
一种快速分层递阶 ＤＳｍＴ近似推理融合方法（Ａ）

李新德１，ＪｅａｎＤｅｚｅｒｔ２，黄心汉３，孟正大１，吴雪建１
（１．东南大学自动化学院复杂工程系统测量与控制教育部重点实验室，江苏南京 ２１００９６；

２．ＯＮＥＲＡ（ＴｈｅＦｒｅｎｃｈＡｅｒｏｓｐａｃｅＬａｂ），２９Ａｖ．ｄｅｌａＤｉｖｉｓｉｏｎ，Ｌｅｃｌｅｒｃ，Ｃｈａｔｉｌｌｏｎ９２３２０，Ｆｒａｎｃｅ；３．华中科技大学控制系，湖北武汉 ４３００７４）

摘 要： 本文提出了一种分层递阶的ＤＳｍＴ快速近似推理融合方法，该方法针对超幂集空间中仅单子焦元具有
信度赋值的情况，利用二叉树或三叉树分组技术对其刚性分组，与此同时，对每个信息源对应的各个分组焦元进行信

度赋值求和，以便实现细粒度超幂集空间向粗粒度超幂集空间映射．然后运用ＤＳｍＴ组合规则和比例冲突分配规则对
粗化超幂集空间的两个信息源进行融合，保存该融合结果作为父子之间节点连接权值，然后对每个分组焦元信度赋值

归一化处理，通过设定树的深度，来确定分层递阶的次数．最后通过从多个角度比较新、老方法，从而充分地验证了新
方法的优越性．
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１ 引言

随着计算机科学的发展，越来越多的信息获取、融

合和管理系统要求智能有效地处理复杂的不完善信息

（包括不确定信息、不完全信息、不一致信息和不精确信

息，以及定量和定性信息）［１］，于是对信息融合的理论方

法提出了更高的要求，传统的方法很难适应这种高要

求．ＤｅｚｅｒｔＳｍａｒａｎｄａｃｈｅＴｈｅｏｒｙ（ＤＳｍＴ）是由法国的资深科
学家 ＪｅａｎＤｅｚｅｒｔ博士和美国的著名数学家 Ｆｌｏｒｅｎｔｉｎ

Ｓｍａｒａｎｄａｃｈｅ教授于２００３年共同提出来的一种新的推理
理论［２］．它是从概率论和ＤＳ证据推理理论的基础上发
展起来的，能够有效地解决不确定、不精确、模糊、矛盾

或者高度冲突、甚至不完全信息的管理和融合问题．它
既能够解决底层融合问题，又能解决高层融合问题；既

能处理静态融合问题，又能处理动态融合问题；既能处

理定量融合问题，又能处理定性融合问题［３，４］，以及能

够有效地解决不完善信息的融合问题．目前该理论方法
在图像处理、机器人环境感知、军事上的多目标跟踪
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与识别、多目标决策、雷达目标分类、地理科学、故障诊

断、经济金融、地理信息系统等领域得到了广泛的应

用．但是，同ＤＳ证据推理理论一样［５，６］，随着鉴别框架
中焦元数目的增多，其组合推理运算成指数增长，已成

为制约该理论广泛应用与发展的瓶颈问题．
为了解决计算瓶颈问题，很多专家学者在ＤＳ框架

下进行不少尝试，如 ＪｅａｎＧｏｒｄｏｎ和 ＥｄｗａｒｄＨ．Ｓｈｏｒｔｌｉｆｆｅ
提出了一种证据组合近似推理方法，这种方法主要分

三步来实现，尽管可以避免产生幂集空间的非单子子

集和其组合运算的麻烦，但由于第三步仍然需要考虑

不同约束情况下，逐步组合不一致信息，随着鉴别框中

的焦元数目的增加，其计算量仍然是比较大的［７］．Ｓｈａｆｅｒ
和Ｌｏｇａｎ改进了 ＪｅａｎＧｏｒｄｏｎ和 ＥｄｗａｒｄＨ．Ｓｈｏｒｔｌｉｆｆｅ的工
作，这是因为当冲突比较高时，用 ＪｅａｎＧｏｒｄｏｎ和 Ｅｄｗａｒｄ
Ｈ．Ｓｈｏｒｔｌｉｆｆｅ的方法，效果不是太好，但 Ｓｈａｆｅｒ和 Ｌｏｇａｎ的
算法不能处理证据 ＣＡｉ∪ Ａ{ }ｃｉ，这里 Ａｉ表示幂集空间
集元素，ＣＡｉ表示Ａｉ的子集，Ａ

ｃ
ｉ表示Ａｉ的补集［８］．Ｓｈａｆｅｒ，

Ｓｈｅｎｏｙ和Ｍｅｌｌｏｕｌｉ为了改善文献［８］的缺点，提出了一种
定性Ｍａｒｋｏｖ树算法，但同时他们也指出该算法通过减
小鉴别框架来降低计算，却导致其最大拆分计算又成

指数增长［９］．ＵｌｌａＢｅｒｇｓｔｅｎ和 ＪｏｈａｎＳｃｈｕｂｅｒｔ提出了证据
的无环直达图，但由于证据要求具有先后次序，而且必

须具有完整的具体路径，约束太强［１０］．ＴｅｓｓｅｍＢ．通过忽
略比较小的信度赋值焦元的影响，尽可能地缩减鉴别

框架中的焦元个数，但这种近似一方面信息损失严

重［１１］．ＴｈｉｅｒｒｙＤｅｎｏｅｕｘ和 ＡｍｅｌＢｅｎＹａｇｈｌａｎｅ通过给出不
同粒度层级的鉴别焦元，目的是粗化鉴别框，然后通过

利用快速的 Ｍｂｉｕｓ转化算法，产生信任函数的上下边
界．这种方法通过粗化鉴别框，能够有效地降低其计算
量，且能保证其组合的真实值在一个范围内，但由于不

精确信息的进一步处理也非常麻烦，而且需要同时计

算上下边界，其计算量也是很大的［１２］．作者没有发现最
近几年相关的文献，看上去关于这个课题的研究，由于

它的难度，似乎处于停滞状态．
因此，本论文针对上面存在的问题，提出了一种分

层递阶的ＤＳｍＴ快速近似推理融合方法．该方法的创新
之处在于利用二叉树和三叉树分组技术对超幂集空间

中单子赋值焦元集合元素进行硬性分组，实现细粒度

超幂集空间向粗粒度超幂集空间映射．然后实行递归
高效的融合方式，能够快速地获得非常可靠的近似融

合结果．

２ 焦元分组

这里针对仅单子焦元赋值的情况，假设两个信息

源 Ｓ１和 Ｓ２（鉴别框架相同，即Θ＝θ１，θ２，…θ{ }ｎ ，其中

θ１、θ２、…θｎ表示鉴别框中的焦元），各个焦元互相排斥，

即θｉ∩θｊ＝ （ｉ≠ｊ），对其超幂集空间（ＨｙｐｅｒＰｏｗｅｒ
Ｓｅｔ）ＤΘ 进行聚类分组，映射到新的超幂集空间Ω ＝
Θ′１，Θ′２，Θ′３…，Θ′{ }ｋ ，即新、老超幂集空间元素之间
存在映射关系ρ（·），使得ρ（Θ′ｋ）＝ Ｘｉ，Ｘｉ∈Ｄ{ }Θ ．因此
根据文献［１２］的定义１，也存在一个映射函数φ（·），使
得φ（ｍ（Θ′ｋ））＝∑ｍ Ｘｉ，Ｘｉ∈Ｄ{ }( )Θ ．这里采用二叉／
三叉树分组技术进行单子赋值焦元刚性分组，并对每

个信息源的各个分组的单子焦元信度赋值分别求和．
由于非单子焦元分组相对复杂，这里暂不予以考虑．
２１ 非零赋值单子焦元分组

假设仅超幂集空间中单子焦元有信度赋值，其它

非单子焦元赋值为零，由此可以看出，这里超幂集空间

中的单子赋值焦元集合 ＳｃΘ．
（１）采用二叉树的方式分组
首先假设超幂集空间中单子赋值焦元集合为 Ｓｃ＝

θ１，θ２，…θ{ }ｎ ，其中 ｎ表示集合中单子赋值焦元个数．
针对 ｋ个证据源Ｓ１，Ｓ２，…Ｓｋ对Ｓｃ＝θ１，θ２，…θ{ }ｎ 中的
单子焦元赋信度值为矩阵Ｍ，

Ｍ＝

ｍ１１ ｍ１２ … ｍ１ｎ
ｍ２１ ｍ２２ … ｍ２ｎ
   

ｍｋ１ ｍｋ２ … ｍ











ｋｎ

若 ｎ为偶数，将超幂集空间中单子赋值焦元集合
Ｓｃ＝θ１，θ２，…θ{ }ｎ 中前面的ｎ／２个焦元聚为一组，后面
的 ｎ／２个聚为另一组，分别对其信度赋值求和得，

ｍｋ（ｌΘ１′）＝∑
ｎ
２

ｉ＝１
ｍｋｉ，ｌ＝１ （１）

ｍｋ ｌΘ２( )′＝ ∑
ｎ

ｉ＝ ｎ
２＋( )１
ｍｋｉ，ｌ＝１ （２）

这里下标 ｋ表示第ｋ个证据源，下标 ｉ表示第ｉ个
单子焦元，ｌΘ１′，ｌΘ２′分别表示第ｌ级粗化单子焦元，这

里１Θ１′＝θ１，θ２，…θｎ{ }２ ，１Θ２′＝θｎ２＋１，θｎ２＋２，…θ{ }ｎ ；若
ｎ为奇数，将前面 ｎ／[ ]２ ＋１个焦元聚为一组（这里函

[ ]数 · 表示取最小整数），将后面的 ｎ／[ ]２聚为另一组．
然后，将归一化后的每个信息源中前后两组焦元的信

度赋值分别求和得，

ｍｋ ｌΘ１( )′＝∑
ｎ[ ]２ ＋１

ｉ＝１
ｍｋｉ，ｌ＝１ （３）

ｍｋ ｌΘ２( )′＝ ∑
ｎ

ｉ＝ ｎ[ ]２ ＋２

ｍｋｉ，ｌ＝１ （４）

１Θ１′＝θ１，θ２，…θ ｎ[ ]２{ }＋１ ，

１Θ２′＝θ ｎ[ ]２ ＋２，θ ｎ[ ]２ ＋３，…θ{ }ｎ ．
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然后将第一级分组得到的１Θ１′和１Θ２′中的焦元，在分别
归一化（详见本文第４节）之后，根据第一级分组原理，
依次可得 ｌ级分组结果，树的深度（ｌ级）取决于初始超
幂集空间中非零单子赋值焦元个数 ｎ，以及最终分组中
焦元的最少保留个数（２或３）．

（２）采用三叉树的方式分组
假设超幂集空间中单子赋值焦元集合为 Ｓｃ＝

θ１，θ２，…θ{ }ｎ ，其中 ｎ表示集合中单子赋值焦元个数．针
对 ｋ个证据源 Ｓ１，Ｓ２，…Ｓｋ，将 Ｓｃ＝θ１，θ２，…θ{ }ｎ 中的单
子焦元分别赋值如矩阵 Ｍ所示．若 ｎ能被三整除，将超幂
集空间中单子赋值焦元集合 Ｓｃ＝θ１，θ２，…θ{ }ｎ 中的焦元
分为三组，每组的焦元个数为 ｎ／３，于是得到第一级粗化
结果１Θ１

″＝θ１，θ２，…θｎ{ }３ ，１Θ２″＝θｎ３＋１，θｎ３＋２，…θ２ｎ{ }３ ，
１Θ３

″＝θ２ｎ３＋１，θ２ｎ３＋２，…θ{ }ｎ ，然后分别对其信度赋值求和
得，

ｍｋ ｌΘ１( )″ ＝∑
ｎ
３

ｉ＝１
ｍｋｉ，ｌ＝１ （５）

ｍｋ ｌΘ２( )″ ＝∑
２ｎ
３

ｉ＝ｎ３＋１

ｍｋｉ，ｌ＝１ （６）

ｍｋ ｌΘ３( )″ ＝∑
ｎ

ｉ＝２ｎ３＋１

ｍｋｉ，ｌ＝１ （７）

若 ｎ不能被三整除，首先将前面的 ｎ／[ ]３ ＋１个焦元
作为第一组，即１Θ１

″＝θ１，θ２，…θ ｎ[ ]３{ }＋１ ，然后把后面 ｎ
－１－ ｎ[ ]３ 个焦元再次划分，判断 ｎ－１－ ｎ[ ]３ 是否是偶
数，若是，就将 ｎ－１－ ｎ[ ]( )３ ／２个聚为第二组，即

１Θ２
″＝θ ｎ／[ ]３ ＋２，θ ｎ／[ ]３ ＋３，…θｎ＋［ｎ／３］＋１{ }２ ，剩下的作为第

三组，即１Θ３
″＝θｎ＋［ｎ／３］＋３２

，θｎ＋［ｎ／３］＋５２
，…θ{ }ｎ ；然后分别对

其信度赋值求和得，

ｍｋ ｌΘ１( )″ ＝ ∑
ｎ[ ]３ ＋１

ｉ＝１
ｍｋｉ，ｌ＝１ （８）

ｍｋ ｌΘ２( )″ ＝ ∑

ｎ＋ ｎ[ ]３ ＋１
２

ｉ＝ ｎ[ ]３ ＋２
ｍｋｉ，ｌ＝１ （９）

ｍｋ ｌΘ３( )″ ＝ ∑
ｎ

ｉ＝
ｎ＋ ｎ[ ]３ ＋３

２

ｍｋｉ，ｌ＝１ （１０）

若 ｎ－１－ ｎ／[ ]３为奇数，将前面 ｎ－１－ ｎ／[ ]( )３ ／[ ]２ ＋
１个焦元聚为第二组，即１Θ２″＝｛θ ｎ／[ ]３ ＋２，θ ｎ／[ ]３ ＋３，…

θ ｎ／[ ]３ ＋２＋ ｎ－１－ ｎ／[ ]３[ ]２
｝，将剩下的聚为第三组，即

１Θ３
″＝｛θ ｎ／[ ]３ ＋３＋ ｎ－１－ ｎ／[ ]３[ ]２

，θ ｎ／[ ]３ ＋４＋ ｎ－１－ ｎ／[ ]３[ ]２
，

…θｎ｝．然后分别对其信度赋值求和，其中 ｍｋ ｌΘ１( )″同公式
（８），其它见式（１１）和（１２）

ｍｋ ｌΘ２( )″ ＝ ∑
ｎ／[ ]３ ＋２＋ ｎ－１－ ｎ／[ ]３[ ]( )２

ｉ＝ ｎ／[ ]３ ＋２
ｍｋｉ，ｌ＝１（１１）

ｍｋ ｌΘ３( )″ ＝ ∑
ｎ

ｉ＝ ｎ／[ ]３ ＋３＋ ｎ－１－ ｎ／[ ]３[ ]( )２

ｍｋｉ，ｌ＝１（１２）

然后将第一级分组得到的１Θ１′，１Θ２′和ｌΘ３′中的焦
元，在分别归一化（详见本文第４节）之后，根据第一级
分组原理，依次可得 ｌ级分组结果，树的深度（ｌ级）取
决于初始超幂集空间中非零单子赋值焦元个数 ｎ，以及
最终分组中焦元的最少保留个数（２或３）．
２２ 部分零赋值的单子焦元分组

假设超幂集空间中单子赋值焦元集合为 Ｓｃ＝
θ１，θ２，…θ{ }ｎ ，其中 ｎ表示集合中单子赋值焦元个数．
ｋ个证据源Ｓ１，Ｓ２，…Ｓｋ将Ｓｃ＝θ１，θ２，…θ{ }ｎ 中的单子
焦元赋信度值为矩阵Ｍ．如果矩阵 Ｍ中某一个或者几
个行向量中有两个及两个以上单子焦元被赋值为零，

但每个列向量中至少有一个元素不为零，那么，首先，

将超幂集空间中（信度质量矩阵 Ｍ）某些被赋值为零的
元素分别对应的列向量聚为一组 ｚ１．具体算法如下：假
设 Ｍ中任意三行ｉ，ｊ，ｈ包含两个及两个以上赋值为零
的元素（可以扩展到 ｋ－１行），其中第 ｉ行存在焦元为
零赋值的为ｍｉξ１，ｍｉξ２，…，ｍｉξｐ…，ｍｉξｑ，ξ１≠ξ２≠…≠ξｐ≠
… ≠ξｑ∈ｎ，第 ｊ行存在焦元为零赋值的为ｍｊγ１，ｍｊγ２，
…，ｍｊγｐ…，ｍｊγｑ，γ１≠γ２≠…≠γｐ≠… ≠γｑ∈ｎ，第 ｈ行
存在焦元为零赋值的为ｍｈω１，ｍｈω２，…，ｍｈωｐ，…ｍｈωｑ，ω１
≠ω２≠…≠ωｐ≠ …≠ωｑ∈ｎ，这里 ｉ≠ｊ≠ｈ∈ｋ，如果

ξｍ≠γｎ≠ωｚ∈ｎ，那么把ξ，ω，γ分别对应的列向量聚
为一组ｚ１，得到该分组各列信度赋值的平均赋值为

ｍ
ξ
＝
∑
ｋ

ｉ＝１
ｍｉξ
ｋ ，ξ ＝ ξ１，ξ２，…，ξｐ，…，ξ{ }ｑ （１３）

ｍγ ＝
∑
ｋ

ｉ＝１
ｍｉγ
ｋ ，γ ＝ γ１，γ２，…，γｐ，…，γ{ }ｑ （１４）

ｍω ＝
∑
ｋ

ｉ＝１
ｍｉω
ｋ ，ω ＝ ω１，ω２，…，ωｐ，…，ω{ }ｑ （１５）

如果ξ，ω，γ中有重复的，合并相同的列．将 ｍξ，

ｍγ和ｍω三者之和，即∑
ｚ１

ｉ＝１
ｍｉ＝ｍξ＋ｍγ＋ｍω 作为该

分组ｚ１的总权重．然后，将其它各列的元素划为一组

ｚ２，其所占的总权重为 １－∑
ｚ１

ｉ＝１
ｍｉ，再利用二叉树或者

三叉树对 ｚ２进行分组处理，接着对该组数据 ｋ个证据
源分别进行归一化处理（详见第４节），然后利用 ＤＳｍＴ
＋ＰＣＲ５融合规则（详见第 ３节）进行融合，把得到的融
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合结果乘以（１－∑
ｚ１

ｉ＝１
ｍｉ）．

３ ＤＳｍＴ＋ＰＣＲ５融合

法国的 ＪｅａｎＤｅｚｅｒｔ博士和美国的 ＦｌｏｒｅｎｔｉｎＳｍａｒａｎ
ｄａｃｈｅ教授在文献［２］提出了两个及两个以上信息源的
组合规则和ＰＣＲ５（第５种比例冲突分配规则），这里简
单介绍如下：

当在经典 ＤＳｍＴ模型下处理信息融合问题时，Ｂｅｌ１
（·）和 Ｂｅｌ２（·）分别为同一鉴别框Θ下两个（多个请参
见文献［２］）独立证据源 Ｓ１，Ｓ２的信任函数，与之相关联
的广义基本信度赋值分别为 ｍ１（·）和 ｍ２（·），其组合规
则为：

Ａ∈ ＤΘ，ｍｆＭ（Θ）（Ａ）≡ ｍ( )Ａ ＝∑
Ｘｉ，Ｘｊ∈Ｄ

Θ

Ｘｉ∩Ｘｊ＝Ａ

ｍ１（Ｘｉ）ｍ２（Ｘｊ）

（１６）
由于超幂集 ＤΘ 在∪和∩集算子下封闭，表达式

（１６）给出的经典组合规则能够保证融合后的信度赋值
ｍ（·）恰好是一个广义的基本信度赋值，也就是说：ｍ
（·）：ＤΘ ｜［０，１］．这里 ｍｆＭ（Θ）（ ）在封闭空间都假设

其恒为零，除非在开放空间可以规定其不为零．
ＰＣＲ５考虑到冲突的规范形式，把部分冲突质量分

配到卷入冲突的所有元素上．从数学意义上讲，它是目
前最精确的冲突质量重新分配规则．ＰＣＲ５也满足 ＶＢＡ
的中立属性，其两源（多源请参见文献［２］）的重新分配
规则如下：

当 ｋ＝２时，Ｘ∈ＤΘ ＼｛ ｝，

ｍＰＣＲ５( )Ｘ ＝ｍ１２( )Ｘ ＋

∑
Ｙ∈Ｄ

Θ／Ｘ
Ｘ∩Ｙ＝

ｍ１( )Ｘ ２ｍ２（Ｙ）
ｍ１（Ｘ）＋ｍ２（Ｙ）

＋
ｍ２( )Ｘ ２ｍ１（Ｙ）
ｍ２（Ｘ）＋ｍ１（Ｙ[ ]）

（１７）
式（１６）～（１７）均来自于文献［２］，其中卷入的所有元素
都是规范形式，ｍ１２（·）和 ｍ１２…ｋ（·）分别对应着两个和
两个以上证据源合取一致组合结果．

４ 归一化处理

由于初始超幂集空间中所有赋值单子焦元信度赋

值之和为１，通过二叉树或者三叉树焦元聚类分组，分
组后的焦元信度赋值之和不为１，因此为了分层递阶地
运用ＤＳｍＴ组合规则和 ＰＣＲ５冲突重新分配规则，这里
需要对分组后的焦元进行信度赋值归一化处理．

假设经过二叉树分组之后，获得粗化的焦元ｌΘ１′和

ｌΘ２′，如 第 一 级 分 组，即 ｌ＝１时，若 ｎ为 偶 数，

１Θ１′＝θ１，θ２，…θｎ{ }２ ，１Θ２′＝θｎ２＋１，θｎ２＋２，…θ{ }ｎ ；若 ｎ

为奇数，１Θ１′＝ θ１，θ２，…θ ｎ[ ]２{ }＋１ ，１Θ２′＝｛θ ｎ[ ]２ ＋２，

θ ｎ[ ]２ ＋３，…θｎ｝，然后根据公式（１）～（４），分别获得各级

粗化焦元的信度赋值 ｍｋ ｌΘ１( )′和 ｍｋ（ｌΘ２′），接着对粗化
焦元１Θ１′和１Θ２′中包含单子的信度赋值归一化处理，其
递推公式如下：

ｌｍｌΘ
′
１，２，ｋ
（θｉ）＝

ｌｍｋθ( )ｉ
ｍｋ ｌΘ

′
１，( )２

（１８）

公式（１８）中的下标 ｋ表示证据源的个数，ｌΘ１，２′表示
二叉树第 ｌ级分组后得到的两个粗化焦元ｌΘ１′和ｌΘ２′的
结果，ｌｍｋ（θｉ）＝ｍｋ（θｉ），其左下标 ｌ决定ｌΘ１，２′中θｉ的个
数．

对于三叉树各级分组，以及具有部分零赋值的单

子焦元分组，其归一化处理的基本原理同二叉树是一

致的．

５ 程序实现

分层递阶 ＤＳｍＴ近似推理融合程序流程图如图 １
所示，其主要步骤介绍如下：

（１）首先判断超幂集空间中的单子焦元个数 ｎ是
否大于３．若是，则转入第二步；否则，转入第四步．

（２）判断是否有超过两个的零赋值焦元，若是，将所
有赋值为零的单子焦元归为一组，根据部分零赋值的单

子焦元分组融合处理方法进行处理；否则，转入第三步．
（３）对焦元进行二叉树或者三叉树分组，并统计归

一化的每个信息源中各个分组的焦元信度赋值之和，

把该和作为粗粒度焦元的信度赋值，然后转入下一步．
（４）利用ＤＳｍＴ和 ＰＣＲ５进行粗粒度信息的融合，并

４ 电 子 学 报 ２０１０年



将融合结果作为父子之间节点的连接权值，然后转入

下一步．
（５）判断是否到达树的深度，若是，计算超幂集空

间中的每个单子焦元 ｍ（θｉ），并结束程序．例如：若二叉
树，如图 ２所示，焦元θ１的信度赋值 ｍ（θ１）＝ｍ１１
ｍ２１１ｍ３１１ｍ４１１，若三叉树，如图３所示，ｍ（θ１）＝ｍ１１
ｍ２１１ｍ３１１；否则，转入下一步．

（６）对每个信息源对应的各个分组焦元进行归一
化处理，转入第一步．

６ 计算复杂度对比分析

首先来研究一下 ＪｅａｎＤｅｚｅｒｔ和 ＦｌｏｒｅｎｔｉｎＳｍａｒａｎｄａｃｈｅ
方法的计算复杂度，这里取两个证据源的情况，超幂集

空间中单子赋值焦元集合为 Ｓｃ＝｛θ１，θ２，…，θｎ｝，包含 ｎ
个单子焦元，通过式（１７）计算，可以获得组合后 ｎ个单
子焦元的信度赋值．假设一次乘积运算的复杂度用 Ｋ表
示，加运算用Σ表示，除运算用Ψ 表示，总的计算复杂

度为

Ο( )ｎ ＝ Ｋ＋（４Ｋ＋２Ψ＋４Σ）（ｎ－１[ ]）·ｎ （１９）
显而易见，式（１９）中的计算复杂度是关于 ｎ的线性关系
与平方关系 ｎ２两者之和．

接着给出本文提出方法的计算复杂度，这里采用算

法递归分析的方法，为了描述问题简单，假设 ｎ是２的 ｑ
次幂（如果 ｎ为大于２的 ｑ次幂，小于２的 ｑ＋１次幂，那
么其计算复杂度在 ｑ次幂和 ｑ＋１次幂之间），那么树深

ｌ＝ｑ－１，忽略判断语句计算的复杂度（其对该算法计算
复杂度影响很小）．那么得 ｌ＋１级计算复杂度为：
２ｌｏｇｎ２( )－２ｎ( )＋４Σ＋ ｎ( )－１ １０Ｋ＋４Ψ＋８[ ]Σ

＋２ｌｏｇｎ２( )－１ｎΨ＋ｎｌｏｇｎ２( )－１Ｋ
（２０）

从式（２０）可知，本文提出方法的计算复杂度主要是关于
ｎｌｏｇｎ２的线性函数，因此同老方法相比，其计算效率得到
了显著的提高．

７ 融合结果的对比分析

为了说明新方法的优点，这里通过从四个方面进

行与老方法进行对比分析，即融合结果的相似性，方法

的高效性、冲突敏感性以及鲁棒性．
（１）相似性 假设 Ｓｃ＝｛θ１，θ２，θ３，θ４，θ５，θ６，θ７，θ８，θ９，
θ１０｝，对于两个信息源 Ｓ１和 Ｓ２分别进行信度赋值如表
１所示，为了充分验证算法的相似性，在保证 Ｓ２中各个
焦元及其信度赋值不变的情况下，Ｓ１中各个焦元位置
不变，但其信度赋值依次向后移，即从表１中的初始焦
元赋值情况可知，Ｓ１中θ１的信度赋值为 ０．１，对应 Ｓ２
中的０．０５；后移一次之后，Ｓ１中θ１的信度赋值为０．０４，
Ｓ２中θ１的信度赋值为０．０５，Ｓ１中θ２的信度赋值为０．
１，Ｓ２中θ２的信度赋值为０．２１，可以获得１０种不同的焦
元信度赋值情况，通过采用新、老方法进行融合，并且

为了比较两个证据源之间新、老方法融合结果之间的

相似 性，这 里 通 过 Ｅｕｃｌｉｄｅａｎ相 似 度 函 数 ＮＥ
ｍ１，ｍ( )２ （详见文献［１３］，其公式在（２１））来描述．

ＮＥ ｍ１，ｍ( )２ ＝１－１
槡２ ∑

ＤΘ

ｉ＝１
ｍ１ Ｘ( )ｉ －ｍ２ Ｘ( )( )ｉ槡

２

（２１）
通过计算，最低相似度为０９３４８，最高为０９７５８．因此可
以得出高相似性的结论，即新方法的结果是完全可以

信赖的．
表１ 两证据源对 Ｓｃ的初始焦元赋值情况

焦元

序号
１ ２ ３ ４ ５ ６ ７ ８ ９ １０

信源
Ｓ１ ０．１ ０．３ ０．０３０．０７ ０．２ ０．１４０．０６０．０２０．０４０．０４
Ｓ２０．０５０．２１０．０４０．０６ ０．１ ０．２４０．１３０．０７０．０６０．０４

（２）高效性 新方法是否能解决 ＤＳｍＴ运算的瓶颈问
题，在保证结果相似度很高的基础上，其高效性指标是

至关重要的，尽管从理论分析的角度（详见第６节），得
出新方法比老方法的效率高的结论，为了充分验证这

个结论，下面通过融合两个证据源的具体算例，当超幂

集空间中的焦元个数不同时，比较其加、乘、除运算次

数以及整体运行时间．
从表２中的比较结果看，新方法的高计算效率是显
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而易见的，尤其二叉树的效果更为明显，从表２中的结
果可以进一步分析得到：在同一层其分叉越多，其计算

量越大，就降低计算量而言，二叉树是最好的分层方法．

表２ 运行效率比较

超幂集空间中焦元个数 方法 加运算（＋）次数 乘运算（×）次数 除运算（÷）次数 运行时间（ｍｓ）

１００００
老方法 ３９９，９５３，７９６ ３９９，９６３，７９６ １９９，９７６，８９８ ３６８８
二叉树 ３３５，３４４ １６６，５３２ ８２，９５８ １５
三叉树 ２６０，７２４ １５５，５８３ ８３，８８２ ６２

２００００
老方法 １，５９９，９０１，６４８ １，５９９，９２１，６４８ ７９９，９５０，８２４ １４，６７２
二叉树 ７０９，５１０ ３４０，８８８ １６５，７１４ １６
三叉树 ５７４，７７８ ３３３，６７０ １７８，２２４ ９４

３００００
老方法 ３，５９９，８４６，８７２ ３，５９９，８７６，８７２ １，７９９，９２３，４３６ ３３，６２５
二叉树 １，０８５，０１８ ５２０，２０４ ２４４，３９４ ３１
三叉树 ８４３，７６６ ４８０，９２４ ２５２，２３４ ４６９

５００００
老方法 ９，９９９，７０１，１６８ ９，９９９，７５１，１６８ ４，９９９，８５０，５８４ ９３，７０９
二叉树 １，９５０，４４２ ８７７，９１８ ４２９，０００ ４７
三叉树 １，４９３，３６８ ８４５，０９１ ４３７，７８２ ６０９

（３）冲突敏感性 假设 Ｓｃ＝ ａ，ｂ，ｃ，{ }ｄ，对于两个信
息源 Ｓ１和 Ｓ２分别进行信度赋值如下：
Ｓ１：ｍ１( )ａ ＝ｘ－ε，ｍ１( )ｂ ＝ε，ｍ１( )ｃ ＝１－ｘ－ε，
ｍ１( )ｄ ＝ε；

Ｓ２：ｍ２( )ａ ＝ε，ｍ２( )ｂ ＝ｙ－ε，ｍ２( )ｃ ＝ε，
ｍ２( )ｄ ＝１－ｙ－ε．

这里作者通过二叉树方式进行焦元聚类，假设ε＝
００１，为了保证每个焦元的信度赋值大于零，设 ｘ，ｙ∈
０．０２，０．[ ]９８，为了比较新老方法所得结果的相似性，
根据Ｅｕｃｌｉｄｅａｎ证据支持贴近度函数（２１），当 ｘ，ｙ分别
在 ０．０２，０．[ ]９８变化时，其 Ｅｕｃｌｉｄｅａｎ相似度变化如图 ４
所示（其中，绿色部分表示相似度小于 ０．７５，红色部分
表示在０．７５～０．８，蓝色部分表示在０．８～０．８５，黑色部
分表示在０．８５～０．９，黄色部分表示在０．９～１）．其中最
小相似度是０．７１１０，当信度质量矩阵

Ｍ１＝
０．１０００ ０．０１００ ０．８８００ ０．０１００
０．０１００ ０．８８００ ０．０１００ ０．[ ]１０００

或者

Ｍ２＝
０．８８００ ０．０１００ ０．１０００ ０．０１００
０．０１００ ０．１０００ ０．０１００ ０．[ ]８８００

时得到该最小相似度，对于 Ｍ１，通过新、旧方法融合的

结果为

Ｍｒ１＝
０．２２０４ ０．２７９６ ０．２７９６ ０．２２０４
０．０１６１ ０．４８３９ ０．４８３９ ０．[ ]０１６１

；

对于 Ｍ２，通过新、旧方法融合的结果为

Ｍｒ２＝
０．２７９６ ０．２２０４ ０．２２０４ ０．２７９６
０．４８３９ ０．０１６１ ０．０１６１ ０．[ ]４８３９

，

Ｍｒｉ，ｉ＝１，２的第一行为新方法结果，第二行为旧方法

的结果．可见，信息源存在较高的冲突时，对新方法的
融合结果具有一定的影响，但与老方法结果之间的相

似度依然很高．当然，这种影响视具体情况也不容忽
视，从当前作者的研究现状看，合理的排序能有效地降

低新方法对冲突的敏感性．另外，通过计算，作者也发
现一个重要的规律，即相似度越高，其超幂集空间中信

度赋值比较大的焦元与老方法中对应的焦元越一致，

即对应一致排序的焦元数目越多（比较容易证明）．
（４）鲁棒性 为了验证新方法的鲁棒性，前面的例子都

是两证据源的，这里给出多源同步融合的实例，在表 ３
中列出五证据源对 Ｓｃ＝｛θ１，θ２，θ３，θ４，θ５，θ６，θ７，θ８，θ９，

θ１０｝的初始焦元赋值情况，当同步改变五个证据源焦元

及其赋值的次序时，采用老方法，其结果是不变的；新

方法得到的结果，当赋值次序变化时，对新方法的结果

稍微有点影响，但仍然保持与老方法结果之间的高相

似性（最低相似度为０．９７６６，最高为０９８６７），从而体现
表３ 五证据源对 Ｓｃ的初始焦元赋值情况

焦元

序号
１ ２ ３ ４ ５ ６ ７ ８ ９ １０

信源

Ｓ１ ０．１ ０．２５０．０５ ０．１ ０．１６０．１５０．０７０．０４０．０６０．０２
Ｓ２０．０７ ０．３ ０．０２０．０７０．１８０．１６ ０．１ ０．０５０．０４０．０１
Ｓ３０．０８０．２４０．０２０．０６０．１２ ０．２ ０．１５０．０６０．０４０．０３
Ｓ４０．１２０．３４０．０１０．０５０．１５０．１３ ０．１ ０．０４０．０５０．０１
Ｓ５０．０６０．２８０．０５０．０８０．１４０．２２０．０８０．０３０．０５０．０１

了新方法具有很好的鲁棒性．
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８ 总结与展望

随着ＤＳｍＴ在不同领域的广泛应用，其鉴别框架中
焦元数目的增多，将导致其运算出现组合爆炸问题．对
该问题的解决具有重要的理论价值和应用价值．于是
本文提出一种分层递阶的 ＤＳｍＴ快速近似推理融合方
法，该方法能够很好地解决 ＤＳｍＴ的计算瓶颈问题．该
方法目前仅适用超幂集空间中单子焦元具有信度赋值

的情况．对于非单子焦元情况，作者也正在开展这方面
的研究，请感兴趣的读者关注我们后期的报道．
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