
Contributions to discrete adjoint method in aerodynamics for shape
optimization and goal oriented mesh adaptation

HDR defense at University of Nantes

J. Peter1

1ONERA DAAA

September 25th 2020

J. Peter (ONERA DAAA) September 25th 2020 1 / 59



Submitted material

Dissertation Contributions to discrete adjoint method in aerodynamics for
shape optimization and goal-oriented mesh adaptation

Slides and/or lecture notes of four courses about local optimization, discrete
adjoint for CFD, V&V in CFD, non-intrusive UQ

https://www.onera.fr/fr/staff/jacques-peter

These slides follow the sections of the dissertation. The numbers in the slide
titles refer to the corresponding section in the manuscript

J. Peter (ONERA DAAA) September 25th 2020 2 / 59



Outline

1 Discrete gradient method for shape optimization

2 Goal-oriented mesh adaptation

3 Conclusion and perspectives

J. Peter (ONERA DAAA) September 25th 2020 3 / 59



Discrete gradient method for shape optimization

Outline

1 Discrete gradient method for shape optimization

2 Goal-oriented mesh adaptation

3 Conclusion and perspectives

J. Peter (ONERA DAAA) September 25th 2020 4 / 59



Discrete gradient method for shape optimization

§1.1 – Discrete adjoint method. Parameters

Framework: steady state compressible flow simulation using finite-volume methods.
Discrete approach for sensitivity analysis

Notations

Volume mesh X , flowfield W (size nW )
Wall surface mesh XS

Residual R, C 1 regular w.r.t. X and W – steady state: R(W ,X ) = 0
Vector of design parameters α (size nα)
Assumption XS (α) and X (α) are C 1 regular

Assumption of implicit function theorem

∀ (Wi ,Xi ) / R(Wi ,Xi ) = 0 (∂R/∂W )(Wi ,Xi ) 6= 0
Unique steady flow corresponding to a mesh
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Discrete gradient method for shape optimization

X volume mesh

XS wall-surface mesh

Influence of a paramter αk deforming Xs and X
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Discrete gradient method for shape optimization

§1.1 – Discrete adjoint method. Parameters

Using the implicit function theorem, the functions/quantities of interest (QoI) read

Jk (α) = Jk (W (α),X (α)) k ∈ [1, nf ] (1)

where flowfield and volume mesh linked by flow equations

R(W (α),X (α)) = 0 (2)

Sensitivities dJk/dαi k ∈ [1, nf ] i ∈ [1, nα] to be computed

Discrete gradient computation methods

Finite differences – 2nα flow computations (non linear problems, size nW )

Direct differentiation method – nα linear systems (size nW )

Adjoint vector method – nf linear systems (size nW )

Most interesting whenever nf << nα typically for external aerodynamics
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Discrete gradient method for shape optimization

§1.1 – Direct differentiation method

Discrete equations for mechanics (set of nW non-linear equations )

R(W (α),X (α)) = 0

Differentiation with respect to αi i ∈ [1, nα]. Derivation of nα linear systems of size
nW

∂R

∂W

dW

dαi
+ (

∂R

∂X

dX

dαi
) = 0 (3)

Solving for dW /dαi . Calculation of sensitivities

dJk

dαi
=
∂Jk

∂X

dX

dαi
+
∂Jk

∂W

dW

dαi
(4)
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Discrete gradient method for shape optimization

§1.1 – Discrete adjoint parameter method

Among several ways to derive the discrete adjoint equation, consistently with
continuous adjoint, calculate (2)+λT (1) λ ∈ RnW

Vector λ defined in order to cancel the factor of the flow sensitivity dW
dαi

. It appears

to be associated to Jk
∂Jk

∂W
+ λT

k
∂R

∂W
= 0 (5)

Calculation of derivatives

∇αJk (α) =
∂Jk

∂X

dX

dα
+ λT

k (
∂R

∂X

dX

dα
)

or

∇αJk (α) =

(
∂Jk

∂X
+ ΛT

k
∂R

∂X

)
dX

dα
(6)

Method with nf and not nα linear systems (size nW ) to solve
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Discrete gradient method for shape optimization

§1.1 Discrete adjoint method. Mesh

Functions of interest (same mathematical assumptions)

Jk (X ) = Jk (W ,X ) k ∈ [1, nf ] for (X ,W ) | R(W ,X ) = 0

dJk/dX k ∈ [1, nf ] to be computed

Discrete adjoint only. Direct differentiation counterpart of adjoint-mesh requires
calculation of dW /dX which is nW × nX field ... not sustainable

By identification in equation (5) or differential calculation 1

dJk

dX
=
∂Jk

∂X
+ λT

k
∂R

∂X
(7)

Pros: CFD code without knowledge of parametrization, huge memory savings. Try
several parametrization, move to shape derivative (dJk/dXS )

Cons: Matrix (∂R/∂X ) has to be explicitely computed instead of
(∂R/∂X )(dX/dαi ) computable by finite differences

1
E. Nielsen and M. Park. Using an adjoint approach to eliminate mesh sensitivities in aerodynamic design. AIAA Journal, 44(5) :948953, 2006.
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Discrete gradient method for shape optimization

§1.1 Discrete adjoint method. Wall-Mesh. Shape gradient

Take benefit of the dependency of X and XS D(X ,Xs ) = 0 (explicit or implicit in
X ) to define the shape gradients (very useful for applied aerodynamics)

Jk (XS ) = Jk (X ) where D(X ,Xs ) = 0 (8)

Shape gradient dJk/dXS very useful for applied aerodynamics

Volume mesh X depending explicitely on XS . Most efficient gradient calculation
method(

∂R

∂W

)T

Λk = −
(
∂Jk

∂W

)T dJk

dX
=
∂Jk

∂X
+ ΛT

k

∂R

∂X

dJk

dαl
=

[
dJk

dX

dX

dXS

]
dXS

dαl

Volume mesh depending implicitely on D(X ,Xs ) = 0 (elasticity deformation
method...)(
∂R

∂W

)T

Λk = −
(
∂Jk

∂W

)T (
∂D

∂X

)T

Γk = −
(
∂Jk

∂X
+ ΛT ∂R

∂X

)T

= −
(

dJk

dX

)T

dJk

dαl
=

[
ΓT

k

∂D

∂XS

]
dXS

dαl
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Discrete gradient method for shape optimization

§1.1 Discrete adjoint method. Wall-Mesh. Shape gradient
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Discrete gradient method for shape optimization

§1.2 Implicit stages for adjoint vector calculation

Discrete adjoint system is linear and sparse

λT
k
∂R

∂W
= − ∂Jk

∂W
or classical column vector system

∂R

∂W

T

λk = − ∂Jk

∂W

T

(9)

As large as the direct problem and the conditionning of the Jacobian (∂R/∂W ) is
poor for (RANS) flows

Methods without a second approximate Jacobian, just using Jacobi, Gauss-Seidel,
GMRES and ILU(k) are rarely sufficient / memory-sustainable 2

Most often an approximate Jacobian appears either in a Fixed Point Iteration (FPI)
method or in a preconditionned GMRES method.

FPI resolutions developped by the author and coworkers(
∂R

∂W

)(APP) T (
λ

(l+1)
k − λ(l)

k

)
= −

(
(
∂R

∂W
)Tλ

(l)
k + (

∂Jk

∂W
)T

)
(10)

2
J. Peter and R.P. Dwight Numerical sensitivity analysis for aerodynamic optimization : a survey of approaches. Computers and Fluids 39 (2010)

J. Peter (ONERA DAAA) September 25th 2020 13 / 59



Discrete gradient method for shape optimization

§1.2 Implicit stages for adjoint vector calculation

FPI resolutions developped by the author and coworkers for direct and adoint
equations (

∂R

∂W

)(APP) T (
λ

(l+1)
k − λ(l)

k

)
= −

(
(
∂R

∂W
)Tλ

(l)
k + (

∂Jk

∂W
)T

)
(11)

(
∂R

∂W

)(APP)(
(
dW

dαi
)(l+1) − (

dW

dαi
)(l)

)
= −

(
(
∂R

∂W
)
dW

dαi

(l)

+
∂R

∂X

dX

dαi

)
(12)

Strong similarity with backward-Euler schemes for steady state flows(
I +

∆t

Vol

∂R

∂W

(APP)
)(

W (l+1) −W (l)
)

= −∆t

Vol
R(W (l)) (13)

Set of implicit stages developped with J. Mayeur and F. Drullion 3 in the
structured-mesh part of the elsA code 4

3
J. Peter and F. Drullion. Large stencil viscous flux linearization for the simulation of 3D turbulent compressible flows with backward-Euler schemes.

Computers and Fluids, 36 :1005-1027, 2007.
4

L. Cambier, S. Heib, and S. Plot. The elsA CFD software : input from research and feedback from industry. Mechanics & Industry, 14(3) :159-174,
2013.
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Discrete gradient method for shape optimization

§1.2 Implicit stages for adjoint vector calculation

Set of implicit stages (called LURELAX in the framework of the elsA project) 5

elsA code (FV cell-centred) Structured mesh part
Centred flux plus scalar (JST) or matrix dissipation

All terms of (∂R/∂W )(APP) are evaluated at cell-centres

Fourth order dissipation possibly involved in (∂R/∂W )(APP)

Jameson-Yoon scalar approximation for convective / viscous flux balance possibly involved
5-point per mesh direction viscous flux balance approximate linearization (if cell-centred gradient
used in viscous fluxes)
Approximate resolution of the FPI linear system by 2p-LU relaxation steps

Theoretical results of scalar linear analysis

(no more difference between matrix linearization and scalar approximation, scalar and matrix
dissipation)
5-point and 3-point per direction approximate linearization of viscous flow balance, linearizing
fourth-order dissipation or not, basis unfactored scheme versus 2-step relaxation
Conditions of stability and conditions of convergence of relaxation iterations
Asset of 5-point per mesh direction viscous flux balance linearization

Application to (RANS) external flows. AS28G wing and wing-body-pylon-nacelle

5
J. Peter and F. Drullion. Large stencil viscous flux linearization for the simuliation of 3D turbulent compressible flows with backward-Euler schemes.

Computers and Fluids, 36 :1005-1027, 2007.
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Discrete gradient method for shape optimization

§1.2 Implicit stages for adjoint vector calculation

Adaptation of LURELAX backward-Euler implicit stages(
I +

∆t

Vol

∂R

∂W

(APP)
)(

W (l+1) −W (l)
)

= −
∆t

Vol
R(W (l))

to adjoint FPI resolution(
∂R

∂W

)(APP) T (
λ

(l+1)
k − λ(l)

k

)
= −

(
(
∂R

∂W
)T
λ

(l)
k + (

∂Jk

∂W
)T
)

Generalization of cell-centred ∇T , ∇V ... corrected at interfaces in adjacent center
to center direction. No transposition of 5-point viscous stencil linearization

Roe flux MUSCL & van Albada limiting function most often used. Matrix versions
transposed (no Jameson-Yoon scalar approximation)

The property of coefficients locality of (∂R/∂W )(APP)

(∂R/∂W )(APP)
δW = ...F i−1(Wi−1)δWi−1 + F i (Wi )δWi + F i+1(Wi+1)δWi+1 + .... (14)

can not be ensured for both direct and adjoint problem. Exact transposition of the
direct matrix and recoding has been selected for adjoint
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Discrete gradient method for shape optimization

§1.3 Extension of discrete gradient to relative
frame/absolute velocity

Adaptating a (RANS) discrete adjoint framework to hovering rotor simulations

One of the first two demonstrations with the one of NASA Langley

A. Dumont, A. Le Pape, J. Peter, and S. Huberson. Aerodynamic shape optimization of hovering

rotors using a discrete adjoint of the Reynolds-averaged Navier-Stokes equations. Journal of the

American Helicopter Society, 56(032002) :111, 2011

E.J. Nielsen, E.M. Lee-Rausch, W.T. Jones. Adjoint-Based Design of Rotors Using the

Navier-Stokes Equations in a Noninertial Reference Frame. Journal of Aircraft. Vol. 47(2)

March-April 2010

Formulation – rotor simulation

differentiation of R – dedicated (differentiated) post-processing – rotor
parametrization – shape optimization
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Discrete gradient method for shape optimization

§1.3 Extension of discrete gradient to relative
frame/absolute velocity

Mechanical formulation. Rotating frame (or unsteady flow) but absolute velocity
(or trouble at the farfield)

∂ρ

∂t
+ div(ρ(V − Ve)) = 0

∂ρV

∂t
+ div(ρV ⊗ (V − Ve) + pI ) = div(τ + τR ) + C̄

∂ρE

∂t
+ div(ρE(V − Ve) + pV ) = div((τ + τR )V )− div(s̄)− div(s̄t)

C is a source term arising from the definition of velocity and frame

C̄ = −ρΩ ∧ V ,

linearization of Roe-flux & MUSCL approach limited by Van albada function.
Linearization of formulation source term. Linearization of wall boudary conditions.
Linearization of farfield boundary conditions. Adapting implicit stages

Linearization of QoI, FM, the function of merit for hovering rotors w.r.t. flow-field
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Discrete gradient method for shape optimization

§1.3 Extension of discrete gradient to relative
frame/absolute velocity

Application ERATO rotor. 4 blades. CH structured mesh

25 design parameters. Collective pitch and eight parameters from vectorial Bézier
curves of degree 9 for changes in twist, chord and sweep in the external part of the
rotor

TW(t) =
i=9∑
i=0

TWi Bi,n(t) t =
(r − 0.45R)

.55R
Bi,n(t) =

(
n
i

)
t i (1− t)n−i ,

(TWix are fixed, TW 0y fixed, the other TWy are the design parameters. TWy (t)
applies at TWx (t))

(RANS) flows k − ω model of Kok.

Objective FM, no constraint. Discrete-adjoint gradients for non-linear conjugate
gradient method. Order three polynomial interpolation for maximisation in the
calculated direction

6,6 points increase of FM, 28 flow calculations, 7 adjoint calculations. Out of reach
for finite differences (49h CPU vs 270h CPU NEC-SX8)
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Discrete gradient method for shape optimization

§1.3 Extension of discrete gradient to relative
frame/absolute velocity
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Discrete gradient method for shape optimization

§1.4 Airfoil optimization based on shape gradient
Proposed criterion for the curvature control – Proposed smoothing method

Suitable number of design parameters

Few parameters... optimal shape(s) not part of the design space
Numerous parameters... high frequency noise in the (shape) gradient of the
QoI in particular in dJ/dXs

Optimization based on smoothed shape gradient or smoothed normal component
S(d) of the shape gradient d = (dJ/dXs , n)

Shape gradient from continuous adjoint or discrete adjoint. Numerous references in
2D, few references in 3D 6

State of the art of implicit and explicit shape gradient presented in the manuscript

Brief presentation of an original control of the change in curvature and an original
recursive shape gradient smoothing 7 ((issue with CDf and method comparison for rank

A journal publication))

6
S. Schmidt, C. Illic, V. Schultz, N. Gauger. Three dimensional large scale aerodynamic shape optimization based on shape calculus. AIAA Journal,

51(11) :2615-2627, 2013
7

M. Bompard, J. Peter, G. Carrier, and J.-A. Désidéri. Two-dimensional aerodynamic optimization with or without parametrization. In AIAA Paper
Series, Paper 2011-3073. 2011
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Discrete gradient method for shape optimization

§1.4 Airfoil optimization based on shape gradient
Proposed criterion for the curvature control – Proposed smoothing method

For any new proposed airfoil shape in the optim process

Calculate the Akima spline of the angle/Ox as a function of the arc length s
Differentiate the spline to get the curvature k(s)
Compute the total variation of the curvature shifted by trailing edge vs leading
edge difference

Ψ(S) =

∫
S

|k ′(s)|ds − |k(sle)− k(stu)| − |k(sle)− k(stl )|
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Discrete gradient method for shape optimization

§1.4 Airfoil optimization based on shape gradient
Proposed criterion for the curvature control – Proposed smoothing method

Criterion for curvature control

For any new proposed airfoil shape in the optim process compute

Ψ(S) =

∫
S

|k ′(s)|ds − |k(sle)− k(stu)| − |k(sle)− k(stl )|

Proposed criterion for the acceptance of a new shape X τ
S = X c

S + τS(d)nc

Ψ(Sτ ) < q Ψ(Sc ) (15)

Smoothing method based on Dierckx’s fitting (based on cubic splines)

0 Set l = 1 ; compute Ψ(Sc ) (defined by X c
S ) ; set d0 = (dJ/dX c

s , nc ) ;
compute the descent step τ

1 Apply Dierckx’s spline interpolation with tolerance ε to d l−1 to get d l .

2 Compute the target airfoil X l
S = X c

S + τ d l nc .

3 Compute the curvature of the Akmina’s spline S l corresponding to X l
S ; test if

Ψ(S l ) < q Ψ(Sc ). If true, stop ; otherwise restart at step 1 with l = l + 1.
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Discrete gradient method for shape optimization

§1.4 Airfoil optimization based on shape gradient
Proposed criterion for the curvature control – Proposed smoothing method

Example of application of the proposed smoothing.

RAE2822. Two domains, 32832 cells. M∞=0.73, Re=6.5 106 AoA=2.79o

R classical scheme differentiated in elsA. X from Xs, explicit distance based
algebraic method of Meaux et al. dCDw/dXS suction side

d0 = (dCDw/dXS , n) Final smoothed d for several ε

Control of arccos(d0, dfinal ) stable over a range of 1 to 2 decades of ε. Smallest value is
selected
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Goal-oriented mesh adaptation
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Goal-oriented mesh adaptation

§2.1 Finite volume goal oriented mesh adaptation
Bibliography

Well established differences between goal-oriented (G.O.) mesh adaptation and
feature-based / truncation error-based / interpolation error based mesh adaptation

G.O. mesh adaptation typically refines areas upwind the function support and more

generally zones of influence with typical features for transonic (charactistics impinging

shock foot) and supersonic flows (charactistics impinging trailing edge)
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Goal-oriented mesh adaptation

§2.1 Finite volume goal oriented mesh adaptation
Bibliography. Classical references

Pierce and Giles’ method for a linear function in an Hilbert space with a pde Lw = f and
corresponding adjoint pde L∗λ = g exactly / approximately solved 8

(g ,w)− (g ,wh) = (g , (w − wh)) = (L∗λ, (w − wh)) = (λ, L(w − wh)) = (λ, f − Lwh)

(g ,w)− (g ,wh) = (λh, f − Lwh) + (λ− λh, f − Lwh)

Venditti and Darmofal’s method, in fully discrete framework for a non-linear function 9

(various expressions of ECC)

Jh(Wh,Xh) = Jh(W H
h ,Xh) + (Λh

∣∣∣
W H

h

)T Rh(W H
h ) +O(||Wh −W H

h ||
2)

Jh(Wh,Xh) ' Jh(W H
h ,Xh) + (ΛH

h )T Rh(W H
h )︸ ︷︷ ︸

computable correction

+ ((Λh

∣∣∣
W H

h

)T − (ΛH
h )T )Rh(W H

h )︸ ︷︷ ︸
error in computable correction (ECC)

8
M. Giles, N. Pierce. Improved lift and drag estimates using adjoint Euler equations. In AIAA Paper Series, Paper 1999-3293. 1999.

9
D. Venditti and D. Darmofal. Grid adaptation for functional outputs : Application to twodimensional inviscid flows. Journal of Computational

Physics, 176 :4069, 2002.
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Goal-oriented mesh adaptation

§2.1 Finite volume goal oriented mesh adaptation
Bibliography. Classical references

Dwight’s method for refinement based on sensitivity to the artificial dissipation of the
Jameson-Schmidt-Turkel scheme 10

k2 dJ

dk2
+ k4 dJ

dk4
(error estimation on function – discussed)

k2 dJ

dk2
m

+ k4 dJ

dk4
m

(contribution of cell m)

Fidkowski and Roe. Physical functions with known adjoint. For inviscid flows, entropy
variable = adjoint of entropy flux. Free adjoint for all G.O. methods 11

v = ds/dW =

(
γ − S

γ − 1
−
ρV 2

2p
,
ρu

p
,
ρv

p
,
ρw

p
,−

ρ

p

)T

,

Je =

∫
∂Ω

sρV .ndS .

10
R. Dwight. Heuristic a posteriori estimation of error due to dissipation in finite volume schemes and application to mesh adaptation. Journal of

Computational Physics, 227 :28452863, 2008.
11

K. Fidkowski and P. Roe. An entropy approach to mesh refinement. SIAM Journal of Scientific Computing, 32(3) :1261–1287, 2010.
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Goal-oriented mesh adaptation

§2.1 Finite volume goal oriented mesh adaptation
Bibliography. Classical references

Loseille, Dervieux, Alauzet, (Belme) method for an hybrid Finite-Volume Finite-Element
scheme. 12 A priori error estimate of the goal like

|J(W )− J(Wh)| ≤
∫

Ωh

|∇Λ||F(W )− ΠhF(W )|dΩh +

∫
Γh

|Λ||F(W )− ΠhF(W )|dΩh

Πh linear interpolation, W exact flow, Λ exact adjoint. Solve in continuous mesh space the
minimization of the upper bound

Yano and Darmofal 13

Anisotropic adaptation of simplex meshes. Minimizing an error field locally varying
with the mesh (L2 functional projection... )
Series of local changes to the elements. Minimizing a surrogate global model of the
error using continuous mesh formalism

Derive a new mesh from the continuous mesh solution

12
A. Loseille, A. Dervieux, and F. Alauzet. Fully anisotropic mesh adaptation for 3D steady Euler equations. Journal of Computational Physics, 229

:2866-2897, 2010.
13

L. Yano and D. Darmofal. An optimization-based framework for anisotropic simplex mesh adaptation. Journal of Computational Physics, 231
:7626–7649, 2012.

J. Peter (ONERA DAAA) September 25th 2020 29 / 59



Goal-oriented mesh adaptation

§2.1 Finite volume goal oriented mesh adaptation
Bibliography. Classical references. Anisotropy

Isotropic or anisotropic mesh refinement

Parsing previous references with respect to anisotropy / isotropy

Venditti and Darmofal – Isotropic refinement for Euler flows, anistropic
refinement based on the Hessian of Mach for laminar and (RANS) flows

Dwight – Isotropic refinement for Euler flows

Fidkowski et al. – All direction division of a structured anisotropic mesh (one
level hanging nodes) for Euler, laminar, RANS flows

Loseille, Dervieux, Alauzet – intrinsically anisotropic for Euler and RANS flows

Yano, Darmofal – intrinsically anisotropic
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Goal-oriented mesh adaptation

§2.3 Goal oriented mesh adaptation based on dJ/dX
Motivation & intuitions

dJ/dX total derivative of QoI w.r.t. volume mesh (direct geometric dependency and
global aerodynamic change reconverging flow after moving a node)

Plotting dJ/dX components and norm (1) highlights zones far from the function support
(2) has strong similarities with dense zones of J-oriented refined meshes

NACA64A212 M∞ = 0.71 AoA = 2.5o – left: coutour of CDw – right: coutours of dCDw/dz
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Goal-oriented mesh adaptation

§2.3 Goal oriented mesh adaptation based on dJ/dX
Motivation & intuitions

Plotting dJ/dX components and norm (1) highlights zones far from the function support
(2) has strong similarities with dense zones of J-oriented refined meshes

NACA0012 M∞ = 1.5 AoA = 1.o – left: adapted mesh for CLp – right: coutours of ||dCLp/dX ||
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Goal-oriented mesh adaptation

§2.3 Goal oriented mesh adaptation based on dJ/dX
Motivation & intuitions

NACA0012 M∞ = 0.85 AoA = 2.o – left: adapted mesh for CLp – right: coutours of h||P(dCLp/dX )||
P(dCLp/dX ) = P((∂CLp/∂X ) + ΛCLp(∂R/∂X ))
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Goal-oriented mesh adaptation
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Goal-oriented mesh adaptation

§2.3 Goal oriented mesh adaptation based on dJ/dX
Motivation & intuitions

On regular meshes for simple Euler flows iso-||dJ/dX || or h||dJ/dX || very similar to
mesh density of J-oriented meshes.

From 2010 all adjoint calculations at ONERA for shape optimization use dJ/dX
mode (and dJ/dXS ).

Derive a goal-oriented mesh adaptation indicator not requiring two grids, not
specific to a scheme or a QoI, just requiring availability of dJ/dX

Bibliography. Other usages of dJ/dX for goal-oriented mesh adaptation ? NIA.
Descent method for the mesh for a function J with known exact value or
computable improved value 14 15

Analysis of dJ/dX , definition a J-oriented mesh refinement indicator, simple mesh
adaptations by nodes displacement and nodes addition. Assessment of families of
industrial meshes. No advanced general mesh refinement capability (involving
CAD, partitionning, reprojection...) has been built

14
B. Diskin and N. Yamaleev. Grid adaptation using adjoint-based error minimization. In AIAA Paper Series, Paper 2011-3986. 2011.

15
N. Yamaleev, B. Diskin, and K. Pathak. Error minimization via adjoint-based anistropic grid adaptation. In AIAA Paper Series, Paper 2010-4436.

2010.
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Goal-oriented mesh adaptation

§2.2 mathematical analysis of dJ
dX = ∂J

∂X + ΛT ∂R
∂X

2D Euler flows

Discussion requires to be very specific: 2D Euler flows, structured mesh, 4-cell flux
FR formula with S at interface as only geometric dependency. J wall integral

(∂J/∂X ) is first-order in space

ΛT (∂R/∂X ) at least second-order in space assuming regularity of Λ and W

ΛT (∂R/∂Xij ) =
k=4∑
k=1

((Λk
i+1/2,j+1/2 − Λk

i+1/2,j−1/2)
∂F R,k

∂SZ
(W L

i+1/2,j ,W R
i+1/2,j , SX

i+1/2,j , SZ
i+1/2,j )

−(Λk
i−1/2,j+1/2 − Λk

i−1/2,j−1/2)
∂F R,k

∂SZ
(W R

i−1/2,j ,W R
i−1/2,j , SX

i−1/2,j , SZ
i−1/2,j )

−(Λk
i+1/2,j+1/2 − Λk

i−1/2,j+1/2)
∂F R,k

∂SZ
(W L

i,j+1/2,W R
i,j+1/2, SX

i,j+1/2, SZ
i,j+1/2)

+(Λk
i+1/2,j−1/2 − Λk

i−1/2,j−1/2)
∂F R,k

∂SZ
(W L

i,j−1/2,W R
i,j−1/2, SX

i,j−1/2, SZ
i,j−1/2) )

numerical check of ||ΛT (∂R/∂X )||2 on a hierarchy of meshes

order> 2 observed for for regular flow and no zone of numerical divergence of
adjoint (subsonic flow and CD...)

order << 2 observed in all other cases
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Goal-oriented mesh adaptation

§2.2 mathematical analysis of dJ
dX = ∂J

∂X + ΛT ∂R
∂X

2D Euler flows

2D Euler flow. Structured mesh and same type of flux formula FR as before with
C 2 regularity

Assuming C 1 limiting fields w and λ for discrete W and Λ

For a fixed Xij outside the support of J, at the limit of fine structured meshes


Λ
∂R

∂xi,j

Λ
∂R

∂zi,j

 = dsi,j

4∑
d=1


∂λd

∂z

∂Fd
Z

∂w

∂w

∂x
−
∂λd

∂x

∂Fd
Z

∂w

∂w

∂z

−
∂λd

∂z

∂Fd
X

∂w

∂w

∂x
+
∂λd

∂x

∂Fd
X

∂w

∂w

∂z

 + o(ds)

(Connection with Euler physical flux thanks to consistency relation)

Very tedious calculation because of ∂FR/∂X

Well satisfied by numerical solutions at every grid level (manuscript page 83)... but
assuming λ limiting field is the solution of continuous adjoint equation, the
right-hand side is zero
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Goal-oriented mesh adaptation

§2.3 First variation of J for submitted to dX
Criterion for mesh assesment and mesh refinement

Checking dJ/dX field for usual functions and hierarchy of meshes well / not well
adapted for J calculation

Suitable refinement indicator based on first-order variation of J(X ) submitted to a
displacement dX compliant with mesh adaptation

J(X + dX )− J(X ) ' (dJ/dX ).dX

Amplitude of the gradient (dJ/dX )

Amplitude of the possible dispacement bounding dX by a local mesh size
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Goal-oriented mesh adaptation

§2.3 First variation of J for submitted to dX
Criterion for mesh assesment and mesh refinement

Suitable refinement indicator bound of the first-order variation of J(X ) submitted
to a displacement dX compliant with mesh adaptation

J(X + dX )− J(X ) ' (dJ/dX ).dX (16)

Express restrictions on dX for mesh adaptation (no solid shape alteration...)
through dJ/dX such that (dJ/dX ).dX = P(dJ/dX ).dX for admissible dX

P(dJ/dX ) = dJ/dX Outside the support ofJ and solid walls contour

P(dJ/dX ) = dJ/dX − (dJ/dX · ~n)~n

Inside the support of J, along the walls, at the outer border (normal ~n)

P(dJ/dX ) = 0 At a corner of the support of J or at a trailing edge

Express that only regular dX fields should be applied → spatial mean for the
interior points of the domain P(dJ/dX ). Explicit convolution mean (Annex 4).
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Goal-oriented mesh adaptation

§2.3 First variation of J for submitted to dX
Criterion for mesh assesment and mesh refinement

Bound of first order variation of J. For an acceptable dX (not modifying solid
shape, outer boundary...)

J(X + dX )− J(X ) ' (dJ/dX ).dX = P(dJ/dX ).dX

|J(X + dX )− J(X )| ' |(dJ/dX ).dX | ≤
∑

m

||P(dJ/dXm)|| ||dXm|| (17)

The final criterion θ[J]m is obtained by fixing ||dXm|| to a local caracteristic mesh
size, half the distance hm to the neighboring nodes

θ[J]m = 0.5||P(dJ/dXm)||hm

Expressing regularity of the realistic changes applied to the mesh

θ[J]m = 0.5||P(dJ/dX )m||hm
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Goal-oriented mesh adaptation

§2.3 First variation of J for submitted to dX
Criterion for mesh assesment and mesh refinement

Basic criterion θ[J]m for mesh refinement or mesh adaptation by nodes displacement

θ[J]m = 0.5||P(dJ/dXm)||hm

Expressing regularity of the realistic changes applicable to the mesh (not so usefull for
mesh refinement)

θ[J]m = 0.5||P(dJ/dX )m||hm

Structured mesh lines/planes displacement or addition keeping the mesh lines/planes
interpolated in a very fine mesh (2D and 3D – Euler and RANS flows – θ )

Structured mesh lines/planes displacement using the mesh description by control functions
in an elliptic pde (2D and 3D – Euler and RANS flows – θ or θ )

Unstructured mesh refinement (2D Euler – θ)

Structured mesh “qualification” – adding θ[J]m all over the mesh and assessing correlation
with J accuracy 16

Structured mesh planes addition according to θ[J]m in a multiblock structured CFD process

with matching boundaries but non-matching nodes at boundaries (3D RANS flows)

16
M. Nguyen-Dinh. Qualification des simulations numériques par adaptation anisotropique de maillages. PhD thesis, Université de Nice-Sophia

Antipolis, March 2014.
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Goal-oriented mesh adaptation

§2.4 GO mesh adaptation of 2D&3D structured meshes 18

Maxime-Nguyen at Airbus-F (Toulouse)

Elliptic equation for characterization and modification of a strutured mesh

So called-control functions of the mesh altered based on θ[J]

2D (RANS) flow. RAE2822 aerofoil. 513 × 129 mesh (ref. below §3.3.2)

M∞=0.725 and AoA=2.466o , Re/m = 6.5 106

Three steps elliptic pde mesh adaptation based on θ[CDp]

Improving incoming flow on the airfoil. Other aerodynamics functions improved

3D (RANS) flow. XRF1 wing-body. 13.5 M nodes mesh (ref. below §4.3.2 4.3.3)

18M. Nguyen-Dinh. Qualification des simulations numriques par adaptation anisotropique de maillages.
PhD thesis, Universit de Nice-Sophia Antipolis, March 2014.
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Goal-oriented mesh adaptation

§2.4 G.O. mesh adaptation of 2D&3D structured meshes

RAE2822 (RANS) flow. θ[CDp]-criterion on initial mesh and CDp-adapted mesh.
(513 × 129) meshes
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Goal-oriented mesh adaptation

§2.5 G.O. mesh adaptation of 2D unstructured meshes
Numerical symptotic analysis of dJ/dX

elsA code and adjoint module. 2D Euler flows. Roe-MUSCL scheme.
(M∞ = 1.5,AoA = 1o) (M∞ = 0.85,AoA = 2o) (M∞ = 0.5,AoA = 0o)

Calculating asymptotic behavior of dJ/dX is intractable due to geometric
dependencies

Using a series of embedded meshes, numerical check of global then local order of
dJ/dX plotting

1

nX

nX∑
m=1

‖P(dJ/dXi )‖
1

dsi
‖P(dJ/dXi )‖

for various mesh sizes
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Goal-oriented mesh adaptation

§2.5 G.O. mesh adaptation of 2D unstructured meshes
Plotting 1/nX

∑
i ‖P(dCDp/dXi )‖ and 1/dsi‖P(dCDp/dXi )‖ for heuristic space order

examination
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Goal-oriented mesh adaptation

§2.5 G.O. mesh adaptation of 2D unstructured meshes 19

Calculating local mesh size

Applying a threshold T to θm field and using second order behaviour in space of dJ/dJ,
hnew

m is derived

θm =

∥∥∥∥P ( dJ

dXm

)∥∥∥∥ hm

2
hnew

m = hcur
m min

((
T

θm

)1/3

, 1

)
MMG2D (INRIA) builds next mesh

Three flow conditions. CLp and CDp

Satisfactory convergence in functions. Expected density maps

19
G. Todarello, F. Vonck, S. Bourasseau, J. Peter, and J.-A. Désidéri. Finite-volume goal-oriented mesh-adaptation using functional derivative with

respect to nodal coordinates. Journal of Computational Physics, 313 :799– 819, 2016.
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Conclusion and perspectives

Outline

1 Discrete gradient method for shape optimization

2 Goal-oriented mesh adaptation

3 Conclusion and perspectives
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Conclusion and perspectives

§3 – Perspectives
a Extension of the dJ/dX based mesh refinement to 3D unstructured meshes & (RANS) flows

Extension of the dJ/dX based goal-oriented mesh refinement method to 3D
unstructured meshes & (RANS) flows

Accurate dJ/dX provided by elsA− remotorisé/sonics for 3D (RANS) on
unstructured meshes

Analysis of the requirements of the schemes (derivated in adjoint mode) of
elsA− remotorisé/sonics code for the calculation of the boundary layer (BL)

Most probably a layer of semi-structured right-angle elements (hexaedra,
prisms) close to the wall will be required for a satisfactory accuracy – see 20

(required) and 21 (not required)

Set the constraints of the mesh adaptation = fixed mesh in the BL, fixed
number of mesh layers, fixed wall mesh

20
M. Park, E. Lee-Rausch, and C. Rumsey. FUN3D and CFL3D computations for the first high-lift prediction workshop. In AIAA Paper Series, Paper

2011-936. 2011.
21

L. Frazza. 3D anisotropic mesh adaptation for Reynolds averaged Navier-Stokes simulations. PhD thesis, Paris Sorbonne Université, December 2018.
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Conclusion and perspectives

§3 – Perspectives
a Extension of the dJ/dX based mesh refinement to 3D unstructured meshes & (RANS) flows

Extension of the dJ/dX based goal-oriented mesh refinement method to 3D
unstructured meshes & (RANS) flows

Set the constraints of the mesh adaptation = eg fixed number of mesh layers
in the BL, refine the wall mesh (and consistently all righ-angle elements BL
mesh), refine the external mesh

Accordingly define the relevant dX displacement fields. Define the
corresponding projected dJ/dX field such that for relevant dX

(dJ/dX ).dX = P(dJ/dX ).dX

Discuss relevance of a spatial mean for P(dJ/dX ). Bound |(dJ/dX ).dX | ...

Improving the basic features of the method

derive an error estimator for the method
derive an anisotropic version (more generally than keeping anisotropy of the
BL mesh)
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Conclusion and perspectives

§3 – Perspectives
b Fundamental questions about 2D Euler lift- drag-adjoint fields

Submitted manuscript Analysis of finite-volume discrete adjoint fields for
two-dimensional compressible Euler flows J. Peter, F. Renac, C. Labbé.
https://arxiv.org/abs/2009.07096

1 Conditions of adjoint consistency for JST scheme in 2D cell-centred FV. Discrete
counterpart of continuous wall BC

2 Heuristic method to discuss adjoint consistency of discrete adjoint fields –
discretizing continuous adjoint equation for discrete flow & adjoint fields

3 Examination of Rankine-Hugoniot adjoint BC for very fine grid flow & adjoint fields

4 Contribution to the mechanical asymptotic analysis of the lift- drag-adjoint
behavior at the vicinity of the stagnation streamline & wall
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Conclusion and perspectives

§3 – Perspectives
b Fundamental questions about 2D Euler lift- drag-adjoint fields

Heuristic method to discuss adjoint consistency of discrete adjoint fields –
discretizing continuous adjoint equation for discrete flow & adjoint fields. On top of
theoretical results, provides info where lift- drag-ajoint is numerically diverging

NACA0012 M∞ = 0.85,AoA = 2o . 129× 129 mesh (down) and 2049× 2049 (up).

resij = −AT
ij

(
∂Λ
∂x

)
ij
− BT

ij

(
∂Λ
∂y

)
ij
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Conclusion and perspectives

§3 – Perspectives
b Fundamental questions about 2D Euler lift- drag-adjoint fields

C. Lozano (INTA) AIAA J (2018) Additionally Fig [...] do hint at vanishing adjoint
normal derivatives across normal shocks [...] but the evidence is not conclusive [...]
For normal shocks, these relations allow to prove that normal derivatives are mostly
vanishing (and continuous) across the shock 22

NACA0012 M∞ = 0.85,AoA = 2o , 4097 × 4097 mesh. z-mom. residual adjoint

22
C. Lozano. Singular and discontinuous solutions of the Euler adjoint equations. AIAA J. 56(11) 2018.
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Conclusion and perspectives

§3 – Perspectives
b Fundamental questions about 2D Euler lift- drag-adjoint fields

Analysis of lift- drag-adjoint at the stagnation streamline & the wall at flow
conditions where numerical divergence is observed

Identification of the Giles-Pierce physical source term(s) involved in the numerical
divergence 23. Only the δR4 source is involved – increase of stagnation pressure at
locally constant static pressure and constant total enthalpy)

Direct numerical analysis of the impact on the flow of a δR4 source

23
Giles, M. and Pierce, N. Adjoint equations in CFD: Duality, boundary conditions and solution behaviour. In AIAA Paper Series, Paper 97-1850.

(1997)
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Conclusion and perspectives

§3 – Perspectives
b Fundamental questions about 2D Euler lift- drag-adjoint fields

Analysis of lift- drag-adjoint at the stagnation streamline & the wall at flow
conditions where numerical divergence is observed

Identification of the Giles-Pierce physical source term(s) involved in the numerical
divergence. Only the δR4 source is involved – increase of stagnation pressure at
locally constant static pressure and constant total enthalpy

Direct numerical analysis of the impact on the flow of a δR4 source

Convection of the δp0, δρ0, δs created at the source. Perturbation of the static
pressure field depends on the flow regime
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