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ABSTRACT

The maturity of CFD and the variability of operational and geometrical parameters in fluid dynamics analysis
and design lead to the development of Uncertainty Quantification (UQ). Among the numerous methods for
(UQ), these lecture notes describe the main features of Monte-Carlo and metamodel-based Monte-Carlo (§2),
generalized Polynomial Chaos (§3) and Stochastic Collocation (§4). Also presented are Smolyak’s sparse
quadratures (§5) and Sobol’ indices (§6). Three applications of (UQ) to (2D) and (3D) RANS flows, that have
been carried out at ONERA, are finally described (§7).
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1.0 INTRODUCTION

For many applications of Fluid Dynamics, either in flow analysis or shape optimization, operational or geomet-
rical parameters of the problem may be subject to small variations. Cruise, for example, is known to be a flow
condition of first importance for an aircraft and, in first approximation, the cruise Mach number is known to be
constant. Actually, it happens that an aircraft slows down to arrive at exact time of landing slot, or that it speeds
up to cope with the pilot maximum flight time. Mach number of cruise flight is hence subject to small variations
that can be modeled by a probability density function and cruise drag evaluation should integrate drag times
this density function over the domain of actual cruise Mach numbers.
The maturity of CFD and the variability of operational and geometrical parameters in fluid dynamics prob-
lems of analysis and design lead to the development of Uncertainty Quantification (UQ). Most often the CFD
methods for (UQ) aim at (1) calculating mean and variance of outputs of interest; (2) predicting the range of
an output under (a) stochastic parameter(s) variation; (3) predicting the probability that an output exceeds a
threshold.
Among the numerous methods for (UQ), these lecture notes describe the main features of Monte-Carlo and
(non-specific) metamodel-based-Monte-Carlo (§2) ; generalized Polynomial Chaos (§3) and Stochastic Collo-
cation (§4). The broadly used sparse grid quadrature method of Smolyak [11] is then presented (§5). Two
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applications of (UQ) to (2D) and (3D) RANS flows, that have been carried out at ONERA, are finally presented
(§6).

2.0 PROBABILITY BASICS, MONTE-CARLO, SURROGATE-BASED MONTE-CARLO

2.1 Probability basics

The classical framework of probability spaces is a general mathematical structure that is suitable for both
discrete and continuous stochastic variables. A probability space consists of:

• a sample space Ω (dice values, interval of Mach number values) that is the set of all outcomes

• a set of events spaceA (σ-algebra), consisting of elements of Ω or sets of elements of Ω, stable by union,
intersection, including null set ∅ and Ω (pair of dice values, set of even dice values... subinterval of Mach
number values...)

• The assignment of probabilities to the events ofA satisfying the intuitive rules for union and intersection

In a probability problem, the inputs are precisely the sample space, set of events and probability function of the
events. The outputs are random variable depending on the events. Typically, in UQ involving CFD, events are
stochastic inputs of the flow simulation like stochastically varying free-stream Mach number or angle of attack
whereas random variables are classical CFD outputs like CDp, CLp... or friction, pressure distribution at the
walls... that depend on the stochastic inputs via the calculation of flow.

Discrete example : regular 6-face dice thrown once

• event ξ = 1,2,3,4,5 or 6

• sample space Ω ={1,2,3,4,5,6}

• set of events (σ-algebra)F = null set plus all discrete sets of these numbers {∅, {1}, {2}, {3}, {4}, {5}, {6},
{1, 2}, {1, 3}, {1, 4}, {1, 5}, {1, 6}, {2, 3}, {2, 4}, {2, 5} ... {1, 2, 3, 4, 5, 6}}

• probability functionP :P (∅) = 0, P ({1}) = 1./6., P ({2}) = 1./6.,... P ({1, 2}) = 1./3., P ({1, 3}) =
1./3 , P ({1, 4}) = 1./3.... P ({1, 2, 3, 4, 5, 6}) = 1.

• random variables X: dice value to the power three...

Continuous example : Far-field Mach number in [0.81,0.85]

• event ξ = a Mach number value in [0.81,0.85]

• sample space Ω = [0.81,0.85]

• set of events (σ-algebra) F = all subparts of [0.81,0.85]

• probability function P . Probability of an element I of F to be defined as the integral of probability
density function, D, over I . For example:

D(φ) =
35

32
(1.− φ2)3 φ ∈ [−1, 1] φ = (ξ − 0.83)/0.02
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Dξ(ξ) =
1

0.02
D(φ) =

1

0.02

35

32
(1.− (

ξ − 0.83

0.02
)2)3

• possible random variables X = lift, drag, pitching moment of a wing... with variable Mach number M∞
(“event“ ξ) in the far-field

There are many classical probability density functions. For engineering purpose where, most often, stochastic
variables have finite upper and lower bounds, the so called β-distribution is often well-suited. It has two
exponent parameters denoted α and β that allow to vary the shape of the pdf from flat (α,β)=(1,1) to very peaky
(high α and β). Distinct parameters lead to skewed distributions. The formula of these probability density
functions on [Xm, XM ] (with the a− 1, b− 1 convention for exponents) is

βI(x; a, b) = 1[Xm,XM ](x)
Γ(a+ b)

Γ(a)Γ(b)

(x−Xm)a−1(XM − x)b−1

(XM −Xm)a+b−1
. (1)

2.2 Monte-Carlo

Monte-Carlo mimics the law of the events in a series of calculations. It is the reference method for all uncer-
tainty propagation methods. A presentation of the method is given hereafter for one uncertain parameter and a
scalar random variable.
Classical stochastic toolboxes provide sampling (ξ1, ξ2..., ξp..., ξN ...) for any standard p.d.f D(ξ). The corre-
sponding flow fields, W (ξp), p ∈ [1, N ], depending on the stochastic parameter ξ (variable angle of attack...)
have to be computed. The corresponding functional outputs J (ξp) = J(W (ξp)) have then to be calculated.
The classical unbiased Monte-Carlo estimations of mean and variance are the following:

E(J ) =

∫
J (ξ)D(ξ)dξ ' J̄N =

1

N

p=N∑
p=1

J (ξp),

σ2
J = E((J − E(J ))2) =

∫
(J (ξ)− E(J ))2D(ξ)dξ ' σ2

JN =
1

N − 1

p=N∑
p=1

(J (ξp)− J̄N )2.

What is the accuracy of these estimates ?

2.2.1 Accuracy of estimated mean, known variance

When variance σJ is known, the convergence in law of the mean 1 is characterized by

√
N
J̄N − E(J )

σJ
 N (0, 1) (2)

whereN (0, 1) is the Normal distribution which probability density function DN (x) and symmetric cumulative
distribution ΦN (x) are

DN (x) =
1√
2Π

e−
x2

2 ΦN (x) =
1√
2Π

∫ x

−x
e−

t2

2 dt.

1Note that the mean of a well defined stochastic variable does not always exist. Consider pdf(x) = 2
Π

1
1+x2

for x > 0
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Equation (2) translates in propositions like (with a symmetric interval):

With ε confidence E(J ) ∈ [J̄N − uε
σJ√
N
, J̄N + uε

σJ√
N

] where ε =
1√
2Π

∫ uε

−uε
e−

t2

2 dt.

Table 1 provides some numerical values of uε and, for example

With 99% confidence E(J ) ∈ [J̄N − 2.576
σJ√
N
, J̄N + 2.576

σJ√
N

] as 0.99 =
1√
2Π

∫ 2.576

−2.576
e−

t2

2 dt.

2.2.2 Accuracy of estimated mean, unknown variance

In the common practical case where the variance σJ is not known, the law for mean convergence is

√
N
J̄N − E(J )

σJN
 S(N − 1) (3)

where S is the Student distribution. Equation (3) translates in proposition like :

With ε confidence E(J ) ∈ [J̄N − uε(N−1)

σJN√
N
, J̄N + uε(N−1)

σJN√
N

]

where uεN−1 as function of ε and N can be found in tables. Student distribution converges to Normal distribu-
tion for large N and uεN decreases when N increases. Some numerical values of uεN−1 are given in Table 2.
The probability density function of Student distribution is

DS(N)(x) =
Γ(N+1

2 )

Γ(N2 )
√
NΠ

(1 +
x2

N
)−

N+1
2

(
Γ(u) =

∫ +∞

0
tu−1e−tdt

)
and, of course, a more precise convergence property may then be presented

With ε confidence E(J ) ∈ [J̄N − uε(N−1)

σJN√
N
, J̄N + uε(N−1)

σJN√
N

] where ε =

∫ uεN−1

−uεN−1

DS(N−1)(t)dt

ε 0.5 0.9 0.95 0.99
uε 0.674 1.645 1.960 2.576

Table 1: Value of uε for normal distribution

ε N 2 3 20 30 ∞
0.95 12.71 4.303 2.093 2.045 1.960
0.99 63.66 9.925 2.861 2.756 2.576

Table 2: Value of uε(N−1) for Student distribution S(N − 1) N ≥ 2
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2.2.3 Accuracy of estimated variance

Accuracy of estimated variance JN is discussed in the slides provided to the attendance in both cases of known
and unknown mean.

2.2.4 Convergence speed of Monte-Carlo method

A typical realistic estimation of accuracy of mean estimated by Monte-Carlo is: For a N -point sampling, with
99% confidence,

E(J ) ∈ [J̄N − u0.99,(N−1)
σJN√
N
, J̄N + u0.99,(N−1)

σJN√
N

],

with u0.99,1 = 63.66, u0.99,2 = 9.925, u0.99,3 = 5.841, u0.99,9 = 3.250, u0.99,19 = 2.861, u0.99,19 = 2.756,...
decreasing with the number of samples,N , towards the limiting value, 2.576. The convergence speed of Monte-
Carlo for mean value estimation is hence 1√

N
and increasing the precision of Monte-Carlo estimation by a factor

of 10 requires multiplying the number of evaluations by a factor of 100. This is a very slow convergence and a
very expensive method if one evaluation requires the numerical solution of Euler or (RANS) equations.

Besides the outputs of many types of CFD calculations are very regular functions of the parameters of interest
and it is necessary to take advantage of this property. In metamodeling approaches, precisely, the regularity of
the random variables (then first seen as output variables) as function of stochastic variables (then first seen as
regular input variables) is exploited. There are many types of surrogates can be combined with Monte-Carlo
(discussed next subsection 2.3). Besides there are specific polynomial expansions associated to the probability
density function (discussed in sections 3 and 4). The common feature of all this surrogate-based methods is that
all stochastic quantities of interest – mean, variance, kurtosis, range, risk... – are estimated for the surrogate
instead of the exact function of interest.

2.3 Surrogate-based Monte-Carlo

Metamodel-based Monte-Carlo first requires the definition of a surrogate of the output(s) of interest on the space
of stochastic parameters. This is typically done with the metamodeling toolboxes that are mainly used for global
optimization and include steps of inner parameter calculation and design of experiment enrichment. Basically
all types of surrogates may be used: Kriging, Radial Basis Function, Support Vector Regression, adjoint based
quadratic Taylor expansion... After this non-stochastic step has been carried out, stochastic evaluations are
performed based on the (cheap) approximate output values provided by the surrogate. Figure 1 is a scheme of
this process2. The asset of surrogate-based Monte-Carlo is illustrated with a simple and demonstrative example:
The flow about a NACA0012 profile is considered at following flow conditions

M = 0.73, Re = 6.106, AoA = 3◦.

The angle of attack is assumed to have stochastic variations and the stochastic behavior of the lift, CL, is to be
studied. The pdf of the angle of attack – varying in [2.9o, 3.1o] – is a beta-distribution:

Da(α) = 10Db(10.(α− 3.)) Db(ξ) =
15

16
(1− ξ)2(1 + ξ)2.

(RANS)&(k-w) calculations is run with the elsA code [1] using standard numerical discretizations for a series
of 11 Tchebychev points in the interval of angle of attack. For the corresponding 11 values of the lift, CL, very

2The authors are not aware of any publication discussing the influence of the metamodel accuracy on accuracy of stochastic quanti-
ties (mean, variance...)
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Figure 1: Monte-Carlo method with meta-models

regular identical curves are built by Ordinary Kriging, Radial Basis Function and Support Vector Regression –
see figure 2. These almost linear curves, obtained with three different metamodels, for a quantity that is often
assumed to be linear as function of low angles of attacks, suggest a very accurate surrogate representation of
the lift on the parameter domain that can be used instead of CFD calculations for stochastic evaluations. This
has been done and is illustrated by figures 3 and 4. With CFD-based Monte-Carlo, with the fixed budget, only
100 CFD evaluations could be run. This yields the 90, 95 and 99 confidence intervals for lift and variance that
appear in the left part of figure 3 and 4 for the considered stochastic sampling. When using metamodel-based
Monte-Carlo, up to one million sampling points can be used reducing the intervals of confidence to smaller
intervals than generally needed – right part of figures 3 and 4.

Figure 2: NACA0012 CL, as function of the Angle of Attack
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Figure 3: Mean of CL coefficient and confidence interval (left CFD evaluations, right metamodel)
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Figure 4: Mean of CL coefficient and confidence interval (left CFD evaluations, right metamodel)

3.0 GENERALIZED POLYNOMIAL CHAOS

Generalized Polynomial Chaos (gPC) is a spectral expansion method [5, 13, 14]. For a single real output F and
a single real stochastic input, ξ, this expansion (denoted gF ) reads

gF (ξ) =

l=M∑
l=0

ClPl(ξ) ' F (ξ), (4)

where Pl is a polynomial of degree l and where the {Pl}l∈{1...M} form an orthonormal basis for the dot product
defined by the p.d.f. D(ξ) :

< Pl, Pm >=

∫
Pl(ξ)Pm(ξ)D(ξ)dξ = δlm. (5)

The main asset of the method is the straightforward calculation of the mean and variance of (gPC) expansions.
More generally, all possible stochastic post-processing for F is done for the specific surrogate gF (which
difference w.r.t. exact function F may be discussed in the framework of spectral expansion theory).
The method is presented in 1D (one uncertain parameter) and then in 2D (two uncertain parameters), the
generalization from 2D to dD being straightforward.
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3.1 Families of orthonormal polynomials

The classical probability density functions are associated to a family of polynomials that is orthogonal w.r.t. it
in the sense of equation (5). The correspondence between classical p.d.f. and classical families of polynomials
is the following:

• Normal distribution Dn(ξ) = 1√
2Π
e−

ξ2

2 on R → Hermitte polynomials

• Gamma distribution Dg(ξ) = exp(−ξ) on R+ → Laguerre polynomials

• Uniform distribution Du(ξ) = 0.5 on [−1, 1]→ Legendre polynomials

• Chebyshev distribution Dcf (ξ) = 1/Π/
√

1− ξ2 on [−1, 1]→ Chebyshev (first-kind) polynomials

• Chebyshev distribution Dcs(ξ) =
√

1− ξ2 on [−1, 1]→ Chebyshev (second-kind) polynomials

• Beta-distribution Dβ(ξ) = (1 − ξ)α(1 + ξ)β/
∫ 1
−1(1 − u)α(1 + u)βdu α > −1. , β > −1. on

[−1,+1] → Jacobi polynomials (including Chebyshev polynomials)

• Non-usual probabilistic density functions, Dl(ξ), polynomials computed by Gram-Schmidt orthogonali-
sation process.

Most often, the families of polynomials that satisfy the classical 3-term recurrence relation and exhibit the
associated properties are orthogonal but not orthonormal for the functional dot product (5). This is illustrated

with Hermitte polynomials associated to normal law Dn(ξ) = 1√
2Π
e−

ξ2

2 . The first polynomials are

PH0(ξ) = 1 PH1(ξ) = ξ PH2(ξ) = ξ2 − 1 PH3(ξ) = ξ3 − 3ξ

The recursive definition is based on PH0(ξ), PH1(ξ) and PHn+1(ξ) = ξPHn(ξ)−nPHn−1(ξ) A normal-
ization of the standard Hermitte polynomial is required

PHj(ξ) =
1√
j!
PHj(ξ),

to define a family of proportional polynomials {PH} that is orthonormal for Dn(
meaning that < PHj , PHk >=

∫ +∞

−∞
PHj(ξ)PHk(ξ)Dn(ξ)dξ = δjk

)
and hence suitable for (gPC) method.

3.2 Calculation of coefficients by quadrature

The (gPC) coefficients Cl can be calculated by quadrature or by collocation. Concerning the first method,
let us first note that Cl =< gF, Pl > that is immediately proved multiplying equation (4) by Pl(ξ)D(ξ) and
integrating over the domain of variation of ξ. Actually, under regularity assumptions, Cl =< F,Pl > and
coefficient calculation by quadrature relies on this expression.
Any classical 1D quadrature can be used to compute the

Cl =< F,Pl >=

∫
F (ξ)Pl(ξ)D(ξ)dξ l ∈ {0...M} (6)
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coefficients. Due to the presence of the term D(ξ) in equation (6), the g-point Gaussian quadrature associated
to D is a natural choice. The formula of this quadrature is∫

h(ξ)D(ξ)dξ '
k=g∑
k=1

wkh(ξk)

(where obviously (wk,ξk) depend on D(ξ)). This formual is exact if h is a polynomial of degree up to degree
(2g − 1). What would be a satisfactory number of points to calculate the coefficients ? A reasonable heuristic
choice requires that polynomials Pl be orthonormal at the discrete level. As the maximum degree of the product
of two polynomials of the basis is 2M , twice the expansion degree, the number of quadrature points should
verify

2M ≤ 2g − 1,

to fulfill the discrete orthonormality requirement.

3.3 Calculation of coefficients by collocation

Basically, collocations consists in forcing equality of F and gF for M + 1 values of ξ. The corresponding
linear system reads

l=M∑
l=0

ClPl(ξk) = F (ξk) ∀ k ∈ {1,M + 1} to solve for Cl.

In this simple case where the sample cardinal is the number of unknowns, (M+1), a linear system for the
coefficients is solved. If the number of sampling evaluations F (ξl) is larger than the number of unknown
coefficients, (M+1), a least square problem has to be solved.
Finally, anticipating a very short presentation of the application of a method called “compressed sensing”, in
section (§6.2) the collocation equations are rewritten in matrix form : F being the column vector of F values, C
being the column vector of unknown polynomial coefficients and K being the matrix with terms Kij = Pj(ξi),
the collocation set of linear equations reads

KC = F.

3.4 Stochastic post-processing

Stochastic post-processing is done for gF , the gPC approximation of F . The mean calculation reads

E(gF (ξ)) =

∫ (l=M∑
l=0

ClPl(ξ)

)
D(ξ)dξ = C0,

due to orthonormality of the Pl l ≥ 1 to P0 or any other scalar factor (in other terms, the integral of the Pl l > 1
is zero). The mean value of gF (ξ) withD(ξ) as stochastic distribution of the input ξ is hence the first coefficient
of the expansion. The calculation of gF variance is also very simple thanks to orthonormality of the polynomial
basis :

E((gF (ξ)− C0)2) =

∫ (l=M∑
l=1

ClPl(ξ)

)2

D(ξ)dξ =
l=M∑
l=1

C2
l .

The variance is the sum of the square of all coefficients but C0.
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As in surrogate-based Monte-Carlo, any other stochastic quantity is estimated for gF , the gPC surrogate. The
skewness, for example is calculated as

E

((
gF (ξ)− µ

σ

)3
)

=
1

(
∑l=M

l=1 C2
l )3/2

∫ (l=M∑
l=1

ClPl(ξ)

)3

D(ξ)dξ,

that requires the knowledge or the calculation of the
∫
Pl(ξ)Pn(ξ)Pp(ξ)D(ξ)dξ integrals. The range of F

would be estimated sampling for ξ and searching for the range of gF (ξ). Just as the same, the probability that
F exceeds a threshold T would be approximated as∫

1{gF (ξ)>T}D(ξ)dξ

and derived from a sampling of gF .

3.5 Case of vector outputs

Generalized polynomial chaos can be applied to scalar outputs as presented in previous sections but also to
vector fields. Line or surface wall distribution of pressure or other aerodynamic variables are typical vector
fields to which the gPC method would be applied. The extension of previous equations is rather simple. For a
general presentation, a generic mesh index, i, and the stochastic variable ξ are the arguments of a field W (i, ξ).
The corresponding gPC expansion reads

gW (i, ξ) =
l=M∑
l=0

Cl(i)Pl(ξ) gW (i, ξ) 'W (i, ξ).

For a fixed mesh index i, all formulas of previous sections can be applied. In particular, the estimation of mean
and variance are

E(gW (i, ξ)) =

∫ (l=M∑
l=0

Cl(i)Pl(ξ)

)
D(ξ)dξ = C0(i),

E((gW (i, ξ)− C0(i))2) =

∫ (l=M∑
l=1

Cl(i)Pl(ξ)

)2

D(ξ)dξ =

l=M∑
l=1

Cl(i)
2.

3.6 Extension to d-D

Before discussing sparsification of output polynomial expansions and sparsification of quadratures in section
§5, a full-tensorial extension of the 1D gPC method is considered. The presentation is done in 2D but the
extension to dD is then straightforward.
The joint probability of the 2 uncertain parameters (ξ1, ξ2) ∈ I1× I2 is assumed to have the simple form

D(ξ1, ξ2) = Dα(ξ1)Dβ(ξ2).

The orthogonal polynomials associated to the dot products involving Dα(ξ1) and Dβ(ξ2) are respectively
(Pα0 , P

α
1 , P

α
2 , ...) and (P β0 , P

β
1 , P

β
2 , ...). The 2D tensorial gPC expansion with (M1+1)-point in direction 1,

and (M2+1)-point in direction 2, then reads

F (ξ1, ξ2) ' gF (ξ1, ξ2) =
∑

k≤M1,l≤M2

Ck,lP
α
k (ξ1)P βl (ξ2) (7)
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The description of the full-tensorial approach (that will highlight the interest of sparse approaches) then requires
the definition of the tensorial product of two 1D quadratures. The tensor product of quadratures

A[f ] =

k=gα∑
k=1

ωαk f(ξαk )

(
approximating

∫
I1
f(u)Dα(u)du

)

and

B[g] =

l=gβ∑
l=1

ωβl g(ξβl )

(
approximating

∫
I2
g(v)Dβ(v)dv

)
,

for integration over I1× I2 is denoted (A⊗B) and defined as

(A⊗B)[h] =
∑

k≤gα,l≤gβ
ωαkω

β
l h(ξαk , ξ

β
l ).

The evaluation of a gPC coefficient by this quadrature reads

Ck,l =

∫
I1×I2

F (ξ1, ξ2)Dα(ξ1)Dβ(ξ2)dξ1dξ2 ' (A⊗B)[F ] =
∑

k≤gα,l≤gβ
ωαkω

β
l F (ξαk , ξ

β
l ).

It requires gα × gβ flow calculations and evaluations of F . The coefficients of 2D expansion (7) could as well
be calculated by collocation, identifying the spectral expansion for (M1 + 1) × (M2 + 1) points with exact
evaluations ∑

k≤M1,l≤M2

Ck,lP
α
k (ξs1)P βl (ξs2) = F (ξs1, ξ

s
2) s ∈ {1, 2, 3..., (M1 + 1)× (M2 + 1)}

As in the 1D case, the calculation of mean and variance of the expansion gF is simple thanks to the orthonor-
mality of the basis

E(gF ) =

∫  ∑
k≤M1,l≤M2

Ck,lP
α
k (ξ1)P βl (ξ2)

 dξ1dξ2 = C0,0

V (gF ) = E((gF − C0,0)2)

=

∫  ∑
k≤M1,l≤M2

Ck,lP
α
k (ξ1)P βl (ξ2)D(ξ1, ξ2)dξ1dξ2 − C0,0

2

D(ξ1)αDβ(ξ2)dξ1dξ2

=

∫  ∑
k≤M1,l≤M2 (k,l) 6=(0,0)

Ck,lP
α
k (ξ1)P βl (ξ2)

2

D(ξ1)αD(ξ2)βdξ1dξ2

=
∑

k≤M1,l≤M2 (k,l)6=(0,0)

C2
k,l
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4.0 STOCHASTIC COLLOCATION

4.1 Expansion

Stochastic Collocation (SC) is another non-intrusive polynomial method [7]. It is based on Lagrangian poly-
nomial expansion. It is first described for a vector field (generic mesh index i) in the 1D case (one uncertain
parameter ξ). Given a set of (M + 1) distinct values of ξ (ξ1, ξ2... ξM+1), Stochastic Collocation is a dedicated
polynomial expansion using Lagrangian polynomials

W (i, ξ) ' scW (i, ξ) =
l=M+1∑
l=1

Wl(i)Hl(ξ) Hl(ξ) =
m=M+1∏
m=1,m 6=l

(ξ − ξm)

(ξl − ξm)

where scW is a polynomial of degree M (sum of polynomials of degree M ). We have to immediately note
that

scW (i, ξl) =

l=N∑
l=1

Wl(i)Hl(ξl) = Wl(i).

There is hence no coefficient calculation step but the flow has to be computed for all ξl l ∈ {1...M + 1} and
W (i, ξl) has then to be derived from the whole field of state variables. Then, obviously

scW (i, ξ) =

l=M+1∑
l=1

W (i, ξl)Hl(ξ).

4.2 Stochastic post-processing

Although this is not absolutely mandatory (see the slides for two other cases), we consider here that (ξ1, ξ2...
ξM+1) are the M + 1 points of the (M + 1)-point Gaussian quadrature associated to D(ξ), the corresponding
weights being (ω1, ω2, ..., ωM+1). As for generalized polynomial chaos method, the stochastic post-processing
is done for scW instead of W .
The evaluation of mean value precisely uses the Gaussian quadrature which nodes are the same as those of the
Lagrange set:

E(scW (i)) =

∫
scW (i, ξ)D(ξ)dξ =

m=M+1∑
m=1

ωmscW (i, ξm) =

m=M+1∑
m=1

ωmW (i, ξm).

This calculation is exact as sCW is of degree M whereas the quadrature is exact for polynomials up to degree
(2M + 1). Just as the same, the evaluation of variance is also based on the Gaussian quadrature and also exact
(degree 2M polynomial)

E((scW (i)− E(scW (i)))2) = E(scW (i)2)− E(scW (i))2

=

∫
scW (i, ξ)2D(ξ)dξ − E(scW (i))2

=

m=M+1∑
m=1

ωmscW (i, ξm)2 − E(scW (i))2

=

m=M+1∑
m=1

ωmW (i, ξm)2 −

(
m=M+1∑
m=1

ωmW (i, ξm)

)2
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4.3 Extension to d-D

The presentation is done for 2 uncertain parameters (ξ1, ξ2) ∈ I1× I2, the extension to d-D being straightforward
The joint probability distribution is assumed to be

D(ξ1, ξ2) = Dα(ξ1)Dβ(ξ2).

For the sake of simplicity, the method is presented for a scalar output. A tensorial grid of (M1+1) and (M2+1)
Gauss-points associated to Dα and Dβ is considered :

(ξα1 , ξ
α
2 , ..., ξ

α
M1+1) × (ξβ1 , ξ

β
2 , ..., ξ

β
M2+1

),

the weights being
(ωα1 , ω

α
2 , ..., ω

α
M1+1) (ωβ1 , ω

β
2 , ..., ω

β
M2+1

).

The Lagrange polynomials associated to the two sets are

Hα
k (ξ1) =

m=M1+1∏
m=1,m 6=k

(ξ1 − ξαm)

(ξαk − ξαm)
Hβ
l (ξ2) =

m=M2+1∏
m=1,m 6=l

(ξ2 − ξβm)

(ξβl − ξ
β
m)
.

The stochastic collocation 2D expansion is

scF (ξ1, ξ2) =
∑

k≤M1;l≤M2

dk,lH
α
k (ξ1)Hα

l (ξ2) scF (ξ1, ξ2) ' F (ξ1, ξ2).

As in the 1D case, the coefficients of the expansion are easily identified as dk,l = F (ξαk , ξ
β
l ), so that

scF (ξ1, ξ2) =
∑

k≤M1;l≤M2

F (ξαk , ξ
β
l )Hα

k (ξ1)Hβ
l (ξ2).

The tensor product of the two Gaussian rules is defined as∫
F (ξ1, ξ2)Dα(ξ1)Dβ(ξ2)dξ1dξ2 =

∑
k≤M1+1;l≤M2+1

ωαkω
β
l F (ξαk , ξ

β
l ).

It exactly integrates all monomials ξp1ξ
q
2 such that p ≤ 2M1 + 1 and q ≤ 2M2 + 1. The calculation of the mean

of scF reads ∫
scF (ξ1, ξ2)Dα(ξ1)Dβ(ξ2)dξ1dξ2 =

∑
k≤M1+1;l≤M2+1

ωαkω
β
l scF (ξαk , ξ

β
l ),

but, as scF (ξαk , ξ
β
l ) = F (ξαk , ξ

β
l ),

E(scF ) =

∫
scF (ξ1, ξ2)Dα(ξ1)Dβ(ξ2)dξ1dξ2 =

∑
k≤M1+1;l≤M2+1

ωαkω
β
l F (ξαk , ξ

β
l ).
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It is exact thanks to the property of polynomial exactness of the tensor Gaussian quadrature.
The calculation of the variance scF is also exact due to the degree of the involved polynomials:

V (scF ) = E((scF − E(scF ))2) = E(scF 2)− E(scF )2

=

∫
scF (ξ1, ξ2)2Dα(ξ1)Dβ(ξ2)dξ1dξ2 − E(scF )2

=
∑

k≤M1+1;l≤M2+1

ωαkω
β
l F (ξαk , ξ

β
l )2 −

 ∑
k≤M1+1;l≤M2+1

ωαkω
β
l F (ξαk , ξ

β
l )

2

4.4 Cost of tensorial methods

If we assume that the tensor (gPC) or (SC) method is applied in d-dimension with M point per direction then
the number of required CFD calculations is Md that is not sustainable if d is high. For example, with 9 points
per direction, the required number of simulations is

92 = 81 94 = 6561 95 = 59049 96 = 531441 98 = 43.046721 910 = 3.486.784401

that is only feasible at reasonable cost up to d = 4 or 5. This increasing cost with the number of dimension is
called Curse of dimensionality.
This is the reason why polynomials in total degree t are considered. They involve

Z =

(
d+ t
d

)
terms. It is then reasonable to search for quadratures that are exact for monomials of total degree lower than
a given integer (and not such that the maximum degree of each individual term is lower than a given integer).
Smolyak sparse quadratures, that are described in next section, have a neighboring property of polynomial
exactness. They are often called “sparse grids”.

5.0 INTRODUCTION TO SMOLYAK SPARSE GRIDS

5.1 Reminder. Tensor product of quadratures

As already mentioned in section §3.6 the tensor product of 1D quadratures

A[f ] =

m∑
i=1

aif(xi) and B[f ] =

n∑
i=1

bif(yi),

meant to sum functions over I1 and I2 is

A⊗B[g] =
m∑
i=1

n∑
j=1

aibj g(xi, yj),

tensor quadrature for functions defined over I1×I2. The direct extension to d-D of this tensor-product quadrature
formula is

A1 ⊗A2 ⊗ ...⊗Ad[f ] =

n1∑
i1=1

...

nd∑
id=1

w1i1 ...wdid f(x1i1 , ..., xdid)
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5.2 Hierarchy of quadratures. Difference of quadratures

All the 1D-quadratures of interest are here supposed to be part of a hierarchical set of rules, Ql, (not necessary
nested3). The index l is the one of the hierarchy and shall be well distinguished from the number of points
of the rule (denoted nl) and its polynomial exactness (denoted ml). The formula of the tensor quadrature is
rewritten in this case

Ql1 ⊗ ...⊗Qld [f ] =

nl1∑
i1=1

...

nld∑
id=1

wl1i1 ...wldid f(xl1i1 , ..., xldid)

Besides, differences of quadrature formulas of the hierarchy may be defined by

∆k[f ] := Qk[f ]−Qk−1[f ]

Q0[f ] := 0.

In general, the difference formula ∆kf is defined on the union of the grids of the two quadratures Qk and Qk−1

(which is the grid of Qk in the nested case). Let us now note that the simple product formula with level l1,
l2...ld for the successive variables may be expressed by the following sum

Ql1 ⊗ ...⊗Qld [f ] =
∑

k/ 1≤kj≤lj

(∆k1 ⊗ ...⊗∆kd)f (8)

This property derives from the sum of the successive ∆,
n∑
k=1

∆k[f ] = (Q1[f ]−Q0[f ]) + (Q2[f ]−Q1[f ]) + ...+ (Qn[f ]−Qn−1[f ]) = Qn[f ],

and is easily checked for low dimensions. For example, the expansion of Q3 ⊗Q2[f ], is checked summing the
lines then the rows (or crisscross) of the right-hand side of next equation

Q3 ⊗Q2[f ] = (Q3 −Q2)⊗ (Q2 −Q1)[f ] + (Q3 −Q2)⊗ (Q1 −Q0)[f ] +

(Q2 −Q1)⊗ (Q2 −Q1)[f ] + (Q2 −Q1)⊗ (Q1 −Q0)[f ] +

(Q1 −Q0)⊗ (Q2 −Q1)[f ] + (Q1 −Q0)⊗ (Q1 −Q0)[f ]

5.3 Smolyak sparse grids [11]

Smolyak sparse grids are linear combinations of tensor-product operators meant to balance computational effort
and accuracy. Their direct definition is based on equation (8) where the domain of indices is restricted to a
simplex:

Qdl [f ] =
∑

|k|1≤l+d−1

(∆k1 ⊗ ...⊗∆kd)[f ] (9)

In this expression, the weights of the tensor-product quadratures obtained when developing the ∆ differences,
are sums of products of weights. Besides, the lowest possible value of l is 1. The lower value of |k|1 for non
zero terms is hence d so that the definition of sparse grids can possibly be made more explicit

Qdl [f ] =

d+l−1∑
j=d

∑
k/|k|1=j

(∆k1 ⊗ ...⊗∆kd)[f ] (10)

3A set of quadratures (Ql) l ∈ N is said to be nested iff all points of l-th quadrature Ql are also quadrature points (l + 1)-th level
quadrature Ql+1
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The link between Qdl+1 and Qdl (changing level) is then obviously

Qdl+1[f ] = Qdl [f ] +
∑

k/|k|1=d+l

(∆k1 ⊗ ...⊗∆kd)[f ] (11)

The link between sparse grid in dimension d and d − 1 (changing dimension) is obtained by isolating the first
index k1 of the multi-index k. Noting k′ = (k2, k3...kd), the definition (9) is rewritten

Qdl [f ] =
l∑

k1=1

∆k1 ⊗
∑

k′/|k′|1≤l+d−1−k1

(∆k2 ⊗ ...⊗∆kd)[f ] =
l∑

k1=1

∆k1 ⊗Q
d−1
k1−1

Of course, a direct expression in terms of the quadraturesQl (rather than their ∆ differences) is of great interest.
The formula (see [4]) is

Qdl [f ] =
∑

max(l,d)≤|k|1≤l+d−1

(−1)l+d−|k|1−1

(
d− 1
|k|1 − l

)
(Qk1 ⊗ ...⊗Qkd)[f ] (12)

where the lower value |k|1 is indeed max(l, d) and not d as could be guessed from equation (9). This means
that the tensor product of the lowest order quadratures are not involved in the higher order (that is higher l)
formulas. They are canceled in the additive process of equation (11) when increasing the level l. The number
of points n(Qdl ) involved in the sum of equation (12) depends of course of the set Qk of 1D quadrature. An
obvious upper bound may be derived from last equation

n(Qdl ) ≤=
∑

max(l,d)≤|k|1≤l+d−1

nk1nk2 ...nkd

5.4 Polynomial exactness

Tensorial product of 1D polynomials is defined as
d⊗
i=1

P1
mi = {(x1, ..., xd) ∈ Rd →

d∏
i=1

pi(xi) ∈ R, pi ∈ P1
mi}

where P1
mi is the set of mono-variable polynomials of degree lower or equal to mi The i-th quadrature of the

1D hierarchy Qi is assumed to have polynomial exactness mi such that mi ≤ mi+1 The Smolyak sparse grid
quadrature

Qdl [f ] =
∑

|k|1≤l+d−1

(∆k1 ⊗ ...⊗∆kd)[f ]

is then exact for all polynomials of the non-classical vector space

V(Qdl ) = Span{P1
mk1
⊗ ...⊗ P1

mkd
/ |k|1 = l + d− 1}

Example: Assume, a series of four (n/n + 2) nested rules U1, U2, U3, U4 has been defined. They involve
n1 = 1, n2 = 3, n3 = 5, n4 = 7 points and, as classical 1D interpolatory quadrature, their polynomial
exactness are m1 = 0, m2 = 2, m3 = 4, m4 = 6. The Smolyak sparse grid U2

4 is defined as

U2
4 [f ] =

5∑
j=2

∑
k/|k|1=j

(∆k1 ⊗∆k2)[f ]

U2
4 [f ] = (U4 ⊗ U1 + U3 ⊗ U2 + U2 ⊗ U3 + U1 ⊗ U4 + ...lower .. order...)[f ]
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From previous property, U2
4 is exact for polynomials of non-classical vector space V(U2

4 )

V(U2
4 ) = Span {Pm4 ⊗ Pm1 + Pm3 ⊗ Pm2 + Pm2 ⊗ Pm3 + Pm1 ⊗ Pm4}

V(U2
4 ) = Span {P6 ⊗ P0 + P4 ⊗ P2 + P2 ⊗ P4 + P0 ⊗ P6}

V(U2
4 ) includes all polynomials of two variables of total degree 5 and some (but not all) polynomials of total

degree 6.

5.5 Number of evaluations, error analysis

These points can not be discussed independently of the selected hierarchical family of 1D quadraturesQk. Most
often, results are presented for Clenshaw-Curtis rule [2, 6]. The results derived by Novak and Ritter [8] for this
choice of Ql are presented here (but the convention of [4] is kept for indices of sparse grids).
The Ql are the nested Clenshaw-Curtis quadratures with

n1 = 1 then ni = 2i−1 + 1 (i > 1) points.

Of course, all weights of the 1D rules are positive and the degree of polynomial exactness is mi = ni − 1.
For fixed dimension d and l → ∞ the number of points involved in Qdl , denoted n(Qdl ), is equivalent (in the
strong sense of limit of sequences being equal to 1) to

n(Qdl ) '
1

(d− 1)! 2d−1
2l−1(l − 1)d−1.

The largest number of points in one direction for a sparse grid based on nested quadrature is obtained for the
largest of the individual k indices. The largest values of the sum of k directional quadrature indices in Qdl is
d+ l − 1. As Q0 is zero that largest possible single k value is l (obtained for one kj equal l all the other equal
1). The corresponding number of points is 2l−1 + 1. The “tensorial counterpart” of Qd would hence involve a
full tensorial grid of (2l−1 + 1)d points.
Besides, there exists a constant cd depending on d only such that the L1 norm of the vector of weights (or sum
of the absolute value of these weights) of Qdl , denoted SW (Qdl ), is bounded by

SW (Qdl ) ≤ cd(log(n(Qdl )))
d−1.

Finally, we introduce two spaces of functions with bounded derivatives

Crd = {f : [−1, 1]d → R / Max
|k|1≤r

||f (k)||∞ <∞} and

F rd = {f : [−1, 1]d → R / Max
|k|∞≤r

||f (k)||∞ <∞}.

The errors bounds of Qdl , R(Qql )[f ] for functions of Crd and F rd are respectively

|R(Qql )[f ]| ≤ cr,d n−r(Qdl )
log(n(Qdl ))

(d−1)(r+1) ||f ||∞ ∀f ∈ F rd

and
|R(Qql )[f ]| ≤ cr,d n

−r/d
(Qdl )

log(n(Qdl ))
(d−1)(r/d+1) ||f ||∞ ∀f ∈ Crd

where of cr,d only depends on regularity r and dimension d and where the infinity norms refers to the max of
the infinity norm of all derivatives defined respectively for functions of F rd and functions of Crd . The loss of
accuracy in large dimensions due to the d factor in n−r/d (for Crd) instead of n−r (for F rd ) is sometimes also
referred as the “Curse of dimensionality” (as the number of points in tensor product quadratures).
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6.0 INTRODUCTION TO VARIANCE ANALYSIS

Whereas the individual influence of the inputs of a regular multivariate function f is locally estimated calculat-
ing the partial derivatives of f , Sobol’ proposed a framework for a global (and hence more powerfull) analysis
that attributes a part of the total variance of f on its domain of definition to each variable and subset of the
variables. The associated functional decomposition is called ANOVA representation (ANalysis Of VAriance)
and the corresponding fractions of variance are called Sobol’ indices [12].

6.1 ANOVA representation

This representation is generally presented for a function f defined over [0, 1]d with all inputs (ξ1, ξ2, ..., ξd)
following a uniform distribution over [0, 1]. This framework is also considered here although the results are
unchanged if ξ = (ξ1, ξ2, ..., ξd) follows a product law D(ξ1, ξ2, ..., ξd) = D(ξ1)D2(ξ2)...Dd(ξd).
The following representation is searched for f :

f(ξ) = f0 +
∑
i

fi(ξi) +
∑
i<j

fi,j(ξi, ξj) +
∑
i<j<k

fi,j,k(ξi, ξj , ξk) + ....+ f1,2,...,d(ξ1, ξ2, ..., ξd) (13)

where the integral of all the fi..l functions w.r.t. all their arguments shall be zero (only f0 has not a non-zero
integral over [0, 1]d). As a consequence of this requirement, the functions of the decomposition are orthogonal
for the L2 dot product. For example,∫

ξ1,ξ2...ξd

f2,3(ξ2, ξ3) f1,3,4(ξ1, ξ3, ξ4) dξ1dξ2...dξd = 0

is proved integrating for ξ2 or ξ4. The demonstration of the decomposition’s existence is actually constructive.
Integrating over all variables, then all variables but one, then all variables but two... yields

E(f) =

∫
f(ξ)

∏
l

dξl = f0,

E(f/ξi) =

∫
f(ξ)

∏
l 6=i

dξl = f0 + fi(ξi),

E(f/ξi, ξj) =

∫
f(ξ)

∏
l6=i,j

dξl = f0 + fi(ξi) + fj(ξj) + fi,j(ξi, ξj),

E(f/ξi, ξj , ξl) =

∫
f(ξ)

∏
l6=i,j,k

dξl = f0 + fi(ξi) + fj(ξj) + fk(ξk) + fi,j(ξi, ξj) + fi,k(ξi, ξk) + fj,k(ξj , ξk) + fi,j,k(ξi, ξj , ξk)

and so on, which indicates how the functions of the ANOVA decomposition are successively calculated.
If f is square integrable, thanks to the orthogonality property,∫
f(ξ)2dξ − f2

0 =
∑
i

∫
fi(ξi)

2dξ +
∑
i<j

∫
fi,j(ξi, ξj)

2dξ +
∑
i<j<k

∫
fi,j,k(ξi, ξj , ξk)

2dξ + ....+

∫
f1,2,...,d(ξ1, ξ2, ..., ξd)

2dξ

(14)

is easily deduced from equation (13). The variance of the function of interest has hence been decomposed in a
sum of contributions attributable to all possible sets of variables.

6.2 Sobol’ indices

The Sobol’ indices are ratio of the terms of the right-hand side in equation (14) to the total variance of f ,

V ar(f) =

∫
f(ξ)2dξ − E(f)2 =

∫
f(ξ)2dξ − f2

0 .
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They represent the part of the variance attributable to each set of variables,

σi =
1

V ar(f)

∫
fi(ξi)

2dξ (15)

for individual variables,

σi,j =
1

V ar(f)

∫
fi,j(ξi, ξj)

2dξ (16)

for pairs of variables, and so on for larger sets of variables. Of course, from equation (14),∑
i

σi +
∑
i<j

σi,j +
∑
i<j<k

σi,j,k + ....+ σ1,2,...d = 1

6.3 Sensitivity indices for subsets of variables

For any subset ξsub of ξ = (ξ1, ξ2, ..., ξd), let us define by S the list of the indices of the ξl variables that are
part of ξsub. The complementary set of variables of ξ is denoted ξsub.
It is classical to define the sum of the Sobol’ indices of all the subsets of ξsub. This quantity is the fraction of
the variance attributed by ANOVA to all combination of variables of ξsub. It is also denoted here with the letter
σ but with a superscript referring to the set of variables

σsub =

#(S)∑
s=1

∑
(i1<i2<...is)∈S

σi1,i2...is

The so called total index of the variables of ξsub qualifies the fraction of the variance attributed to all sets of
variables including at least one of the terms of ξsub. It is denoted here σtot−sub with a superscript referring to
the set of variables. It is obviously equal to

σtot−sub = 1− σsub

as the terms that involve at least one variable of ξsub and those that do not involve any form a partition of all
possible sets of variables.

6.4 Numerical example

The calculation of Sobol’ indices is illustrated for

f(x, y, z) = 1 + 2x+ 3x2 + 4xy + 2y + 3z2

with uniform distribution for the three variables in [0,1]. The mean and variance of f are

E(f) = 6 V ar(f) =
287

45
.

The first term of ANOVA decomposition is f0 = E(f) = 6. The conditional expectations for one fixed
variables are

E(f/x) = 3 + 4x+ 3x2 E(f/y) = 4 + 4y E(f/z) = 5 + 3z2.
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The f1, f2 and f3 terms of the decomposition are then easily deduced

f1(x) = E(f/x)− f0 = −3 + 4x+ 3x2

f2(y) = E(f/y)− f0 = −2 + 4y

f3(z) = E(f/z)− f0 = −1 + 3z2

The conditional expectations for two fixed variables are

E(f/x, y) = 2 + 2x+ 3x2 + 4xy + 2y E(f/x, z) = 2 + 4x+ 3x2 + 3z2 E(f/y, z) = 3 + 4y + 3z2

and subsequent f12 f13 and f23 terms of the ANOVA expansion are

f12(x, y) = E(f/x, y)− f0 − f1(x)− f2(y) = 1− 2x+ 4xy − 2y

f13(x, z) = E(f/x, z)− f0 − f1(x)− f3(z) = 0

f23(y, z) = E(f/y, z)− f0 − f2(y)− f3(z) = 0

that is consistent with the fact that only x and y interact in function f . Similarly

f123 = f(x, y, z)− f0 − f1(x)− f2(y)− f3(z)− f12(x, y)− f13(x, z)− f23(y, z) = 0

that is, once again, consistent with the dependencies of f . The calculations can be fully or partially verified
checking a posteriori the basis property of the decomposition,

Ex(f1(x)) = 0 Ey(f1(y)) = 0 Ez(f3(z)) = 0 Ex(f12(x, y)) = 0 Ey(f12(x, y)) = 0.

Finally, it is checked that

E(f1(x)2) + E(f2(y)2) + E(f3(z)2) + E(f12(x, y)2) =
62

15
+

4

3
+

4

5
+

1

9
=

287

45
= V ar(f)

The Sobol’ indices are equal to

σx =
62

15
/

287

45
σy =

4

3
/

287

45
σz =

4

5
/

287

45
σxy =

1

9
/

287

45

The fraction of variance due to x y z and (x, y) jointly are respectively 64.80%, 20.90%, 12.54% and 1.74%.

6.5 Sobol’s indices of a gPC expansion

Consistently with section 3.6, the results are given in 2D with the indication of how they would be extended to
dD. So ξ = (ξ1, ξ2) and the 2D polynomial chaos is denoted

gF (ξ) =
∑

(k,l)∈I

Ck,lP
α
k (ξ1)P βl (ξ2),

where the set of exponents is most often either {(k, l) | k + l ≤ M} (total degree) or {(k, l) | k ≤ M1 ; l ≤
M2} (individual degrees). These ANOVA formulas are given below in this second case. Let us recall that
E(gF ) = C0,0 and

V ar(gF (ξ)) =
∑

(k,l)∈I | 1≤k+l

C2
k,l. (17)
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The expression of variance is to be compared with equation (14) for two variables

V ar(f) =

∫
f(ξ)2dξ − f2

0 =

∫
f1(ξ1)2dξ +

∫
f2(ξ2)2dξ +

∫
f12(ξ1, ξ2)2dξ.

The definition of the generalized polynomial chaos and the orthogonality of the basis provide an immediate
identification of the f1 f2 and f12 functions of the ANOVA representation

f1(ξ1) =
M1∑
k=1

Ck,0P
α
k (ξ1)

f2(ξ2) =

M2∑
l=1

C0,lP
β
l (ξ2)

f12(ξ1, ξ2) =
∑

(k,l)∈I | k≥1 , l≥1

Ck,lP
α
k (ξ1)P βk (ξ2)

Obviously

V ar(f1) =

M1∑
k=1

C2
k,0 V ar(f2) =

M2∑
l=1

C0,l V ar(f12) =
∑

(k,l)∈I | k≥1 , l≥1

C2
k,l,

and the sum of these three terms provides the expected decomposition of the variance (17). The three Sobol’
indices σ1, σ2 and σ12 of the gPC in 2D are then calculated according to equations (15) and (16).
If d uncertain variable are involved, the variance due to interaction of variables (ξa1 , ξa2 ..., ξas) is the sum the
square of the coefficients of the gPC polynomial terms involving all these variables and only these variables.
The corresponding σa1a2...as Sobol’ indice is obtained by dividing this sum by the total variance.
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7.0 EXAMPLES OF APPLICATION

7.1 Generic missile FG5 – 3 uncertain parameters

The section summarizes a (UQ) exercise performed by DLR, USAF and ONERA in the framework of the RTO-
AVT 191 group. The reference publication for this work is [9]. The considered geometry is a generic missile,
called FG5, with four fins. The angle between the upper fin and the vertical plane is 22.5 degree (so that the
configuration is neither what is named an “X” nor what is called a “+”). The geometry is fully defined by
mathematical curves and surfaces in [9], all lengths being defined as multiples of the diameter, D, that is also
used to evaluate the Reynolds number. Figure 5 presents a global view of the configuration.
Wind-tunnel measurements were carried out at two Reynolds numbers, with fixed or natural transition. During

Figure 5: Wall-mesh of FG5 configuration

all the experiments, the angle of attack was varied. The experiment was repeated for verification (see figure 6 :
two pink curves, short term repetition ; orange curve, tens years after repetition). Six of the experimental plots
presenting forces and moments as functions of the angle of attack have been released and published in 2017 in
reference [9].
The (UQ) exercise was based on the following nominal flow conditions: M = 0.8 α = 12o ReD = 0.6 106

(with fixed transition for the experiment but this option was not used in the calculations). This corresponds
to the pink and orange curves of the experimental plots. The three partners first launched steady state RANS
calculations using their in-house code with their favorite numerical and modelling options : ONERA ran the
elsA code for (RANS) and Spalart-Allmaras model, DLR ran the TAU for (RANS) and k-w model, USAF
ran the AVUS code for (RANS) and Spalart-Allmaras model. The Kp at the fin walls and the total pressure
in vertical planes crossing the missile were compared in order to check main inviscid and viscous (dissipative
vortices stemming from the nose) features of the flow. This comparison of nominal flows was found to be
satisfactory [9].

This comparison was a good starting point for a three-parameter (UQ) exercise. Angle of attack α, upper
fin angle, upper fin position were considered as stochastic variables. The three outputs of interest were the side
force (CYA), the rolling moment (CLA) and the yawing moment (CNA). The reason for this choice is that they
vary non-linearly in the considered interval of angle of attack. More precisely, the intervals of variation and
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Figure 6: FG5 configuration. Measured side force, rolling moment, yawing moment as function of the angle of attack

probability density functions of the three (UQ) parameters were the following

• Angle of attack in [10o, 14o]

dα′ = (α− 12)/2 Ds2(dα′) =
15

16
(1− dα′2)2

• Change in upper fin azimuthal position in [−1o, 1o]

dφ = φ− 22.5 Ds3(dφ) =
35

32
(1− dφ2)3

• Upper fin angle in [−1o, 1o]

Ds3(ξ) =
35

32
(1− ξ2)3

The joint probability of the three uncertain parameters was simply

D(dα′, dφ, ξ) = Ds2(dα′)Ds3(dφ)Ds3(ξ) =
15

16

352

322
(1− dα′2)2(1− dφ2)3(1− ξ2)3.

After the sign of the variation in the outputs when varying individually the three parameters have been checked,
the 3-parameter (UQ) exercise was performed.

ONERA could run 31 calculations sampling the parameter space according to a Smolyak sparse grid based
on (1D) Féjer second rule. Unfortunately this quadrature is not associated to the p.d.f that had to be part of the
integrand... and the joint pdf of the three parameters, D(dα′, dφ, ξ), is a degree 16 polynomials. The sparse
quadrature actually failed to correctly integrate the D(dα′, dφ, ξ). To solve this issue, a Kriging surrogate was
fitted to the 31 evaluations of CLA and corresponding surrogates were built for CYA, CNA. Calculation of
mean value and variance of the three force/moments of interest was then based on Riemann sums for (surrogate
× D(dα′, dφ, ξ))
DLR used a surrogate-based Monte-Carlo strategy. The global calculation budget was 76 TAU simulations
The simulations were run in successive series, checking intermediate results provided by the stochastic post-
processing. Three Kriging surrogates were fitted to sets of 8 then 16... then 76 CLA, CYA, CNA values. At the
end of the process of surrogates construction, one million Monte-Carlo samples were built from the cumulative
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Figure 7: Visualisation of mesh deformation for fin angle (left) and fin azimuthal position (right). Both deformations need to be
combined for some of the sampling points

density functions of Ds2(dα′), Ds3(dφ) and Ds3(ξ). Monte-Carlo mean and variance were then calculated for
the Kriging surrogates based on the D(dα′, dφ, ξ)-consistent sampling. Besides, visualisation of the p.d.f. of
the outputs of interest were performed.
The calculation budget devoted to the exercise by USAF was 10 simulations. A Design of Experiment of ten
points (corners of the parameters domain plus two face centers) was selected and the corresponding flows were
calculated. The series of computations allowed to define a quadratic polynomial surrogate for each of the func-
tional output of interest. Finally, a variance decomposition analysis was based on the quadratic surrogate.
The discrepancy between the results of the partners is illustrated by figure 8 that presents side-by-side, ON-
ERA and DLR results. The difference between steady state nominal forces and moments has been considered
acceptable. The difference between mean values of forces and moments has also been considered acceptable.
The discrepancy between the variance of rolling moment and yawing moment was quite significant 4. This has
not been fully explained although significant differences appeared between elsA and TAU calculations in the
slopes of the outputs of interest when varying only the fin angle ([9] fig. 17). This is incitement to work on
both, CFD real problems and relevant mathematical functions to deepen the analysis of results, identifying the
influence of the distinct CFD codes, and the influence of the distinct (UQ) methods.

Figure 8: Synthesis of ONERA (up) and DLR (down) results for the 3-parameter (UQ) exercise

4note here that it had been apparently smaller presenting standard deviation instead of variance
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7.2 RAE 2822 – 3 uncertain parameters

This section summarizes a (UQ) study performed in the framework of the EU project UMRIDA (www.umrida.eu).
The reference for this work is [10]. The aerodynamic configuration of interest is the well-known RAE2822
aerofoil with following flow conditions

M∞ = 0.725, α = 2.92o, Re = 6.50 · 106.

(They derive from classical corrections applied to case 6 of the experiments conducted by RAE [3].) Outputs
of interest were drag, CD, lift, CL, and pitching moment, CM . These coefficients were calculated with the elsA
code [1] solving (RANS) equations closed by Spalart-Allmaras turbulence model. A 769× 193 mesh was used;
its far-field boundary was about 1000 chord from the airfoil – see figure 9. Classical numerical options were
selected and the resulting nominal discrete flow was considered as satisfactory ([10] fig. 3 and 4).
Free-stream Mach number M∞, angle of attack α and thickness to chord ratio r = h/c were then assumed
to vary stochastically with the range and exponent – referring to equation (1) – displayed in Table 3. The or-

a = b Xm XM

ξ1 4 0.97× r 1.03× r
ξ2 4 0.95×M∞ 1.05×M∞
ξ3 4 0.98× α 1.02× α

Table 3: Domain of variation and exponent of β-distribution for the stochastic parameters of the RAE2822 text case

Figure 9: C structured mesh for RAE2822 calculations

thonormal polynomials associated to the common probability density function of the three uncertain parameters
(after their ranges have been scaled to [-1,1]) are normalized Jacobi polynomials denoted ψ:

< ψj , ψk >=

∫ +1

−1
ψj(ξ)ψk(ξ)

35

32
(1− ξ2)3dξ = δjk deg(ψj) = j

It was decided to represent CD, CL, CM by multivariate gPC expansions of total degree t=8. For CD,

gCD(ξ1, ξ2, ξ3) =
∑

|j|1=j1+j2+j3≤8

cj ψj1(ξ1) ψj2(ξ2) ψj3(ξ3).
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The number of coefficients cj to calculate is the dimension of the polynomial vector space, that is, with 3
variables and total degree 8,

Z =

(
t+ d
d

)
=

(
8 + 3

3

)
=

(
11
3

)
= 165.

The coefficients of the three gPC expansions were first calculated by quadratures, as

cj =

∫
ψj(ξ)CD(ξ)D(ξ)dξ

=

∫
ψj1(ξ1) ψj2(ξ2) ψj3(ξ3)CD(ξ1, ξ2, ξ3)

353

323
(1− ξ2

1)3(1− ξ2
2)3(1− ξ2

3)3dξ1dξ2dξ3,

with a full-tensorial quadrature and a sparse one. Their common base is the 1D Gauss-Jacobi-Lobatto quadra-
ture associated to the common probability density function. It is non nested (except that the extremum points
are involved in the stencil of all levels). Its polynomial exactness for p points is degree 2p − 3. The tensorial
quadrature was the tensor-product of the 10-point Gauss-Jacobi-Lobatto quadrature in the three directions. The
sparse quadrature was the 7-th level Smolyak sparse grid based on the 1D Gauss-Jacobi-Lobatto quadrature
(level p in the 1D base hierarchy corresponding to p integration points.) This sparse quadrature involves 201
points whereas, of course, the full tensorial quadrature involves 103 = 1000 points. The stencils are illustrated
by figure 11. The reference mean and variance were those obtained with 1000-point tensor quadrature – see ta-
ble 4. It was observed that the Smolyak sparse grid based on 201 evaluations provided almost identical results.

Figure 10: Visualization of 6-point tensorial Gauss-Jacobi-Lobatto quadrature and 7th level Smolyak quadrature based on Gauss-
Jacobi-Lobatto quadratures – gPC coefficients are calculated with 10-point tensorial GJL and 7th level Smolyak quadrature based
on GJL

Finally, a method called “compressed sensing” is used to calculate the gPC coefficients with a low number
of function evaluations (that is, flow calculations), even lower than the dimension of the functional space. The
collocation equations for the gPC coefficients are first recalled in explicit form,∑

|j|1≤t

CjPj(ξk) = F (ξk) ∀ k ∈ {1...q}
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µ σ

CD 133.37e-04 34.128e-04
CL 72.274e-02 1.6695e-02
CM -453.99e-04 32.239e-04

Table 4: RAE2822: First two moments of the aerodynamic coefficients computed by the 10–th level product rule (1000 points)

µ σ

CD 133.38e-04 34.097e-04
CL 72.269e-02 1.6729e-02
CM -453.96e-04 32.175e-04

Table 5: RAE2822: First two moments of the aerodynamic coefficients computed by the 7–th level sparse rule (201 points)

and in vector-matrix form (F column vector of F values, C column vector of unknown polynomial coefficients,
K matrix Kij = Pj(ξi))

KC = F.

If the number of samples is equal to the dimension of the polynomial basis (q = Z), a classical linear system
is to be solved. If the number of samples is larger than the dimension of the polynomial basis (q > Z), a
least square problem is to be solved. If the number of samples is smaller than the dimension of the polynomial
basis (q < Z), compressed sensing may be used under the conditions that (1) the actual gPC expansion that
is looked for, is sparse, meaning it has many coefficients very close to 0. This is often the case. This is called
“sparsity of effects” and is verified for the searched expansions for the current test-case ; (2) a (random)
sampling incoherent with the basis of polynomials is available. That is measured by the “mutual coherence”

max
1 ≤ j, l ≤ Z

j 6= l

|KT
j Kl|

‖Kj‖2‖Kl‖2

that should exhibit the lowest possible value. The underdetermined problem

KC = F

is then solved by L1 minimization

C∗ = arg min
h∈RZ

{‖h‖1; ‖Kh− F‖2 ≤ ε}

The method has been applied with as 80-point random sampling for the calculation of the 165 coefficients. The
mutual coherence was found to be 0.93. The recovery of mean and variance with compressed sensing gPC was
found to be satisfactory – see table 6.

µ σ

CD 133.33e-04 34.052e-04
CL 72.271e-02 1.6703e-02
CM -453.95e-04 32.180e-04

Table 6: RAE2822: First two moments of the aerodynamic coefficients computed by compressed sensing (80 points)

2- 28 STO-AVT-326 Uncertainty Quantification in Computational Fluid Dynamics



Generalized polynomial chaos and stochastic collocation methods for uncertainty
quantification in aerodynamics

7.3 Semi-empirical helicopter flight dynamics code – analysis of variance

The comprehensive analysis code HOST is used for various helicopter studies. It has a specific capability of
prediction of the aeroelastic position of rotor blades under forced motion and aeroelastic effects. An effort is
in progress to study the dependency of HOST outputs w.r.t. its inputs. In a first step, the terms of the power
balance of an helicopter in forward flight are considered : fuselage power Pfus, rotor induced power Pind,
profile drag power Pprof , total power needed by the rotor (that is the sum of the three first).
Following a basic analytical model, these terms read

Pfus =
1

2
ρ∞(CxS)fV

3
h Pind =

1

ηi

FN
2ρ∞SVh

Pprof =
1

8
ρ∞Sσ(RΩ)3Cd(1 + 5(

Vh
ΩR

)2) Ptotal = Pfus + Pind + Pprof

(where R is the rotor radius, Ω is the rotational speed, FN is the integral of the normal forces applied to the
blades, Vh is the translation speed, S is the surface of the helicopter exposed to the wind (relative to the he-
licopter), ρ∞ is the far-field density, ηi is an quality factor for the rotor (=1 in the ideal case, < 1 in the real
world), (CxS)f is one single coefficient characteristic of the airframe drag that is equal to a drag coefficient
multiplied by a reference surface). In this study, the three power terms result from a numerical simulation of
the rotating rotor and the various coefficients (like Cx or FN ) result from integration over the blade wall and
averaging over the azimuthal positions of the blade.
The case of application is the well referenced rotor 7A. All the other quantities are fixed for the model. The
rotational speed (nominal 1012 rpm), Ω, and the forward translation speed (nominal 312 km/h), Vh, are consid-
ered as stochastic inputs following a normal law with a standard deviation equal to 5% of their mean value.
A Kriging intermediate model is built from a 10 points sampling after checking that this cardinal is sufficient to
get a satisfactory representation of the quantities of interest. This step is involved in the (UQ) process to avoid
any inconvenience due to points of the Design of Experiments that could possibly not be calculated. A gPC of
total degree three is then derived for all four quantities of interest, calculating the coefficients by the dot-product
formula with a (3×3) Gauss-Legendre quadrature. A Monte-Carlo sampling of the stochastic inputs and gPC
evaluations lead to the sketch of the outputs p.d.f. – see figure 7.3. It is noted that profile drag power and total
power exhibit non-linear responses to the Gaussian stochastic inputs.

Sobol’ indices σΩ σVh σΩ,Vh Stotω StotVh
fuselage power 0.64 0.36 0 0.64 0.36

rotor induced power 0 1 0 0. 1
profile drag power 0.94 0.06 0 0.94 0.06

total power 0.84 0.15 0.01 0.85 0.16

Table 7: Rotor 7A. Sobol’ indices for the four power terms
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Figure 11: Visualization of power terms output p.d.f.

8.0 CONCLUSION

Definitely, Uncertainty Quantification is needed today for robust analysis and robust design using Computa-
tional Fluid Dynamics.
Unfortunately, there seems to be a lack of widely shared test problems based on inputs by aircraft industry that
would be the counterpart of, for example, CRM for RANS steady-state simulation of external flows. Besides
(just as for global optimisation), the efficiency of (UQ) methods can not be compared only by standard bench-
marks were each partner uses its CFD code and its favorite (UQ) method(s) (see conclusions of subsection
§6.1). Tests on mathematical functions (possible stemming from actual real-life test cases) are needed to isolate
the specific influence of (UQ) methods.
At the end of the EU project UMRIDA (October 2016), many partners could achieve (UQ) satisfactory eval-
uations for 2D or 3D with 6 to 8 uncertain parameters. A great challenges consists in dealing with much
larger number of uncertain parameters which will require analysis of the input space (Sobol’ indices, active
subspaces...) to remove inactive variables and exploitation of “sparsity of effects” whenever observed (sub-
section §7.2). Finally, moving towards large number of design parameters will include management of mesh
deformation for possibly large number of uncertain geometrical parameters that is today a challenge.

ACKNOWLEDGMENTS

This work described in section 7.2 has been supported by the European Union’s Seventh Framework Programme
for research, technological development and demonstration under grant agreement #ACP3-GA-2013-605036
(UMRIDA Project www.umrida.eu).

2- 30 STO-AVT-326 Uncertainty Quantification in Computational Fluid Dynamics



Generalized polynomial chaos and stochastic collocation methods for uncertainty
quantification in aerodynamics

REFERENCES

[1] Cambier, L., Heib, S., Plot., S. The elsA CFD software: input from research and feedback from industry
Mechanics and Industry Vol. 14(3) pp 159–174 (2013)

[2] Clenshaw, C.W., Curtis., A.R. A method for numerical integration on an automatic computer. Numerische
Mathematik, (2) pp 197–205 (1960)

[3] Cook, P.H., McDonald, M.A., and Firmin, M.C.P. Aerofoil RAE 2822. Pressure distributions, and
boundary layer and wake measurements. In Experimental Data Base for Computer Program Assessment.
AGARD Advisory Report No. 138, NATO, May 1979; Appendix A6. (1979)

[4] Gerstner, T., Griebel, M. Numerical integration using sparse grids. Numerical Algorithms 18:209. (1998)

[5] Ghanem, R., Spanos, P.Stochastic Finite Elements: a spectral approach. Springer Verlag. (1991)

[6] Imhof, J.P. On the method for numerical integration of Clenshaw and Curtis. Numerische Mathematik,
Vol. 5 pp 138–141 (1963)

[7] Nobile, F., Tempone, R., Webster, G. A Sparse Grid Stochastic Collocation Method for Partial Differential
Equations with Random Input Data. SIAM J. Numerical Analysis Vol. 46(5) pp 2309-2345. (2008)

[8] Novak, E., Ritter, K. The Curse of Dimension and a Universal Method For Numerical Integration. Multi-
variate Approximation and Splines pp 177–187. (1997)

[9] Peter, J., Goertz, S., Graves, R. Three-parameter uncertainty quantification for generic missile FG5. AIAA
Paper 2017-1197. (2017)

[10] Savin, E., Resmini, A., Peter, J. Sparse polynomial surrogates for aerodynamic computations with random
inputs. AIAA Paper 433-2016 (2016)

[11] Smolyak, S.A. Quadrature and interpolation formulas for tensor products of certain classes of functions
Dokl. Akad. Nauk SSSR pp 240–243 (1963)

[12] Sobol’ I.M. Global sensitivity indices for non-linear mathematical models and their Monte-Carlo esti-
mates. Mathematics and Computers in Simulation Vol. 55 pp 271–280. (2001)

[13] The homogeneous chaos. Amer. J. Math. Vol. 60 pp 897-936. (1938)

[14] The Wiener-Askey polynomial chaos for stochastic differential equations. SIAM J. Numerical Analysis
Vol. 24 pp 619-644. (2002)

STO-AVT-326 Uncertainty Quantification in Computational Fluid Dynamics 2- 31



Generalized polynomial chaos and stochastic collocation methods for uncertainty
quantification in aerodynamics

2- 32 STO-AVT-326 Uncertainty Quantification in Computational Fluid Dynamics


	Introduction
	Probability basics, Monte-Carlo, surrogate-based Monte-Carlo
	Probability basics
	Monte-Carlo
	Accuracy of estimated mean, known variance 
	Accuracy of estimated mean, unknown variance 
	Accuracy of estimated variance 
	Convergence speed of Monte-Carlo method 

	Surrogate-based Monte-Carlo

	Generalized polynomial chaos
	Families of orthonormal polynomials
	Calculation of coefficients by quadrature 
	Calculation of coefficients by collocation 
	Stochastic post-processing
	Case of vector outputs
	Extension to d-D

	Stochastic collocation 
	Expansion
	Stochastic post-processing
	Extension to d-D
	Cost of tensorial methods

	Introduction to Smolyak sparse grids 
	Reminder. Tensor product of quadratures
	Hierarchy of quadratures. Difference of quadratures
	Smolyak sparse grids Smo63
	Polynomial exactness
	Number of evaluations, error analysis

	Introduction to variance analysis
	ANOVA representation
	Sobol' indices
	Sensitivity indices for subsets of variables
	Numerical example
	Sobol's indices of a gPC expansion

	Examples of application
	Generic missile FG5 – 3 uncertain parameters
	RAE 2822 – 3 uncertain parameters
	Semi-empirical helicopter flight dynamics code – analysis of variance

	Conclusion

