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(Le professeur Aronnax, Conseil et Ned Land s’inquiètent de la marche du Nautilus menacée par les mouvements
d’un iceberg)

Je me promenai pendant quelques instants du salon à la bibliothèque. Mes compagnons assis se
taisaient. Je me jetai bientôt sur un divan, et je pris un livre que mes yeux parcoururent machi-
nalement. Un quart d’heure après, Conseil s’étant approché de moi me dit :
– Est-ce intéressant ce que lit monsieur ?
– Très intéressant, répondis-je.
– Je le crois. C’est le livre de monsieur que lit monsieur !
– Mon livre ?
En effet je tenais à la main l’ouvrage des Grands Fonds sous-marins

Vingt mille lieux sous les mers (IIe partie, chapitre XV). Jules Verne
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Introduction

When I was a student in “Math Spé”, the Maths teacher one day made a remarkable hand-drawing on the
blackboard. He drew a frame of reference and a perfect paraboloïd – let us say it was

x2 + 2y2 − z − 6 = 0 −

before drawing a set of three or four parallel oblique planes – let us say these were

x+ y + z = K planes.

The question was to find Min (x+y+z) on the paraboloïd. By some kind geometrical evidence (this was
one of the few non-demonstrated properties during this year), he inferred that the limiting plane crossing
the paraboloïd when decreasingK would be tangent to it at the point we were looking for. So there was a
λ coefficient, that we could call Lagrange multiplier, such that, at the target solution point, the gradients
of the two surfaces would be proportional,

λ

 2x
4y
−1

 =

 1
1
1


which quickly lead to the calculation of λ, then x and y and finally z. This λ was something nice and
efficient that had made a tough problem simple... and I had then no idea I would later spend about fifteen
years calculating and manipulating adjoint vectors.

The next time I heard about Lagrange multipliers was in 2001 as Airbus and ONERA prepared a joint
project on discrete adjoint and local optimization (and it quickly appeared to me that the λ would not
be a single real number but possibly a very large vector). Looking back at what had been done before,
I realized that Computational Fluid Dynamics (CFD) based aerodynamic optimization was about as old
as CFD. It actually started in the 70’s and 80’s with simple parametrizations of aerofoils and wings, and
gradient based local optimization where the gradient of the functions of interest were calculated by finite
differences [71, 72, 156]. This field then underwent a very deep change in 1988: Fifteen years after a
famous article by Pironneau, that introduced shape optimization via optimal control for incompressible
flows [151], Jameson introduced the continuous adjoint method for aerodynamics [78]. This method al-
lows the calculation of the objective and constraints sensitivities with respect to (w.r.t.) design parameters
at a cost scaling with the number of functions to differentiate which arose a strong interest in the CFD
community. A few years later, Shubin and Frank demonstrated a discrete version of Jameson’s adjoint
method [164, 165, 54] that they called the “implicit gradient approach” and that, soon after, was called
“discrete adjoint method”. It did not require the manipulation of partial differential equations (p.d.e.) of
fluid dynamics with a mapping of the fluid domain and was hence much simpler from a mathematical
point of view... but involved more operations to differentiate the discrete fluxes of the direct calculation.
This was probably the beginning of an unlimited debate between those in favor of continuous adjoint
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(linearize-then-discretize) and those in favor of discrete adjoint (discretize-then-linearize) ([139]§2.7)
formulations.

Both methods have assets but it seems today that the discrete approach is the dominant one for large
CFD codes. Probably the main reason for this is the consistency of the gradients w.r.t. finite differences
at fixed mesh size that is important for shape optimization and other applications like gradient-enhanced
metamodeling 1. Besides, not only this theoretical property is desirable but NASA Langley teams have
demonstrated at the end of the 90’s that gradients with almost perfect accuracy could indeed be obtained,
even in the quite complex case of (RANS) flows and unstructured meshes [5, 123], at the price of an
extremely rigorous process for the development of the discrete adjoint code. Finally the possibility to use
Automatic Differentiation (AD) tools to linearize the residual without bug may be an important second
asset for the discrete approach when working in a large CFD code.
In 2002, it was actually a discrete adjoint module, named elsA/Opt [145], that had to be added to the
elsA code [23, 25, 24]. This activity was started for aircraft “options”, that is fluxes, join and boundary
conditions generally used for external aerodynamics simulations. The counterpart work for turbomachin-
ery started a few years later and, as discrete adjoint development went on in the CFD Department, all the
other components of a local optimization chain were developed or improved at the Applied Aerodynam-
ics Department 2 of ONERA : parametrization, volume mesh deformation, descent method and advanced
post-processing providing partial derivatives of the functions of interest.

At the same time, the engineers involved in development of the adjoint module of the elsA code have
developed related research activities on implicit stages for the adjoint equation, extension of classical dis-
crete adjoint to hovering rotor and optimization based on the so-called “shape gradient”. These research
activities are summarized in the first chapter of the manuscript.

In 2005, roughly speaking, it appeared evident that the sensitivities of the volume mesh w.r.t. the de-
sign parameters would become the memory bottleneck of the adjoint method. At the cost of calculating
the Jacobian of the discrete residual w.r.t. volume mesh nodes coordinates, it was possible to get rid of
the mesh sensitivities and, more generally, of the design parameters in the CFD adjoint module. The
outputs of this module are then the total derivative of the functions of interest w.r.t. volume mesh node
coordinates that can later be processed to calculate wall mesh sensitivities (“shape gradients”) then the
sensitivities w.r.t. one or several sets of design variables. In 2008, after these total derivatives were
available in elsA, a very significant effort has been undertaken to use them for “goal-oriented” mesh
refinement, that is mesh-refinement aiming at the accurate calculation of a specific output functional.
These research activities are summarized in the second chapter of this document.

1On this subject, see references in [12, 13]
2The teams of these two former Departments are now gathered in a single Department called “Département Aérodynamique,

Aéroélasticité, Acoustique” (DAAA)
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Nomenclature

AoA Angle of attack (external flow)
CD Drag coefficient
CDp Pressure drag coefficient
CDw Wave drag coefficient
CL Lift coefficient
CLp Pressure lift coefficient
d Normal component of shape gradient dJ/dXS

D(X,XS) Implicit volume mesh deformation
Dα Domain of α, vector of design variables
E Total energy of the fluid per unit mass
(Fx,Fy,Fz) Euler fluxes in (x, y, z) directions
Jk Functions of interest as function of W and X
Jk Functions of interest as function X
Jk Functions of interest as function XS

Jk Functions of interest as function of α
k Curvature
M∞ Far-field Mach number (external flow)
nW Number of cells times number of equations (size of R and W )
nX Number of mesh points (size of X)
P Operator removing components of dJ/dX
Pa Mean value of stagnation pressure over the wall(s)
nα Number of desing variables
R(W,X) Explicit stage of the numerical scheme
R Helicopter blade radius
Re Reynolds number
s Curvilinear abscissa
S Akima’s spline fitted to XS

S Smoothing operator for dJ/dXS or its normal component
V Velocity V = (u, v, w)
W Conservative variables W = (ρ, ρu, ρv, ρw, ρE)
X Mesh
XS Wall mesh
(x, y, z) Physical coordinates

α Design variables
Γk Adjoint vector (column) of function Jk for mesh deformation D
Λk Adjoint vector (column) of function Jk for scheme R
θ[J ]m Local indicator for J-oriented mesh refinement (based on P(dJ/dX))
θ[J ]m Local indicator for J-oriented mesh refinement (based on spatial mean of P(dJ/dX))
θ[J ] Estimator of suitability of current mesh to evaluate J (based on P(dJ/dX)) )
θ[J ] Estimator of suitability of current mesh to evaluate J (based on spatial mean of P(dJ/dX))
µ[J ]m Norm of P(dJ/dXm)
µ[J ] Mean of µ[J ]m values over the mesh
Ψ Modified total variation of curvature of a current wall mesh XS

ρ Density
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Chapter 1

Discrete gradient calculation methods for
shape optimization

This chapter starts with a general subsection (§I.1) that provides all the classical equations of discrete
gradient method for finite volume (FV) CFD for compressible flows (§I.1.1) to (§I.1.7) [112, 139]. This
subsection goes on with two technical pages (§I.1.8) summarizing the fluxes, models and boundary con-
ditions that have been linearized with respect to state variable and/or volume-mesh coordinates in the
elsA/Opt module [145]. Its ends (§I.1.9) with a note about mesh convergence of discrete adjoint fields.

On the contrary, the next three subsections, (§I.2) to (§I.4), refer to specific research activities. A family
of implicit stages that has been defined by me for the solution of steady state flows [134] is presented
in (§I.2). Their description includes reference to stability analysis carried out with Drullion [40, 138]
and extension to the solution of direct differentiation and discrete adjoint equations. Subsection (§I.3)
summarizes the work done by Dumont [41, 42] and his supervisors to extend ONERA’s discrete adjoint
capability from aircraft mechanical formulation, to the “absolute velocity/relative frame of reference”
mechanical formulation that is classically used for rotor simulations. It includes also a short presentation
of an adjoint-based shape optimization of a rotor. The next and last subsection (§I.4) is a presentation
of part of Bompard’s research during his PhD [12], namely effort to optimize airfoil based on the so
called shape gradients, that is the total derivative of the function of interest (objective and constraints)
with respect to wall mesh node coordinates.

This work has been presented in the following journal articles:
• Numerical sensitivity analysis for aerodynamic optimization: a survey of approaches. Computers and
Fluids 39 (2010) (J. Peter and R.P. Dwight)
• Large stencil viscous flux linearization for the simulation of 3D turbulent compressible flows with
backward-Euler schemes. Computers & Fluids 36 (2007) (J. Peter and F. Drullion)
• Aerodynamic shape optimization of hovering rotors using a discrete adjoint of the Reynolds-Averaged
Navier-Stokes Equations. Journal of the American Helicopter Society 56 (2011) (A. Dumont, A. Le
Pape, J. Peter, S. Huberson)
and in lecture notes and conference papers that are referred in each specific section.

1.1 Reminder: Discrete gradient calculation methods

The purpose of this section is to recall the equations of discrete gradient calculation for finite volume CFD
(subsection 1.1 to 1.4), which are the basis of the research activities to be then described. For the sake
of completeness, the equations of the alternative point of view, the continuous approach, are presented in
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Annex A for a simple case and a short discussion about respective assets of both approaches is presented
in subsection 1.9. No extended bibliography is provided here but the reader can find a number of relevant
references in publications by R.P. Dwight and me [139] or M. Bompard and me [14].

1.1.1 Notation

In the framework of shape optimization by mean of Computational Fluid Dynamics, a set of parametrized
meshes has first to be defined. These meshes surround the various shapes that the aeronautical item of
interest (possibly wing, blade, tail, aircraft...) may take. We do not here enter the detail of meshing/mesh
deformation techniques on the design space 1. The vector of design parameters is denoted α (size nα) ; its
domain of variation is denoted Dα. The volume mesh is denoted X (size nX ) and the wall surface mesh
XS (size nS). The volume mesh X(α), and hence also XS(α), are supposed to at least continuously
differentiable.
The finite volume scheme of interest defines the steady-state flow W (size nW ) as the solution of a set of
nW non linear equations involving W and X ,

R(W,X) = 0,

where R is supposed to be a C1 function of its both arguments. This assumption may seem strong as
numerical fluxes and limiters possibly involve min, max or absolute value and as update stage in industrial
codes involve cuts-off. This point is further discussed for the selected schemes in subsection 1.1.8.
Besides at every pair of flow and mesh (Wi, Xi) where variation calculus is to be performed, it is assumed
that the flow is perfectly converged

R(Wi, Xi) = 0 and that det

(
∂R

∂W

)
[Wi, Xi] 6= 0.

The implicit function theorem then guarantees the existence of an open set DX including Xi and a C1

unique function W such that

W(Xi) = Wi R(W(X), X) = 0 ∀X ∈ DX .

This yields a straightforward local definition of W as a continuously differentiable function of the vector
of design parameters α. For the sake of simplicity, it assumed hereafter that this C1 dependence of W
w.r.t. α is valid all over Dα.
Typical functional outputs involved in local optimization are objectives like drag, component of drag...
and constraints like lift, pitching moment... When using a gradient-based local optimization algorithm,
derivatives of the objective and active constraints are needed. Depending on the algorithm, the derivatives
of non-active constraints may or may not be required. These nf functions to be differentiated w.r.t. the
design parameters are denoted Jk when considered as functions of flow and meshW andX and Jk when
considered as functions of α, with the obvious link

Jk(α) = Jk(W (α), X(α)) k ∈ {1...nf}.

Besides expressing W as a function of X through the implicit function theorem, allows to define the
functions of interest as function of the mesh only:

Jk(X) = Jk(W(X), X) k ∈ {1...nf}
1Many options exist : working on difference with respect to a reference shape or directly on the shape itself ; directly

meshing the fluid domain, or first the wall of the item then the fluid domain ; use aeronautical expert parameters or a geometrical
approach...
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Older discrete gradient calculation methods aim at computing all nf × nα derivatives

∂Jk(α)
∂αi

i ∈ {1, ..nα} k ∈ {1, ..nf}

A more recent method aims at first calculating the total derivative

dJk
dX

k ∈ {1...nf},

that includes both the direct influence of node position of the function and its indirect influence through
change of discrete flow to reach steady state convergence.

1.1.2 Finite differences and complex variable method

The application of finite differences to an entire flow solver is the oldest and, by far, the simplest means of
obtaining solution gradients, as it requires no modification of the solver itself. To proceed, the numerical
flow solution corresponding not only to α but also to perturbed states α + δα and possibly α − δα
is calculated. For the typical case of second order finite difference δαl (l ∈ {1...nα}) representing a
geometry modification in direction l ofDα, this implies two mesh deformationsX(α+δαl)X(α−δαl),
and two new flow solutions on the modified meshes satisfying

R (W (α− δαl), X(α− δαl)) = 0 , R (W (α+ δαl), X(α+ δαl)) = 0.

An approximation of all functions derivatives in the direction δα can then be approximated by classical
centred finite difference formula

dJk(α)
dαl

δαl '
1
2 [Jk(α+ δαl)− Jk(α− δαl)] ∀ k ∈ {1...nf}

= 1
2 [J(W (α+ δαl), X(α+ δαl))− J(W (α− δαl), X(α− δαl))] .

(1.1)

The entire matrix dJ (α)/dα may be evaluated at a cost of 2 × nα flow solutions 2 making the method
impractical for large design spaces. Another serious disadvantage is that the choice of the step size ‖δα‖
is critical to the accuracy of the result. If it is too small then rounding errors become significant; if it is
too large the neglection of higher order terms in the Taylor expansion in (1.1) is not valid. Moreover,
balancing these two errors requires the third order derivative of Jk in the direction dαl that is unknown
so that in practice only very expensive parametric studies lead to the best finite difference value. See
[139] for more details.

All these issues may be alleviated by using a complex finite difference formula, such as

dJ
dαl

δαl ' = [J (α+ iδαl)] ,

where = represents the imaginary part. As there is no longer any difference of J in this expression,
it does not suffer from cancellation error, and ‖δαl‖ may be chosen as machine zero with no loss of
accuracy [6]. However the solver must be modified to accept complex variables throughout, negating the
main advantage of finite differences.

Finite differences have been used since the 70s in the context of shape optimization. Early contri-
butions include works of Hicks, Henne and VanderPlats [73, 177, 71], also Destarac, Reneaux and
Thibert [155, 156, 36]. Complex variable method is the verification method of NASA’s FUN3D adjoint
module [6, 124].
However these methods have cost scaling with the number of design parameters, nα, and solve numerous
non linear sets of equations. This has lead to the investigation of alternative means of gradient evaluation.

2or if a first-order difference is used nα + 1 flow solutions
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1.1.3 Direct differentiation method

Under the assumptions detailed in subsection 1.1.1,

∀α ∈ Dα R(W (α), X(α)) = 0

and this form of the governing equations may be differentiated with respect to all αl to give

∂R

∂W

dW
dαl

= − ∂R
∂X

dX
dαl

∀l ∈ {1...nα}. (1.2)

This may be regarded as a linear system in unknowns dW/dαl. The dimension of the system is the
number of degrees of freedom in the non-linear equations nW , and it can be regarded as a linearization
of those equations.

Given the nα solutions dW/dα, the derivatives of J are

dJk(α)
dαl

= ∂Jk
∂W

dW
dαl

+ ∂Jk
∂X

dX
dαl

∀l ∈ {1...nα} (1.3)

where again the partial derivatives are in principle easy to evaluate, as Jk is a known, explicit function
of W and X . The cost of getting flow and aerodynamics function derivatives is one non-linear and nα
linear solutions, all of dimension nW .

This method was considered as early as 1982 by Bristow and Hawk for a subsonic panel method [20,
21], and again in 1989 for the transonic perturbations equations by Elbanna et al. [49]. In the early 90s it
was applied to the compressible Euler equation by two teams at Old Dominion University; that of Baysal
[9] and that of Taylor and Hou [169]. On unstructured grids the idea was pursued by Newmann, Taylor
et al. from 1995 onwards [120].

1.1.4 The Discrete Adjoint Method

There are many ways to derive the discrete adjoint equations, the one given here is chosen for its similarity
to the derivation of the continuous adjoint presented in annex A. Let the direct linearization (1.2) be
premultiplied by an arbitrary line vector ΛT of dimension nW , so that

ΛT ∂R
∂W

dW
dαl

+ ΛT
(
∂R

∂X

dX
dαl

)
= 0, ∀Λ ∈ RnW .

Adding this expression to (1.3)

dJ (α)
dαl

= ∂Jk
∂X

dX
dαl

+ ∂Jk
∂W

dW
dαl

+ ΛT ∂R
∂W

dW
dαl

+ ΛT
(
∂R

∂X

dX
dαl

)
, ∀Λ ∈ RnW , (1.4)

and factorizing

dJk(α)
dαl

=
(
∂Jk
∂W

+ ΛT ∂R
∂W

) dW
dαl

+ ∂Jk
∂X

dX
dαl

+ ΛT
(
∂R

∂X

dX
dαl

)
, ∀Λ ∈ RnW ,

isolates the term dW/dα, which may be eliminated by choosing the arbitrary vector Λ to satisfy(
∂Jk
∂W

+ ΛT ∂R
∂W

)
= 0

Actually, the vector Λ is then fixed and associated to the k-th function of interest so that so that a suitable
notation is now Λk. It is the solution of(

∂Jk
∂W

+ ΛTk
∂R

∂W

)
= 0 or equivalently

(
∂R

∂W

)T
Λk = −

(
∂Jk
∂W

)T
, (1.5)
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the discrete adjoint equation, a linear system in unknowns Λk the adjoint vector associated to function
Jk for scheme R. Given Λk the sensitivities of function Jk may be written

dJk(α)
dα = ∂Jk

∂X

dX
dα + ΛTk

(
∂R

∂X

dX
dα

)
.

The critical point is that, because α does not appear in equation (1.5), that linear system must only
be solved once for each Jk. Hence the full matrix dJ /dα may be evaluated at a cost of nJ linear
system solutions, substantially independent of nf . Perhaps the first application of this method was given
by Shubin and Frank in 1991 for a quasi one-dimensional nozzle flow using the compressible Euler
equations [165, 164, 54], and was denoted there the “implicit gradient approach” as contrast to the direct
approach. Baysal et al. also recognized its potential, and offered it as an alternative to the direct approach
when nJ � nf [9].

1.1.5 Identification of adjoint vector. Numerical and physical point of view

The equations of this section require a cell index (m), a component index (a), and an index going from 1
to the number of equations of the initial p.d.e.. For the sake of readability, the function index k is dropped
here from the function and and adjoint vector; Λ is the discrete adjoint vector associated to the function
J for discretization R.
In the previous subsection the discrete adjoint vector appeared as a multiplier of direct differentiation
equation that can be specified to remove the flow sensitivity dW/dαl from the derivatives dJk(α)/dαl
for one specific function Jk but for all design parameters αl. It could also have been defined with a
Lagrangian in an closely related way. In both presentations, the discrete adjoint vector is linked to the
numerical scheme R and the current mesh X and no insight is gained about a possible mesh convergence
of this field. The following characterization of discrete adjoint is interesting from this point of view [51].
It is assumed that small arbitrary changes δR are done in R (think of very small fixed numbers added
to some of R components). The corresponding solution perturbation δW is such that W + δW satisfies
new discrete flow equations

(R+ δR)(W + δW,X) = 0,

or at first order
[ R(W,X)+ ] δR+ ∂R

∂W
δW = 0

The first order change in the function of interest J due to change in flow δW is

δJ = − ∂J

∂W
( ∂R
∂W

)−1δR since J(W + δW,X) ' J(W,X) + ( ∂J
∂W

)δW

Involving discrete adjoint vector Λk, defined by equation (1.5), yields

δJ = ΛT δR

If only the a-th component of R at cell index m has been arbitrarly altered by a small number δRam then
previous equation yields

Λam = δJ/δRam (1.6)

This defines the a-th component of Λ at cell index m as the limit ratio of change in Jk divided by in-
finitesimal change in the residual R at the corresponding cell & component who caused the change in
flow and function value.
In the context of J-oriented mesh refinement (successive computations aiming at accurate calculation
of J output), we may assimilate δR to a lack of accuracy in space discretization and the adjoint vector
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would indicate the importance of local accurate space discretization for the calculation of J . Actually,
in the discrete adjoint method only expressions involving products of adjoint vector times residual R or
derivatives of R have an intrinsic value independent of the definition of R and this point will have to be
more precisely discussed in chapter 2.

Up to now the adjoint vector appears as a mathematical object, dual of the residual R. However, in a
well-known conference paper Giles and Pierce proposed a physical point of view [60]. As their discussion
is based on continuous adjoint, we transpose their ideas in discrete adjoint (and refer in parenthesis to
the counterpart in [60]). For this discussion, the residual R is a consistent discretization of Euler or
(RANS) equations flux balance (not divided by volume) so that the discrete and continuous adjoint fields
are similar 3.
Giles and Pierce consider four local perturbations δR (Dirac perturbation fn(ξ)δ(x − ξ)) in all cells of
index m (location ξ) for 2D Euler equations (linearized Euler equations with homogeneous boundary
conditions) about an aerofoil: (1) mass source at fixed stagnation pressure and total enthalpy ; (2) local
normal force ; (3) change in total enthalpy at fixed static and total pressure ; (4) change in total pressure
at fixed total enthalpy and static pressure. The reader is referred to reference [60] for details but, as a
starting point, the expression of δR1 (mass source at fixed stagnation pressure and total enthalpy) is

δR1
m = ε


1
u
v
H


which indeed expresses the presence of mass source in cell m (mass flow ε kg/s−1) and compensates all
disequilibrium caused in Euler equations by the flow injection.
The function of interest is the integral over the airfoil of the pressure times a local constant (denoted h)
which involves inviscid drag and lift. By the mean of approximate mechanical analysis, its variations
δJ (1m), δJ (2m), δJ (3m), δJ (4m) due to the source terms in cell m, δR1

m, δR2
m, δR3

m and δR4
m, are

calculated and (assuming they are exact) from (1.6),

(δJ (1m), δJ (2m), δJ (3m), δJ (4m)) = (Λ1,m,Λ2,m,Λ3,m,Λ4,m)


δR1

1,m δR2
1,m δR3

1,m δR4
1,m

δR1
2,m δR2

2,m δR3
2,m δR4

2,m

δR1
3,m δR2

3,m δR3
3,m δR4

3,m

δR1
4,m δR2

4,m δR3
4,m δR4

4,m


where the (dm) superscript for δJ means change in J function due to d-th change of R at cell m,

reconverging flow W with global change δW d which trace on the aerofoil leads to change δJ (dm). As
the four changes in R are linearly independent Giles and Pierce may define the adjoint vector at cell m
as

(Λ1
m,Λ2

m,Λ3
m,Λ4

m) = (δJ (1m), δJ (2m), δJ (3m), δJ (4m))


δR1

1,m δR2
1,m δR3

1,m δR4
1,m

δR1
2,m δR2

2,m δR3
2,m δR4

2,m

δR1
3,m δR2

3,m δR3
3,m δR4

3,m

δR1
4,m δR2

4,m δR3
4,m δR4

4,m


−1

(1.7)

This of course is derived from (1.6) and close to it except that the residual perturbation δR have been
physically defined and which makes the local discrete adjoint vector physically defined. For all system
of equation for which a similar demonstration can be done, the adjoint vector gets intrinsic and we can
expect similar solutions from different discretization and also mesh convergence.
Let us finally note that not only the Λ components can plotted, as usually done but also, in the spirit of
Giles and Pierce, the limit ratio of the δJ (d) divided by ε (the small parameter of the physical source
term). The corresponding plot is a view of the influence of the source term on the output of interest
plotted at source term location – see fig. 3 in [60].

3this technical requirement in presented with more details in §2.1.2
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1.1.6 Adjoint-mesh gradient computation

The technique that we call “adjoint-mesh” computation is a way to gather the derivative terms that avoids
to manipulate any quantity related to the design parameters inside the CFD code during the adjoint step.
It unfortunately does not seem to have a unique name (it is sometimes called “full-adjoint” or “full-
reverse-mode”).
In the mid 2000’s the cost of evaluating dX/dα was becoming a burden in case X is an implicit function
of the wall mesh [127]. Moreover, successively reading (for all functions) or loading in memory all
dX/dαl was becoming a time and/or memory burden limiting in practice the cost independence-of-
design-parameters of the adjoint method. Finally the cost of the calculation of geometrical sensitivity of
the residual, even by finite differences like,

(
∂R

∂X

dX
dαl

)
' R(W (α), X(α) + ε(dX/dαl))−R(W (α), X(α)− ε(dX/dαl))

2ε , (1.8)

was possibly not neglectible for the very large numbers of design parameters nα that were then more and
more often considered. All these costs scaling with nα were not satisfactory of course in the discrete
adjoint method that is expected to scale with the number of functions nJ .
To overcome this issue, in case X is an explicit function of the design parameters α, the adjoint commu-
nity has used a rewriting of adjoint gradient (see [136, 146])

dJk(α)
dα =

(
∂Jk
∂X

+ ΛTk
∂R

∂X

) dX
dα , (1.9)

where the two factors of the right-hand-side of (1.10) may be calculated independently. The factor in the
bracket is calculated by the CFD code that solved the adjoint equation and is saved on files ; the CFD
code has then no knowledge of parametrization. The product is carried out besides by a basic code that
does not need to be run on a supercomputer.
The term inside the bracket is easily identified as the total derivative of the function of interest w.r.t. the
volume mesh nodes

dJk
dX

= ∂Jk
∂X

+ ΛTk
∂R

∂X
(1.10)

A component of the first term, (∂Jk/∂Xm), corresponds to the direct dependency of function Jk on the
location of node m, whereas a component of the second term, ΛTk (∂R/∂Xm), corresponds to changes
of the flow field on the support of function Jk, due to driving residual R to zero after changing node m
location.
The dJ/dX vector field may be checked by finite differences. For a second-order check at a specific node
Xm, two opposite individual small displacements of Xm along each frame axis need to be considered.
For example, let δym and -δym be small displacement of node Xm along y axis and X(+δym) X(−δym)

be the shifted meshes resulting of these single alterations of the nominal meshX . Discrete flows denoted
W (+δym) and W (−δym), need then to be converged for the shifted meshes by solving

R
(
W (+δym), X(+δym)

)
= 0 and R

(
W (−δym), X(−δym)

)
= 0. (1.11)

Then of course dJ/dym can be checked based on

dJ

dym
= J(W (+δym), X(+δym))− J(W (−δym), X(−δym))

2δym
+O(δy2

m) (1.12)
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1.1.7 Shape gradient

Finally, let us note that if the X explicitly depends on the wall mesh, XS , that depends on the design
parameters, a simple and efficient way to compute the derivatives of interest is to solve the nf adjoint
equations and then to calculate the sensitivity of the functions w.r.t. wall mesh nodes:(

∂R

∂W

)T
Λk = −

(
∂Jk
∂W

)T dJk
dX

= ∂Jk
∂X

+ ΛTk
∂R

∂X

dJk
dαl

=
[
dJk
dX

dX

dXS

]
dXS

dαl

(where the term in brackets is to be computed first).
In case X depends implicitly on XS which directly depends on the design parameters α, Nielsen and
Park proposed an elegant solution [127]. Let us denote D(X,Xs) = 0 the implicit link between volume
and volume mesh. In reference[127] for example, D was a simplified linear elasticity solver and the cost
of solving the sensitivity equation

∂D

∂X

dX

dαl
+ ∂D

∂XS

dXS

dαl
= 0 ∀l ∈ {1...nα}, (1.13)

for dX dαi was not neglectible. Nielsen and Park proposed to add an adjoint equation for the mesh
deformation to get rid of this issue. The sequence of operations is the following:(

∂R

∂W

)T
Λk = −

(
∂Jk
∂W

)T
(
∂D

∂X

)T
Γk = −

(
∂Jk
∂X

+ ΛT ∂R
∂X

)T
= −

(
dJk
dX

)T
dJk
dαl

=
[
ΓTk

∂D

∂XS

]
dXS

dαl

(where the term in brackets is to be computed first). Finally, as Jk(X) has been defined from Jk(W,X)
where the residual of the discrete flow is converged (R(W,X) = 0), we can define Jk(XS) from Jk(X)
where X is the volume mesh that corresponds to surface mesh XS , namely (in the implicit case)

Jk(XS) = Jk(X) where D(X,Xs) = 0 k ∈ {1...nf}. (1.14)

The gradient of J w.r.t. XS , dJ/dXS , is often called shape gradient. Previous equations yield

dJk
dXS

= dJk
dX

dX

dXs
(explicit link between X and Xs) (1.15)

dJk
dXS

= ΓTk
∂D

∂XS
= −dJk

dX

(
∂D

∂X

)−1 ∂D

∂XS
(implicit link D(X,Xs) = 0). (1.16)

The shape gradient is a field of interest for design engineers. It should confirm their knowledge about
how to modify the solid walls to improve the values of the output of interest and possibly give them new
intuitions.

1.1.8 Discrete versus continuous adjoint. ONERA options for discrete adjoint

For the sake of completeness, annex 1 presents the equations of continuous adjoint method in the simple
case of a 2D Euler flow, although only discrete adjoint was developed ar ONERA. This choice was made
in agreement with Airbus experts [111] and for the following reasons:
(1) to get the gradient of the discrete objective and be fully consistent with the optimizer in the optimiza-
tion process ;
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(2) to work on well posed problems for all types in functions. More specifically, ONERA has developed
a strong expertise on far-field drag extraction under the lead of Destarac [35] and continuous adjoint
equations do not exist for functions defined as integrals inside the fluid domain (typically, in the calcu-
lations of annex 1, the flow sensitivity can not be cancelled along the integration contour of the far-field
functions) ;
(3) to possibly use automatic differentiation [66] to produce routines calculating Jacobian of fluxes mul-
tiplied, on the right, by flow sensitivity or, on the left, by an adjoint vector. This technique is more and
more commonly used even concurrentlty with the continuous approach [48, 3, 191] ;
(4) to get a theoretically simple definition of adjoint systems even for complex flow equations involving
complex turbulence models source terms.
The accepted drawback of this choice is that the discrete “explicit part”of the adjoint code, that linearizes
the discrete fluxes entering the flux balance R, is considerably longer and more complex than its contin-
uous adjoint counterpart would have been. The discrete adjoint code has been essentialy written by hand
although INRIA’s Automatic Differentiation code Tapenade has been used for tests and checks [70]. This
approach is more error-prone than automatic differentiation but leads to a more efficient code [114].

ONERA’s aerodynamic discrete adjoint module is part of the elsA code [23, 25, 24]. This module is
named elsA/Opt [145]. End of 2015, its number of lines was about 300000 which was about 20 percent
of elsA’s total number of lines. elsA is a very large finite-volume cell-centred code and it has not been
planned to differentiate all schemes and turbulence models. The considered types of equations / schemes
/ linearization are the following:
– Euler flows discretized by Roe flux [160] (with parabolic entropy fix) plus MUSCL approach with van
Albada limiting function [174, 173] or by Jameson-Schmidt-Turkel flux [85].
– RANS equations discretized by the above mentioned convective fluxes and so called 5P-COR viscous
fluxes (cell-centred gradients which arithmetic mean at interface is corrected in the direction connecting
the centers of the two cells adjacent to the face) with frozen eddy-viscosity in the linearization.
– RANS and Spallart-Almaras model equations with linearization of the equation of the discrete model.
Discretization and linearization for mean flow are as presented before. Discretization of one-equation
turbulence model involves first order convective Roe flux (with parabolic entropy fix), 5P-COR viscous
flux formula and source term calculated from cell-centered gradients.
We recall here the assumption that the discrete steady residual of the scheme should be continuously
differentiable w.r.t. to flow and mesh to perform discrete gradient calculation (§1.1.1). Actually most of
the results presented in later sections were obtained with Roe flux [160] with parabolic entropy fix plus
van Albada limiting function [173]. This flux possibly entering R is actually C1 (but not C2) w.r.t. the
flow field W . Some results have been obtained with Jameson-Schmidt-Turkel scheme [85] that is not
C1 where the velocity at a specific face is orthogonal to its normal vector 4 or possibly where the clas-
sical pressure-velocity sensor for high gradients is zero 5 . The reader is referred to [121] (§1.2) for an
example with a symmetric-mesh and symmetric-flow where the violation of this regularity requirement
has clear consequences. The same section of the PhD thesis of Nguyen-Dinh [121] discusses a possible
regularization to make this scheme continuously differentiable. Considered viscous flux formula, and
source term discretization are both C1 w.r.t flowfield.
Besides, all mentioned fluxes and source terms are C1 w.r.t mesh X .
As concerning the resolution of direct differentiation and adjoint equation with the elsA code, the method
that has been generally used is LU relaxation method for an iterative scheme based on an approximate
Jacobian of the scheme. Actually, although direct differentiation and adjoint sets of equations are linear,
their size is too big for large 3D test cases to use direct resolution and iterative solve is the classical way

4the spectral radius involved in numerical dissipation then includes a |V .S| term with V .S = 0
5in its usual form involving only static pressure, this sensor has the following form νi = | pi+1−2pi+pi−1

pi+1+2pi+pi−1
|
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of processing. The selected method has been derived from the classical backward-Euler schemes [22].
The approximate Jacobian and LU relaxation have been proposed and studied by Drullion and me [138]
and adapted for adjoint. More information is given in section §1.2 about these implicit stages. Recently,
Cerfacs engineers and then Blondeau at ONERA proposed advanced GMRES methods to solve adjoint
equation [150]. More advanced methods involving Runge-Kutta steps and multigrid have been presented
by Xu et al. [186] and could be considered for elsA/Opt future improvements.
The generalization of iterative resolution of direct differentiation and adjoint equation raised the ques-
tions of “exact duality” at the beginning of the 2000’s:
– under what conditions would the asymptotic rate of convergence of direct non-linear problem and di-
rect differentiation method be the same ?
– under what conditions the gradients evaluated at any step of the iterative process for direct differentia-
tion and adjoint method would be strictly equal (so that their convergence rate would be the same) ?
Giles and coworkers, Nielsen and coworkers answered to these two questions for different types of
schemes [57, 58, 59, 126]. The iterative methods for direct and adjoint gradient methods in elsA/Opt
where no built with this strict requirement. It nonetheless very rarely happened that, with corresponding
parameters and options, one calculation would diverge and the other one would converge.
The elsA software is a cell-centred finite-volume code and specific boundary states (denoted Wb in the
elsA documentation) are calculated at boundary faces. For standard boundary conditions, Wb depends
on the flowfield in the adjacent cell and on the local normal via discrete characteristic relations. It is
needed to differentiate Wb w.r.t. flow for all discrete gradient methods (terms entering the Jacobian
∂R/∂W ) and also w.r.t. mesh for the adjoint-mesh method. Besides, the support of the functions of in-
terest is most often a set of boundary faces and terms like (∂J/∂Wb)(∂Wb/∂W ) or (∂J/∂Wb)(∂Wb/∂X)
appear in the right-hand of adjoint equation (first term) and in the expression of dJ/dX (second term).
The complete gradient equations are easily derived with these actual dependancies [142]. All classical lo-
cal boundary conditions have actually been differentiated plus radial equilibrium. Besides, elsA involves
a large number of matching conditions (1 to 1 matching, 1 to N matching, general surface matching...)
that have been taken into account in the discrete gradient module elsA/Opt by a ghost-cell filling pro-
cess (using the same routines for adjoint vector or flow sensitivity as for flowfield).
As concerning mechanical formulations for Euler and (RANS) equations, the basic option is the simplest
“aircraft” formulation where flow equations involve velocity in absolute frame of reference and where
this set of axis is used for the projection of the momentum conversation law. For rotating flows, two
formulations are avalaible in elsA: equations with relative velocity in the relative frame of reference (for
turbomachinery flows) and equations with absolute velocity projected in the relative frame of reference
(for rotor flows ; absolute velocity avoids numerical issues in far-field cells) although the second formu-
lation tends to replace the first for turbomachinery flows. This framework was fixed by Jean-Christophe
Boniface [16]. Extension of direct differentiation method and discrete adjoint parameter method for ab-
solute velocity / relative frame was done by Dumont [41] with my contribution for the analysis of the
numerical terms and the debugging. It is described in §1.2 that is completed with a short presentation of
an adjoint-based local shape optimization. Extension of direct differentiation method and discrete adjoint
parameter method for relative velocity / relative frame was carried out by Pham and Renac [148, 154].
Finally, lets us note that advanced post-processing tools have been developed at ONERA for the aircraft
(FFD series of codes, under the lead of Destarac [35]), helicopters (HeliOpt, under the lead of Dumont)
and engines (Xopt now named TurbOpt, under the lead of Castillon). The specific functions calculated
be these tools are precisely the one that are to be involved as objective and constraints in the local opti-
mization process. For the sake of consistency and efficiency, the partial derivatives ∂J/∂W , ∂J/∂X are
calculated by these tools.
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1.1.9 Note on mesh convergence of discrete adjoint fields

Discrete adjoint mesh convergence is connected to both the discrete adjoint overview (§I.1) and the
review of goal oriented mesh refinement methods (§II.1). The subject is rather discussed here for the
clarity of the next chapter. Actually all classical goal-oriented mesh refinement methods implicitely
assume adjoint mesh convergence. The best illustration is probably the rewriting of the well-known dual-
weighted-residual as proposed by Venditti and Darmofal [182] (H denoting current grid, h denoting finer
embedded grid),

(Λh
∣∣∣
WH
h

)TRh(WH
h ) = ΛHh Rh(WH

h ) + ((Λh
∣∣∣
WH
h

)T − ΛHh )Rh(WH
h ),

where it is implicitly assumed that ΛHh is a satisfactory approximation of Λh
∣∣∣
WH
h

which converges to-

wards Λh as WH
h converges towards Wh. Unfortunately the question of discrete adjoint mesh conver-

gence is not so simple when singularities are expected in the adjoint field, which is the case for Euler
flows, under some far-field and geometrical conditions, at stagnation streamline and at the wall [60].

Let us first recall the end of section §1.1.5: following a paper of Giles and Pierce [60], under the exis-
tence of d 6 independent physical source terms δR that can be added everywhere in the fluid domain to
the right-hand side of the evolution equations of interest to define well-posed problems, we may expect
the discrete adjoint fields to converge as the mesh is refined as numerical solution of a series of well-
posed physical problems (1.7).

It is not absolutely clear whether mass injection or normal force, for example, can be applied in all the
fluid domain including contact discontinuities and shock-waves to define a sound physical problems and
we move to the numerical point of view. Adjoint mesh convergence is obviously not the simple counter-
part of flow mesh convergence as the discrete adjoint field is the solution of an equation which depends
on the discrete flow calculated on the current grid. The question of mesh convergence could hence be
possibly addressed with a “perfect” flow solution interpolating a limiting flow field to the current grid to
make independent flow and adjoint grid convergence. Actually, for all the following discussion, only the
practical point of view with converged discrete flow then converged discrete adjoint based on this flow,
is considered

A technical point is made before moving to the bibliography on the subject of discrete adjoint mesh
convergence : In the discrete adjoint module of a finite volume CFD code, R may be defined as the
flux-balance or possibly the flux balance divided by the cell-volume (often called “explicit residual” and
used as right-hand-side for implicit stages). 7 Discretizing Euler flux balance in one cell of a structured
mesh, assuming the flux is simply the physical flux at the arithmetic mean of left and right state, is one
simple way to establish a link between discrete adjoint equation (1.5) and continuous adjoint equation
(3.6). In this comparison, it clearly appears that the residual R of the discrete adjoint should be the flux
balance so that the discrete adjoint vector would be the counterpart of the continuous adjoint vector. It is
then actually observed that the discrete adjoint field has similar general aspect when moving to coarser
or finer grid.

Maybe the first contribution to the subject of discrete adjoint mesh convergence is the one of Giles, Duta,
Müller and Pierce [58, 59]. They considered a transonic flow about the NAC0012 with a strong shock
which wandered between mesh points as the angle of attack was varied. The lift of the aerofoil was seen
to be somewhat dependent on the position of the shock within the local mesh cell, as a result of which the

6dimension of the considered system of e.d.p. that is 4 in 2D and 5 in 3D
7From a strict mathematical point of view, any other definition ensuring null flux balance at convergence would lead to

consistent discrete adjoint gradients. Flux balance divided by cell-index, or multiplied by z coordinate of center would work...
but add useless calculations and have no connection with continuous adjoint.
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design parameter-lift curve took on a slightly scalloped shape. As the mesh was refined, the amplitude
of the scalloping was reduced as expected – but, as it always took the same shape, the amplitude of its
gradient with respect to the angle of attack was not reduced. A counterpart issue for internal flows was
discussed and illustrated with a shocked nozzle flow with varying outlet pressure and “lift” as function of
interest. From this numerical issue for the gradient, Giles and his co-authors concluded that “the fact that
grid convergence of non linear flow calculation does not guarantee convergence of linear sensitivities is
a fundamental problem for the discrete approach to adjoint calculations”.
Altough they relate to continuous adjoint, I mention here recent contributions by Lozano: in two papers
published in 2012 [105, 106], he discusses the assets and drawbacks of different continuous adjoint for-
mulations for Euler and Navier-Stokes equations. One test case is the NACA0012 airfoil represented by
a NURBS and mesh convergence of lift/drag sensitivities w.r.t. to the parameters of the NURBS (coor-
dinates and weights of the 18 selected control points) is studied. Discrepancies are observed between
gradients issued from ajoint sensitivities and finite differences even on the finest grid. In a more recent
contribution paper [108, 109], the same author points out a strong lack of adjoint mesh convergence for
a simple case: a transonic (M∞ = 0.8, AoA = 1.25o) flow about the NACA0012 aerofoil is considered
and lift-adjoint is computed 8. Mesh convergence is not observed at the wall for this lifting flow whereas
it is demonstrated for a non-lifting flow. A specific issue appears at the trailing edge where the values of
the adjoint variables at the next-to-trailing-edge nodes grow continually as the mesh is refined.

I am not aware of any article that had further discussed the issues pointed ot in reference [58, 59]. As
concerning the question recently raised by Lozano [108, 109], it deserves a specific in-depth study. Nev-
ertheless, as together with PhD students and colleagues, we have calculated series of Euler flows and
corresponding CLp/CDp-adjoint fields for various verifications, a few plots a presented in this section
for a simple flow about the NACA0012 airfoil at transonic flow conditions (M∞ = 0.8, AoA = 2.o).
Once again the meshes are those of the classical article [180]. The selected scheme is the one defined by
Jameson et al. [85] 9. The isolines of the first component of lift-adjoint are plotted in the fluid domain
– figure 1.1 – and no sign of lack of mesh convergence can be observed in this first image. It is also
plotted in the cells adjacent to the wall and along a line normal to the stagnation streamline, distant of
half a chord to the trailing edge – figure 1.1 upper part. The reason for this second extraction is that close
adjoint-isolines are observed in the vicinity of the stagnation streamline where Giles and Pierce predicted
an inverse square-root singularity [60]. The drawback of the plots for cells adjacent to the wall is that the
location of the variables vary when the mesh is refined. This is the reason why first and third component
of lift -adjoint are plotted and along the vertical line (x=0.5 z>0.) as function of z components – figure
1.1 lower part. – figure 1.1 left and right. Anyhow, it clearly appears in this series of figures, that the
adjoint mesh convergence is not reached at oblique characteristic line or at the trailing edge even for that
last two very dense meshes.

8direct and adjoint computations with DLR’s unstructured solver TAU also used for the two previously quoted references
9Actually, the convergence of flows equations to machine zero could be achieved for the (129×129), (257×257), (513×513)

and (1025×1025). Reduction of the explicit residual was 10−9 for the (2049×2049) mesh
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Figure 1.1: NACA0012 M∞=0.8, AoA = 2.o inviscid flow – Isolines: first component of CLp-adjoint
vector – Curves: – Up left: cells adjacent to the wall (first component) – Up right: along a line normal to
stagnation streamline, half a chord from stagnation point (first component) – Down left: vertical cell-line,
suction side (X=0.5, Z>0) (first component) – Down left: same location (third component)
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1.2 Implicit stages for flow solution and gradient calculation methods

The purpose of this section is first to define the approximate Jacobians that have been proposed and
studied for flow calculation by backward-Euler schemes [138]. A second subsection then describes the
way these implicit stages have been adapted to direct differention method and discrete adjoint method.

1.2.1 Implicit stages for backward-Euler schemes for steady-state flows

The implicit stages of elsA that are most often used to solve direct and adjoint discrete equations on
structured meshes, derive from those proposed by me [134] and studied with Drullion for the computation
of steady state flows with backward-Euler schemes [138]. These implicit stages (named “LURELAX” in
the framework of the elsA project) are briefly rewieved in this section, whereas the next section indicates
which ones were selected for discrete gradient computation and how they were adapted for adjoint. The
generic form of a backward-Euler scheme is simply:(

I + ∆t
V ol

∂R

∂W

(APP ))(
W (l+1) −W (l)

)
= − ∆t

V ol
R(W (l)) (1.17)

Most often, an approximate Jacobian of the scheme ∂R
∂W

(APP )
is first defined and an approximate reso-

lution of the linear system (approximate factorization method, relaxation method, Krylov method...) is
selected which completes the definition of the implicit stage.
Of course, approximate Jacobians of both upwind and centred schemes is an old topic in CFD [19]. The
specific features of those proposed in reference [138] are the following: (1) all terms are gathered at cell
centers (avoiding the complexity of Jacobian absolute value or spectral radius calculated at interfaces) ;
(2) if the viscous flux is calculated from cell-centred gradient, it uses a five point approximate lineariza-
tion of viscous flux balance.
The basic matrix approximate linearization of convective and diffusive flux balance entering (∂R/∂W )APP
are hence the following :
• for the inviscid flux

d(Fi+ 1
2
− Fi− 1

2
) ' (δ+

i A
− + δ−i A

+)dW = −A+
i−1dWi−1 + |Ai|dWi +A−i+1dWi+1, (1.18)

|A|, A+, A− matrices being the absolute value, positive and negative part of (diagonalizable) physical
Jacobian A in the mesh line direction (evaluated at cell-centers taking the mean of adjacent faces surface
vectors) ;
• for the viscous flux

− d(F v
i+ 1

2
− F v

i− 1
2
) ' −Mv

i−1dWi−1 + 2Mv
i dWi −Mv

i+1dWi+1 (1.19)

if F v is calculated from face centred gradients, but if cell-centred gradients enter F v, then

− d(F v
i+ 1

2
− F v

i− 1
2
) ' 1

4(−Mv
i−2dWi−2 + 2Mv

i dWi −Mv
i+1dWi+2) (1.20)

where Mv is the classical Jacobian of the thin layer-approximation of viscous flux [27, 148].

Actually, reference [138] also considers two possibly efficient variants in these implicit phases: the
classical scalar approximation of convective and diffusive terms [190] and the inclusion of a fourth order
artificial dissipation term in the original linearizations (without scalar approximation). The linear systems
were solved by LU relaxation (two or four steps). Drullion presented the scalar linear stability analysis
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of the schemes which we checked together, whereas I conducted series of (RANS)&(k,ω) monogrid and
multigrid calculations for a wing and a wing-body-pylon-nacelle configuration for three centred schemes
[85, 110, 168] for the studied implicit stages. The reader is refered to [138] for the analysis of the most
efficient associations of centred schemes and implicit stages.

1.2.2 Implicit stages for the recursive solution of discrete adjoint equation

Until recently, the discrete direct differentiation equation and discrete adjoint equations were solved in
elsA by iterative methods that read

(
∂R

∂W

)(APP ) T (
λ

(l+1)
k − λ(l)

k

)
= −

(
( ∂R
∂W

)Tλ(l)
k + (∂Jk

∂W
)T
)
, (1.21)
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= −
(

( ∂R
∂W

)dW
dαi

(l)
+ ∂R

∂X

dX

dαi

)
. (1.22)

Comparing equation (1.17) (backward-Euler scheme) and equation (1.22) (direct differentiation method),
it is clear that the involved linear systems may be almost the same in both contexts – there is only a
∆t/V ol factor that should be inverted for all lines to produce a suitable routine for direct differentiation
equation. This is actually the way the first routines for the solution of direct differentiation were de-
rived. The basic features were kept – same approximate Jacobian definition, few LU-relaxation steps to
approximately solve equation (1.21), multi-domain correction at matching-boundaries between two L or
U relaxation steps – but not all approximate Jacobian routines were transfered to the gradient calculation
module. The first reason was the growing use of the discrete viscous flux based on cell-centred (velocity
and temperature) gradients corrected at interface in the direction of the two adjacent centers [137] (that
is called 5P-COR in the framework of the elsA project). For structured meshes, this discrete flux exhibits
an accuracy close to the one obtained with interface-centred gradients, whereas its memory storage is the
low one of the classical formula based on cell-centred gradients. As the approximate Jacobian of its flux
balance is equation (1.19), only this formula was coded in the gradient calculation module. Besides, as
up to now Roe’s flux is the most used inviscid discretization with elsA/Opt and as it is best combined
with block-matrix approximate Jacobians in the iterative procedure (1.22), the scalar-approximated ma-
trices studied in [138] have not yet been transfered in the gradient calculation module.

Concerning the discrete adjoint equation, a technical question araised: formulas like (1.18),(1.19) or
(1.20) imply that all block-matrices of a specific column of the approximated Jacobian are evaluated at
the corresponding same point. This allows a lot of simplifications when coding the L- and U-relaxation
routines but this property is lost of course when moving to adjoint. Keeping this coding would have
meant to change the approximate Jacobians to have all block-matrices of a specific line evaluated at
the corresponding same point. It was decided to keep the same approximate Jacobian and define a new
coding for LU relaxation adjoint routines.

1.3 Extension of discrete gradient capability to relative frame/asbsolute
velocity

To our knowledge, Lee and Kwon were the first to develop an adjoint approach for a rotor flow [96]. In
their method, the 3D Euler equations were solved on unstructured meshes and they used a continuous
adjoint approach. More recently ONERA (with the elsA code [23, 25, 24]) and NASA Langley (with
the FUN3D code [11]) pursued the objective to carry out adjoint-based local optimization with (RANS)
equations. Nielsen et al. [125] developed a discrete adjoint for (RANS) discretized on unstructured
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meshes including full linearization of Spallart-Almaras turbulence model. They presented the optimiza-
tion of a tilt rotor in purely axial flow. At the same time, Dumont and his PhD supervisors developed
the same kind of capability with structured meshes and presented optimization of ONERA 7A rotor and
ONERA-DLR ERATO rotor [42, 43, 41, 44].

1.3.1 Flow equations, discretization

The classical Navier-Stokes equations read

∂ρ

∂t
+ div(ρV ) = 0 (1.23)

∂ρV

∂t
+ div(ρV ⊗ V + pI) = div(τ + τR) (1.24)

∂ρE

∂t
+ div(ρEV + pV ) = div((τ + τR)V )− div(s̄)− div(s̄t) (1.25)

where all variables are defined according to Favre 10, where τR is the Reynolds stress tensor and st is
the diffusive flux of turbulent enthalpy. We consider here only models relying on Boussinesq assumption
where τR and st are respectively proportional to τ , the tensor of viscous stresses and s, the heat flux. The
retained turbulence model is the k− ω model of Kok [93] that defines the turbulent viscosity involved in
the equations defining τR and st.
The system of equations (1.23)-(1.25) is reformulated in a relative frame of reference with absolute
velocity. The rotor is assumed to rotate at constant angular speed Ω and, when using a frame of reference
attached to the rotor, we may still consider the absolute velocity but calculate, gradient, integrals... and
write the momentum equation in the rotating frame of reference. The use of absolute velocity avoids
to manipulate large non uniform velocity fields in the far-field and prevents the apparition of numerical
noise. Conversely, the use of the rotating frame of reference makes the rotor and mesh steady. The
no-slip condition on the rotor blade is then formulated as the equality between the flow velocity and the
local entrainment velocity of the rotating frame. For these questions of velocity and frame formulation,
the reference document at ONERA is the PhD thesis of Boniface [16].
The velocity of a fixed point of the rotating frame in the inertial frame is from now on denoted Ve ( in
French “vitesse d’entrainement”). The (RANS) equations with this choice for velocity and frame read

∂ρ

∂t
+ div(ρ(V − Ve)) = 0 (1.26)

∂ρV

∂t
+ div(ρV ⊗ (V − Ve) + pI) = div(τ + τR) + C̄ (1.27)

∂ρE

∂t
+ div(ρE(V − Ve) + pV ) = div((τ + τR)V )− div(s̄)− div(s̄t) (1.28)

where C is a source term arising from the definition of velocity and frame

C̄ = −ρΩ ∧ V ,

and Ω is the vector defining the constant rotation w.r.t. the rotor-axis (which norm is equal to the angular
velocity).

10in compressible (RANS) equations, ρ and p are defined as statistical repetition mean of the corresponding physical quanti-
ties, V is defined by Favre mean, that is the statistical repetition mean of ρV divided by the one of ρ
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1.3.2 Discretization and linearization in direct and adjoint modes

Among all the space-discretizations available in the elsA code, the ones that have been linearized have
been recalled in subsection §1.1.8. Among the two linearized inviscid fluxes, the one retained for the
steady state calculation was Roe flux with van Albda limiting function [160, 174, 173]. The frozen tur-
bulence assumption was retained in the linearization ; its influence on the accuracy of flow and functions
of interest sensitivity was eventually checked ([41] §2.7 [42] §VI.B) and found acceptable.
The steady state simulation capability with absolute velocity / relative frame has been implemented in
the elsA software by Boniface. The adaption of the direct differentiation / adjoint-parameter capability
11 to this formulation has been carried out by Dumont with my contribution for the analysis of discrete
term, coding options and debugging. Five steps were required ([41] §2.6):
– adapting Roe flux linearization, correcting Jacobian eigenvalues and Harten fix w.r.t. absolute veloc-
ity/absolute frame formulation ;
– linearizing the source term of the formulation that depends on ρV ;
– adapting the linearization of inviscid wall boundary condition (for objective and residual linearization)
accounting for wall displacement with velocity Ve;
– adapting the linearization of viscous wall boundary condition (for objective and residual linearization)
accounting for wall displacement with velocity Ve ;
– adapting the linearization of far-field boundary conditions (that depends on Ve) for residual lineariza-
tion ;
– adapting to the formulation the approximate Jacobian of the Newton/relaxation method and the additive-
Schwartz multi-domain correction between two relaxations steps – equations (1.22) and (1.21). Actually,
all Jacobians, positive/negative/ absolute value of Jacobians have their eigenvalues shifted by Ve.S where
S is the relevant surface vector.

1.3.3 Example of application : ERATO rotor

This test case is selected to provide an example of application of previous adjoint capability and a glance
at adjoint-based aerodynamic optimization at ONERA. More general information about that second ac-
tivity can be found in [14] or [145] but, in a nutshell:
– for parametrization, either the mesh is globally parametrized by free-form [188] or the solid shape is
parametrized by any of the numerous classical techniques and the wall deformation is propagated in the
fluid domain by an analytic method [111] or quaternions. In the later case, the method is differentiated
to possibly calculate the shape gradient (§1.1.7)
– elsA is used for solving direct [23, 25, 24] and adjoint equations (§1.1.7 and [145]) ;
– objective, constraints and their partial derivatives are calculated by application-specific codes named
FFD72 for aircraft [35], HeliOpt for rotor flows [41] and TurbOpt for internal engine flows ;
– most used descent methods are conjugate gradient method for unconstrained problems and feasible
direction method for constrained problems [176]. Least Square Sequential Quadratic Programming has
also been successfully tested [28].

The considered rotors are made of four blades. The flow about one blade is calculated and the influence
of the other blades (in particular vortex shed by front blade) is obtained by angular join conditions ex-
pressing the angular periodicity of the flow. A CH structured mono-domain mesh is designed about the
simulated blade. It is checked after calculation of the (RANS) steady state flow that y+ of first cell center
(adjacent to the wall) is close to 1.
Concerning the parametrization of blades and mesh deformation, Dumont and Le Pape decided to never

11The adjoint-mesh capability was not developed at that time. See §III Conclusion and perspectives
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deform the profiles of the initial blade, as it is very difficult to define profiles that are suitable for heli-
copter blades, especially for forward flight were the blade encounters an unsteady regime. The design
parameters were then twist, chord, dihedral and sweep. The laws for the variations of these geometrical
quantities w.r.t. radius can be either linear by part functions or Bézier curves. The mesh deformation
method that defines a new volume mesh X(α) from a new surface mesh XS(α) is an analytic C1 func-
tion that propagates full deformation up to a distance d1, no deformation after distance d2 and makes a
regular transition between d1 and d2 (see [41] §2.4 for more details). The objective function for the local
optimization is the classical one for aerodynamic optimization of hovering rotors, the Function of Merit
FM ([41] §1.5 and Annex B).

The ERATO rotor has been designed in the framework of an aeroacoustic ONERA-DLR joint initiative
[166, 153]. Its radius is R = 2.1 m, its mean chord 0.14 m and its twist varies linearly w.r.t. to span
and is egal to -10 degree at the tip. Its aeroacoustic performance has been assessed in windtunnel. Its
aerodynamic performance in forward flight has been proved to be good but its performance in hovering
flight has been considered as not very good, in particular for high loads [41].
For this reason, an adjoint-based local optimisation has been carried out for this geometry. The tip Mach
number of the flow was 0.617 and the Reynolds number was the one derived from radius, velocity of
the tip, density and dynamic viscosity of the air at the ground. Laws describing changes in twist, chord
and sweep on the external part of the rotor, [0.45 R, R], have been considered. These are degree nine
polynomials curves like

TW(t) =
i=9∑
i=0

TWi Bi,n(t) t = (r − 0.45R)
.55R

Bi,n(t) =
(
n
i

)
ti(1− t)n−i,

where the first of the TWi is fixed and the eight others have fixed abscissae (see the red points, fig-
ure1.2) and varying ordinate (that are precisely the design parameters). Using the classical properties of
Bernstein polynomials, it is possible to bound the maximum twist (resp. chord and sweep) by bounding
identically the coefficients in the Bézier functions. On top of these 24 (3×8) parameters, the angle of ro-
tation of the blade along its span, that is called collective pitch for rotors, has also been included as design
parameter in the optimization process. The objective function was the FM . No constraint is involved in
the local optimization but considering the definition of FM , it is unlikely that the lift would be decreased
during the optimization. Besides, a full polar for initial and final shape was eventually calculated.
Seven steps of adjoint based local optimization have been done. The (discrete adjoint) gradient vector of
FM at each step is used by the conjugate gradient method of Fletcher and Reeves [53, 176] to define the
successive descent directions. Based on an estimation of step size, three configurations (geometry and
collective pitch) in the fixed direction of descent are defined for which flow and Figure of Merit are com-
puted. A third order polynomial interpolation for FM is then used to estimate by 1D maximization the
descent step and the configuration where the optimization process is to be pursued. Seven optimization
hence mean 28 flow computations (possibly restarted from neighboring flow) and seven adjoint solves.
The global increase of FM is 6.6 points. The changes in shapes is described by the Bézier curves for
twist chord and sweep – see figure (1.3) the three final curves. The variation of shape can be directly ob-
served in Figure (1.5) that also presents the change in pressure distribution in three span sections. Finally
looking at polar curve of the rotor – FM as a function of collective pitch, figure (1.4) – it is observed
that the optimized shape has led to both higher lift and higher FM (at constant lift, the optimized shape
has an higher FM in all the domain of lift/collective pitch).
Finally, the CPU cost of the optimization was calculated and also its counterpart assuming gradients of
FM would have been calculated by finite difference (all time measurements refer to NEC SX8, former
large computing facility of ONERA). The time needed to get a steady state flow solution was 1h20min,
the time to get the adjoint gradients was 1h40min. The total time of adjoint-based optimization was
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hence 49 CPU hours. Would the gradient of FM w.r.t. the 25 parameters have been calculated by first
order finite difference, the cost would have been 270 CPU hours. The corresponding cost with second
order finite difference being 504 CPU hours. The advantage of adjoint method was then obvious.

Figure 1.2: Position of the 8 Bézier poles of
the laws for geometrical changes Figure 1.3: Variation of geometrical laws

Figure 1.4: Comparison of Figures of
Merit (as functions of lift varying collec-
tive pitch)

Figure 1.5: Comparison of Cp contours

1.4 Airfoil optimisation based on shape gradient

Defining the number of parameters that is suitable to drive a shape optimization is not a trivial task.
Obviously, very few or too global parameters is not a good option as the optimal shape(s) may not be
part of the design space. Castonguay et al., Vassberg et al. and Carrier et al., for example, illustrated this
issue [29, 179, 28]. Conversely, it is known from a long time that very large design spaces may introduce
high-frequency noise in the gradients of the functions of interest which may lead to weavy shapes and
failure of descent methods – see Reuther et al. [158, 159], Li et al [100, 101], or Stück et al. [167].
“Noise” does not mean here that the gradient is numerically unstable and prone to numerical errors but
that it exhibits high frequencies for many simple problems and can hence not be safely used in descent
methods [101] 12.

12 This can be considered as obvious. From a mechanical point of view, one can argue that moving towards wavy shapes will
reduce the aerodynamic performance of the airfoil because (if the flow is attached) as the regularity of the velocity and pressure
distribution is directly related to the airfoil curvature as easily understood by examining the Euler equations written in the local
streamwise reference frame [34]

29



One way to go forward, is to nevertheless use the richest possible design space for a given mesh, that is
the set of all wall nodes coordinatesXS , but smooth the shape gradient dJ/dXS – or more commonly, its
component normal to the wall (dJ/dXS , n) – before using it in a local optimization algorithm. Different
research teams have studied several types of smoothers. At ONERA, Bompard, Maugars, A. Costes,
Désidéri and I worked on this topic [12, 15, 33]. Bompard and his supervisors proposed an original
smoother and an original criterion to assess the validity of new shapes [12, 15]. This work was unfor-
tunately not published in an international journal due to uncomplete proof of superiority over existing
methods and inability to include friction in the adjoint step.
The state of the art about shape gradient smoothing, Bompard et al. smoother and criterion for shape
suitability [15] are presented here after.

1.4.1 Profile smoothing

For the sake of completeness, let us first note that profile smoothing is not always related to design.
Campbell defined a curvature smoothing procedure in the framework of its inverse design tool CDISC
[26, 99]. It is based on Akima’s interpolation scheme [1]. The CFAST method of Li and Krist, based on
Dierckx’s spline [37], is meant to remove curvature oscillations with extremely small geometry changes
when defining a cubic spline description of an airfoil from a set of points [99].

1.4.2 Implicit shape gradient smoothing. State of the Art

The focus is here on the smoothing of the shape gradient for profile optimization by descent method. In
practice, the field of normal shape gradient,

d = ( dJk
dXS

, n),

(that is a scalar field defined at each node of the aerofoil) is smoothed and the corresponding operator is
denoted S. Among all proposed methods for the regularization of field d, the one defined by Jameson is
the most commonly used : it is based on an implicit residual smoothing method (IRS) [98, 83], previously
introduced as an implicit stage for steady state flow calculations. It results in a smoothed normal shape
derivative also called “Sobolev gradient” as it exhibits a property of decreasing the objective in a relation
where the right-hand-side is expressed as a weighted dot product of H1

0 [81, 92]. The method has
been presented by Jameson and coworkers in numerous articles and conference papers [79, 80, 82, 84,
86, 87, 81, 92]. It was used among others by Mohammadi et al. in their CAD-free framework [112],
Mousavi, Castonguay and Nadarajah [113, 29] and Schmidt, Schultz, Gauger et al. [162] who presented
the operator as an approximate Hessian. In [82, 84] the authors noted that, when using a smoothed
information, incomplete convergence of the flow and the adjoint solution is sufficient thus permitting
large savings in computational costs.

The interior point equation for the smoothing of 1D field d in S(d) is

−εJ S(d)l−1 + (1 + 2εJ)S(d)l − εJ S(d)l+1 = dl

The first and last equations can be adapted in particular to ensure that the sum of the element of the S(d)
is equal to the sum of the d terms. It is also possible to remove the εJ terms from one line to equalize the
corresponding left-hand-side and right-hand-side components. This is often done for leading-edge and
trailing edge after the value of d at these points has been set to zero in order to keep the chord unchanged.

Finally, a method associating ideas of parameter-based and parameter-free shape optimization is men-
tioned : Castonguay and Nadarajah used implicitely smoothed shape gradients in conjunction with local
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shape parameters [29]. In the classical reduced form of discrete adjoint gradient

dJk
dαl

= dJk
dXS

dXS

dαl
l ∈ {1...nα} k ∈ {1...nf},

the shape gradient dJk/dXS is replaced by a smoothed counterpart field. Reference [29] discusses the
benefit of this approach for aerofoil optimization with B-splines and Hicks-Henne bumps.

1.4.3 Explicit shape gradient smoothing. State of the Art

In [80] Jameson also considered a simple two-pass three-point-per-mesh-direction explicit smoothing,
one pass being

S(d)l = εJdl−1 + (1− 2εJ)dl + εJ dl+1.

The same operator was used recursively by Jaworski and Müller [88]. Recently, Stück et al. used an
explicit operator based on a convolution of the shape gradient with a truncated Gaussian kernel and
established a link between this operator and Jameson’s implicit operator [167]. In the slightly different
context of multi-level shape optimization, Vasquez, Dervieux and Koobus defined an explicit smoothing
operator that projects the current shape change to a smaller space [178].
More geometrical methods have been proposed and assessed. In particular, the POSSEM method of Li
et al. controls the curvature of the airfoil induced by a shape modification in case it is defined by cubic
B-splines [100].
Besides, an advanced explicit smoothing method has been proposed by Bletzinger and co-workers [76].
It acts on both the tangential and normal components of the shape to define suitable shapes and meshes
in the optimization process. As concerning the smoothing of normal shape gradient, the method is not
strictly parameter-free. Design parameters denoted α need to be defined. A piecewise linear filter AT on
shape gradients is used and then a transposed filter A for displacement of the wall nodes δXS

dJ

dα
= AT

dJ

dXS
[descent algorithm for α] δXS = Aδα

1.4.4 Proposed criterion for shape gradient smoothing. Curvature-control

As mentioned before, dJ/dXs and its components orthogonal to the wall, (dJ/dXS , n), are very wavy
fields even for usual airfoils, flow conditions, meshes and functions of interest, whereas the airfoils
considered all along the optimization path must be regular. This is the reason why smoothing operators
are applied to dJ/dXS or (dJ/dXS , n) before changing the shape of the airfoil. As curvature changes
most often result in perturbations of the flow-field, a control of the curvature total-variation of targeted
airfoils is proposed : the curvature k(s) as a function of the arc length s, is first computed over the
airfoil of interest XS , using Frenet formulas. More precisely, Frenet formulas define the curvature as
the derivative of the angle of the local tangent with a fixed direction w.r.t. the arc length. Actually, the
local angle of the curve w.r.t. the Ox axis is calculated for the points of the discrete curve XS . Then an
Akima’s spline [1], denoted S, is fitted to this function and the curvature is obtained by differentiating
the spline formula. This yield an accurate estimation of the curvature k(s) even where the discretization
nodes tend to cluster). The total variation of k(s) is then

ˆ
S
|k′(s)|ds.

In order to select suitable shapes when carrying out shape optimization, a smaller and more significant
variable was found to be obtained by subtracting the difference in curvature between the upper side
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trailing edge (arc length stu ) and the leading edge (arc length sle) and the analogous quantities on the
lower side:

Ψ(S) =
ˆ
S
|k′(s)|ds− |k(sle)− k(stu)| − |k(sle)− k(stl)|.

The curvature of the classical RAE2822 profile is presented at figure 1.6 as a function of the arc length s.
It appears that Ψ(S) does remove the influence of the very strong negative curvature at the leading edge,
accounting only for changes of curvature at the upper side and lower side of the airfoil.
The current airfoil at a specific step of the local optimization process is denoted Xc

s , its local normal vec-
tor is denoted nc, the characteristic step-size of the descent method is τ and d stands for (dJ/dXc

s , n
c).

Finally, S denoting the smoothing operator applied to d, the targeted airfoil is defined at each point of
the surface mesh by 13:

Xτ
S = Xc

S + τS(d)nc (1.29)

The proposed smoothing operator that is described in next subsection is recursive and uses as stopping
criterion

Ψ(Sτ ) < q Ψ(Sc) , (1.30)

where Sτ and Sc are the Akima’s splines corresponding to Xτ
S and Xc

S . A suitable value for constant q
was found to be about 2. Actually this criterion could be used in any other smoothing method to check if
a proposed new profile is suitable or not.

Figure 1.6: Curvature of RAE2822 airfoil as a function of curve length

1.4.5 Proposed recursive shape gradient smoothing based on Dierckx’s spline

The method of Dierckx is based on the search of a balance between fitting the data and minimizing a
smoothness measure. It enforces that a data fitting error is lower than a given parameter ε, and seeks the
smoothest spline curve subject to this constraint.
In this study, order-three splines are used and the smoothness is achieved by minimizing the discontinuity
jumps of the third derivatives at the interior knots of the spline. In this procedure, the number of knots
and their position is automatically chosen by the algorithm. The fitting criterion is the weighted sum
of the squares of the differences between the input function and its spline approximate. In the input
distribution d(s), the three values corresponding to the leading edge and trailing edges (upper and lower
sides) are set to zero and their weights in the fitting criterion are assigned much larger values than the

13in practice, leading and trailing edge are never displaced which means that anyhow S(d) is set to zero at theses points.
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analogous weights associated to the other inputs so that the output distribution S(d) also has null values
at these three points. The recursive algorithm is defined as follows [15]:

1. Set l = 1 ; Compute Ψ(Sc) the total variation of curvature indicator of current airfoil shape Sc

(defined by the set of coordinates Xc
S). Set d0 = (dJ/dXc

s , nc) . Compute the descent step τ that
would lead to a specified decrease of J in case J was varying linearly in direction d0.

2. Apply Dierckx’s spline interpolation with tolerance ε to the field dl−1 to get dl.

3. Compute the target airfoil based on the step size τ and the current normal displacement dl:
X l
S = Xc

S + τ dl nc .

4. Compute the curvature of the Akmina’s spline Sl corresponding to target airfoil X l
S and test if

Ψ(Sl) < q Ψ(Sc). If condition satisfied, stop ; otherwise restart at step 2 with l = l + 1.

1.4.6 Test case for smoothing operator and parameter-free optimization chain

Although the next two subsections are focuses on smoothing operator and global efficiency of the parameter-
free aerofoil optimization chain proposed by Bompard et al [15], a short presentation of all building
blocks of this chain is given hereafter. The main reason is that the complete definition of the shape gra-
dient requires the one of the space discretization residual R, the function of interest J and link between
volume mesh X and wall mesh XS . The studied parametrization-free optimization chain included six
steps [12, 15]:

1. Solve the (RANS)&(SA) equations around the current shape. The finite-volume cell-centred elsA
software [23, 25, 24] was used for this stage. Second order Roe’s flux [160] (using the MUSCL
approach [174] with the Van Albada limiting function [173]) was used for the mean flow convective
terms. Centered fluxes with interface-centered evaluation of gradients were used for both diffusive
terms. Cell-centred gradients were used for the source terms.

2. Extract the relevant aerodynamic coefficient and evaluate the objective function. The FFD code
was used [35]. For the applications, the wave drag was differentiated. The sum of wave drag and
friction was the function of interest.

3. Compute the total derivative of the objective function (w.r.t. mesh coordinates) by the discrete
adjoint method. This adjoint module of the elsA software was used [135, 145].

4. Compute the derivatives of the objective function w.r.t. surface nodes. The method deforming the
volume mesh based on the wall mesh displacements was the analytic method proposed by Meaux
and coworkers [111].

5. Smooth the normal component of shape derivative. Bompard et al. method was used.

6. Update the shape using a descent algorithm. The optimization method was the CONMIN [175]
iterative method that combines Zoutendijk’s method of Feasible Directions [192] (when some con-
straints are active) and the conjugate direction method of Fletcher and Reeves (otherwise) [53].

The RAE2822 aerofoil is considered. The flow conditions are M∞ = 0.730, AoA= 2.79o, Re= 6.5 106

(as concerning the angle of attack, see footnote 14 below). Three two-domain meshes, including 32832,
14 This test case corresponds to Cook’s et al. [32] 9th experiment related to the RAE2822 airfoil M∞ = 0.730, AoA=

3.19o, Re= 6.5 106 (this Reynolds number is based on the density, velocity, eddy viscosity at infinity and the chord of the
2D profile). Within the EUROVAL project [67], it was suggested that the influence of the wind tunnel walls could be accounted
for in the calculations by correcting the angle of attack (AoA= 2.79o instead of AoA= 3.19o). This correction, that has been
widely accepted by the CFD community, is retained for our computations.
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Figure 1.7: Two domains, 32832 cells grid
about the RAE2822 airfoil

Figure 1.8: Validation of flow solver on the
32832 cells grid

131328 and 525312 cells, are used (see figure 1.7). The pressure distributions on the airfoil are calculated
and only a slight difference is observed on the suction side upwind the shockwave. Besides the Cp curve
obtained with the 32832 cells grid is consistent with the experimental data (figure 1.8). Hence, this grid
is retained for the assessment of smoothing operators and parameter-free shape optimizations.

1.4.7 Assessment of proposed smoothing operator

The smoothing operators are tested for the nominal shape, with the scheme described in previous subsec-
tion, on a distribution of normal component of wave drag shape gradient, (dCDw/dXS ,n). The adjoint
for CDw has been run with both the frozen-turbulence assumption and linearization of the turbulence
model (see [15] figures 4 and 5). The two curves – with and without turbulence-freezing – are quite
close for both sides of the aerofoil. They are considered as representative of those appearing during the
optimization process. Finally, the distribution of (dCDw/dXS ,n) obtained with the frozen-turbulence
are retained for the assessment of smoothing methods. This distribution is presented in figures 1.9 (lower
side) and 1.10 (upper side).
The algorithm defined in section 1.4.5 has been tested with different values of ε. While increasing ε, the
fitting constraint of Dierckx’s spline definition is released and more smoothed curves are derived from
the minimization of the smoothing criterion. It is also observed that the number of recursive iterations
needed to satisfy criterion (1.30) gets lower. Figures 1.11 and 1.12 present the output curves obtained
for different values of ε. It clearly appears that the lower values of ε lead to better curves. It is ob-
served that most satisfactory curves (corresponding to ε ∈ [3.2 10−3, 10−4]) actually retain the global
features and zones of positive and negative values of the input field. Numerically, it is checked that the
dot product between d and S(d) is positive so that S(d) is an actual descent direction. Also monitored is
arccos(d, S(d)) that is almost constant in the interval of ε mentioned above. The smoothed distributions
obtained with ε = 10−4 are retained for the comparison with other methods.

For the sake of completeness, it is checked that recursivity is needed to define satisfactory smoothed
curves. If only one step of smoothing via Dierckx’s spline is applied, way larger values of ε are needed
to satisfy the stopping criterion (1.30). The lowest corresponding value is 3.2. The corresponding S(d)
distribution is plotted in figure 1.13, together with those obtained for ε equal to 2 and 4 and the reference
curve selected above. It clearly appears that these curves cannot be considered as smooth approximations

34



of the original distribution.

Figure 1.9: Distribution of (dCDw/dXS ,n).
Lower side

Figure 1.10: Distribution of (dCDw/dXS ,n)
Upper side

Figure 1.11: Recursively smoothed distri-
bution of (dCDw/dXS ,n) (figure 1.9) using
Dierckx’s spline up to the satisfaction of cri-
terion (1.30) Lower side

Figure 1.12: Recursively smoothed distri-
bution of (dCDw/dXS ,n) (figure 1.10) us-
ing Dierckx’s spline up to the satisfaction of
criterion (1.30) Upper side

Besides, (IRS) was tested for standard values of εJ . This parameter was set to zero in the equations
corresponding to leading edge and trailing edge in order to get zero value of S at these points. This
also makes the smoothing of (dJ/dXS , n) independent on the upper and the lower sides. The curves
resulting of the application of this operator to the selected distribution are presented by figure 1.14. In
our test-case, the gradient at the leading and trailing edges are very high and difficulties to apply (IRS)
have been experienced.
For the sake of completeness (IRS) was also tested inside the recursive algorithm defined for Dierckx’s
spline smoothing. Very low values of S(d) were obtained (which was the reason why (1.30) was satisfied)
whereas the resulting S(d) curves did not appear as approximations of the original d distribution.
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Figure 1.13: Smoothed distribution of
(dCDw/dXS ,n) using once Dierckx’s
spline. Lower side

Figure 1.14: Smoothed distribution of
(dCDw/dXS ,n) resulting from applying
once (IRS). Lower side

1.4.8 Assessment of proposed parameter free optimization chain

In every test, the computation is initiated with the RAE2822 airfoil geometry and carried out at the flight
conditions of the experiment of Cook et al. [32] mentioned above (M∞ = 0.730 and Re= 6.5 106).
Four design cases, similar to those introduced by Kim et al [91], have been considered :

1. drag minimization at fixed angle of attack AoA=2.79o;

2. lift maximization at fixed angle of attack AoA=2.79o;

3. drag minimization at fixed lift CL0 = 0.8;

4. lift maximization at fixed drag CD0 = 0.011.

In the study of Kim et al, the surface of the airfoil was parametrized using 50 Hicks-Henne bump func-
tions spread evenly on the upper and lower sides. In this paper, the same computations are made by the
design procedure presented in subsection §1.4.6. The satisfactory results, described in table 1.1 were
obtained with the proposed method.
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min CD max CL min CD max CL
s.t. CL ≥ CL0 s.t. CD ≤ CD0

Parameter-free
frozen µt (S.A. model) 0.0143⇒ 0.0098 0.756⇒ 0.901 0.0169⇒ 0.0120 0.8⇒ 0.998

CD0 = 0.0110
CL0 = 0.8

Parameter-free
lin. of S.A. 0.0143⇒ 0.0102 0.756⇒ 0.916 0.0169⇒ 0.0118 0.8⇒ 0.818

CD0 = 0.0110
CL0 = 0.8

50 Hicks-Henne
frozen µt (B.L. model) [91] 0.0152⇒ 0.0100 0.799⇒ 0.857 0.0167⇒ 0.0109 0.799⇒ 0.976

CD0 = 0.0143
CL0 = 0.83

Table 1.1: Results of parameter-free and parameter-based optimization chain on the four test cases
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Chapter 2

Goal-oriented mesh adaptation

Goal-oriented mesh adaptation aims at defining suitable meshes for the calculation of a functional output
(typically a force or moment for external flows ; loss, efficiency, massflow or outlet total pressure for
internal flows). Concerning finite-difference/finite-volume methods, the subject was initiated by Giles
and Pierce [61] with the goal of improving the accuracy of integral functionals. Venditti and Darmofal
then defined the most popular method for non-linear outputs focusing on both estimates improvement
and goal-oriented mesh refinement [181, 182, 183].
The scientific community became aware that the resulting adapted meshes (typically for lift of drag, for
a transonic 2D flow) were very different from those defined by the older classical feature-based meth-
ods. In particular, goal-oriented adjoint-based methods effectively refine the mesh upwind the function
support and features of interest which feature-based methods typically fail to do. Feature-based methods
also refine zones that have no influence on the flow close to the function support. Figure 2.1 provides a
visual illustration of this matter. Moreover, focusing on convergence of output functionals, it appeared
that classical feature-based indicators sometimes fail to drive the output value towards the reference one,
obtained using very fine regular meshes. This deficiency, that was early demonstrated in [184] and then
in [182] (four times) and [47], has strengthened the interest in goal-oriented mesh refinement. Finally, as
noted recently by Park in a recent paper [130], maps of goal-oriented error indicator and output adapted
grids have influenced the design of new meshes [18].
After coworkers and I coded the adjoint mesh mode in the elsA code for one of ONERA’s industrial
partners [136, 146], we considered the usage of the total derivative dJ/dX for J-oriented mesh refine-
ment. In a nutshell, the norm of this field times the local characteristic size of the mesh appeared to be
a suitable indicator for refinement aiming at an accurate J computation. This research was presented in
conference papers [147, 144, 140] and in the following journal articles [144, 122, 171, 157] :

• Goal-oriented mesh adaptation using total derivative of aerodynamic functions with respect to mesh
coordinates – With application to Euler flows. Computers and Fluids 66 (2012) (J. Peter, M. Nguyen-
Dinh, P. Trontin)
•Mesh quality assessment based on aerodynamic functional output total derivative. European Journal of
Mechanics B/Fluids 45 (2014) ( M. Nguyen-Dinh, J. Peter, R. Sauvage, M. Meaux, J.-A. Désidéri)
• Finite-volume goal-oriented mesh-adaptation using functional derivative with respect to nodal coordi-
nates. Journal of Computational Physics 313 (2016) (G. Todarello, F. Vonck, S. Bourasseau, J. Peter,
J.-A. Désidéri)
• Mono-block and non-matching multi-block structured mesh adaptation based on aerodynamic func-
tional derivatives for RANS flows. International Journal for Numerical Methods in Fluids 83 (2017) (A.
Resmini, J. Peter, D. Lucor)

The classical methods for (FV) goal-oriented mesh refinement are recalled in section §II.1. After the
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asymptotic behavior of dJ/dX has been discussed in section §II.2, the proposed criteria for mesh adap-
tation and mesh assessment are derived in section §II.3. Applications to 2D and 3D, Euler and RANS
flows with structured meshes are presented in section §II.4. Most conclusive results have been obtained
with unstructured meshes which define the most suitable setting for mesh adaptation : for classical ex-
ercises of 2D Euler lift/drag-oriented mesh adaptation, the proposed method efficiently defined adapted
meshes with the same refined zones as the most used method [182, 183] but without the need of a finer
grid. These results are presented in section §II.5. In section §II.6, the perspectives of the dJ/dX-based
method are discussed in relation with the maturity of the classical methods presented in §II.1.

Figure 2.1: NACA0012 inviscid flows. From left to right (M∞,AoA) = (0.5,0o) (0.85,2o) (1.5,1o). Up:
classical feature-based refinement. Down: CL-oriented refinement. Reproduced with permission from
reference [47]

2.1 Classical methods for finite-volume goal-oriented mesh-adaptation

2.1.1 Classical FV goal-oriented error estimators

A complete review of output-based error estimation and mesh adaptation methods has been published in
by Fidkowski and Darmofal [51]. The reader is referred to this article for a detailed discussion covering
variational formulations, mesh types and mesh adaptation strategies whereas this subsection focuses on
the presentation of the classical methods for (FV) goal-oriented error estimation. As a complement the
next one presents a few references about isotropic and anisotropic refinement.
At the end of the 90’s, Pierce and Giles introduced adjoint-based error estimation for functions in a very
broad framework [60, 61, 149, 65]. It is simply supposed that, in a Hilbert spaceH, whose inner product
is denoted (., .) 1: (a) a well-posed "direct" linear differential equation Lw = f can be solved, exactly
or approximately, before computing the scalar product of the (possibly approximate) solution by another
vector g ofH; (b) a corresponding adjoint problem L∗λ = g is well defined and can be solved exactly or
approximately, before computing the dot product of the (possibly approximate) solution by f .
The error in the estimation of the common goal, (g, w) = (L∗λ,w) = (λ, Lw) = (λ, f), by the approx-

1We keep the notations of the original papers by Giles and co-workers. They are consistent with those introduced earlier
but typed in lower case. This seems satisfactory as the method has been largely demonstrated for scalar equations before being
extended to systems of equations
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imate solution wh (h denoting the average mesh size) of the direct problem is

(g, w)− (g, wh) = (g, (w − wh)) = (L∗λ, (w − wh)) = (λ, L(w − wh)) = (λ, f − Lwh). (2.1)

If the adjoint problem has also been approximately solved, the error can be expressed as

(g, w)− (g, wh) = (λh, f − Lwh) + (λ− λh, f − Lwh) (2.2)

Pierce and Giles have given a detailed analysis of these formulas for a wide range of problems and
numerical methods (including both finite-difference and finite-element methods). For simple linear dif-
ferential equations like 1D or 2D Poisson equation, they presented complete proof and illustration that
(λh, f − Lwh) is the dominant error term and the order of (λ − λh, f − Lwh) is twice the order of this
first term. In this case, they proposed

j ' (g, wh) + (λh, f − Lwh)

as (superconvergent) function estimation [61, 149]. In 2003, they involved in their theorems the accu-
racy of the reconstruction operator 2 that builds continuous functions from the discrete wh, λh before
estimating the outputs and error terms in equations (2.1) (2.2) [64]. Giles, Pierce and Müller presented
equivalently good results for a shock-free nozzle and an airfoil [61, 149, 115] but the theory they pro-
posed for non-linear equations and non-linear outputs involves averaged Fréchet derivatives of considered
system of partial differential equations (and boundary conditions). It also requires the evaluation of the
the residual of the discrete flow for these operators. This theory has not been as broadly tested and used
as the method proposed a little later by Venditti and Darmofal. 3.

In a series of three articles [181, 182, 183], Venditti and Darmofal have proposed similar formulas but
for non-linear outputs, for FV (or FD) schemes and for discrete adjoint. They presented applications to
2D compressible flow computations [182, 183]. For the description of their method, we drop the index
k attached in chapter 1 to function-to-differentiate and adjoint vector and use subscripts and superscripts
corresponding to grid level. The method involves two grids: a coarse one of characteristic mesh size H ,
and a fine one of characteristic mesh size h. The full computation of the flow field and the output of
interest on level H is supposed to be affordable, whereas it would be prohibitively expensive on level
h. The subscripts h and H will be attached here to R, X and W . Lastly, WH

h and λHh represent the
coarse-grid flow-field and adjoint vector reconstructed on the fine grid via some consistent projection
operator. A Taylor’s expansion of the functional output of interest Jh about the interpolated coarse-grid
solution yields

Jh(Wh, Xh) = Jh(WH
h , Xh) + ( ∂J

∂W

∣∣∣
WH
h

)(Wh −WH
h ) +O(||Wh −WH

h ||2)

Using an adjoint-like equation solved on the fine grid (2.3) and then a Taylor’s expansion of R about
WH
h yields

(Λh
∣∣
WH
h

)T
(
∂Rh
∂Wh

∣∣∣
WH
h

)
= − ∂Jh

∂Wh

∣∣∣
WH
h

(2.3)

Jh(Wh, Xh) = Jh(WH
h , Xh)− (Λh

∣∣
WH
h

)T ( ∂Rh
∂Wh

∣∣∣
WH
h

)(Wh −WH
h ) +O(||Wh −WH

h ||2)

= Jh(WH
h , Xh) + (Λh

∣∣∣
WH
h

)TRh(WH
h ) +O(||Wh −WH

h ||2) (2.4)

2actually, linear or cubic spline interpolation
3Let us nevertheless note that reference [60] presents in the last equation of section I the adjoint weighted residual of

Venditti and Darmofal theory except it involves the analytic flow solution at discrete grid points instead of a discrete flowfield
interpolated from a coarser grid
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If the flow computation is not affordable on the fine grid, neither is the solution of equation (2.3) for
(Λh

∣∣
WH
h

). The alternative is to replace this adjoint field by the interpolated coarse-grid adjoint,

Jh(Wh, Xh) ' Jh(WH
h , Xh) + (ΛHh )TRh(WH

h )︸ ︷︷ ︸
computable correction

+ ((Λh
∣∣∣
WH
h

)T − (ΛHh )T )Rh(WH
h )︸ ︷︷ ︸

error in computable correction (ECC)

(2.5)

The authors recommend to take Jh(WH
h , Xh)+ΛHh Rh(WH

h ) as the function estimate and adapt the mesh
by reducing uniformly the simple upper bound of ECC that is obtained taking the sum of the absolute
value of elemental contributions. When doing so, the bound of ECC term is actually approximated
using two interpolations from coarse grids with different polynomial accuracy (typically, linear for ΛHh
and quadratic for approximate Λh

∣∣∣
WH
h

). Finally, let us note that the error in computable correction,ECC,

has an other expression and a first order approximation: a residual of adjoint equation at interpolated flow
is first defined:

RΛ
h (Λ) =

[
∂Rh
∂Wh

∣∣∣∣∣
WH
h

]T
Λ−

(
∂Jh
∂Wh

∣∣∣∣∣
WH
h

)T
=
[
∂Rh
∂Wh

∣∣∣∣∣
WH
h

]T
(Λ− Λh

∣∣
WH
h

).

The EEC is then easily expressed as

ECCb = ECC = −
(
RΛ
h (ΛHh )

)T [ ∂Rh
∂Wh

∣∣∣
WH
h

]−1

Rh(WH
h ), (2.6)

Finally, using the straightforward equality Rh(WH
h ) = Rh(WH

h )−Rh(Wh),

ECCc =
(
RΛ
h (ΛHh )

)T
(Wh −WH

h ) ' ECC = ECCb

These formulas have raised a deep interest in the aeronautical CFD community. The main applications
of this method are described in the first section of reference [144]. Let me finally note that if the inter-
polation operator is carefully coded so that Jh(WH

h , Xh) ' JH(WH , XH), the correction term accounts
for the difference between fine and coarse grid output functional value so that refinement based on the
correction may also be considered (see [115] and [65] §5).

Later on, Dwight has proposed a very different adjoint-based method attached to Jameson et al. scheme
[85]. In a series of two articles [46, 47], he considered classical test cases for Euler flows. He ran
computations using Jameson et al. scheme [85] on hierarchies of grids and for different sets of artificial
dissipation coefficients (k2, k4). The error for the functions of interest appeared to be mainly due to
artificial dissipation. On this basis, the following measure for the approximation error in the Jameson et
al. scheme has been proposed:

k2 dJ
dk2 + k4 dJ

dk4

The dissipation coefficients are then interpreted as being defined independently for each control volume.
This leads to a local indicator for dissipation-error in cell m:

k2 dJ
dk2

m

+ k4 dJ
dk4

m

The derivatives dJ/dk2
m and dJ/dk4

m can only be computed by the adjoint method with the standard
adjoint equation and a specific gradient formula(

∂R

∂W

)T
Λ = −

(
∂J
∂W

)T
dJ/dk2

m = ΛT
(
∂R

∂k2
m

)
dJ/dk4

m = ΛT
(
∂R

∂k4
m

)
(2.7)
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The field of local indicator for dissipation error is used as a mesh refinement indicator and J−k2dJ/dk2−
k4dJ/dk4 is considered as the corrected output value.

In 2010, Fidkowski and Roe made and illustrated an original contribution exhibiting specific functions
for which the adjoint field is known [52]. For subsonic Euler flows, considering continuous equations,
they first demonstrated that the entropy variables v, defined as the derivatives of the entropy s 4 with
respect to conservative variables

s = −ρS/(γ − 1) (S being the physical entropy S = ln p− γ ln ρ ),

v = ds/dW =
(
γ − S
γ − 1 −

ρV 2

2p ,
ρu

p
,
ρv

p
,
ρw

p
,−ρ

p

)T
,

are the adjoint vector of the entropy flux

Je =
ˆ
∂Ω
sρV.ndS .

They could then derive Je-oriented mesh refinement without solving a system of equations to get the
adjoint vector. In case of a subsonic inviscid flow, discrete non-zero value of Je is due to numerical
dissipation and Je-based refinement is relevant. The method could also be demonstrated for a transonic
inviscid flow although the shock-wave abruptly creates entropy ([52] §6.5). We refer to [52] for the ex-
tension of the method to viscous flows 5. The method was demonstrated with a discontinuous Galerkin
code but the free-adjoint-field property could also be exploited with a Finite Volume or Finite Element
code.
In a later reference, Fidkowski, Ceze and Roe took benefit of far-field drag breakdown theory in 2D. They
derived mechanical conditions under which Je is proportional to an approximate form of Oswatitsch drag
in 2D. They could then perform approximate-drag oriented mesh adaptation without solving the adjoint
equation for the drag [50].

I finally mention the work of Alauzet, Dervieux, Loseille and Belme, although the numerical method they
use is an hybrid of finite-volume (for inviscid fluxes) and finite-elements (for viscous fluxes) [104, 10].
Let me first recall that INRIA scientists have extensively studied this formalism of continuous mesh,
derived from Riemannian geometry, where a symmetric metric tensor is defined all over the geometrical
domain. The mesh sizes prescribed in the directions of the eigenvectors are derived from the eigen-
values (one over the square of the eigenvalues) [30, 56, 102], the idea being that in the actual discrete
mesh, all edge lengths should have unit measure under the metric. This description is hence intrinsi-
cally anisotropic. In this framework and for quadratic functions, Loseille and Alauzet presented exact
evaluations of the linear interpolation error and derived the optimal continuous mesh that minimizes the
interpolation error [102, 103].
Concerning goal-oriented simulations, Alauzet, Dervieux, Loseille and Belme carried out the mathemat-
ical analysis of their numerical scheme in order to derive a bound for the a priori error estimate of the
goal like

|J(W )− J(Wh)| ≤
ˆ

Ωh
|∇Λ||F(W )−ΠhF(W )|dΩh +

ˆ
Γh
|Λ||F(W )−ΠhF(W )|dΩh (2.8)

where W is the exact flow solution, Λ is the exact adjoint of J , Ωh the computational domain, Γh its
boundary, F is a function of Euler physical flux and the boundary conditions and Πh is the linear in-
terpolation based on the current mesh. (This is the case of Euler equations, [104] equation (16), see

4this is for a perfect gas
5The entropy variables are then no longer the adjoint variables of the entropy flux but of a more complex function with two

new terms involving the viscous tensor
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corresponding bound, equation (22) in [10], for laminar flows.) The minimization of the weighted inter-
polation errors that appear in the bound of the exact error on J , is then solved in the continuous metric
space [104] with a fixed goal complexity (continuous counterpart of number of points). Once the exact
solution for the metric has been derived using current discrete flow and adjoint, a mesh is finally derived
by a metric-conforming mesh-generator.

Also using the continuous mesh framework, Yano and Darmofal have presented a method for anisotropic
h-adaptation of simplex meshes [189]. The method can be applied when the error to be minimized is a
local function of the mesh; it is first demonstrated for L2 projection error of regular functions (locality is
obvious) then for dual-weighted-residual mesh-refinement with a DG scheme (locality is not obvious –
see [189] §4.3). The principle is to apply a series of local changes to each element6 and calculate/estimate
the new local error for each of the considered configurations. The continuous metric formalism allows
to build a local surrogate of the error on the metric space as each of the modified elements is naturally
described by a new local metric matrix (more precisely, the error function depends on the logarithmic
map matrix describing the change in the current metric. See [189] §3 and §4.3). Finally, a surrogate cost
function and surrogate global error model are formulated by summing the element-contributions and the
problem is solved approximately by a descent algorithm derived from the optimality conditions. The new
local metric is then derived from the calculated metric change by the so-called exponential map relation
and the new mesh is calculated by a metric conforming mesh-generator.
The model is demonstrated for L2 projection error and for a model advection-diffusion problem in the
original reference.

This discussion focuses on FV methods. For adjoint-based error estimation and mesh adaptation with
Discontinuous Galerkin schemes, I refer to the articles of Hartmann et al. [69, 97, 68].

2.1.2 Isotropic vs anisotropic FV goal-oriented mesh refinement

Local adaptation strategies try to equidistribute the error estimator they rely on. Various ways of se-
lecting cells to divide (in the standard case of unstructured meshes) or locations where to add mesh
lines/planes (for structured mesh refinement) exist – fixed threshold, decreasing threshold, fixed fraction
of the degrees of freedom... see [51] §IVC for an overview. In the common situation where remeshing is
performed by a dedicated tool, the last major item of the adaptation is the question whether isotropic or
anisotropic meshes should be built [130] .

I briefly review the methods presented in the previous subsection from this point of view :
– Venditti and Darmofal used isotropic mesh refinement when dealing with Euler flows [182] and anisotropic
mesh refinement when dealing with Navier-Stokes flows [183]. In the later case, they combined their er-
ror estimator with the Hessian of the Mach number to introduce anisotropy in their procedure. Besides,
Rogé and Martin derived another anisotropic version of Ventitti et al. original method [182] by introduc-
ing finer meshes refined in one physical direction only [161];
– More recently Darmofal et al. have used the method proposed by Yano and Darmofal that is intrinsicaly
anisotropic;
– the contribution of Dwight involves isotropic mesh refinement for Euler flows [47];
– Fidkowski et al. used isotropic refinement for Euler, laminar and turbulent flows [52, 50]. The mesh
adaptation starts from a structured mesh and builds locally adapted meshes with one level hanging-nodes.
It is isotropic in the sense that the cells flagged by the error indicator are divided in all mesh-directions
but the anisotropy of the initial mesh is locally retained ;
– Alauzet, Dervieux, Loseille and Belme use metric matrices that naturally describe anisotropic meshes
[104, 10]. In the work carried out at ONERA, when dealing with structured meshes, anisotropy was

6for triangles: division in two triangles following the medians, isotropic division in four triangles
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supported by mesh parametrization or by an elliptic equation method to be presented. When dealing with
unstructured meshes for Euler flow, only isotropic mesh refinement was performed.

2.2 Asymptotic analysis of dJ/X for 2D Euler flows

In the later sections, a local mesh refinement indicator based on dJ/dX is proposed and assessed. It is
hence useful to establish the order of dJ/dX in the local space step as this allows to estimate the decrease
of the indicator when refining the mesh and calculate a local goal mesh size for the next adapted mesh.
This question has been considered from a practical point of view when dealing with unstructured mesh
adaptation for 2D Euler flows (see §2.5.2 and figure 2.21).
Besides, Nguyen-Dinh and me have considered this question from a mathematical point of view for
regular structured meshes. The total derivative 7

dJ

dX
= ∂J
∂X

+ ΛT ∂R
∂X

.

includes a simple explicit term ∂J
∂X and the more complex ΛT ∂R

∂X that involves the discrete adjoint vector,
geometrical dependancies of the scheme and the usual FV metrics formula. Even restricted to the case
of 2D Euler flows, this discussion is intricate due to the complexity of ∂R/∂X and the discontinuities of
limiting flow and adjoint fields (§2.2.2 and §2.2.3).

2.2.1 Space-order of (∂J/∂X)

As concerning J functions, the discussion is restricted to the case of classical outputs of external aero-
dynamics calculated from flow-field at the wall (without gradient terms) and wall metric. This includes
pressure drag, pressure lift, pressure pitching moment, wall-integral of stagnation pressure, temperature...
As concerning the metric, there is no variant in the calculation of 2D edge vectors and, when evaluating
the 3D surface vectors, it is assumed that they are calculated as half the cross product of the face diago-
nals.
Under these assumptions, it is easily verified that ∂Jk/∂Xm is
– for a 2D problem, first order in space, except if Xm is the extremity of a non-closed integration curve
were it would be zero-th order, but this is typically a case where the node would be fixed and where the
projection P would set its components to zero.
– for a 3D problem, second order in space, except if Xm is at the border of the integration domain (typi-
cally symmetry plane in wing or wing-body calculation) where first-order components appear. In case of
a symmetry plane, these components will not be all cancelled by the projection operator P .

2.2.2 Regularity of flow, CLp− and CDp−adjoint for 2D Euler flows

The asymptotic study of ΛT (∂R/∂X) has been made for a specific type of schemes, for 2D Euler flows,
under a strong assumption of local C2 regularity of the discrete fluxes w.r.t. its two arguments, the flow
W and mesh coordinatesX . Moreover, it is also assumed that the limiting flow and adjoint fields are C1.

This, of course, prevents considering transonic or supersonic flows involving shock-waves. Besides, for
a lifting subcritical flow, it is observed that CLp adjoint and CDp adjoint fields look very different close
to stagnation streamline. The CLp-adjoint field exhibits a singularity at the stagnation streamline as
predicted by Giles and Pierce ([60] fourth perturbation, I4, and figure 3d). On the contrary CDp adjoint

7where for the sake of readability of the technical calculations to come, I have dropped the function and adjoint vector index,
k
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only exhibits a small (physical or numerical) perturbation at this location. This is illustrated in figure 2.2
for the inviscid flow about a NACA0012 at M∞=0.4 and AoA=5o. Finally, for this subcritical flow, no
slip-line at the trailing edge is observed, and this case is selected to illustrate the developments of next
subsection due to the regularity of its (numerical) flow and drag adjoint fields.

Figure 2.2: NACA0012 M∞=0.4 AoA=5o inviscid flow – Left: first component of drag adjoint. Right:
first component of lift adjoint

2.2.3 Space-order of ΛT (∂R/∂X). Link with limiting flow/adjoint fields

Before looking at the theoretical order of ΛT (∂R/∂X), the mean norm of ΛTCDp(∂R/∂x) and ΛTCDp(∂R/∂z)
over the interior points of the fluid domain has been calculated for the selected flow. Once again, the con-
sidered meshes are those of the classical study of Vassberg and Jameson [180] – from (129×129) to
(1025×1025) nodes. The L2-norm of the

ΛTCDp(∂R/∂x) and ΛTCDp(∂R/∂z)

fields has been calculated over the interior nodes of the meshes and divided by the number of nodes. It
exhibits O(h2) behavior. More precisely, the slopes of the very regular log-log plots presented in figure
2.3 are 2.15 and 2.05. When less regular flow and adjoint fields are considered the log-log slope coeffi-

Figure 2.3: NACA0012 M∞=0.4, AoA=5o, inviscid flow – Left: mean over interior nodes of
||ΛTCDp(∂R/∂x)|| a function of mesh characteristic size (log-log scale). Right: corresponding plot for
||ΛTCDp(∂R/∂z)||

cients are significantly lower.
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The discussion of the space order of ΛT (∂R/∂X) is obviously dependent on schemeR. In a first attempt
to deal with the subject, the following statement was demonstrated for 2D Euler flows [122, 121].

Statement: A 2D finite-volume cell-centered scheme for Euler flows and for structured grids is consid-
ered. The numerical flux is supposed (a) to directly depend on the local surface vector and on two or
four states of the corresponding mesh line on either side of the interface; (b) to be C2 except at marginal
locations where the absolute value has a zero argument, or min or max functions have equal arguments.
The fixed node of interest Xi,j , is assumed to be located (a) outside of the support of J ; (b) in a zone of
the fluid domain where the discrete flow-field w and the adjoint vector tend toward C1 limiting functions
w and λ ; (c) in a location such that the fluxes of the four surfaces attached to Xi,j are C2 functions of
their aerodynamic and geometric arguments at the limit of small step sizes. Under these assumptions, the
indirect aerodynamic dependence of J w.r.t. Xi,j has the following asymptotic behavior as the mesh is
refined: 

Λ ∂R

∂xi,j

Λ ∂R

∂zi,j

 = dsi,j

4∑
d=1


∂λd

∂z

∂FdZ
∂w

∂w

∂x
− ∂λd

∂x

∂FdZ
∂w

∂w

∂z

−∂λ
d

∂z

∂FdX
∂w

∂w

∂x
+ ∂λd

∂x

∂FdX
∂w

∂w

∂z

+ o(ds) (2.9)

where FX (resp. FZ) is the continuous Euler flux density in direction x (resp. z) evaluted at w and dsi,j
is the surface attached to node Xi,j (one quarter of the surface of the four neighboring cells).

This result seemed satisfactory and consistent with the numerical result presented before in figure 2.3 Un-
fortunately, Nguyen-Dinh and me missed that, if the limiting adjoint field λ is solution of the continuous
adjoint equation (in Cartesian coordinates [7])

(
∂Fx
∂w

)T ∂λ
∂x

+
(
∂Fz
∂w

)T ∂λ
∂z

= 0 (2.10)

the term in brackets in the right hand side of equation (2.9) is zero 8. This is derived from flow equations,(
∂Fx
∂w

)
∂w

∂x
+
(
∂Fz
∂w

)
∂w

∂z
= 0,

multiplied by ∂λ/∂x (dot product):

∑
d

[
∂λd

∂x

(
∂Fdx
∂w

)
∂w

∂x
+ ∂λd

∂x

(
∂Fdz
∂w

)
∂w

∂z

]
= 0.

Then equation (2.10), yields

∑
d

[
−∂λ

d

∂z

(
∂Fdz
∂w

)
∂w

∂x
+ ∂λd

∂x

(
∂Fdz
∂w

)
∂w

∂z

]
= 0,

which proves that the first component of equation (2.9) is zero. The corresponding proof for the second
component is very similar.

Hence, the numerical behavior observed for the selected regular flow with regular drag-adjoint is not yet
the asymptotic one.

8An erratum concerning figure 10 of [122] and a short addendum to this article is to be sent to the European Journal of
Mechanics B/Fluids
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Is then relation (2.9) useless ? Actually at fixed mesh size, when looking at plots of (1/ds) ΛT ∂R
∂W

and
discrete Green-formula based evaluation of

4∑
d=1


∂λd

∂z
∂FdZ(W )

∂x − ∂λd

∂x
∂FdZ(W )

∂z

−∂λd

∂z
∂FdX(W )

∂x + ∂λd

∂x
∂FdX(W )

∂z

 , (2.11)

it appears that these plots are surprisingly similar. This is illustrated by a series of images presented in
annex 3. Conversely, when refining the mesh, both fields have decreasing values. This similarity is also
observed when the flow and/or the adjoint field involve discontinuities. Precisely, these discontinuities
are then the marked zones in these similar plots and those marked zones get thinner and thinner when the
mesh is refined.

2.3 Proposed mesh adaptation and mesh assessment method

2.3.1 Mesh adaptation based on dJ/dX . Intuitions. State of the art

The vector field of the total sensitivity of the goal J w.r.t. the volume mesh node coordinates X , dJ/dX ,
seems to provide valuable information to carry out J-oriented mesh adaptation or to assess the suitability
of mesh X to compute accurately J . How it could be used in practice for these purposes is, however, not
straightforward. For classical exercises of goal-oriented mesh adaptation, when plotting

‖dJ/dX‖ or h ‖dJ/dX‖

on a regular mesh, it appears that the iso-lines of these quantities roughly draw the node density map of
J-oriented adapted meshes. This comparison is illustrated here in order to gain intuition about dJ/dX-
based goal oriented mesh adaptation. It is not claimed this is a thorough argument as (1) unstructured
goal-oriented adapted meshes published in classical articles are confronted with dJ/dX fields calculated
by me on structured meshes; (2) the schemes are not same; (3) we only make a start on the analysis of
the critical zones for the accurate evaluation of the outputs of interest (this question is discussed in §2.6.
See also [171] §5.4).

Figure 2.4: NACA0012 M∞=1.5, AoA=1o. Left: mesh adapted forCLp by Dwight’s method ([45] figure
6. Reproduced with permission). Right: iso-(h ‖dCLp/dX‖) lines on a regular structured 1025×1025
mesh

48



Figure 2.5: NACA0012 M∞=0.95, AoA=0o. Left: mesh adapted for CDp by Venditti and Darmofal’s
method ([171] figure 6); this plot is intented to be compared with figure 8 of reference [182]. Right:
iso-(h ‖dCDp/dX‖) lines on a regular structured 1025×1025 mesh

For the NACA0012 at supersonic flow conditions M∞=1.5, AoA=1o, the high values of iso-(h ‖dCLp/dX‖)
(obtained with Roe’s scheme on the 1025×1025 mesh of the classical study [180]) clearly draw a sec-
tion of the detached shockwave and a section of two characteristic lines 9 from shockwave to trailing
edge – see figure 2.4. These are precisely the dense mesh zones obtained by Dwight when proceeding
to CLp-oriented mesh refinement with his method [46, 45, 47]. For the NACA0012 at flow conditions
M∞=0.95, AoA=0o, the high values of iso-(h ‖dCDp/dX‖) (obtained with Jameson-Schmidt-Turkel
scheme on the same 1025×1025 mesh) draw a diamond shape plus small lines close to the leading edge
as shown in figure 2.5. This is very consistent with the dense mesh zones obtained by me when proceed-
ing to CDp-oriented mesh refinement with the method of Venditti and Darmofal. A last confrontation is
possible for the same profile, at transonic flow condition M∞=0.85, AoA=2o, for lift, looking at figures
2.1 (middle-down sub-plot) and 2.25. Again the dense zones of the mesh adapted for CLp calculation
(figure 2.1) match the isolines of high (h ‖dCLp/dX‖) values.
As regular meshes have been used at this step, it can not be infered at this stage whether ‖dJ/dX‖ or
h ‖dJ/dX‖ could be used for J-oriented mesh refinement. This matter is discussed in later subsections.

Somehow surprisingly, outside of ONERA, it seems only NIA has tried to use dJ/dX for J-oriented
mesh adaptation. In [187], Yamaleev et al. considered a nozzle and 2D Poisson problem for which
quasi-exact solutions were available. They used the mesh sensitivity of the square of an output error and
a descent method for the mesh to lower the error (and its sensitivity to the mesh). For the nozzle flow,
the output was the nozzle pressure integral and the successful demonstration was made using the steady
and then the unsteady adjoint of the FUN3D code. In [38], the method was extended to the case where
the exact value is not known. The estimated reference value was then based on current estimation and
a classical correction (dual-weighted residual after interpolation of flow and adjoint to a finer grid – see
§2.1.1). The method was again successfully demonstrated for a nozzle flow.

2.3.2 First order variation of the functional output when displacing the mesh

After an hesitation that will briefly appear at the beginning of section 2.4, Nguyen-Dinh, Trontin and I
proposed a goal-oriented mesh adaptation method that is based on the first order variation of the output
of interest that admissible nodes displacement can cause. This first order variation of J due to a mesh

9the flow is supersonic everywhere but in a small bubble dowstream the shockwave and close to the leading edge
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displacement dX is obviously

J(X + dX)− J(X) ' dJ

dX
.dX

The only a priori restrictions in dX being that the nodes displacement dX (1) does not distort the solid
shape ; (2) does not distort the support of J ; (3) does not lead to an inconsistent mesh. The simplest
way to ensure requirement (3) is to bound the displacement of node Xm by half the lowest distance to its
neighbors, denoted 0.5∗hm. With this restriction for dX the first-order change in the function of interest
is obviously bounded by

0.5
nX∑
m=1
||dJ/dXm||hm

(m being the node index). This individual contribution 0.5||dJ/dXm||hm requires a slight modification
to take into account conditions (1) and (2). In particular, when plotting the dJ/dX vector field for
simple configurations and classical functions (like nearfield pressure drag CDp of an airfoil or stagnation
pressure integrated over the airfoil – see [185, 144, 143, 121]) it often exhibits long vectors at the solid
wall with a significant component normal to the wall. These components, of course, can not guide a
node displacement for mesh adaptation as they would change the shape of the solid item of interest. A
projected field, denoted P(dJ/dX), has hence been introduced. It retains all components suitable for
mesh adaptation, and cancels the other ones :

P(dJ/dX) = dJ/dX Outside the support ofJ and solid walls contour

P(dJ/dX) = dJ/dX − (dJ/dX · ~n)~n Inside the support of J, along the walls, at the outer border (normal ~n)
P(dJ/dX) = 0 At a corner of the support of J or at a trailing edge

During a mesh adaptation, a node w of the wall surface can only move tangently to the solid surface
(before being projected on the exact surface) so that dXw = εt, t being tangent to the wall. The
corresponding first order change in J value is

J(X + dXw)− J(X) ' dJ/dXw.(εt) = ε dJ/dXw.t = ε P(dJ/dXw).t

More generally for any admissible mesh displacement field dX

J(X + dX)− J(X) ' (dJ/dX).dX = P(dJ/dX).dX. (2.12)

Hence, a sharper upper bound for the first-order change of J , due do the restriction to an admissible mesh
displacement dX , is

|J(X + dX)− J(X)| ' | dJ
dX

.dX| ≤ 0.5
∑
m

||P(dJ/dXm)||hm. (2.13)

This point is now discussed based on equation (2.13) and figure 2.6 representing three possibleP(dJ/dX)
fields. Figure (2.6)(a) is a typical case where equation (2.13) proves that a local mesh refinement is
needed, as moving down the three mesh lines with high ||dJ/dX|| values would cause a significant in-
crease of J value. Figure (2.6)(b) is a case of high sensitivity of J value to the position of some nodes
but, as these nodes can not be significantly moved, the evaluation of J does not appear to be sensitive to a
simple feasible mesh deformation – figure (2.6)(b) is actually typical ofP(dJ/dX) fields for Euler flows,
a near field function and a classical mesh with stretching of mesh lines/planes close to the wall. Figure
(2.6)(c) is a case of high sensibility of J value to the position of some nodes that can be significantly
moved but the contribution of the different nodes in (2.13) tend to cancel if they are moved coherently.
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Hence, it is not easy to decide whether this zone should be refined for a stable evaluation of the output of
interest.

Figure 2.6: Three types of P(dJ/dX) fields

This third case and the wish to characterise the “reasonable” mesh displacements dX when doing
mesh adaptation by nodes displacement, initiated an effort to define a relevant spatial mean ofP(dJ/dX)
field. In a framework where the mesh displacement fields dX corresponds to the values at the nodes of a
C1 regular function assumed to be well approximated by its first-order Taylor expansion on all circles of
radius L, a spatial mean P(dJ/dX) is exhibited such that

P(dJ/dX).dX = P(dJ/dX).dX

The construction of this P(dJ/dX) mean first identifies dX at any node with a spatial mean of dXk

over a circle of radius L. Then the sum of the dot product and the sum of the mean are reversed to build
P(dJ/dX). Detailed definition is given in Annex 4.

2.3.3 Criterion for goal-oriented mesh assessment

A demand of Airbus during the PhD thesis of Nguyen-Dinh [121] was to propose a characterization of the
meshes suitable for the calculation of a specific output functional. Of course, the error estimators of the
classical goal-oriented mesh-refinement methods presented in section §2.1 provide such an information
– Venditti and Darmofal method [182, 183] based on interpolation to a finer grid, Dwight’s method [47]
based on artificial dissipation of Jameson-Schmidt-Turkel scheme [85]. In the framework defined in the
previous subsection, the relevance of θ,

θ = 1
nX

nX∑
m=1

θm θ = 0.5 ||P(dJ/dXm)|| hm (2.14)

and θ,

θ = 1
nX

nX∑
m=1

θm θm = 0.5 ||P(dJ/dX)m ||hm,

for this purpose was studied. (NB: When considering several aerodynamic functions, [J ] is added to the
previous notations in order to indicate the function to which the criterion is related.) A mesh assessment
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exercise, that is detailed in reference [122] section 6, is summarized here for one test flow condition and
one function.

2.3.4 A simple example of θ[J ]-based mesh-assessment

A subsonic inviscid flow around a slightly modified NACA0012 is considered (M∞ = 0.5AoA=0°). The
flow is calculated with JST scheme on hierarchy of regular meshes defined by Vassberg for a well-known
mesh convergence study [180]. The functions of interest, CDp and Pa , are defined by:

CDp =
˛

Γ

2
γM2
∞

(
p

p∞
− 1

)
~n · ~e∞ dl (2.15)

Pa = 1
L(Γ)pa∞

˛
Γ
pa dl (2.16)

where p∞ and pa∞ are respectively the upstream static pressure and stagnation pressure. The output
functional values are estimated on the series of regular grids in order to provide accuracy references for
the future results on adapted meshes ([122] Tables 1 and 2, subcritical part). Of course the ideal values
of CDp and Pa for this inviscid subcritical flow are respectively 0. and 1. which allows exact error
evaluation.
A two-parameter family of (129 × 129) meshes is then built by linear interpolation in the (2049 × 2049)
mesh defined by Vassberg [180]. It is mathematically defined in reference [122] section §6.1.2 and pre-
sented here visually in the upper part of figure 2.7. The α parameter of the family drives a stretching of
I-mesh lines upwind the profile and the β parameter drives the stretching of J-mesh lines close to the
wall.
Figure 2.7(a) presents Pa values in terms of mesh parameters (α, β) (196 meshes are used, 14 for each
parameter). The theoretical Pa value is 1. In this case numerical dissipation acts essentially monotoni-
cally on Pa by reducing its value. We notice that meshes that provide the better Pa estimations are those
which are generated with the smallest value of β (β = 0.05 meshes such that J-lines are closely gathered
around the airfoil).
The question to be answered is whether small values of criteria θ[Pa], and θ[Pa] corresponds to accurate
values of Pa.
Actually θ[Pa], and θ[Pa] achieve their lower values for the small values of β and α (see figure 2.7 (b)
and (c)). On the lower border β = 0.05, the variations of the function of interest Pa are very small (from
0.99938 to 0.99948). It is at (α, β) = (0.05, 0.05) that the criteria θ and θ achieve their lower values. At
this point of the parameter space Pa is equal to 0.99946 whereas the closer value to the limiting one is
obtained at (α, β) = (0.6, 0.05) (Pa = 0.99948). The first-order variation criteria, θ and θ, applied to Pa
point out good meshes for the computation of Pa whereas its absolute minimum does not correspond to
the best mesh but to one for which the estimation of Pa is close to best.
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Figure 2.7: Up : Family of parametrized structured (129 × 129) meshes about the NACA0012 – Down:
2D Subsonic flow about NACA0012 (a) Pa as function of α (I-lines) and β (J-lines) parametrization (b)
Θ[Pa] in the parameter domain (c) Θ[Pa] values in the parameter domain

2.3.5 Criterion for goal-oriented mesh refinement

The retained criterion, denoted θ[J ] is hence

θ[J ]m = 0.5||P(dJ/dXm)|| hm,

hm being the minimal distance of node m to its neighbors. (When dealing with a unique J function the
[J ] mention is omitted as in the remaining part of this section).

For structured mesh adaptation, the criterion can be summed over the nodes of a mesh line (2D) / mesh
plane (3D) and the highest values of this sum define the locations where mesh lines (2D) or mesh planes
(3D) should be added or drawn closer.

In the more classical framework of unstructured mesh adaptation, θm is the local indicator for refinement.
In case an asymptotic property is known for P(dJ/dX) or, at least, for ||P(dJ/dX)||, like

||P(dJ/dX)|| = Chp + o(hk)
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(where the constant C depends on the location but not on h of course), the calculation of the desirable
cell-size is straightforward. If T is the threshold for θ values, that is locally exceeded, the reduced local
mesh size compatible with T limit for θ is such that

0.5 C hpnew hnew = T

θm
θm = T

θm
0.5 C hpcur hcur

so that

hnew =
(
T

θm

)1/(p+1)
hcur.

2.4 Goal-oriented adaptation of structured meshes

2.4.1 Mesh adaptation for Euler flows with heuristic mesh transformation

Nguyen-Dinh, Trontin and I first carried out mesh adaptations for inviscid external flows by nodes dis-
placement and node addition based on the higher values of

µm = 0.5||P(dJ/dXm)||

instead of θm defined by equation (2.14). In these first adaptations, the functions of interest J were
the pressure drag or the stagnation pressure integrated over the wall (2.15) (2.16). During the mesh
adaptation process, the global values

θ = 1
nX

nX∑
m=1

0.5||P(dJ/dXm)||hm and µ = 1
nX

nX∑
m=1

0.5||P(dJ/dXm)||

were monitored. These trials where actually quite successful as the adaptations started from regular struc-
tured meshes for which adaptation based on µm lead to the required refinement close to the walls as would
also have been obtained with θm criterion. Nevertheless at the end of these researches [147, 144, 143],
in the conclusion of reference [143], it appeared that θ would be a better global indicator than µ for the
suitability of the mesh to calculate J . Interested reader can have a look at µ[Pa] and θ[Pa] values in table
5 and table 6 of reference [143] where it appeared that the µ[Pa] values are not lower on stretched and
specifically adapted grids, that are both well-suited for accurate near-field function calculation, than on
less appropriate grids. Besides, a set of evidences indicated that θm would be a better local goal-oriented
criterion that µm ; in particular, as the nodes of the very first mesh-lines adjacent to the wall are moved
closer to the wall, their µm values get higher and higher.
These mesh adaptations were based on mono-block structured meshes about the NACA0012 aerofoil
and the ONERA M6 wing. Very dense meshes were available thanks to Vassberg (NACA0012 airfoil
[180]) and Destarac (ONERA M6 wing). They allowed simple addition or displacement of lines/planes
by linear interpolation. The reader is referred to [143] for the description of the node addition and node
displacement method and corresponding results (or, for node addition method, to §2.4.4 where its appli-
cation to a 3D RANS flow is presented). Only aspects of dJ/dX fields, θ and µ values are now discussed.

The NACA0012 test case with subsonic flow conditions M∞ = 0.5, AoA= 0o is retained for this pur-
pose. The meshes of Jameson and Vassberg’s study [180] have O-topology. Each quadrilateral cell of
these meshes has an aspect-ratio of one and the mesh-lines are orthogonal at each grid point. The sizes
of those selected for the study are (129 × 129), (257 × 257), (513 × 513), (1025 × 1025), (2049 ×
2049) discarding the finest and two coarsest meshes of the original study. These meshes are referred to
as “quasi-regular”. Besides, based on these meshes, a second family was built, with aspect ratio 1/8 at the
wall and power law for the width of the cells in the direction from wall to far-field. Along the airfoil, the
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mesh size is minimum near z = 0 (upstream of leading edge, downstream of trailing edge) and x = 0.5
(shock location for transonic conditions M∞ = 0.8, AoA=0o) at the upper and lower part of the airfoil.
The ratio of the cell-width in this direction at these locations with the mean length in the other mesh di-
rection is 1/3. The far-field boundary for both families is about 150 chord lengths away from the airfoil.
These meshes are referred to as “stretched”. For a discussion of the aspect of P(dJ/dX) vector fields,
P(dPa/dX) and −P(dCPp/dX) are presented in figure 2.8 and 2.9 for the (129×129) (257×257) and
(513×513) meshes.

At the scale of the wider plots of these two sets of figures, P(dPa/dX) and −P(dCPp/dX) can only
be seen in the vicinity of the leading edge and for the point just behind the trailing edge. This is why they
are plotted at the leading edge. When examining the plots from coarse to fine meshes, we note that :
(1) P(dJ/dX) are not much larger for the wall nodes although they involve a first order component in
space (§2.2.1 – fig.4(b) in [144]).
(2) for the two coarsest meshes and at least for Pa, the P(dJ/dX) vectors for the nodes close to the
wall are not shorter for the stretched meshes than for the quasi-regular ones. Besides more nodes have
significant P(dJ/dX) vectors on the stretched (129 × 129) and (257 × 257) meshes than on the corre-
sponding quasi-regular meshes. It is well-known for the long practice of Euler CFD that stretched close
to wall meshes are better suited for near flow and aerodynamic function calculation than quasi-regular
meshes 10, this gives an hint that minimizing the θ criterion may be more suitable than minimizing the µ
criterion to adapt meshes for J calculation.
(3) For external inviscid flows, the static pressure at the wall should be equal to its far-field value but
is actually lowered by numerical dissipation so that displacing nodes to increase Pa seems a good idea.
When looking at the left column of figure 2.9, it appears that the P(dPa/dX) fields “recommend” to
move the first J-mesh lines closer to the wall, that is a sound advice for the reason recalled just above.
(4) When looking more closely at the P(dPa/dX) field on the quasi-regular (513×513) mesh, it is ob-
served that following the direction of the vectors to guide individual moves of J-mesh lines following
the J-lines of the finest mesh 11, would bring closer to the wall lines J=2,3,5 but bring further from the
wall line J=4. This displacement of these four J-lines would create an irregular spacing and would not be
satisfactory. If adapting the mesh to increase Pa is a sound idea, Pa as a function of the node coordinates
(or even the position of J mesh-lines) is very multi-modal function so that the maximization should be
carried out with care enforcing standard regularity for the mesh.

Finally, table 2.1 confirms that the θ[J ] values are lower on the stretched meshes than on the quasi-regular
meshes. As concerning the µ[J ] values, the µ[CD] values are higher for the five quasi-regular meshes
than for the corresponding stretched meshes, whereas the ordering depends on the refinement level for
µ[Pa]. This confirms that θ[J ] is better suited than µ[J ] for assessing the capability of a mesh to lead to
an accurate J evaluation. 12

2.4.2 Mesh adaptation for 2D (RANS) flows with a θ-based heuristic

The work of Resmini, Lucor and I [157] extends to (RANS) flows the line adaptation methods used for
Euler flows [143]. To get a very fine mesh allowing the definition of new meshes by linear interpo-
lation Resmini mapped the NACA0012 (4097×4097) mesh of Vassberg and Jameson [180] about the
RAE2822. The hierarchy of meshes allowing limiting value calculations for lift and drag was then de-
rived by coarsening. The θ criterion was calculated on the successive meshes of the adaptation process.
Its mean was computed along mesh-lines (2D) to define the zones to refine. CDp−oriented adaptations

10that are essentially tools for mesh convergence analysis
11J-mesh lines are those circling around the aerofoil. They are approximately located at constant distance to the wall
12with the only exception of θ[Pa] on the (2049 ×2049) meshes
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Figure 2.8: NACA0012, subcritical flow conditions. Examination of −P(dCDp/dX) for (129×129)
(top) (257×257) (middle) (513×513) down for quasi-uniform (right) and stretched mesh (right) for Roe’s
scheme (same scale for all plots). 56
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CDp (×104) µ[CDp] θ[CDp] Pa µ[Pa] θ[Pa]

quasi-uniform grids
lim. value 0. —– —– 1. —– —–

2049× 2049 0.169 3.95 10−8 1.22 10−11 0.99905 6.70 10−6 1.24 10−9

1025× 1025 0.674 2.89 10−7 1.44 10−10 0.99812 2.96 10−5 3.75 10−8

513× 513 2.634 1.73 10−6 1.30 10−9 0.99622 1.02 10−4 7.55 10−7

257× 257 10.331 9.03 10−6 1.66 10−8 0.99217 3.19 10−4 1.04 10−5

129× 129 40.986 4.38 10−5 3.99 10−7 0.98396 1.05 10−3 9.75 10−5

stretched grids
2049× 2049 0.005 1.52 10−8 3.16 10−13 0.99983 1.60 10−5 1.65 10−9

1025× 1025 0.018 6.20 10−8 3.17 10−12 0.99973 2.33 10−5 1.02 10−8

513× 513 0.119 3.68 10−7 5.45 10−10 0.99950 8.39 10−5 4.36 10−8

257× 257 1.079 2.72 10−6 1.15 10−9 0.99898 4.35 10−4 1.12 10−7

129× 129 7.849 2.47 10−5 1.65 10−8 0.99784 2.34 10−3 3.45 10−6

Table 2.1: CDp and Pa for baseline and stretched grids. M∞ = 0.5.

were carried out for the classical flow conditions about the RAE2822 leading satisfactory enhancement
of CDp convergence towards its limiting value w.r.t. calculations on regularly refined meshes.
Besides, an attempt to use non-matching joins was done for the RAE2822 case13. The fluid domain was
split in three zones delimited by two edges that follow specific J−lines of the very fine mesh. It was
actually possible the avoid unnecessary refinements up to far-field but the balance of the θ values between
the three domains was not easy to manage and the exercise was eventually conducted with a fixed mesh
about the profile, refining only the two other domains.
The reader is referred to figures 2 and 3 of reference [157] for the synthesis of this study.

2.4.3 Mesh adaptation for a 3D (RANS) flow with a θ-based heuristic

The corresponding study for the ONERA M6 wing ([157] §5) is described here with some more details.
The flow is at Re = 11.72 106 based on the mean aerodynamic chord of 0.64607m and Mach number
at 0.8395 with AoA = 3.06o and null angle of sideslip 14. Under these conditions, the classical λ-shock
structure is observed on the wing surface. (RANS) equations completed by Spalart-Allmaras turbulence
model (SA) are retained. The selected discretization for mean flow and turbulence equations are detailed
in [157] §2.2 §3.1. The accuracy of elsA’s adjoint in dJ/dX mode for (RANS)&(SA) discrete equations
is also discussed and found satisfactory ([157] §3.2).
A 513 × 513 × 257 reference fine mesh was provided by Destarac and Dumont. Its O-O topology is
presented by figure 2.10 and corresponding caption. The hierarchy of meshes allowing limiting value
calculations for lift and drag is derived by coarsening the 513× 513× 257 mesh. The calculated limiting
values are CDlim=0.01870 for drag and CLlim=0.274 for lift. A mesh adaptation by plane addition is
conducted up to a drag-error (w.r.t. CDlim) lower than 0.0005.

Following the idea proposed by Nguyen-Din and me in [143], all involved Ni × Nj × Nk meshes are
defined by three increasing sequences of real numbers denoted ϕi, ϕj , ϕk. Sequence ϕi (resp. ϕj , ϕk)
defines the position of the Ni i-planes (resp. Nj j-planes, Nk k-planes) within the 513 (resp. 513, 257)
ones of the reference fine mesh. Those sequences fully define the indices and coefficients of the bilinear

13The adjoint module of the elsA code can manage non-matching conditions
14the reference surface, 0.7532, is obtained as the trapezoidal part of the wing
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interpolation B that calculates the current mesh from the reference one following

ϕ B
{1, Ni}{1, Nj}{1, Nk} −→ [1, 513] [1, 513] [1, 257] −→ R3

(i, j, k) (ϕi, ϕj , ϕk) X(x, y, z)

The starting mesh prior to adaptation is the same for the standard base refinement (i.e. by doubling the
total number of nodes at each step) and for the CD-based mono-block adaptation: namely, with Ni = Nj

= 65 andNk = 33, uniformly distributed in i and k directions and 20 j-mesh planes in the boundary-layer.
At each adaptation step, the dCDp/dX and then θ[CDp] fields are calculated. Means of θ[CDp]m are
then calculated over all i, j and k mesh-planes and then averaged two by two to attribute a mean to the
(Ni−1) i-cell-planes, the (Nj−1)-j cell-planes and the (Nk−1) k-cell-planes. The cell-planes with the
higher values are then divided in two to five parallel planes depending on their mean θ value. In term of ϕ
sequences, this corresponds to enriched sequences. To ensure a smooth node location, the ϕl sequences
resulting from plane-addition are regularized with a third order dissipation applied to (ϕl+1−ϕl) before
using bilinear interpolation to get the next mesh.
CD convergence is plotted in Figure 2.12 for regularly refined and θ-based adapted grids. The asset
given by the proposed method is patent. The CD estimation error in the CD-based adapted mesh is
under five drag counts w.r.t. both the estimation from the finest standard grid and from the Richardson
method. Concerning the CL, the estimation error is under one lift count.
In the context of monoblock 3D structured meshes, in order to deal with meshes of different sizes and
easily identify the refinement zones, the ϕi sequences ({1, Ni} → [1, 513]) are transformed, by straight-
forward affine mapping, to discrete values of increasing ([0, 1] → [0, 1]) functions denoted Φi (and just
the same for ϕj and ϕk). Figure 2.11 is precisely the plot of Φi, Φj and Φk for the starting base mesh
and for the CD-based adapted one 15. The low slope areas in the distribution of the CD-based adapted
mesh correspond to refinement areas. For instance, in Figure 2.11(a), a refinement is undergone around
imin and imax (trailing edge) as well as around (imin + imax)/2 (leading edge). Similarly, in 2.11(c), a
refinement is identified around kmin (wing tip) and kmax (symmetry plane).

2.4.4 Euler and (RANS) adaptation based on an elliptic pde. Applications to 2D flows.

Nguyen-Dinh could benefit of Airbus-F strong experience in structured mesh adaptation by nodes dis-
placement. One method used at that time by the CFD groups of this company relies on the elliptic
equation

3∑
i,j=1

gij xξiξj +
3∑

k=1
gkkPk xξk = 0. (2.17)

The unknown vector is the position vector x = (x1, x2, x3) whereas ξ = (ξ1, ξ2, ξ3) are the curvilinear
coordinates (structured planes/lines indices are discrete values of these curvilinear coordinates). After
the contravariant and covariant base vectors of the (x, ξ) mapping have been defined,

gi = ∂x
∂ξi

and gi = ∂ξ

∂xi
,

the contravariant metric tensor is simply

gij = (gi, gj)
15Please note the uniform distribution in i and k while the exponential distribution in j (due to the BL) for the starting base

mesh
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Figure 2.10: ONERA M6 wing, (RANS) flow. Starting regular structured 65×65×33 mesh prior to
adaptation. Left : view of the symmetry plane and the wing surface. Right : view of the mesh topology,
i-mesh planes in green run clockwise along the wing section from the trailing edge along the pressure
side and back to the trailing edge along the suction side, j-mesh planes in blue go from the wing surface
to the farfield boundary, k-mesh planes in orange run from the tip to the root of the wing (they are
symmetric w.r.t. z = 0). The hemispheric farfield boundary is placed at 145 chords from the leading
edge.

Figure 2.11: ONERA M6 wing, (RANS) flow. Functions defining the position of the i- j- and k-planes
w.r.t. those of reference fine mesh
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Figure 2.12: ONERA M6 wing, (RANS) flow. Convergence of CD for the regular and adapted meshes

All terms of equation (2.17) are now defined but the so-called control functions, Pk. These Pk fields
entirely define the structured mesh. They may be calculated a posteriori even if the structured mesh
has not been generated using this theoretical framework. For mesh adaptation, the Pk can be modified
according to

Pk = P initialk + εP adaptk

where ε is a constant factor, P initialk is the k-th control function of the initial mesh and P adaptk is built
according to the user’s criterion. The calculation of P adaptk has been based on intermediate fields defined
as the norm of P(dJ/dX) times the characteristic lengths in the two (in 2D) respectively three (in 3D)
mesh directions.
As I was not closely associated to this part of the work of Nguyen-Dinh done at Airbus-Saint-Martin-
du-Touch and the reader is referred to [122] §4, [121] §3.2 for the details of the θ-based calculation of
P adaptk and to references 23 to 27 of [122] for the elliptic equation method.

Two mesh adaptations for 2D inviscid flows, carried out by Nguyen-Dinh, Sauvage and Meaux, are
briefly described here to point out some assets of the method [122]. Starting from Vassberg and Jame-
son’s (129 × 129) regular mesh about the NACA0012 [180], the elliptic equation method has been
applied for one subcritical (M∞=0.5 and AoA=0o) and one transonic (M∞=0.8 and AoA=0o) flow, for
the same two functions as before, CDp and Pa. The reader is refered to [122]§7 for precise discussion
of the satisfactory function value improvements, but the final adapted meshes are presented in figure 2.13
and their features are discussed hereafter.
The adaptations required 5 to 9 steps depending on the case. The ability of the method to manage large
node displacements, while keeping a certain regularity in the mesh, is first noted. Besides, the method is
able manage the refinement of specific zones like supersonic area (CDp-oriented transonic), vicinity of
the wall (Pa-oriented), vicinity of leading and trailing edge (CDp-oriented), zone upwind the trailing-
edge (Pa-oriented, subcritical flow). This versatility is clearly higher than the one of the techniques of
mesh parametrization used before [147, 144, 143]. The clear differences close to the wall between the
meshes adapted for CDp and for Pa is finally underlined.

The PhD thesis of Nguyen-Dinh [121] then presents interesting (unpublished) mesh adaptations for
(RANS) flows, retaining components of drag as goal, checking (possible) improvements of the all classi-
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cal functions of external aerodynamics when adapting the mesh for the calculation of one of them. I only
extract here from the 2D part of his work two plots of a CD-oriented mesh-adaptation for the RAE2822
aerofoil (M∞=0.725 and AoA=2.466o, Re/m = 6.5 106). A hierarchy of C-meshes from (257×65) to
(4097×1025) leads limiting values for four outputs of interest CLp, CD, CDp and CDf . A θ-based
CD-oriented mesh adaptation is then performed for the (513×129) mesh. Its nodes are displaced in
three steps using the elliptic equation method. The improvement in the output CD is very satisfactory
(Initial mesh 123.93 10−4 ; adapted mesh 119.41 10−4 ; limiting value 118,60 10−4 ) with simultaneous
improvement of CLp, CDp, and CDf ([121]). The final mesh and the local θ[CD] are presented in
figure 2.14. It is noted that bringing closer the mesh lines 16, in the zones of high values of θ[CD] has
lowered the local criterion on the adapted mesh.

Figure 2.13: NACA0012 inviscid flow. Final meshes obtained by elliptic-equation-θ-based.
Pa−oriented (left) and CDp−oriented (right) adaptations

16essentially the I-mesh lines
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Figure 2.14: RAE2822 (RANS) flow. θ[CD]-criterion on initial mesh andCD-adapted elliptic-equation-
θ-based mesh. (513 × 129) meshes

2.4.5 3D RANS adaptation based on an elliptic pde.

The elliptic pde based method has also been assessed in 3D ([121] §4.1 to 4.3). The test case is the XRF1
Airbus configuration. Without specifically optimized geometrical preprocessing, it is considered that
P(dJ/dX) is too expensive to compute for structured multidomain meshes of several million points.
This mean of P(dJ/dX) is replaced by a simpler formula that only involves the first neighbors. The
corresponding local value of indicator is denoted θ̃m (local value). Its mean over the mesh is denoted θ̃.
The XRF1 Wing-Fuselage is retained for the mesh adaptation based on θ̃m. The flow conditions are
M∞=0.83 and AoA=2.607o, Re/m = 7.8 106. A hierarchy of five meshes with 3.2, 10, 13.5, 74 and 100M
points is defined to obtain reference values for lift and drag (very fine grid values being considered as
limiting values). These near-field forces values are gathered in table 2.2. The CLp-oriented adaptation
of the medium mesh (13.5M nodes) is summarized here and the reader is refered to [121] §4.3 for
more details. The adaptation steps reduce by 3.3% the error in CLp and all near-field functions exhibit
improved values (see table 2.2). It is observed that θ[CLp] is slightly increased (from 3.29 10−12 to
3.38 10−12) during the optimization and the same behavior is observed for θ̃[CLp] (from 2.10 10−12 to
2.28 10−12). It is understood from these values that the 13.5 M mesh may probably not be significantly
further improved for CLp evaluation. Finally the θ̃m field is plotted is three vertical mesh planes for the
initial and the adapted mesh (figure 2.15). It is observed that the zones of highest sensitivity have been
decreased but near the wall for the first vertical cut.
A similar mesh-adaptation has been conducted for CDp. It leads to a stronger improvement of goal value
(12.8 % error reduction) but to a more complex discussion of the influence of the mesh-adaptation on
other near-field functions.
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Mesh size CL/CLref CLp/CL
ref
p CD/CDref CDp/CD

ref
p CDf/CD

ref
f

100 M 1. 1. 1. 1. 1.
74 M .99645 .99666 .99390 0.99608 .98990

13.5 M (baseline) .98476 .98498 1.04371 1.05849 1.01656
13.5 M (adapted) .98526 .98529 1.03727 1.05008 1.01374

10 M .98407 .98429 1.04790 1.06562 1.01550
3.2 M .96470 .96491 1.19002 1.29034 1.00658

Table 2.2: XRF1 at M∞=0.83, AoA=2.607o, Re/m = 7.8 106. CL, CLp, CD, CDp, CDf values for
baseline meshes and medium adapted mesh.

Figure 2.15: XRF1. Criterion θ̃[CDp]. Left: initial mesh – Right: adapted mesh

2.4.6 Criterion examination for complex 3D (RANS) flows.

Finally, the last sections of [121] include the examination of the basic θ criterion on a “generic mod-
ern aircraft”. The wing-body-pylon-nacelle-vertical-tail configuration is retained. The structured non-
matching mesh is composed of 81 million points and 1394 mesh blocks involving non-matching joins
between blocks. The θ fields of lift, drag and integrated wall-temperature are looked at 17. The zones
marked by high values of the θ criterion for the three functions exhibited significant differences. This is
illustrated by figures 2.16, 2.17 and 2.18. These zones were found to be relevant by Airbus experts and

17whereas θ and θ̃ were not calculated for this configuration
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Figure 2.16: Modern green aircraft. Criterion θ[CL]. Left : symetry plane. Right : plane between the
engine and the fuselage.

Figure 2.17: Modern green aircraft. Criterion θ[CD]. Left : symetry plane. Right : plane between the
engine and the fuselage.

Figure 2.18: Modern green aircraft. Criterion θ[Temp]. Left : symetry plane. Right : plane between the
engine and the fuselage.

Joël Brezillon recently confirmed that the local θ criterion is currently used by Airbus and subcontractors
for non-matching structured mesh improvement by automatic addition of mesh planes in zones of high θ
values [18].

2.5 Goal oriented adaption of unstructured meshes

The goal-oriented adaptation of unstructured meshes was started at ONERA in 2011 by Bourasseau in
the framework of his PhD thesis [17]. He first extended the adjoint module of the elsA code to unstruc-
tured meshes, for inviscid flows, under my supervision 18 then developed a goal-oriented mesh adaptation
chain based on INRIA’s MMG series of codes [39]. He eventually presented satisfactory mesh adapta-
tions and goal convergence. As an illustration of Bourasseau’s work, figure 2.19 is the plot the initial and
fourth-adapted mesh for a 2D inviscid flow about the LS89 turbine blade. The classical subsonic inflow

18Todarello contributed, coding the direct and adjoint linearization of Roe-MUSCL scheme for unstructured meshes [170]

65



and outflow conditions have been used 19. The function of interest, Pa, is the integral of total pressure
at the outlet. The refinement criterion is θ[Pa]. The final mesh exhibits strong refinement at the oblique
shock-wave starting from trailing edge, the outflow and the acceleration zone close to leading edge which
are precisely the regions where accuracy is expected to be needed for a satisfactory estimation of the out-
put. We refer to [17] for more details.

Figure 2.19: LS89 initial regular mesh (2705 nodes) and final Pa-oriented adapted mesh (11338
nodes)

Later on, based essentialy on extensions of the same adjoint [170] and adaptation code, mesh adap-
tations for external flows were performed by Vonck and me. The corresponding activity led to the most
demonstrative results among those presented as (1) a complete comparison of the proposed method with
Venditti and Darmofal’s one [181, 182, 183] 20 was performed ; (2) accurate limting values could be
estimated for the functions of interest allowing error calculations for the outputs. The corresponding
research is presented in reference [171] where it was illustrated by mesh adaptations for three inviscid
flows about the NACA0012 aerofoil at two transonic flow conditions (M∞=0.85, AoA=20) (M∞=0.95,
AoA=00) and one supersonic flow condition (M∞=1.5, AoA=10). The derivation of the method is re-
called hereafter ; its efficiency is illustrated by a lift-oriented mesh adaptation for the first transonic test
case.

2.5.1 Validity of linear expansion of J(X)

The proposed refinement indicator relies on an upper bound of the first order change in J when moving
one node inside a circular vicinity included in the polygon defined by its neighbors. The validity of the
first order Taylor expansion of J ,

J(X + dXi) ' J(X) + dJ

dXi
dXi , (2.18)

is hence first to be studied.
Six nodes are selected in a rather coarse unstructured mesh about the NACA0012 airfoil (see figure
2.20 left) for which we expect stronger non-linear behavior of J(X) compared to finer meshes. For the
transonic flow conditions (M∞=0.85, AoA=00 ), after the accuracy of dCLp/dX has been exhaustively

19Inflow: fixed total pressure and total temperature fixed flow direction parallel to machine axis. Outflow: fixed static
pressure. its ratio w.r.t inlet total pressure being .7587

20which can be viewed as the reference for finite volume goal-oriented mesh adaptation
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Figure 2.20: Left: location of points for check of total derivatives of outputs w.r.t. mesh coordinates.
Right: evaluation of CLp deviation, ϕ, w.r.t. nominal value at points A, B, C, D, E, F (scaled as
indicated for points C, D and F)

checked, the domain of validity of the Taylor expansion (2.18) with respect to the coordinates of these
six nodes is assessed. The difference term

ϕ(δXm) = CLp(X + δXm)− CLp(X),

where δXm = t

0.5 hm
.nm nm = dCLp/dXm

||dCLp/dXm||
,

is calculated for the selected nodes and different values of the relative displacement t. (The Taylor
expansion inXk is hence checked in the direction of the corresponding sensitivity dCLp/dXk.) For each
node, 18 shifted meshes are defined and the corresponding flow and lift are computed. The variation ϕ
is finally plotted as a function of the displacement relative to half the local meshes size, 0.5hm, in the
direction nm. The zone where the variation ϕ can be considered as linear depends on the point but
includes [-0.05 h,0.05 h] for most of the points – see figure (2.20 right).

2.5.2 Asymptotic behavior of P(dJ/dX)

When dealing with structured meshes, theoretical efforts have been undergone to analyze the asymptotic
behavior of dJ/dX – see section §2.2 or references [121, 122]. When moving to unstructured meshes,
the counterpart developments would have been much more tedious if even doable as (1) even a basic
generic unstructured mesh is more geometrically complex than a structured Cartesian mesh ; (2) the
coding of an inviscid second order scheme on an unstructured mesh involves more geometrical terms
compared to its counterpart for structured meshes (Typically, gradients of primitive variables are needed
for the calculation of MUSCL left and right states on unstructured grids but are not required on structured
grids). A more practical approach has hence been adopted here.
The first step was to check on a hierarchy of embedded meshes 21 and for simple 2D inviscid flows, that

µ[J ] = 1
nX

nX∑
m=1
‖P(dJ/dXi)‖

is second order in the characteristic mesh size (J stands for lift, CLp, or drag, CDp). More details can
be be found in reference [171], in the discussion of figure 1.

21These meshes were derived from those of Vassberg and Jameson’s study [180] by splitting every cell in two. See left
column of figure 2.21
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The second step was to discuss whether this global property reflects a local property. dsi, denoting the
area associated to the node of indexm in the classical construction of a dual mesh, ||P(dCDp/dXm)||/dsm
and ||P(dCLp/dXm)||/dsm have been calculated and plotted for the hierarchy of meshes mentioned
before. The pattern of isolines of these scalar fields is roughly the same as the mesh refines (see right
column of figure 2.21 for drag). When an approximate asymptotic behavior of ||P(dJ/dX)|| will be
needed to construct a mesh adaptation strategy, according to the observation above, ||P(dJ/dXm)|| will
be assumed to scale with the square of the local mesh size hm for 2D Eulerian flows and for the selected
scheme.

2.5.3 Adaptation procedure

As discussed in section (2.2) the proposed goal oriented mesh adaptation method aims at regularizing
the straightforward upper bound of the first order change that a displacement of a node can cause to the
considered output. More explicitly, the retained criterion is

θm =
∥∥∥∥P ( dJ

dXm

)∥∥∥∥ hm2 . (2.19)

whereby hm is defined as the distance of node Xm to the closest neighboring node.
The corresponding global indicator is

θ[J ] = 1
nX

nX∑
m=1

∥∥∥∥P ( dJ

dXm

)∥∥∥∥ hm2 .

The adaptation procedure is defined by using a threshold value, T , comparing the node criterion values
θm to the threshold and refining the zones where it is larger. In order to get an approximation of the
local change in criterion θ caused by a local change in characteristic mesh size h, it is necessary to make
an assumption on the decay of dJ/dX when h is decreased: It is simply assumed that the asymptotic
behavior observed for the family of regular meshes of the previous section is valid in the case of a local
refinement – in other words, that dJ/dX decays like h2. The new local mesh size hnewm , where the
threshold is exceeded is then (as the mesh is adapted by refinement only),

hnewm = hcurm min
((

T

θm

)1/3
, 1
)
. (2.20)

In accordance to a classical reference on goal oriented mesh refinement [182], the threshold value for θ is
set in such a way that not more than half the number of nodes are flagged for refinement. The remeshing
is performed using MMG2D, from INRIA [39]. This tool uses the classical metric matrix formalism to
define the goal shape of the cells in the vicinity of a node. In this case where isotropic mesh refinement
is performed, the input provided to MMG2D is a simple diagonal 2x2 matrix with two equal coefficients
equal to the inverse of the square of the desired local mesh size.

2.5.4 Lift-oriented mesh adaptation at (M∞=0.85, AoA=20). Comparison with reference
method

The flow about the NACA0012 at this transonic condition involves a strong suction-side shock-wave, a
pressure-side shock-wave and a sliding line behind the trailing edge. The iso-Mach number lines obtained
on a fine regular grid are presented subsequently in figure 2.24 of section (2.6).
Limiting values and GCI confidence intervals for lift and drag result from series of calculations on fine
structured meshes up to 4097×4097 [180]. A limiting value of 824.152 d.c. and a confidence interval
of [823.839,826.963] d.c. based on the finest grid estimation (CD1 = 825.401 × 10−4) are obtained.
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Figure 2.21: Meshes and corresponding iso-lines of 1/dsi||P(dCDp/dXi)|| about the NACA0012
(M∞=0.85 AoA = 20)
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Concerning lift, the corresponding quantities are 62.588 l.c. and interval [62.547,62.952] l.c. based on
CL1 = 0.62750 and two coarser grid values.
CLp-oriented mesh adaptation procedures are run with a 0.001 (0.1 l.c.) tolerance w.r.t. the rounded
limiting value 62.59 l.c.. The threshold T – equation (2.20) – of the proposed method and the error
bound of the reference method are adjusted so that the size of the successive adapted meshes is about
3500, 5800, 8800 and 12800 nodes.
The lift value on the initial 1352-node mesh is 61.637 × 10−2. It is lowered at the first adaptation step
then increased towards the limiting value by the next three adaptation steps (see figure 2.22 for detailed
convergence). Three adaptation steps are required for the θ-indicator method until CLp is included in the
goal interval for lift. Three adaptation steps are also needed for Venditti and Darmofal’s method with its
correction until CLp estimation is included in the interval [62.49,62.69] l.c. (respectively, five adaptation
steps without this correction).
The adapted meshes at step five (fourth adapted meshes) are compared in figure 2.23 (reference method;
12973 nodes ; proposed method; 12502 nodes). They actually present very similar dense zones close to
the upper side and lower side shock waves, upwind the profile and along a hat shape above the airfoil.
The reason for this will be discussed in next section.
The plots of compared analysis of refinement criteria are the upper and bottom part of figure 2.23. They
exhibit closely similar trends: the two methods initially select for refinement a large area upstream and
above the profile. On the second to fifth steps, they alternatively detect a thin area upwind the profile,
the upper-side shock-wave and the already mentioned hat shape above the airfoil. When looking closely
to pictures 2.23, the only clear difference between the error estimator of the reference method and the
sensitivity indicator of the proposed method is that the latter one is relatively stronger close to the wall
and this leads to a higher mesh density in this zone.
Finally, the relevance of the projection operation involved in the criterion definition – equation (2.19)
– is assessed. As expected from the experience gained with structured meshes, the indicator obtained
without the projection operation (denoted no-projection θ-indicator in the legend of figure 2.22) leads to
over-refinement close to the wall and stall of CLp value below the limiting value.

Figure 2.22: Convergence of CLp (right) for θ-based and reference method (M∞ = 0.85 and AoA = 2o)
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Figure 2.23: NACA0012 M∞=0.85, AoA=2o inviscid flow, CLp-oriented adaptation – Up: Fields of
θ indicator at the successive steps. Down: Fields of absolute value of local contribution to error in
computable correction of reference method at the successive steps.
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2.5.5 Attempt to control the error in the output

As a path towards an heuristic error control, the global value of the indicator θCLp was plotted as a
function of the number of nodes and the error error in CLp (w.r.t. the limiting value calculated besides)
has been plotted as a function of θCLp .

For this application, θCLp scales with 1/n3/2
X (see [171] fig 8(a)) nX being the total number of nodes.

This is not very different from was is expected and observed on regular meshes. Other mesh adaptations
have exhibited a decrease of θ as the inverse the square of nX .
When looking at the error in CLp as a function of θ, unfortunately, no simple correlation could be
established so that no heuristic error control could be proposed.

2.5.6 Analysis of an adapted mesh and corresponding P(dJ/dX) field

As noted in the introduction of this chapter, goal-oriented adapted meshes are very different from those
defined by feature-based criteria and are quite different from those that were defined by engineers experi-
ence before the introduction of goal-oriented mesh refinement. They actually gather nodes in zones that
are not always easily connected with the flow and output functional of interest.
Désidéri and I contributed to the analysis of the map of the sensitive zones (for lift) for two inviscid 2D
flows in [171] with an original method based on the characterization of the adjoint vector by perturbation
of the residual (§1.1.5). This method is presented in the second subsection for a transonic flow and lift as
selected goal. The corresponding flow, adjoint field and dJ/dX fields are discussed in the first subsec-
tion.

The final lift-adapted meshes about the NACA0012 airfoil at (M∞,AoA) = (0.85, 2o) are presented in
bottom-right part of the two sets of plots of figure 2.23. They exhibit refinement of shock waves, of
the stagnation stream line and of large “circumflex accents” upwind both shock waves. These dense
mesh zones are in fact the union of the strong gradient areas of the flowfield and zones of high values
of the adjoint field. This can be easily checked looking at figure 2.24 that presents the iso-lines of Mach
number and first component of lift-adjoint for the inviscid flow of interest (for the sake of simplicity all
the plots of this section have been obtained on the regular (1025×1025) mesh of reference [180] with
Roe-MUSCL scheme). These mesh-aspects are now classical ; they have been obtained not only with
the classical method of Venditti and Darmofal [182] and the proposed method but also with Dwight’s
method [47] for Jameson-Schmidt-Turkel scheme.

Besides figure 2.25 presents the iso-values of

θ[CLp]m = 0.5 hm ||P(dCLp/dXm)||

on the (1025×1025) regular mesh and hence shows the zones selected for refinement on this regular mesh
by the θ method. The zones of high values of hm||P(dJ/dXm)|| are definitely those listed above. In this
specific case of a very regular mesh, they are the same as those of high ||P(dCLp/dXm)||. The reason
why dCLp/dX “detects” strong gradients of flow and high values of adjoint stems from its definition,
equation (1.9),

dJk
dX

= ∂Jk
∂X

+ ΛTk
∂R

∂X
and the structure of the lift-adjoint field which zones of high gradients correspond to narrow zones of
high-values. Dealing with a near-field function, the field values of dJ/dX are those of

ΛTk
∂R

∂X

and it is easily understood that the dJ/dX field gathers information of both direct and adjoint equations.
These observations do not fully explain the critical influence of the zones refined by all goal-oriented
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Figure 2.24: NACA0012 M∞ = 0.85 and AoA = 2o inviscid flow – iso-Mach number lines (left), iso-lines
of first-component of lift adjoint vector (right)

methods for CLp that are actually the same as those obtained for pressure drag. Of course accurate
position and representation of shock waves is necessary for a satisfactory evaluation of lift or drag. The
influence of the zone upwind the profile (that is the support of lift and near-field drag integration) is quite
intuitive – it is necessary to convect a sound, non-dissipated flow up to the wall – and has been discussed
by Giles and Pierce [60]. The downstream line of what we called “circumflex accent” upwind shocks
has been well identified as a characteristic line (it is fully included in the supersonic zone) impinging
the shock wave foot. As far as I know, the mechanism through which the flow in the upstream part of
“circumflex accent” influences lift and drag has not been discussed ; however from a plot of a recent
paper by Lozano [108], it appears that this line is also a characteristic line of the supersonic zone (the
two lines of the circumflex accent belonging to the two different curve families)

2.5.7 Analysis of 2D inviscid adjoint fields

In order to gain insight in the influence mechanism on output that adjoint vector detects, let us first recall
that this vector is the sensitivity of the function of interest (now specifically the lift coefficient CLp)
to an infinitesimal perturbation of the residual (section §1.1.5). This observation led us to conduct a
series of original tests in which the (density-related) first component of the residual of our CFD code was
perturbed by a small amount (∆R1 = ±2× 10−4), and the resulting variation in the Mach number field
was observed. These experiments were made at points 1-7 of Figure 2.26 which provides the isovalue
contours of the corresponding first component of the adjoint vector λ1 = ∂CLp/∂R1

We first check that the sign of λ1 given by this figure is indeed consistent with the variations in the
Mach number field observed on figure 2.26 and analogous plots for the other five points omitted (for the
sake of brevity). For points 1, 4, 6, 7, the upper-surface shock is pushed downstream thus enlarging the
suction zone, and by this effect, increasing the lift. The effect on the lower-surface shock is opposite.
Indeed, λ1 is positive at these point. For points 2, 3 and 5, the upper-surface shock is pushed upstream
and the lower-surface shock is shifted upstream. The main effect is caused by the upper-surface shock
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Figure 2.25: NACA0012 M∞ = 0.85 and AoA = 2o inviscid flow – iso-lines of θ[CLp]m =
0.5hm ||P(dCLp/dXm)||
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displacement and the lift is decreased.
Detailed plots of Mach number change due to residual perturbation is presented in Figures 2.26 for points
5 and 7. When now the perturbation is made at point 5, the Mach number locally altered along an the
oblique characteristic line impinging the shockwave at the wall. Lastly, when the perturbation is made
at point 7, the wave is reflected on the upper surface, and impinges the shock wave, creating a zone of
strong influence.

Figure 2.26: position of points for assessment of residual perturbation influence on CLp. Change of
Mach number due to change of R1 at point 5 (left) and 7 (right)

2.6 Maturity of (FV) goal-oriented mesh adaption methods. Perspective
for proposed method

2.6.1 Technical maturity of classical FV goal-oriented mesh refinement methods

Five methods have been presented in section §2.1 from a theoretical point of view. Their technical ma-
turity and actual usage for compressible flow simulations is discussed here before presenting the future
developments of the proposed method. Of course, when dealing with possible applications, the robust-
ness of the direct solver, the robustness of the adjoint solver, the remeshing process (possibly subsidiary
tools for local mesh improvement), the projection of the state variables onto the newly generated meshes
and the link between CAD and mesh are key-factors. This is the reason why I refer to CFD codes and
(re)meshing tools in this sub-section.
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• The adjoint-weighted-residual method, in the non-linear form introduced by Venditti and Darmofal
[182, 183], has the assets to provide an error estimator for the goal and to be applicable to all FV
schemes. Its drawback is to require a finer-than-current grid. (If the discrete adjoint is not perfect, a
second drawback is that the correction term is most often wrong – see contribution of Tourrette in [172]).
The method has raised a deep interest in the aeronautical CFD community and has been used not only
with unstructured meshes as in the original reference but also with structured [94, 8, 141] and embedded-
boundary Cartesian meshes [118, 119]. It is important to note that it has been fully developed in at least
two industrial codes:
– Park and coworkers from the NASA Langley have implemented the method in the FUN3D suite of
codes (the FUN3D code being a finite volume Navier-Stokes solver using dual mesh and flow-variables
stored at the nodes of the original mesh). They have presented 3D Euler applications for sonic boom pre-
diction [95, 89] and also 3D (RANS)&(SA) applications including the wing-body DLR-F6 DPW2 test
case [128, 95]. The refinement of the current mesh is detailed in [128] for tetrahedral meshes (8 small
tetrahedras are included in one tetrahedra of the original mesh) as well as the linear and higher order
reconstruction (based on least-square fit of a quadratic function) and the combination of the goal oriented
estimator with the Hessian of a flow variable [128] as in reference [183]. In 2008, Park proposed a single
grid goal error estimate ([129] equation (4.22)) that mimics the original one but only uses higher and
lower order reconstruction of discrete flow and adjoint on the current grid ; when this formula is used, no
correction (and hence no error estimate) is available anymore. In recent publications, both the classical
finer embbeded grid and single grid error indicators are used. They are actually compared in [131] where
they are found to provide equivalently good results for the complex HighLiftPW configuration.
– In a recent publication, the adjoint-weighted-residual method was also demonstrated for 3D complex
flows with HYDRA, the in-house CFD code of Rolls-Royce (HYDRA being a finite-volume edge-based
/ dual control volumes code whose discrete adjoint module has been derived by automatic differentia-
tion) [4]. Actually, the goal-oriented error-estimation framework is not the focus of the article and no
mesh-adaptation is carried out. The capability allows to select the most efficient structured blocking-
meshing procedure for complex internal and external flows, in the sense that the flows computed on the
corresponding meshes exhibit the lowest error for the functions of interest.
The interested reader is also refered to [152] that presents the coding of the method and mesh adaptation
for 3D Euler flows using the DLR TAU code.

• In the method defined in 2003 by Venditti and Darmofal for anisotropic adaptation of viscous flows,
the tightest element size was defined by the goal-oriented error analysis and the Hessian of Mach number
was used to equidistribute the interpolation error for the flow variables. In comparison, the more recent
analysis by Yano and Darmofal [189] is “strictly” goal-oriented as the search for changes in the local
anisotropy are based on corresponding error reductions in the goal. It has also the advantage not to re-
quire a global finer grid 22 but the drawback not to provide an error estimator for the output functional
of interest. The new approach has been applied to elliptic interface problems and conjugate heat transfer
problems [77]. There does not seem to be many applications in aerodynamics up to now apart from [77]
where the method is applied with Discontinuous Galerkin method to 2D turbulent flows.

• Dwight’s method has the assets to deal with the current grid only and to provide an error estimator. Its
drawback is that Jameson Schmidt Turkel scheme [85] is the mandatory discretisation of inviscid fluxes.
Although it is well-known, it seems only Albensoeder coded it [2] after it has been defined and assessed
by Dwight for 2D Euler flows with the TAU code of DLR [46, 47].
Extension to (RANS) flow would clearly require a new discussion of the error attribuable to numerical,
explicitely added, dissipation (counterpart of [47] §4 for Euler flows). This discussion would of course
involve the discrete convective flux of turbulent variables whose dissipative part should probably be

22of course, with a specific (and surely tedious) coding, the correction and error of correction of [182, 183] could be computed
without manipulating and storing at same time all the elements of the finer grid
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cancelable monitoring a multiplicative parameter. Moreover, in many industrial codes, it is considered
acceptable to discretize the convective flux of turbulent variables at first order which would probably
make the discussion more complex and intricate with robustness issues.

• Fidkowski and Roe’s entropy adjoint technique provides a free adjoint for adjoint-weighted-residual
type methods. It naturally provides an error estimate for the goal and requires a finer than current grid
23. Its drawback is to be limited to the entropy flux and, under specific assumptions, to Owatitsch drag.
It has been demonstrated for Euler, laminar and turbulent flows about airfoils and also for an inviscid 3D
flow about a wing [52, 50]. Although the articles describing the method are frequently quoted, it does
not seem that it has been coded in other codes than the one(s) of Michigan University.

• The method developed by Alauzet, Dervieux, Loseille and Belme is based on an a priori error bound
for the goal (involving linear approximation error) and a global minimization of that bound in a space
of continuous meshes. It is hence very different from the previous ones. In particular, it is naturally
anistropic and global. It does not require a finer grid but is limited to the numerical schemes for which
the a priori error analysis leads to the suitable expression for the error-bound.
The theory has been published for Euler [104] and laminar flows [10], but also developed by Frazza and
his supervisors for (RANS)&(SA) flows [55]. Complex mesh adaptations have been carried out and pre-
sented for Euler flows (about a F15 fighter and a Falcon business jet, in particular) [104]. Also a series of
successfull mesh adaptations for 2D laminar flows is described in reference [10] 24. Besides, Frazza has
presented in his PhD thesis several pre-industrial and industrial applications (ONERA M6 wing, Rotor
37, High-lift CRM).
The goal-oriented mesh-adaptation chain of INRIA Gamma3 team is based on the mixed finite-volume
finite-element solver Wolf ([55] §1) and the iterative mesh generator feflo.a. These tools are clearly able
to deal with industrial configurations and [55] mentions support by SafranTech and Boeing Commercial
Aircrafts (and feflo.a is also used at ONERA for research activities with CEDRE code). I am not aware
of other laboratories having further developed the method.

2.6.2 Perspectives for dJ/dX based method

The dJ/dX-based goal-oriented mesh refinement-method is free if the dJ/dX vector field is calculated
any-how (typically for shape optimization) and used without spatial mean (θ criterion). Otherwise, it
requires an adjoint solve as all the methods discussed above but the one of Fidkowski and Roe. If a
spatial mean of dJ/dX is used (θ criterion), the cost of this operation can be significant. The method has
the advantages not to require a finer grid, not to be limited to a single output, not to be limited to a single
scheme. It has the drawback not to provide an error estimator for the goal.
The capabilities of dJ/dX-based method for goal-oriented mesh adaptation have been extensively pre-
sented and discussed for structured meshes in the previous sections. Of course, unstructured meshes
provide the most suitable framework for mesh adaptation and the 2D activity of isotropic refinement
for 2D Euler flows should be followed by extension to 3D, (RANS) and, if possible, anistropic refine-
ment. Although satisfactory, the 2D activity was not immediately followed by an effort towards 3D and
then (RANS) flows due to the lack of adjoint code for these types of flow. Fortunately, a recent line of
elsA versions called elsA remotorisé 25 benefits from this capability and the extension of dJ/dX-based
method is currently being planned.
The first foreseen step is the detailed examination of the type of meshes that are compliant with the

23the proposed method summarized in [50] §VID not only involves a residual evaluation on the fine grid but a few relaxation
iterations for direct or adjoint equations

24this paper presents in section §8.5 a 3D turbulent test case, 3D tubulent shock boundary layer interaction, but it is not
explicitely said how turbulence is taken into account

25unfortunately, there is today no public document about elsA remotorisé
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available numerical schemes. It is noticeable that authors working with well-known large codes have
significantly different judgements on this topic. In [131], we read the discretization of FUN3D is more
accurate for semi-structured right-angle elements in the boundary layer, whereas in [55] on the contrary,
it is indicated and illustrated that the finite-volume flow solver Wolf [performs satisfactory] RANS com-
putations on fully unstructured meshes. Following Park et al., the case where semi-structured stacks of
prismatic elements near wall-bounded shear layers are beneficial to the solver accuracy is today the most
frequent [130]. The constraint put on meshes for standard (RANS) simulation should also be applied to
the new meshes generated during the adaptation process.
A second point to consider is the type of (RANS) mesh adaptation that is to be performed : full domain
adaptation, adaptation with fixed mesh in the boundary layer [131], fixed number of structured layers in
the boundary but possibly more elements [90], fixed wall mesh but adaptation of the number of mesh
planes in the boundary layers (references in [31]) The projection operator was applied up to now to
dJ/dX to remove degrees of freedom that are not associated to mesh adaptation but to shape optimiza-
tion. If some features of the mesh are fixed (like number of planes parallel to the wall) the operator could
also be used to remove the components of dJ/dX that are not to be exploited (like components normal
to those planes). This of course, is to be tested and assessed.
Preserving geometric features of an initial anisotric mesh is a basic approach to produce anisotropic
adapted meshes, as discussed just above for the boundary layer region. More generally, considering all
the fluid domain, anisotropic goal-oriented mesh refinement methods are known to be more efficient than
their isotropic counterpart whenever sharp flow structures influence the goal value. When considering
only a local node vector P(dJ/dXm) and taking its norm, all anisotropic information is lost. Hence a
deeper (in pratice, spatially more global) extraction of information from dJ/dX vector field should be
considered to move towards general anisotropic mesh adaptation.
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Chapter 3

Conclusion and perspectives

Discrete gradient computation started at ONERA beginning of 2002 in close cooperation with AIRBUS-
F CFD team. The primal goal was then to provide an efficient means to calculate derivatives of forces and
moments w.r.t. numerous design parameters for quick local optimization by descent methods. This target
was progressively reached as illustrated by the optimization of the AVECA flying wing configuration by
Méheut, Arntz and Carrier with more than a hundred design parameters – see references [117, 116] and
also figure 3.2 right. These results demonstrate the current maturity of elsA discrete adjoint module
[145] and ONERA’s techniques for parametrization, mesh deformation and advanced post-processing as
well.
At the same time, ONERA participated in various groups and sessions devoted to adjoint method and lo-
cal optimization (RTO-AVT-167 group, Dagstuhl 2014 workshop...), and contributed to lecture notes [14]
and a bibliographic review article [139]. Significant effort was devoted to the adaptation of backward-
Euler implicit stages [40, 138] to the solution of discrete adjoint equation. The elsA adjoint solver was
extended from fixed to rotating wings and one of the first (RANS) adjoint-based optimization of a hov-
ering rotor could be performed [42]. Besides, efforts were dedicated to 2D local optimization based on
the so-called shape gradient ; the corresponding original ideas proposed by Bompard and his supervisors
have been summarized in section §1.3 of this document.
The ajoint module of the elsA code is currently further improved: a time-spectral adjoint is under de-
velopment ; GMRES with advanced restart is implemented ; the adjoint-mesh mode is extended to the
relative frame-absolute velocity formulation. Besides, from an application point of view, it is foreseen
that the module will be used in a near future, not only for shape optimization but also for meta-model
based uncertainty quantification.
Concerning more fundamental issues about adjoint, the recent articles of Lozano about dual consistency
of finite-volume discrete adjoint [107] and singular & discontinuous solutions of the adjoint Euler equa-
tions [109] have raised interest at ONERA. A research activity is ongoing about consistency of (extremely
fine) discrete adjoint fields with the continuous equation, boundary conditions and jump conditions for
adjoint derivatives at shock-waves [109]. As an illustration of this activity, the plot of an adjoint field
with a strong normal-derivative discontinuity at shock is presented below (NACA0012 M∞=0.85, AoA
= 2o).

In 2005 roughly speaking, as the maturity of the discrete adjoint codes of the large research centers
and aircraft companies was growing, it appeared that the sensitivities of the volume-mesh with respect
to design parameters would soon be the memory bottle-neck of adjoint-based gradient calculation for
complex configurations. The necessity appeared to avoid finite differences for the geometrical sensitivity
of the residual w.r.t. parameters. The residual was then differentiated w.r.t. mesh coordinates and all con-
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Figure 3.1: NACA0012 M∞=0.85 AoA=2o inviscid flow – Left: component of lift adjoint associated to
z-axis momentum equation. Right: zoom at the suction-side shock-foot and location of shock (pink line)

tributions to the total derivative of the output(s) of interest w.r.t. volume mesh coordinates were gathered
1. Nielsen and Park had not only a memory bootleneck in FUN3D adjoint-based optimization chain, but
also a CPU-time burden as their volume-mesh sensitivities were the outputs of a linear-elasticity equation
2. They proposed an elegant adjoint-mesh sensitivity method to circumvent this difficulty and increased
the interest of the CFD community in the shape-gradient that is the output of their calculations [127].
After the total derivative of the functions of interest w.r.t volume-mesh nodes coordinate, dJk/dX , had
become a possible output of the elsA adjoint code, Destarac and I examined closely some plots of this
newly available vector fields. The left part of figure 3.2 is one of these plots. It presents a NACA64A212
C-mesh with the wave drag integration contour defined by FFD72 [35] and the iso-lines of dCDw/dz
for the flow conditions (M∞=0.71, AoA=2.5o) (inviscid flow). Zones of high sensitivity of CDw clearly
appear far from its contour raising the question whether the corresponding areas should be refined (lead-
ing edge, trailing edge and vicinity of wall).
A very significant research effort was then started with the aim of defining a dJ/dX-based goal-oriented
refinement indicator and if possible, an error estimator as well. Considering existing methods for finite-
volume CFD, the proposed one should not require a finer grid and not be specific to a single scheme or a
single output functional [182, 183, 47, 52, 50].

A first effort [143] lead to the introduction of the upper-bound of the first-order variation of the out-
put J when performing an admissible displacement of one node, θ[J ]m, and its mean value over all
nodes, θ[J ], where each vertex moves inside a circular neighborhood. These quantities are relevant for
J-oriented mesh adaption as they are essentially decreasing when moving from unsuitable to suitable
meshes for the calculation of J , which is not the case of ||dJ/dXm|| (local move) or the corresponding
mean over the volume-mesh (global move). Besides, a projection removing all components of dJ/dX
altering the solid shape or the function support was also defined then and its relevance has been assessed
thereafter in several mesh-adaptations ([171], fig 2.22 of this document).
For ordinary outputs, configurations, flow conditions and mesh densities, the dJ/dX vector fields are
actually rather irregular. When working with structured meshes, this raises the question of how to use
a dJ/dX-based criterion without altering the regularity of the initial structured mesh. A first point in
this respect is to avoid any mesh change somehow directly guided by P(dJ/dX), even if J is monotoni-
cally altered by numerical dissipation, the reason being that all aerodynamic outputs are very multimodal

1Namely, avoid using equation (1.8), compute ∂R/∂X , compute dJ/dX according to equation (1.9)
2Namely, equation (1.13)
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functions of the free volume-mesh node coordinates and that the gradient is short-sighted in this hill
landscape. Figure 6 in [147] is an example of a bad mesh produced by direct P(dJ/dX)-guidance and
even more serious examples exist.
Fortunately, several methods may address this issue. The use of parametrized structured mesh-families,
the definition of a spatial mean θ associated to a length-scale, the solution of an elliptic structured-mesh
deformation equation were satisfactory solutions for the definition of structured goal-oriented adapted
meshes [144, 122, 121]. The global criterion θ[J ] was proposed besides to assess the quality of existing
meshes for the calculation of J . The local criterion θ[J ]m is still currently used by AIRBUS in the pro-
cess of (RANS) structured mesh construction ([121]§4.4,[18]).
When dealing with adaptation of unstructured meshes by node addition, the irregularities of dJ/dXm

or θ[J ]m fields are not such a serious issue. This was actually confirmed by successful 2D Euler mesh
adaptations ([171]) which produced the expected refinement for classical 2D Euler flows and standard
functions. Besides, the convergence speed towards the limiting value was found to be equivalent to the
one of the error-based most used method [182, 183] that requires a finer-than-current auxiliary grid.

The dJ/dX based method should be improved with respect to the two issues that were not solved up
to now: (1) define a criteria to distiguish meshes for which nodes displacement can improve the J eval-
uation and lower the global θ[J ] criterion and meshes for which this is not possible anymore. Most
probably, statistical analysis of the local θ[J ]m values would here be involved ; (2) associate a heuristic
error estimator to the adaptation process.
Besides, the recent elsA remotorisé versions will allow the extension of the method to 2D and 3D
(RANS) for unstructured meshes along the lines discussed in §II.6 : determination of the type of suit-
able adapted meshes, adaptation of the criterion according to constraints imposed to the boundary-layer
mesh and, if possible, extraction of relevant anisotropic information from P(dJ/dX) to move towards
anisotropic refinement.

Figure 3.2: Left: NACA64A212 inviscid flow. M∞ = 0.71, AoA=2.5o. Integration contour for CDw,
iso-dCDw/dz lines – Right : AVECA flying-wing configuration. Volumic constraints, design parame-
ters, summary of multi-point optimization.
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Scientific and technical appendix

Annex 1 – Continuous adjoint method

For the sake of completeness of the presentation adjoint method, this annex is devoted to a short presen-
tation of continuous adjoint (although the method has not been implemented in the ONERA codes).
In this approach, the adjoint of the continuous governing equations with respect to a given objective func-
tion is derived, before being discretized. The first appearance was due to Pironneau [151], with Jameson
providing the first treatment for compressible flows [78].
It is no longer possible to present the theory independently of the particular equations considered, there-
fore we first consider the 2d Euler equations in body-fitted coordinates. The following subsections are
an extended presentation derived from an article by Giles and Pierce ([62, 63] section 3.5).

2d Euler equations in body-fitted coordinates

It is assumed that the problem in physical space with a body-fitted structured grid, can be transformed
into computational coordinates (ξ, η), see Figure 3.3, in such a way that the transformation of Dxy to
Dξη is direct, that Dξη is a rectangular domain [ξmin, ξmax] × [ηmin, ηmax] and that ξmin corresponds to
the surfaceof an airfoil. Note that, when performing shape optimization, whereas the coordinate change
operator depends on α, Dξη itself does not.

Let H and K be the determinants of the Jacobian of the coordinate transformations

H(x, y) = det
(

∂ξ
∂x

∂ξ
∂y

∂η
∂x

∂η
∂y

)
K(ξ, η) = det

(
∂x
∂ξ

∂x
∂η

∂y
∂ξ

∂y
∂η

)

representing the change in size of a volume element under the transformation. At cooresponding points
of Dxy to Dξη, of course the two numbers are inverse one of each other. The 2D Euler equation in the

ξ

ξ

ηΨ

max

min

ηmax

η min
ξmin ξmax

η
min
max

Figure 3.3: Body-fitted to computational coordinate domain transformation

83



Figure 3.4: Link between generalised coordinates and Finite Volume CFD – the surface of the elementary
quadrangle is K(ξ, η)dξdη

Cartesian (x, y) coordinates read

∂w

∂t
+ ∂Fx(w)

∂x
+ ∂Fy(w)

∂y
= 0

where

w =


ρ
ρu
ρv
ρE

 Fx(w) =


ρu

ρu2 + p
ρuv
ρuH

 Fy(w) =


ρv
ρvu

ρv2 + p
ρV H

 .
Then the Euler equations in the computational coordinates are

∂W

∂t
+ ∂F (W )

∂ξ
+ ∂G(W )

∂η
= 0, (3.1)

where

W = Kw F (W ) = ∂y

∂η
Fx(w)− ∂x

∂η
Fy(w) G(W ) = −∂y

∂ξ
Fx(w) + ∂x

∂ξ
Fz(w).

The link of this formulation with finite volume structured CFD is well known. It is illustrated by figure
3.4 where the area and normal vectors of an elementary domain [ξ, ξ+ dξ][η, η+ dη] are recalled. Using
the link between two systems of coordinates(

∂x
∂ξ

∂x
∂η

∂y
∂ξ

∂y
∂η

)
=
(

∂ξ
∂x

∂ξ
∂y

∂η
∂x

∂η
∂y

)−1

= 1
H(x, y)

(
∂η
∂y − ∂ξ

∂y

−∂η
∂x

∂ξ
∂x

)
= K(ξ, η)

(
∂η
∂y − ∂ξ

∂y

−∂η
∂x

∂ξ
∂x

)

the 2D Euler fluxes in generalized coordinates may be rewritten in their most classical form

F (W ) = K


ρU

ρUu+ p ∂ξ∂x
ρUv + p ∂ξ∂y
ρUH

 G(W ) = K


ρV

ρV u+ p∂η∂x
ρV v + p∂η∂y
ρV H

 .
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with

U = ∂ξ

∂x
u+ ∂ξ

∂y
v V = ∂η

∂x
u+ ∂η

∂y
v

In the specific case of the 2D profile (figure 3.3), the slip-wall boundary condition is U = 0 on ξ = ξmin,
and a farfield condition is applied to the ξmax boundary.

Continuous adjoint equations approach for this set of equations

In the specific case of the 2D profile (figure 3.3), the slip-wall boundary condition is U = 0 on ξ = ξmin,
and a farfield condition is applied to the ξmax boundary. The objective function formulated in the new
coordinate system is

J (α) =
ˆ
ξmin

J1(w)∂y
∂η

dη +
ˆ
Dξη

J2(w)K(ξ, η) dξ dη, (3.2)

where the domain of integration is now independent of α. J corresponds in body-fitted coordinates to
the integral over the profile of the x component of a vector field (typically the force on the profile) plus
a volume integral. The continuous adjoint equations can now be derived as follows: first write the first
variation of the flow equations with respect to the design parameter α. Referring to (3.1) there are two
distinct types of variation: the flux terms f(w) and g(w) vary with α, because the flow changes in the
transformed coordinate space when the shape changes, and independently all metric terms also depend
on α:

f(w)→ f(w) + ∂f

∂w

dw
dα δα,

∂x

∂η
→ ∂x

∂η
+ ∂2x

∂η∂α
δα.

Introduce a(w) = df(w)/dw and b(w) = dg(w)/dw the flux Jacobians, then the linearized equation
corresponding to the steady state form of (3.1) is

∂

∂ξ

{(
a(w)∂y

∂η
− b(w)∂x

∂η

) dw
dα

}
+ ∂

∂η

{(
−a(w)∂y

∂ξ
+ b(w)∂x

∂ξ

) dw
dα

}
+ ∂

∂ξ

{
f(w) ∂2y

∂η∂α
− g(w) ∂

2x

∂η∂α

}
+ ∂

∂η

{
−f(w) ∂

2y

∂ξ∂α
+ g(w) ∂

2x

∂ξ∂α

}
= 0,

(3.3)

and similarly for (3.2):

dJ (α)
dα =

ˆ
ξmin

(
dJ1(w)
dw

dw
dα

∂y

∂η
+ J1(w) ∂2y

∂η∂α

)
dη

+
ˆ
Dξη

(dJ2(w)
dw

dw
dαK(ξ, η) + J2(w)∂K(ξ, η)

∂α

)
dξ dη.

(3.4)

Before continuing it is convenient to introduce notation for the flux Jacobian in the computational
mesh directions ξ and η,

a1(w, ξ, η) =
(
a(w)∂y

∂η
− b(w)∂x

∂η

)
, a2(w, ξ, η) =

(
−a(w)∂y

∂ξ
+ b(w)∂x

∂ξ

)
. (3.5)

The idea behind the following procedure is to add to (3.4) the inner product of the linearized govern-
ing equations with an arbitrary four-component Lagrange multiplier λ, analogously to the discrete case
in Section 1.1.4. Then we search for a condition on λ for the gradient to be independent of the dw/dα
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terms. In this case we assume that the flow and adjoint solutions, w and λ, are once continuously dif-
ferentiable with respect to the computational coordinates, i.e. w, λ ∈ C1(Dξη)4. Note that this is a very
different restriction to that necessary in the discrete case. Proceeding from (3.3) we have that

ˆ
Dξη

λT
{
∂

∂ξ

(
a1(w, ξ, η)dw

dα

)
+ ∂

∂η

(
a2(w, ξ, η)dw

dα

)}
dξ dη+

ˆ
Dξη

λT
{
∂

∂ξ

(
f(w) ∂2y

∂η∂α
− g(w) ∂

2x

∂η∂α

)
+ ∂

∂η

(
−f(w) ∂

2y

∂ξ∂α
+ g(w) ∂

2x

∂ξ∂α

)}
dξ dη = 0.

Using integration by parts, and the fact that the flow sensitivity and coordinate derivatives such as
∂2y/∂ξ∂α are taken to be zero at the farfield we have

−
ˆ
Dξη

∂λT

∂ξ
a1(w, ξ, η)dw

dα dξ dη −
ˆ
Dξη

∂λT

∂η
a2(w, ξ, η)dw

dα dξ dη

−
ˆ
Dξη

∂λT

∂ξ

(
f(w) ∂2y

∂η∂α
− g(w) ∂

2x

∂η∂α

)
+ ∂λT

∂η

(
−f(w) ∂

2y

∂ξ∂α
+ g(w) ∂

2x

∂ξ∂α

)
dξ dη

−
ˆ
ξmin

λTa1(w, ξ, η)dw
dα dη −

ˆ
ξmin

λT
(
f(w) ∂2y

∂η∂α
− g(w) ∂

2x

∂η∂α

)
dη = 0.

Adding this expression to (3.4) and extracting terms multiplying dw/dα we obtain, from the volume and
surface integrals respectively:

dJ2(w)
dw K(ξ, η)− ∂λT

∂ξ
a1(w, ξ, η)− ∂λT

∂η
a2(w, ξ, η) = 0, on Dξ,η,

−λTa1(w, ξ, η) + dJ1(w)
dw

∂y

∂η
= 0, on ξmin,

(3.6)

the continuous adjoint equations and boundary conditions.
One very significant feature of this problem is that not all objective functions J1 lead to a well

posed adjoint boundary condition, because the flux Jacobian a1 is singular at a slip wall [78]. For the
compressible Euler equations described here functions of pressure are admissible, which is fortunate
given that integral forces on a profile are thereby allowed. On the other hand for the Navier-Stokes
equations there is no clear way of accounting for wall shear-stresses, and hence viscous drag [7]. Given
a solution of (3.6) the gradients of J may be written

dJ (α)
dα =

ˆ
ξmin

J1(w) ∂2y

∂η∂α
dη −

ˆ
ξmin

λT
(
f(w) ∂2y

∂η∂α
− g(w) ∂

2x

∂η∂α

)
dη

−
ˆ
Dξη

∂λT

∂ξ

(
f(w) ∂2y

∂η∂α
− g(w) ∂

2x

∂η∂α

)
dξ dη

−
ˆ
Dξη

∂λT

∂η

(
−f(w) ∂

2y

∂ξ∂α
+ g(w) ∂

2x

∂ξ∂α

)
dξ dη

+
ˆ
Dξη

J2(w)∂K(ξ, η)
∂α

dξ dη.

(3.7)

For the extension to the Navier-Stokes equations, also derived in curvilinear coordinates, see the
seminary articles of Jameson, Martinelli and Pierce of 1997 [84], while a more discursive treatment is
given in [81], which also includes considerations related to the use of the thus obtained gradients in shape
optimization.
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For finite volumes on unstructured meshes such coordinate transforms as described above are not
used, and a formulation in physical coordinates is necessary. One approach was first published by An-
derson and Venkatakrishnan in 1998 [7], and one year later by Hiernaux and Essers [74, 75]. Also of
interest is an early adjoint formulation of the thin shear-layer equations in physical coordinates [60].

Finally we note that the continuous direct formulation, embodied by (3.3), rarely occurs in the gradi-
ent evaluation literature. Pelletier et al. [133, 132] applied it to incompressible flows, and the one of few
compressible references is of Sharp and Sirovitch for hypersonic profile optimization [163]. At the end,
of course, the continuous equations are discretized (using most often classical CFD schemes) to define
are computational problem of finite dimension.

Annex 2 – Curvature of an extruded curve

Classical notations are used for 2D geometry (see figure 3.5) : s is the curve length, (t(s),n(s)) is the
local frame of tangent and normal vectors (counter-clockwise oriented). The curvature k(s) is positive
or negative, and it can be defined as the derivative of the angle of the local tangent w.r.t. a fixed axis (for
exampleOx axis) Its absolute value is the inverse of the radius of curvature. The formulas of Frenet state
that

dt(s)
ds

= k(s)n(s) dn(s)
ds

= −k(s)t(s)

The local optimization process of interest defines curves from equation (1.29) (see figure 3.6) and uses
a criterion based on the total variation of the targeted shape to validate a field of normal component
deformation. Hence the curvature of an extruded curve is first estimated. (For the sake of simplicity,
the continuous curve of interest is denoted Sτ (s) as its discrete counterpart, and d(s) is preferred to a
notation accounting for the smoothing like S(d)(s).)

Figure 3.5: Notations for curvature calculation Figure 3.6: Extruded curve

The targeted curve is denoted here Sτ (s) = S(s) + τd(s)n(s). The first two derivatives of the
formula are given by

dSτ (s)
ds

= (1− τd(s)k(s)) t(s) + τd′(s)n(s)

d2Sτ (s)
ds2 = −τ

(
2d′(s)k(s) + d(s)k′(s)

)
t(s) +

(
k(s) + τ(d′′(s)− d(s)k(s)2)

)
n(s)

where we have used the fact that s is the arc length along S so that dS(s)/ds = t(s). Of course, s is not
the actual arc length along Sτ but from a classical formula for parametrized curves, one can easily derive
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the expression of kτ (s), the curvature along Sτ :

kτ (s) = (k(s) + τ(d′′(s)− d(s)k(s)2))(1− τd(s)k(s)) + τ2d′(s)(2d′(s)k(s) + d(s)k′(s))
((1− τd(s)k(s))2 + τ2d′(s)2)3/2 (3.8)

As stated before, it is highly desirable that the curvature along Sτ satisfies a bounding condition - equa-
tion (1.30). We now try to derive from previous equations the corresponding condition on d(s) :
– based on a Taylor expansion on parameter τ . Obviously

kτ (s) = k(s)
[(1 + τ(d′′(s)/k(s)− d(s)k(s)))(1− τd(s)k(s))

(1− 2τd(s)k(s))3/2 +O(τ2)
]

Or
kτ (s) = k(s)

[
1 + τ(d′′(s)/k(s) + d(s)k(s)) +O(τ2)

]
The curvature of the current airfoil is much more regular than d(s) distributions that appear during the
optimization and smoothing process. Hence, in first approximation, a strong increase in total variation
of curvature between S and Sτ would be caused by a high total variation of d(s) or d′′(s). Actually, the
total variation of d(s) is decreased by all smoothing operators, hence the desirable property appears to
be a limited total variation of d′′(s); or in other words, a smooth d′′′(s).
Additionally, the following limits can be shown without small τ assumption from formula (3.8) kτ (s)→
0 as d′(s)→∞ and |kτ (s)| → ∞ as d′′(s)→∞.
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Annex 3 – Visualization of (1/ds)ΛT
CDp

(∂R/∂X) for a 2D Euler subcritical
flow

The series of plots 3.7 illustrates the good consistency of left-hand-side and numerically estimated right-
hand-side of equation (2.9) (based on the same flow and adjoint fields). This property is also observed
if flow and/or adjoint involve discontinuities. For the visualisation, both fields are divided by the surface
attached to the node in the dual mesh ((1/ds)ΛTCDp(∂R/∂X) versus discrete evaluation of term (2.11) ).

Figure 3.7: NACA0012 inviscid flow M∞=0.4 AoA =5o. Roe-MUSCL (van Albada) scheme – Left:
(1/ds) ΛT (∂R/∂x) – Right: discretization of term (2.11) using Green formulas
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Annex 4 – Definition of P(dJ/dX), the spatial mean of P(dJ/dX) field

A discrete convolution based spatial mean P(dJ/dX) is built. It is defined for a 2D problem and a
structured mesh but extensions to 3D and unstructured meshes are straightforward. It is assumed that the
discrete values of a realistic mesh displacement field dX are the values of a C1 regular function noted
XC taken at the nodes of the mesh. It is also assumed that XC is well approximated by its first-order
Taylor expansion on all circles of radius L. Finally, D(C,L) denotes the disk centered in C with radius L
and ΨL denotes a radial a radial function of support D(O,L) and integral 1 on this disk. Using all these
properties, it is easily checked that the displacement of the node (i, j) (denoted dXij) can be estimated
by the following relation:

ˆ
D(Xij,L)

XC(u)ΨL(u−Xij)du ' XC(Xij)
ˆ
D(Xij,L)

ΨL(u−Xij)du = dXij (3.9)

Although this property is available for all radial function ΨL(r) of support D(O,L) and integral 1, it is
desirable to use a decreasing function of r. In practice, the following kind of functions is used

Ψν
L(u) = (L2 − r2)ν

2π
ˆ L

0
r(L2 − r2)νdr

for ‖u‖ ≤ L

Ψν
L(u) = 0 for ‖u‖ > L

The simplest discretization on the mesh of equation (3.9) is

dXij =
∑

(i′j′)/Xi′j′∈D(Xij,L)

dXi′j′ΨL(Xi′j′ −Xij)dsi′j′

where dsij is the surface of the mesh element associated with the point Xij (plotted on figure 3.8(a)).
However this relation is not exact on a constant field and inconsistent for coarse mesh zones. So we
prefer the barycentric discretization

dXij =

∑
(i′j′)/Xi′j′∈D(Xij,L)

ΨL(Xi′j′ −Xij)dsi′j′ dXi′j′∑
(i′j′)/Xi′j′∈D(Xij,L)

ΨL(Xi′j′ −Xij)dsi′j′
(3.10)

Henceforth we note γijL the denominator of the right hand side of equation (3.10)

γijL =
∑

(i′j′)/Xi′j′∈D(Xij,L)

ΨL(Xi′j′ −Xij)dsi′j′ .

The dot product of interest can then be rewritten:

P(dJ/dX).dX =
∑
(ij)
P (dJ/dXij) dXij =

∑
(ij)

1
γijL
P(dJ/dXij)

∑
(i′j′)/Xi′j′∈D(Xij,L)

ΨL(Xi′j′−Xij)dsi′j′dXi′j′

It is interesting to switch the sums over the indices (i, j) and (i′j′) noticing that Xi′j′ ∈ D(Xij ,L) is
equivalent to Xij ∈ D(Xi′j′ ,L) (see figure 3.8(b))

P(dJ/dX).dX =
∑
(i′j′)

dsi′j′ ∑
(ij)/Xij∈D(Xi′j′ ,L)

( 1
γijL
P(dJ/dXij)ΨL(Xi′j′ −Xij))

 dXi′j′
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Figure 3.8: (a) Surface dsij associated to node (i, j) in the definition of P(dJ/dX) (b) disks D(Xij ,L)
and D(Xi′j′ ,L)

Our purpose was to build a mean such that for any displacement field dX well approximated by a linear
function at scale L

P(dJ/dX).dX = P(dJ/dX).dX

By simple identification with previous equation (and switching the indices with and without prime)

P(dJ/dX)ij = dsij
∑

(i′j′)/X′ij′∈D(Xij,L)

1
γi′j′L

P(dJ/dXi′j′))ΨL(Xi′j′ −Xij) (3.11)

which defines the mean field of P(dJ/dX) as an explicit convolution-like mean.
Unfortunately, the equations (3.9),(3.10) are inaccurate at all nodes (i, j) such thatD(Xij ,L) is not entirely
included in the fluid domain. Therefore the previous definition of the mean field P(dJ/dX) is used only
for the nodes (i, j) such that D(Xij ,L) is entirely included in the fluid domain. For the other nodes, the
definition has been extended by changing the shape of the integration domain.
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Contributions to discrete adjoint method in aerodynamics for shape
optimization and goal-oriented mesh-adaptation

This document sums up the researches conducted in Computational Fluid Dynamics, based on 
discrete adjoint of finite-volume schemes, for shape optimization and for goal-oriented mesh 
adaptation.
  Concerning shape optimization, the researches were devoted to the adaptation of backward-Euler 
implicit stages to the FPI resolution of the discrete adjoint equation,  to the adaptation of a basic 
external flow adjoint module to the mechanical formulation suitable for the simulation of rotors in 
hovering flight and to the optimization of airfoils using a smoothed shape gradient.
  Concerning goal-oriented mesh adaptation, an adaptation criterion based on the total derivative of 
the goal w.r.t. volume mesh node coordinates has been proposed. This criterion includes a projection 
of this vector field and the local characteristic size of the current mesh. Successfull mesh adaptation 
based this criterion were conducted for various types of meshes (structured/unstructured) and flows 
(Euler and (RANS)), in 2D and 3D.

Keywords : AERODYNAMICS ; NUMERICAL SIMULATION ; MESH ADAPTATION ; DISCRETE ADJOINT ;

OPTIMISATION FORME

Contributions à la méthode adjointe discrète pour l'optimisation de forme et le
raffinement de maillage ciblé

Le manuscrit résume les travaux de recherche s'appuyant sur la méthode adjointe discrète en 
simulation aérodynamique pour l'optimisation de forme et pour le raffinement de maillage ciblé.
  Dans le domaine de l'optimisation de forme, les travaux ont porté sur l'adaptation de phases 
implicites Euler-rétrograde pour la résolution de l'équation adjointe discrète par méthode de point fixe, 
sur l'adaptation des discrétisations et formulations usuelles à la formulation mécanique utilisée pour la 
simulation de rotors en vol stationnaire et sur l'optimisation de profils par gradient de forme lissé.
  Dans le domaine de l'adaptation de maillage ciblée, on a proposé un critère d'adaptation basé sur la 
dérivée totale de la fonction d'intérêt par rapport aux coordonnées du maillage volumique. Ce critère 
fait intervenir une projection de ce champ vectoriel et la taille locale du maillage courant. Des 
adaptations de maillage ont été conduites avec succès selon ce critère pour différents types de 
maillages (structuré/non structuré) et d'écoulements (régi par les équations d'Euler ou RANS), en 2D 
et en 3D.

Mots clés :                      AERODYNAMIQUE  ;  SIMULATION NUMERIQUE  ;  MAILLAGE ADAPTATIF  ;  ADJOINT  ;

SHAPE OPTIMISATION
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