest

Take advantage of the regularity of (random) output variables seen as
function of (stochastic/events) inputs variables

Derive a surrogate of the output variables as function of the input variables
using specific stochastic surrogates → next section

Derive a surrogate of the output variables as function of the input variables
using general surrogates → end of this section section

Calculate mean, variance, kurtosis, range, risk... for the surrogate
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Probability basics, Monte-Carlo, surrogate-based Monte-Carlo

Meta-model based Monte-Carlo

Figure: Monte-Carlo method with meta-models
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Probability basics, Monte-Carlo, surrogate-based Monte-Carlo

Meta-models

Restriction: approximation of a function of interest. What kind of surrogate
can be used ?

1 Classical metamodels: Kriging, Radial Basis Function, Support Vector
Regression. (used regularly at ONERA 1)

2 Other meta-models of specific interest for UQ: generalized polynomial Chaos
(gPC), Stochastic Colllocation (SC)

3 Other model of specific interest for large dimensions: adjoint based linear or
quadratic Taylor expansion

Influence of meta-model accuracy on mean and variance accuracy ?

1Modèles de substitution pour l’optimisation globale de forme en arodynamique et mthode
locale d’optimisation sans paramtrisation. Manuel Bompard. PhD Thesis. December 2011
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Probability basics, Monte-Carlo, surrogate-based Monte-Carlo

Application of metamodel-based Monte-Carlo

Confidence intervals on lift CL with uncertainty on AoA

Nominal configuration: NACA0012, M = 0.73, Re = 6M, AoA = 3◦

ONERA elsA(a) code 2

(RANS+(k-w) Wilcox turbulence model) solver (Roe flux+Van Albada lim.)

Figure: Mesh

2The elsA CFD software: input from research and feedback from industry Mechanics and
Industry 14(3) L. Cambier, S. Heib, S. Plot. 2013
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Probability basics, Monte-Carlo, surrogate-based Monte-Carlo

Distribution of uncertainty

Beta distribution (parameters (3.,3.))over [-1,1]

Db(ξ) =
15

16
(1− ξ)2(1 + ξ)2

p.d.f of angle of attack AoA over [2.9,3.1]

Da(α) = 10Db(10.(α− 3.))

Figure: Beta distribution of AoA
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Probability basics, Monte-Carlo, surrogate-based Monte-Carlo

Monte-Carlo method for CL mean
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Figure: Mean of CL coefficient and confidence interval
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Probability basics, Monte-Carlo, surrogate-based Monte-Carlo

Monte-Carlo method for CL variance

 0
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Figure: Variance of CL coefficient and confidence interval
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Probability basics, Monte-Carlo, surrogate-based Monte-Carlo

Metamodel based Monte-Carlo: learning sample

Use learning sample based on roots of Tchebyshev polynomials

2.90 2.92 2.94 2.96 2.98 3.00 3.02 3.04 3.06 3.08 3.10
−1

0

1

Figure: Tchebychev distribution (11 points)
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Probability basics, Monte-Carlo, surrogate-based Monte-Carlo

Metamodel-based Monte-Carlo: reconstruction of CL

Figure: CL
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Probability basics, Monte-Carlo, surrogate-based Monte-Carlo

Metamodel-based Monte-Carlo for CL mean
calling metamodel instead of CFD code
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Figure: Mean of CL coefficient and confidence interval
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Probability basics, Monte-Carlo, surrogate-based Monte-Carlo

Metamodel-based Monte-Carlo for CL variance
calling metamodel instead of CFD code
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Figure: Variance of CL coefficient and confidence interval
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Non-intrusive polynomial methods for 1D / tensorial nD propagation
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Non-intrusive polynomial methods for 1D / tensorial nD propagation

Two polynomial methods for (UQ). 1D and nD tensorial

Stochastic specific polynomial surrogates

For all non-intrusive methods

Presentation for one uncertain parameter ξ, probability density function D(ξ)

Extention to a vector of two uncertain parameters ξ = (ξ1, ξ2) under the
restriction that

D(ξ) = D1(ξ1)× D2(ξ2)

and no sparsity is sought for = extension of N-point evaluation method in 1D
uses N2 evaluations in dimension 2

Extrapolation to d-D to discuss complexity and cost

Generalized polynomial chaos method

Stochastic collocation method
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Non-intrusive polynomial methods for 1D / tensorial nD propagation

Generalized polynomial chaos Method (gPC) – 1

Polynomial expansion of the quantity of interest, scalar output or vector

F (ξ) ' gF (ξ) =
l=M∑
l=0

ClPl (ξ)

Coefficients of the expansion computable by different methods (quadrature, collocation)

Polynomial basis orthogonal for the dot product defined by the p.d.f. D(ξ)

< Pl ,Pm >=

∫
Pl (ξ)Pm(ξ)D(ξ)dξ = δlm

Straightforward calculation of mean and variance of the polynomial expansion (that
approximates the quantity of interest)

Orthogonal polynomials – Abramowitz and Stegun: Handbook of Mathematical functions.
(1972). Chapter 22

Spectral expansions – J. P. Boyd: Chebyshef and Fourier spectral methods (2001)
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Non-intrusive polynomial methods for 1D / tensorial nD propagation

Generalized polynomial chaos Method (gPC) – 2
Families of orthogonal polynomials

Normal distribution Dn(ξ) = 1√
2Π

e−
ξ2

2 on R → Hermitte polynomials

Gamma distribution Dg (ξ) = exp(−ξ) on R+ → Laguerre polynomials

Uniform distribution Du(ξ) = 0.5 on [−1, 1]→ Legendre polynomials

Chebyshev distribution Dcf (ξ) = 1/Π/
√

1− ξ2 on [−1, 1]→ Chebyshev (first-kind)
polynomials

Chebyshev distribution Dcs(ξ) =
√

1− ξ2 on [−1, 1]→ Chebyshev (second-kind)
polynomials

Beta distribution Dβ(ξ) = (1− ξ)α(1 + ξ)β/
∫ 1
−1(1− u)α(1 + u)βdu

α > −1. , β > −1. on [−1,+1] → Jacobi polynomials (incl. Chebyshev polynomials)

Non-usual probabilistic density functions, Dl (ξ) computed by Gram-Schmidt
orthogonalisation process.
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Non-intrusive polynomial methods for 1D / tensorial nD propagation

Generalized polynomial chaos Method (gPC) – 3
Families of orthogonal polynomials

Example: Stochastic variable in R. Hermite polynomials for normal law Dn(ξ) = 1√
2Π

e−
ξ2

2

First polynomials

PH0(ξ) = 1
PH1(ξ) = ξ
PH2(ξ) = ξ2 − 1
PH3(ξ) = ξ3 − 3ξ
PH4(ξ) = ξ4 − 6ξ2 + 3

Recursive definition

PH0(ξ) = 1 PH1(ξ) = ξ PHn+1(ξ) = ξPHn(ξ)− nPHn−1(ξ)

Normalization PHj (ξ) = 1√
j!
PH j (ξ)

Orthonormality relation for PH

< PHj ,PHk >=

∫ +∞

−∞
PHj (ξ)PHk (ξ)Dn(ξ)dξ = δjk
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Non-intrusive polynomial methods for 1D / tensorial nD propagation

Generalized polynomial chaos Method (gPC) – 4
Families of orthogonal polynomials

Example: Stochastic variable in [-1,1]. First-kind Chebyshef polynomials for probability
density function Dcf (ξ) = 1

Π
1√

1−ξ2

Family of orthonormal polynomials for < f , g >=
∫ 1
−1 f (t)g(t)Dcf (t)dt

T 0(ξ) = 1
T 1(ξ) = ξ
T 2(ξ) = 2ξ2 − 1
T 3(ξ) = 4ξ3 − 3ξ

Recursive definition

T 0(ξ) = 1 T 1(ξ) = ξ T n+1(ξ) = 2ξT n(ξ)− T n−1(ξ)

Normalization T0 = T 0 T1 =
√

2 T 1... Tn =
√

2 T n (n ≥ 1)

Orthonormality of the Tj ,

< Tj ,Tk >=
∫ 1
−1 Tj (ξ)Tk (ξ)Dcf (ξ)dξ = δjk

Specific property T n(cos(θ)) = cos(nθ) (hence ||T n||∞ ≤ 1.)

J. Peter et al. (ONERA DAAA) November 2018 44 / 101



Non-intrusive polynomial methods for 1D / tensorial nD propagation

Generalized polynomial chaos Method (gPC) – 5
Polynomial expansion

Expansion of a functional output depending on stochastic variable ξ

F (ξ) ' gF (ξ) =
l=M∑
l=0

ClPl (ξ)

Expansion of a field on part of the mesh depending on stochastic variable ξ (i is a generic
index for a part of the mesh nodes like wall nodes)

W (i , ξ) ' gW (i , ξ) =
l=M∑
l=0

Cl (i)Pl (ξ)

Accuracy of ideal gW depending on degree and regularity. Theory of spectral expansions

Stochastic post-processing for gW (gF ) instead of W (F )

Straighforward calculation of gW (gF ) mean and variance
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Non-intrusive polynomial methods for 1D / tensorial nD propagation

Generalized polynomial chaos Method (gPC) – 6
Coefficients computation (1/4) - Gaussian quadrature

Expansion of part of flow field depending on stochastic variable ξ and generic mesh index i

W (i , ξ) ' gW (i , ξ) =
l=M∑
l=0

Cl (i)Pl (ξ)

From orthonormality property Cl (i) =< gW (i),Pl > Under regularity assumptions
Cl (i) =<W (i),Pl >

Proof Assume D is defined on an interval of R and bounded. Assume uniform convergence of spectral
expansion over its domain of definition

W (i, ξ) =
l=∞∑
l=0

Cl (i)Pl (ξ)

Multiply by Pn(ξ)D(ξ)

W (i, ξ)Pn(ξ)D(ξ) =
l=∞∑
l=0

Cl (i)Pl (ξ)Pn(ξ)D(ξ)

Integrating over domain of definition of D(ξ) yields Cn(i) =< W (i),Pn >
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Non-intrusive polynomial methods for 1D / tensorial nD propagation

Generalized polynomial chaos Method (gPC) – 7
Coefficients computation (2/4) - Gaussian quadrature

Expansion of part of flow field depending on stochastic variable ξ and generic mesh index i

gW (i , ξ) =
l=M∑
l=0

Cl (i)Pl (ξ) Cl (i) =< gW (i),Pl >

Gaussian quadrature for

Cl (i) =<W ,Pl >=

∫
W (i , ξ)Pl (ξ)D(ξ)dξ

Computation by Gaussian quadrature associated to p.d.f D with g points. Exact
integration of poynomials up to degree (2g − 1)

Example of criteria for definition of number of points g = enough points to recover
orthogonality property at discrete level for all polynomials of the expansions

2M ≤ 2g − 1
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Non-intrusive polynomial methods for 1D / tensorial nD propagation

Generalized polynomial chaos Method (gPC) – 8
Coefficients computation (3/4) – Gaussian quadrature

Expansion of part of flow field depending on stochastic variable ξ and generic mesh index i

gW (i , ξ) =
l=M∑
l=0

Cl (i)Pl (ξ) Cl (i) =< gW (i),Pl >

g -point Gaussian quadrature associated to D∫
h(ξ)D(ξ)dξ '

k=g∑
k=1

ωkh(ξk )

(wk ,ξk ) depend on D(ξ). Exact for polynomials up to degree (2g-1)

Calculation of gPC coefficients

Cl (i) =<W ,Pl >=

∫
W (i , ξ)Pl (ξ)D(ξ)dξ =

k=g∑
k=1

ωkW (i , ξk )Pl (ξk )

Cl (i) exact if W (i , ξ)Pl (ξ) polynomial of ξ of degree lower equal to (2g − 1)
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Non-intrusive polynomial methods for 1D / tensorial nD propagation

Generalized polynomial chaos Method (gPC) – 9
Coefficients computation (4/4) – collocation

Other way : collocation or least-square collocation

NB Less accuracy results than for Gauss quadrature

Identify W (i , ξl ) and gW (i , ξl ) for M + 1 values of ξ. Identify F (ξl ) and gF (ξl ) for M + 1
values of ξ.

l=M∑
l=0

ClPl (ξk ) = F (ξk ) ∀ k ∈ {1,M + 1} solved for Cl

1 Number of F evaluations = number of coefficients. Linear system

2 Number of F evaluations > number of coefficients. Solve least-square problem problem

3 Number of F evaluations < number of coefficients. see later “sparsity-of-effects” &
“compressed sensing”

Matrix notation F column vector of F values, C column vector of unknown polynomial
coefficients K matrix Kij = Pj (ξi )

KC = F
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Non-intrusive polynomial methods for 1D / tensorial nD propagation

Generalized polynomial chaos Method (gPC) – 10
Stochastic post-processing (1/3)

F (ξ) ' gF (ξ) =
l=M∑
l=0

ClPl (ξ)

Stochastic post-processing (mean and variance) done for the expansion gF instead of F

straightforward evaluation of mean value

E(gF (ξ)) =

∫ (l=M∑
l=0

ClPl (ξ)

)
D(ξ)dξ = C0

straightforward evaluation of variance

E((gF (ξ)− C0)2) =

∫ (l=M∑
l=1

ClPl (ξ)

)2

D(ξ)dξ =
l=M∑
l=1

C2
l
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Non-intrusive polynomial methods for 1D / tensorial nD propagation

Generalized polynomial chaos Method (gPC) – 11
Stochastic post-processing (2/3)

F (ξ) ' gF (ξ) =
l=M∑
l=0

ClPl (ξ)

Stochastic post-processing (mean and variance) done for the expansion gF instead of F

Skewness

E

((
gF (ξ)− µ

σ

)3
)

=
1

(
∑l=M

l=1 C 2
l )3/2

∫ (l=M∑
l=1

ClPl(ξ)

)3

D(ξ)dξ

requires the knowledge/calculation of
∫
Pl(ξ)Pn(ξ)Pp(ξ)D(ξ)dξ integrals

Calculation of range. Sample ξ and evaluate gF (ξ)

Probability of that F exceeds a threshold T . Sample ξ and evaluate gF (ξ) for∫
1{gF (ξ)>T}D(ξ)dξ
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Non-intrusive polynomial methods for 1D / tensorial nD propagation

Generalized polynomial chaos Method (gPC) – 12
Stochastic post-processing (3/3)

gW (i , ξ) =
l=M∑
l=0

Cl (i)Pl (ξ)

For vectors as well, stochastic post-processing (mean and variance) done for the expansion

gW instead of W

straightforward evaluation of mean value

E(gW (i , ξ)) =

∫ (l=M∑
l=0

Cl(i)Pl(ξ)

)
D(ξ)dξ = C0(i)

straightforward evaluation of variance

E((gW (i , ξ)− C0(i))2) =

∫ (l=M∑
l=1

Cl(i)Pl(ξ)

)2

D(ξ)dξ =
l=M∑
l=1

Cl(i)
2

Estimation of skewness, kurtosis...
Estimation of range
Estimation of probability to exceed a threshold
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Non-intrusive polynomial methods for 1D / tensorial nD propagation

2D tensorial extension of (gPC) method – 1
Definition

2 uncertain parameters (ξ1, ξ2) ∈ I1× I2

D(ξ1, ξ2) = Dα(ξ1)Dβ(ξ2)

Families of orthogonal polynomials for Dα(ξ1) and Dβ(ξ2) are (Pα0 ,P
α
1 ,P

α
2 , ...) and

(Pβ0 ,P
β
1 ,P

β
2 , ...)

Polynomial extension (output functional case)

F (ξ1, ξ2) ' gF (ξ1, ξ2) =
∑

k≤M1,l≤M2

Ck,lP
α
k (ξ1)Pβl (ξ2)
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Non-intrusive polynomial methods for 1D / tensorial nD propagation

2D tensorial extension of (gPC) method – 2
Tensorial product of two quadrature rules

Calculate the (M1 + 1)× (M2 + 1) coefficients by integration over interval I1× I2 as

Ck,l =

∫
I1×I2

F (ξ1, ξ2)Pαk (ξ1)Pβl (ξ2)Dα(ξ1)Dβ(ξ2)dξ1dξ2

Tensorial approach. First define the tensorial product of two 1D Gaussian rules for
integration in directions ξ1 ξ2 over I1 and I2

A[f ] =

k=gα∑
k=1

ωαk f (ξαk )

(
approximating

∫
I1
f (u)Dα(u)du

)

B[g ] =

l=gβ∑
l=1

ωβl g(ξβl )

(
approximating

∫
I2
g(v)Dβ(v)dv

)
Tensorial quadrature (A⊗ B) over I1× I2

(A⊗ B)[h] =
∑

k≤gα,l≤gβ

ωαk ω
β
l h(ξαk , ξ

β
l )
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Non-intrusive polynomial methods for 1D / tensorial nD propagation

2D tensorial extension of (gPC) method – 3
Tensorial product of two quadrature rules

Calculate the (M1 + 1)× (M2 + 1) coefficients by integration over interval I1× I2 as

Ck,l =

∫
I1×I2

F (ξ1, ξ2)Pαk (ξ1)Pβl (ξ2)Dα(ξ1)Dβ(ξ2)dξ1dξ2

Tensorial quadrature (A⊗ B) over I1× I2

(A⊗ B)[h] =
∑

k≤gα,l≤gβ

ωαk ω
β
l h(ξαk , ξ

β
l )

(that is exact for ξp1 ξ
q
2 if p ≤ 2gα − 1 and q ≤ 2gβ − 1)

Calculation of gPC coefficient

Ck,l =

∫
I1×I2

F (ξ1, ξ2)Dα(ξ1)Dβ(ξ2)dξ1dξ2 ' (A⊗ B)[F ] =
∑

k≤gα,l≤gβ

ωαk ω
β
l F (ξαk , ξ

β
l )
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Non-intrusive polynomial methods for 1D / tensorial nD propagation

2D tensorial extension of (gPC) method – 4
Calculation of coefficients using the tensor product of two quadrature rules

Calculate the M1 ×M2 coefficients by integration over I1 × I2 as

Ck,l =

∫
F (ξ1, ξ2)Pαk (ξ1)Pβl (ξ2)D1(ξ1)Dβ(ξ2)dξ1dξ2

by tensorial quadrature rule∫
I1×I2

F (ξ1, ξ2)Dα(ξ1)Dβ(ξ2)dξ1dξ2 '
∑

k≤gα,l≤gβ

ωαk ω
β
l F (ξαk , ξ

β
l )

Requires gα × gβ flow calculations and evaluations of F
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Non-intrusive polynomial methods for 1D / tensorial nD propagation

2D tensorial extension of (gPC) method – 5
Calculation of coefficients using collocation

Calculate the (M1 + 1)× (M2 + 1) coefficients of function expansion

F (ξ1, ξ2) ' gF (ξ1, ξ2) =
∑

k≤M1,l≤M2

Ck,lP
α
k (ξ1)Pβl (ξ2)

by collocation by identifying the spectral expansion for (M1 + 1)× (M2 + 1) points with
exact evaluations∑

k≤M1,l≤M2

Ck,lP
α
k (ξs1)Pβl (ξs2) = F (ξs1, ξ

s
2) s ∈ {1, 2, 3..., (M1 + 1)× (M2 + 1)}

Use least square approach if more sampling points than coefficients
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Non-intrusive polynomial methods for 1D / tensorial nD propagation

2D tensorial extension of (gPC) method – 6
Stochastic post processing

gPC 2D expansion

gF (ξ1, ξ2) =
∑

k≤M1,l≤M2

Ck,lP
α
k (ξ1)Pβl (ξ2)

Calculation of mean

E(gF ) =

∫  ∑
k≤M1,l≤M2

Ck,lP
α
k (ξ1)Pβl (ξ2)

 dξ1dξ2 = C0,0

straightforward evaluation of variance

V (gF ) = E((gF − C0,0)2)

=

∫  ∑
k≤M1,l≤M2

Ck,lP
α
k (ξ1)Pβl (ξ2)D(ξ1, ξ2)dξ1dξ2 − C0,0

2

D(ξ1)αDβ(ξ2)dξ1dξ2

=

∫  ∑
k≤M1,l≤M2 (k,l)6=(0,0)

Ck,lP
α
k (ξ1)Pβl (ξ2)

2

D(ξ1)αD(ξ2)βdξ1dξ2

=
∑

k≤M1,l≤M2 (k,l)6=(0,0)

C 2
k,l

Calculation of variance
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Non-intrusive polynomial methods for 1D / tensorial nD propagation

Stochastic collocation method – 1
Definition

Another approach for non-intrusive polynomial chaos based on Lagrangian polynomial
expansion. [Tatang 1995] [Xiu et al. 2005], [Loeven et al. 2007] for compressible CFD

Dedicated stochastic polynomial expansion using Lagrangian polynomials

W (i , ξ) ' scW (i , ξ) =
l=M+1∑
l=1

Wl (i)Hl (ξ) Hl (ξ) =
m=M+1∏

m=1,m<>l

(ξ − ξm)

(ξl − ξm)

(sum of polynomials of degree M)

Note that

scW (i , ξl ) =
l=N∑
l=1

Wl (i)Hl (ξl ) = Wl (i)

→ no coefficient calculation step. Compute flows (and extract part of state variables fields)
W (i , ξl ) corresponding to the ξl / substitute W (i , ξl ) to Wl (i)

scW (i , ξ) =
l=M+1∑
l=1

W (i , ξl )Hl (ξ)
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Non-intrusive polynomial methods for 1D / tensorial nD propagation

Stochastic collocation method – 2
Suitable set of points

Polynomial expansion using Lagrangian polynomials

W (i , ξ) ' scW (i , ξ) =
l=M+1∑
l=1

W (i , ξl )Hl (ξ)

Definition of (ξ1, ξ2, ..., ξM+1) ?

1 M + 1 points of the (M + 1)-point Gaussian quadrature associated to D(ξ) (most often,
not absolutely necessary)

2 Any set of (M + 1) distinct points

Calculate mean and variance using the (M + 1)-point Gaussian quadrature
associated to D(ξ). Exact mean and variance. Not so simple formulas
Calculate mean and variance using interpolatory quadrature associated to the
nodes. Inexact mean and variance.
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Non-intrusive polynomial methods for 1D / tensorial nD propagation

Stochastic collocation method – 3
Mean and variance evaluation 1/3

Stochastic post-processing (mean and variance) done for the expansion scW instead of W – In case the
(ξ1, ξ2, ..., ξM+1) are the M + 1 points of the (M + 1)-point Gaussian quadrature associated to D(ξ),
the weights being (ω1, ω2, ..., ωM+1)

straightforward evaluation of mean value (degree M polynomial)

E(scW (i, ξ)) =

∫
scW (i, ξ)D(ξ)dξ =

m=M+1∑
m=1

ωmscW (i, ξm) =
m=M+1∑
m=1

ωmW (i, ξm)

straightforward evaluation of variance (degree 2M polynomial)

E((scW (i, ξ)− E(scW (i)))2) = E(scW (i, ξ)2)− E(scW (i))2

=

∫
scW (i, ξ)2D(ξ)dξ − E(scW (i))2

=
m=M+1∑
m=1

ωmscW (i, ξm)2 − E(scW (i))2

=
m=M+1∑
m=1

ωmW (i, ξm)2 −
(

m=M+1∑
m=1

ωmW (i, ξm)

)2

Both exact from quadrature polynomial exactness.
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Non-intrusive polynomial methods for 1D / tensorial nD propagation

Stochastic collocation method – 4
Mean and variance evaluation 2/3

Stochastic post-processing (mean and variance) done for the expansion scW instead of W – In case the
(ξ1, ξ2, ..., ξM+1) are not the M + 1 points of the (M + 1)-point quadrature associated to D(ξ). Note
these Gauss quadrature points (ν1, ν2, ..., νM+1) and the weights (ω1, ω2, ..., ωM+1) (no flow have been
calculated for the νm)

This quadrature is used for evaluations of mean and variance

Evaluation of mean value (degree M polynomial)

E(scW (i, ξ)) =

∫
scW (i, ξ)D(ξ)dξ =

M+1∑
m=1

ωm scW (i, νm)

Evaluation of variance (degree 2M polynomial)

E((scW (i, ξ)− E(scW (i)))2) = E(scW (i, ξ)2)− E(scW (i))2

=

∫
scW (i, ξ)2D(ξ)dξ − E(scW (i))2

=
m=M+1∑
m=1

ωm scW (i, νm)2 −
(

m=M+1∑
m=1

ωmscW (i, νm)

)2

Both exact from quadrature polynomial exactness. No simple expression for scW (i, νm)
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Non-intrusive polynomial methods for 1D / tensorial nD propagation

Stochastic collocation method – 5
Mean and variance evaluation 3/3 (skpd)

Stochastic post-processing (mean and variance) done for the expansion scW instead of W – In case the
(ξ1, ξ2, ..., ξM+1) are not the M + 1 points of the (M + 1)-point Gaussian quadrature associated to
D(ξ)

Interpolatory quadrature associated to the set is used (it is NOT associated to distribution D and D
terms will remain). Weights are denoted (γ1, γ2, ..., γM+1)

In general, inexact evaluation of mean value (due to D factor)

E(scW (i, ξ)) =

∫
scW (i, ξ)D(ξ)ξ '

M+1∑
m=1

γl scW (i, ξl )D(ξl ) =
M+1∑
m=1

γl W (i, ξl )D(ξl )

In general, inexact evaluation of variance (due to D factor and polynomial degree)

E((scW (i, ξ)− E(scW (i)))2) = E(scW (i, ξ)2)− E(scW (i))2

=

∫
scW (i, ξ)2D(ξ)dξ − E(scW (i))2

'
m=M+1∑
m=1

γl scW (i, ξl )
2D(ξl )−

(
M+1∑
m=1

γl W (i, ξl )D(ξl )

)2
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Non-intrusive polynomial methods for 1D / tensorial nD propagation

2D tensorial extension of (SC) method – 1
Definition (1/2)

2 uncertain parameters (ξ1, ξ2) ∈ I1× I2

D(ξ1, ξ2) = Dα(ξ1)Dβ(ξ2)

For the sake of simplicity presented for a scalar output

For the sake of simplicity, tensorial grid of (M1 + 1) and (M2 + 1) Gauss-points associated
to Dα and Dβ .

(ξα1 , ξ
α
2 , ..., ξ

α
M1+1

)× (ξβ1 , ξ
β
2 , ..., ξ

β

M2+1
)

the weights being

(ωα1 , ω
α
2 , ..., ω

α
M1+1

) (ωβ1 , ω
β
2 , ..., ω

β

M2+1
)

Lagrange polynomials associated to the two sets

Hαk (ξ1) =
m=M1+1∏

m=1,m<>k

(ξ1 − ξαm)

(ξαk − ξαm)
Hβl (ξ2) =

m=M2+1∏
m=1,m<>l

(ξ2 − ξβm)

(ξβl − ξ
β
m)
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2D tensorial extension of (SC) method – 2
Definition (2/2)

2 uncertain parameters (ξ1, ξ2) ∈ I1× I2

D(ξ1, ξ2) = Dα(ξ1)Dβ(ξ2)

Hαk (ξ1) Hβl (ξ2) Lagrange polynomials associated to the two sets of (M1 + 1) (resp.

(M2 + 1)) Gauss quadrature points associated to Dα (resp. Dβ)

Stochastic collocation 2D expansion

scF (ξ1, ξ2) =
∑

k≤M1;l≤M2

dk,lH
α
k (ξ1)Hαl (ξ2) scF (ξ1, ξ2) ' F (ξ1, ξ2)

Identification of the coefficients dk,l = F (ξαk , ξ
β
l )

scF (ξ1, ξ2) =
∑

k≤M1;l≤M2

F (ξαk , ξ
β
l )Hαk (ξ1)Hβl (ξ2)
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Non-intrusive polynomial methods for 1D / tensorial nD propagation

2D tensorial extension of (SC) method – 3

The tensor product of the two Gaussian rules is∫
F (ξ1, ξ2)Dα(ξ1)Dβ(ξ2)dξ1dξ2 =

∑
k≤M1+1;l≤M2+1

ωαk ω
β
l F (ξαk , ξ

β
l )

It exactly integrates all monomials ξp1 ξ
q
2 such that p ≤ 2M1 + 1 q ≤ 2M2 + 1

Calculation of the mean of scF∫
scF (ξ1, ξ2)Dα(ξ1)Dβ(ξ2)dξ1dξ2 =

∑
k≤M1+1;l≤M2+1

ωαk ω
β
l scF (ξαk , ξ

β
l )

but simply scF (ξαk , ξ
β
l ) = F (ξαk , ξ

β
l ) and

E(scF ) =

∫
scF (ξ1, ξ2)Dα(ξ1)Dβ(ξ2)dξ1dξ2 =

∑
k≤M1+1;l≤M2+1

ωαk ω
β
l F (ξαk , ξ

β
l )
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Non-intrusive polynomial methods for 1D / tensorial nD propagation

2D tensorial extension of (SC) method – 4

The tensor product of the two Gaussian quadratures∫
F (ξ1, ξ2)Dα(ξ1)Dβ(ξ2)dξ1dξ2 =

∑
k≤M1+1;l≤M2+1

ωαk ω
β
l F (ξαk , ξ

β
l )

Calculation of the mean of scF (exact due to polynomial degree)

E(scF ) =

∫
scF (ξ1, ξ2)Dα(ξ1)Dβ(ξ2)dξ1dξ2 =

∑
k≤M1+1;l≤M2+1

ωαk ω
β
l F (ξαk , ξ

β
l )

Calculation of the variance scF (exact due to polynomial degree)

V (scF ) = E((scF − E(scF ))2) = E(scF 2)− E(scF )2

=

∫
scF (ξ1, ξ2)2Dα(ξ1)Dβ(ξ2)dξ1dξ2 − E(scF )2

=
∑

k≤M1+1;l≤M2+1

ωαk ω
β
l F (ξαk , ξ

β
l )2 −

 ∑
k≤M1+1;l≤M2+1

ωαk ω
β
l F (ξαk , ξ

β
l )

2
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Non-intrusive polynomial methods for 1D / tensorial nD propagation

d-D tensorial generalized polynomial choas (gPC) and
stochstic collocation (SC) method

Assume same number of collocation or (Gaussian) quadrature points in all directions M

Calculation of polynomial expansion in dimension d requires Md CFD calculations

Not sustainable if d is high. Example with 9 points per direction. Required number of
simulations

92 = 81 94 = 6561 95 = 59049 96 = 531441 98 = 43.046721 910 = 3.486.784401

feasible up to d = 4 or 5

Introdution of polynomial limited by total degree, t (straightforward)

Bound the total degree t of the polynomial instead of limiting the individual degree in each
variable. Number of terms of the basis

Z =

(
d + t
t

)

Introdution of Smolyak sparse quadratures often called sparse grids (not so simple)
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Introduction to Smolyak’s sparse quadratures

Outline

1 Introduction. Need for Uncertainty Quantification

2 Probability basics, Monte-Carlo, surrogate-based Monte-Carlo

3 Non-intrusive polynomial methods for 1D / tensorial nD propagation

4 Introduction to Smolyak’s sparse quadratures

5 Examples of application

6 Conclusions
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Introduction to Smolyak’s sparse quadratures

Smolyak sparse grids – 1
Tensorial product of two quadrature rules (Reminder)

2D case

A[f ] =
m∑
i=1

ai f (xi ) B[f ] =
n∑

i=1

bi f (yi ),

A⊗ B[g ] =
m∑
i=1

n∑
j=1

aibj g(xi , yj ),

Straighforward extension to nD

A1 ⊗ A2 ⊗ ...⊗ Ad [f ] =

n1∑
i1=1

...

nd∑
id=1

w1i1 ...wdid f (x1i1 , ..., xdid )
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Introduction to Smolyak’s sparse quadratures

Smolyak sparse grids – 2
Hierarchy of 1D qudratures. Difference of 1D quadratures

1D hierachy of quadratures denotes Ql with increasing number of points. Assumed to be
used in all directions

Nested (= quadrature points of points Ql include the quadrature points of Ql−1) or not
nested

Difference in successive quadratures

∆k [f ] := Qk [f ]− Qk−1[f ]

Q0[f ] := 0.

Rewriting of a tensor quadrature

Ql1 ⊗ ...⊗ Qld [f ] =
∑

k/ 1≤kj≤lj

(∆k1
⊗ ...⊗∆kd )

2D illustration

Q3 ⊗ Q2[f ] = (Q3 − Q2)⊗ (Q2 − Q1)[f ] + (Q3 − Q2)⊗ (Q1 − Q0)[f ] +

(Q2 − Q1)⊗ (Q2 − Q1)[f ] + (Q2 − Q1)⊗ (Q1 − Q0)[f ] +

(Q1 − Q0)⊗ (Q2 − Q1)[f ] + (Q1 − Q0)⊗ (Q1 − Q0)[f ]
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Introduction to Smolyak’s sparse quadratures

Smolyak sparse grids – 3
Smolyak sparse quadratures (1/2)

Fundamental rewriting of a tensor quadrature

Ql1 ⊗ ...⊗ Qld [f ] =
∑

k/ 1≤kj≤lj

(∆k1
⊗ ...⊗∆kd )[f ]

Definition of Smolyak sparse quadrature of level l

Qd
l [f ] =

∑
|k|1≤l+d−1

(∆k1
⊗ ...⊗∆kd )[f ]

Very general construction refering to the indices of the 1D quadratures in the hierarchy
(not degree, not polynomial exactness...)
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Introduction to Smolyak’s sparse quadratures

Smolyak sparse grids – 4
Smolyak sparse quadratures (2/2)

Definition of Smolyak sparse quadrature of level l

Qd
l [f ] =

∑
|k|1≤l+d−1

(∆k1
⊗ ...⊗∆kd )[f ]

Other expressions of Smolayk sparse grids with difference of quadratures

Qd
l [f ] =

d+l−1∑
j=d

∑
k/|k|1=j

(∆k1
⊗ ...⊗∆kd )[f ]

Qd
l+1[f ] = Qd

l [f ] +
∑

k/|k|1=d+l

(∆k1
⊗ ...⊗∆kd )[f ]

Direct expressions of Smolayk sparse grids with quadratures

Qd
l [f ] =

∑
max(l,d)≤|k|1≤l+d−1

(−1)l+d−|k|1−1

(
d − 1
|k|1 − l

)
(Qk1

⊗ ...⊗ Qkd )[f ]
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Introduction to Smolyak’s sparse quadratures

Smolyak sparse grids – 5
Polynomial exactness (1/2)

Tensorial product of 1D polynomials

d⊗
i=1

P1
si

= {(x1, ..., xd ) ∈ Rd →
d∏

i=1

pi (xi ) ∈ R, pi ∈ P1
si
}

where P1
si

is the set of mono-variable polynomials of degree lower or equal to si

The i-th quadrature of the 1D hierarchy Qi is assumed to have polynomial exactness mi

such that mi ≤ mi+1

The Smolyak sparse grid quadrature

Qd
l [f ] =

∑
|k|1≤l+d−1

(∆k1
⊗ ...⊗∆kd )[f ]

is exact for all polynomials of the non classical space

V(Qd
l ) = Span{P1

mk1
⊗ ...⊗ P1

mkd
/ |k|1 = l + d − 1}
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Introduction to Smolyak’s sparse quadratures

Smolyak sparse grids – 6
Polynomial exactness (2/2)

Example: Series (n/n + 2) nested rules U1, U2, U3, U4 involving n1 = 1, n2 = 3, n3 = 5,
n4 = 7 points and having polynomial exactness m1 = 0, m2 = 2, m3 = 4, m4 = 6

Polynomial exactness of Smolyak sparse grid U2
4

U2
4 [f ] =

5∑
j=2

∑
k/|k|1=j

(∆k1
⊗∆k2

)[f ]

U2
4 [f ] = (U4 ⊗ U1 + U3 ⊗ U2 + U2 ⊗ U3 + U1 ⊗ U4 + ...lower .. order...)[f ]

From previous slide, U2
4 is exact for polynomial vector space V(U2

4 )

V(U2
4 ) = Span{Pm4 ⊗ Pm1 + Pm3 ⊗ Pm2 + Pm2 ⊗ Pm3 + Pm1 ⊗ Pm4},

that is
V(U2

4 ) = Span{P6 ⊗ P0 + P4 ⊗ P2 + P2 ⊗ P4 + P0 ⊗ P6}.
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Introduction to Smolyak’s sparse quadratures

Smolyak sparse grids – 7
Number of evaluations, bounds for weights, error analysis

Number of evaluations, bounds for weights, error analysis require analysis for each
individual family of quadrature Qi

Classical results for Clenshaw-Curtis

n1 = 1 then ni = 2i−1 + 1 (i > 1) points mi = ni − 1

For fixed dimension d and l →∞ the number of points involved in Qd
l , denoted n(Qd

l
), is

equivalent (strong sense of limit of sequences being equal to 1) to

n(Qd
l

) '
1

(d − 1)! 2d−1
2l−1(l − 1)d−1

Maximum number of points along all axis (obtained for one kj equal l all the other equal

1) equal (2l−1 + 1). “Corresponding” tensorial number of points (2l−1 + 1)d

Error estimation depending on function regularity. See Novak Ritter 1999 (possibly
Dumont-Le Brazidec Peter 2018)
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Examples of application

Outline

1 Introduction. Need for Uncertainty Quantification
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Examples of application

FG5 generic missile – 3 uncertain parameters
Nominal mesh at the wall

Generic missile FG5.
ONERA experiments. RANS CFD
3 uncertain parameters exercise. Angle of attack α, upper fin angle, upper fin
position
Three outputs of interest. Side force (CYA), rolling moment (CLA), yawing
moment (CNA)
Joint ONERA, DLR, USAF exercise. AIAA paper 2017-1197
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Examples of application

FG5 generic missile – 3 uncertain parameters
Flow conditions. Uncertain parameters

Nominal flow conditions M = 0.8 α = 12o ReD = 0.6 106

Output of interest : rolling moment, yawing moment, side force
Uncertain parameters

Angle of attack in [10o , 14o ]

dα′ = (α− 12)/2 Ds2(dα′) =
15

16
(1− dα′2)2

Change in upper fin azimutal position in [−1o , 1o ]

dφ = φ− 22.5 Ds3(dφ) =
35

32
(1− dφ2)3

Upper fin angle in [−1o , 1o ]

Ds3(ξ) =
35

32
(1− ξ2)3

Joint probability of the three uncertain parameters

D(dα′, dφ, ξ) = Ds2(dα′)Ds3(dφ)Ds3(ξ) =
15

16

352

322
(1−dα′2)2(1−dφ2)3(1−ξ2)3
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Examples of application

FG5 generic missile – 3 uncertain parameters
Outputs of interest as function AoA
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Examples of application

FG5 generic missile – 3 uncertain parameters
Nominal flow (1/2)
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Examples of application

FG5 generic missile – 3 uncertain parameters
Nominal flow (2/2)
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Examples of application

FG5 generic missile – 3 uncertain parameters

Comparison of nominal flows

DLR Calculations with TAU, USAF caclulations with AVUS, ONERA
calculations with elsA
Comparison of Kp on the fins and rear part of the missile, comparison of
stagnation pressure in vertical planes
The three flow solutions match well. Good starting point for (UQ) study

Individual variation of outputs w.r.t. parameters

CYA, CLA, CNA non linear as function of α as in the experiment
CYA, CLA, CNA linear as function of fin angle
CYA, CLA, CNA linear as function of fin position
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Examples of application

FG5 generic missile – 3 uncertain parameters
Fin deformation

(the two mesh deformations can be combined)
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Examples of application

FG5 generic missile – 3 uncertain parameters
Strategies for UQ

ONERA

3D quadrature = 31-point Smolyak sparse grid based on (1D) Féjer second
rule.
31 flow calculations. Classical checks

Quadrature exactly integrates degree 3 polynomials in dimension 3... but
D(dα′, dφ, ξ) is a degree 16 polynomial
Considered quadrature fails to correctely integrate D(dα′, dφ, ξ)

Kriging fitted to the 31 evaluations of CLA. Corresponding surrogates for
CYA, CNA
Calculation of mean value and variance based on Riemann sums for (surrogate
× D(dα′, dφ, ξ))
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Examples of application

FG5 generic missile – 3 uncertain parameters
Strategies for UQ

DLR

76 TAU simulations budget (actually 8, 16, 32,88, 64 then 76 performing
intermediate statistics)
Three Kriging surrogates fitted to the 8 then 16... then 76 CLA, CYA, CNA
values
One million Monte-Carlo sample built from the cumulative density functions of
Ds2(dα′), Ds3(dφ) and Ds3(ξ)
Monte-Carlo mean and variance for the Kriging surrogates based on the
D(dα′, dφ, ξ)-consistent sampling
(Visual) pdf of outputs

ONERA - DLR

Checking individual variations of CLA, CYA, CNA w.r.t. ONERA calculations
showed differences in slopes → differences in variance expected.
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Examples of application

FG5 generic missile – 3 uncertain parameters
Strategies for UQ

USAF

10 simulations budget
DoE = corners of the parameters domain plus two face centers
Quadratic surrogate
Analysis of variance based on the quadratic surrogate
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Examples of application

FG5 generic missile – 3 uncertain parameters

More difference in standard deviation than in mean (than visually looking at Kp)
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Examples of application

RAE2822 – 3 uncertain parameters
Nominal mesh at the wall

RAE2822.

RAE experiments.

Case 6. Flow conditions M∞ = 0.725, α = 2.92o, Re = 6.50 · 106

RANS calculations. Outputs of interest CD , CL, CM

Uncertainties on free-stream Mach number M∞, angle of attack α, thickness to chord
ratio r = h/c

AIAA Paper 2016-433 E. Savin et al.

a = b Xm XM

ξ1 4 0.97× r 1.03× r
ξ2 4 0.95×M∞ 1.05×M∞
ξ3 4 0.98× α 1.02× α

βI(x ; a, b) = 1[Xm,XM ](x)
Γ(a + b)

Γ(a)Γ(b)

(x − Xm)a−1(XM − x)b−1

(XM − Xm)a+b−1
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Examples of application

RAE2822 – 3 uncertain parameters
Mesh
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Examples of application

RAE2822 – 3 uncertain parameters
Mesh

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1.5

−1

−0.5

0

0.5

1

1.5

x

C
p

 

 

Experimental

Numerical

J. Peter et al. (ONERA DAAA) November 2018 91 / 101



Examples of application

RAE2822 – 3 uncertain parameters
gPC expansion of outputs of interest

gPC expansion. Normalized 1D Jacobi-polynomials ψ orthornormal for

< ψj , ψk >=

∫ +1

−1
ψj (ξ)ψk (ξ)

35

32
(1− ξ2)3dξ = δjk

Multivariate polynomials involved in the R3 → R1 expansions of CD , CL, CM

ψj(ξ) =
3∏

d=1

ψjd (ξd ) |j|1 = j1 + j2 + j3 ≤ t

Total degree t is 8. Dimension is d=3. Number of term in the polynomial expansion is

Z =

(
t + d
d

)
=

(
8 + 3

3

)
=

(
11
3

)
= 165

CD gPC expansion

gCD(ξ1, ξ2, ξ3) =
∑

|j|1=j1+j2+j3≤8

cj ψj1 (ξ1) ψj2 (ξ2) ψj3 (ξ3)
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Examples of application

RAE2822 – 3 uncertain parameters
gPC expansion of outputs of interest

1D base-quadrature = p-point Gauss-Jacobi-Lobatto quadrature. Polynomial
exactness degree (2p-3)

3D quadratures

Tensorial = Tensorial product of the 10-point Gauss-Jacobi-Lobatto
quadrature.
Polynomial exactness up to degree 17 for each variable ξj . Exact integration of
products of degree 8 polynomials. Exact variance of gPC expansions.
Number of points 1000 (103)

Smolyak sparse quadrature = 7-th level Smolyak sparse grid based on the
family of Gauss-Jacobi-Lobatto quadratures
Number of points 201
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Examples of application

RAE2822 – 3 uncertain parameters
Visualization of quadrature points

Figure: Visualization of 6-point tensorial Gauss-Jacobi-Lobatto quadrature and 7th level
Smolyak quadrature based on Gauss-Jacobi-Lobatto quadratures – gPC coefficients are
calculated with 10-point tensorial GJL and 7th level Smolyak quadrature based on GJL
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Examples of application

RAE2822 – 3 uncertain parameters
gPC expansion of outputs of interest

Calculation of the GPC coefficients as (for cD )

cj =

∫
ψj(ξ)CD (ξ)D(ξ)dξ

=

∫
ψj1

(ξ1) ψj2
(ξ2) ψj3

(ξ3)CD (ξ1, ξ2, ξ3)
353

323
(1− ξ2

1)3(1− ξ2
2)3(1− ξ2

3)3dξ1dξ2dξ3

First two moments of the aerodynamic coefficients computed by the 10–th level product rule (1000
points)

µ σ

CD 133.37e-04 34.128e-04
CL 72.274e-02 1.6695e-02
CM -453.99e-04 32.239e-04

First two moments of the aerodynamic coefficients computed by the 7–th level sparse rule (201 points)

µ σ

CD 133.38e-04 34.097e-04
CL 72.269e-02 1.6729e-02
CM -453.96e-04 32.175e-04
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Examples of application

RAE2822 – 3 uncertain parameters
gPC compressed sensing (1/4)

Reminder: calculation of gPC coefficients by collocation.

Presentation in case of a multi-variate polynomial of fixed total order

Identify F (ξ) and gF (ξ) for Q values of ξ.∑
|j|1≤t

CjPj(ξk ) = F (ξk ) ∀ k ∈ {1...q}

Matrix notation F column vector of F values, C column vector of unknown polynomial
coefficients K matrix Ki ind(j) = Pj(ξi )

KC = F

Square linear system if number of evaluations = dimension polynomial basis

Least square system if number of evaluations > dimension polynomial basis

Possible use of compressed sensing if number of evaluations < dimension polynomial
basis
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Examples of application

RAE2822 – 3 uncertain parameters
gPC compressed sensing (2/4)

Collocation linear system. Identify F (ξ) and gF (ξ) for q values of ξ.

F (ξk ) =
∑
|j|1≤t

CjPj(ξk ) ∀ k ∈ {1...q}

or in matrix notation
KC = F

K has q lines (number of evaluations) and Z columns (number of polynomials in the basis)

May be solved with less information (evaluations) than unkowns (gPC coefficients) by

compressed sensing provided

The actual gPC expansion that is looked for is sparse = has many coefficients
very close to 0. This is often the case. This is called “sparsity of effects”
This is verfied for the searched expansion
Requires a (random) sampling incoherent with basis of polynomial that is
measured by the “mutual coherence”

max
1 ≤ j, l ≤ Z

j 6= l

|KT
j Kl |

‖Kj‖2‖Kl‖2

that should have the lowest possible value
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Examples of application

RAE2822 – 3 uncertain parameters
gPC compressed sensing (3/4)

Collocation linear system. Identify F (ξ) and gF (ξ) for q values of ξ.

F (ξk ) =
∑
|j|1≤t

CjPj(ξk ) ∀ k ∈ {1...q}

In matrix notation
KC = F

The underdetermined problem is then solved by L1 minimization

C∗ = arg min
h∈RZ

{‖h‖1; ‖ Kh− F‖2 ≤ ε}
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Examples of application

RAE2822 – 3 uncertain parameters
gPC compressed sensing (4/4)

165 polynomals in the basis

80 random sampling points

Mutual coherence equal 0.93

Good recovery of mean and variance with compressed sensing gPC :

µ σ

CD 133.33e-04 34.052e-04
CL 72.271e-02 1.6703e-02
CM -453.95e-04 32.180e-04
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Conclusions
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Conclusions

Way forward...

Uncertainty quantification

needed for robust analysis, robust design, validation
more and more interest and projects (EU, RTO...)

Way to proceed

Get precise definition of industry relevant problems
Use both mechanical and mathematical test cases

Challenges
Deal with large numbers of uncertain parameters

Use sensitivity analysis (Sobol indices...)
Use sparsity of effects

Deal with geometrical uncertainties
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