Trait

util.graph

DepGraphE

Related Doc: package graph

Permalink

trait DepGraphE extends AnyRef

Class representing a dependency graph (Existential version).

Linear Supertypes
AnyRef, Any
Known Subclasses
Ordering
  1. Alphabetic
  2. By Inheritance
Inherited
  1. DepGraphE
  2. AnyRef
  3. Any
  1. Hide All
  2. Show All
Visibility
  1. Public
  2. All

Type Members

  1. abstract type A

    Permalink
  2. case class Node(data: A) extends Product with Serializable

    Permalink

    Class representing a node in a graph, labeled with an instance of class A.

Value Members

  1. final def !=(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  2. final def ##(): Int

    Permalink
    Definition Classes
    AnyRef → Any
  3. final def ==(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  4. final def asInstanceOf[T0]: T0

    Permalink
    Definition Classes
    Any
  5. def clone(): AnyRef

    Permalink
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  6. final def eq(arg0: AnyRef): Boolean

    Permalink
    Definition Classes
    AnyRef
  7. def equals(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  8. def finalize(): Unit

    Permalink
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] )
  9. final def getClass(): Class[_]

    Permalink
    Definition Classes
    AnyRef → Any
  10. def hashCode(): Int

    Permalink
    Definition Classes
    AnyRef → Any
  11. final def inOrder: Iterator[Node]

    Permalink

    Iterator on the nodes of the graph (in topological order if root is defined).

  12. final def isInstanceOf[T0]: Boolean

    Permalink
    Definition Classes
    Any
  13. final def iterator: Iterator[Node]

    Permalink

    Iterator on the nodes of the graph (in arbitrary order).

  14. final def ne(arg0: AnyRef): Boolean

    Permalink
    Definition Classes
    AnyRef
  15. final var nodes: ArrayStack[Node]

    Permalink

    Nodes of the graph.

  16. final def notify(): Unit

    Permalink
    Definition Classes
    AnyRef
  17. final def notifyAll(): Unit

    Permalink
    Definition Classes
    AnyRef
  18. final var root: Option[Node]

    Permalink

    Root node of the topological ordering of the graph

  19. final def sccs: List[List[Node]]

    Permalink

    Computes the connected components of the graph using the recursive Tarjan algorithm.

    Computes the connected components of the graph using the recursive Tarjan algorithm. The method returns a list of list of nodes representing the strongly connected components of the graph. If each scc has only one node in it, then the graph is acyclic.

  20. final def synchronized[T0](arg0: ⇒ T0): T0

    Permalink
    Definition Classes
    AnyRef
  21. final def toDot(filename: String, withOrderEdges: Boolean, nodeLabelFun: Option[(A) ⇒ String], edgeLabelFun: Option[(A, A) ⇒ String]): Unit

    Permalink

    Prints a dot representation of the graph using printing functions for nodes and edges provided as arguments

  22. def toString(): String

    Permalink
    Definition Classes
    AnyRef → Any
  23. final def topsort(): Iterator[Node]

    Permalink

    Recursive DFS topological sorting algorithm.

    Recursive DFS topological sorting algorithm.

    In this order, a node comes after all its predecessors.

    The graph must be acyclic otherwise the algorithm will compute a wrong ordering.

    After sucessfull execution, the nodes of the graph can be traversed in topological order using the inOrder method.

  24. final def wait(): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  25. final def wait(arg0: Long, arg1: Int): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  26. final def wait(arg0: Long): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )

Inherited from AnyRef

Inherited from Any

Ungrouped