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Introduction

Ce cours a pour objectif de présenter les principaux algorithmes de pistage développés
depuis une vingtaine d’années et les techniques de base de fusion multi-senseurs. On
suppose ici le lecteur déja familiarisé avec la théorie des probabilités [Kol50, Pap84],
l'algebre matricielle [Bel60, Ste71] et les bases de la théorie des systemes et de I'estimation
[Bro69, FH77, Lue79, Fav82]. Les ouvrages de base sur lesquels est fondé ce cours sont
les suivants :

— C.A. Bozzo,”Le Filtrage Optimal et ses Applications aux Problémes de

Poursuite”, (3 volumes),Diffusion Librairies Lavoisier, 11 Rue Lavoisier, Paris, 1983.
— Y. Bar-Shalom and T. Fortmann, " Tracking and Data Association”, Academic
Press, 1988.

— Y. Bar-Shalom and X.R. Li,” Estimation and Tracking : Principles,Techniques,
and Software”, Artech House, 1993

— Y. Bar-Shalom and X.R. Li,” Multitarget-Multisensor Tracking : Principles
and Techniques”, YBS Publishing, Storrs, CT, 1995.

Tous les acronymes utilisés dans ce cours correspondent aux termes anglo-saxons pour

familiariser le lecteur a la terminologie américaine du domaine.






Chapitre 1

Estimation d’un systéeme dynamique

Ce chapitre présente briévement le principe du filtrage de Kalman (KF - Kalman Filter) pour estimer
Iétat d'un systeme linéaire stochastique et le filtre de Kalman étendu (EKF Extended Kalman Filter)
pour le cas des systemes (faiblement) non linéaires. Nous ne détaillons pas ici les démonstrations qui
aboutissent aux équations des filtres car ceci a déja été présenté en [Dez93] et fait 'objet du complément
de ce cours. De nombreux ouvrages existent sur le filtrage de Kalman, ses extensions et ses applications.

On citera par exemple les ouvrages de base [Med69, Jaz70, SM71, Bie77, BDA79, BH92, BSL93].

1.1 Représentation d’état d’un systeme dynamique

Le filtrage de Kalman est un algorithme permettant d’estimer 1’état x(k) d’un systeéme & temps discret

(ici supposé linaire) stochastique modélisé par les équations de dynamique et d’observation suivantes :

x(k+1) =F(k)x(k) + v(k) (1.1)

2(k) = H(k)x(k) + w(k) (1.2)

x(k) est 'état du systéme. C’est un vecteur de dimension minimale permettant de décrire le compor-
tement du systéme. F(k) est la matrice de transition d’état caractérisant 1’évolution du systeme. v(k)
est un vecteur de bruit d’état dont les propriétés statistiques (moyenne, covariance) caractérisent notre
méconnaissance sur le systeme réel physique auquel on s’intéresse. z(k) est I'observation du systéme ob-
tenue au travers d’un senseur d’observation. L’ensemble de toutes les observations depuis I'instant initial
jusqu’a l'instant k est noté Z*. H(k) est la matrice d’observation de I’état du systeme. w(k) est un bruit
d’observation 1ié a la qualité du senseur utilisé. Les vecteurs et matrices ont bien entendu des dimensions

compatibles.
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Pour simplifier, on suppose ici que les bruits v(k) et w(k) sont des bruits blancs gaussiens et centrés
(E[v(k)] = 0 et E[w(k)] = 0) de covariances respectives Q(k) et R(k) connues. Les matrices F(k) et
H(k) sont également connues (pas de probléme d’identification du modele). On suppose que les bruits v
et w sont non corrélés avec I’état initial x(0) du systéme. On peut alors montrer que le systéme précédent

est un systeme linéaire gaussien-markovien.

Le probléme & résoudre consiste & estimer x(k) & partir des mesures Z* et de préférence d'une maniere
récursive pour éviter le stockage croissant de Z*. Le filtre de Kalman permet de construire la solution &

ce probleme, c.a.d. calculer récursivement

%(k[k) = Elx(k)|Z"] (1.3)

P(k|k) = E[(x(k) — x(k[k))(x(k) — %(k|k))'|Z"] (1.4)

1.2 Filtre de Kalman

Plusieurs voies sont possibles pour établir les équations du filtre; on peut chercher

1. Pestimateur & variance minimale
2. l'estimateur qui maximise la probabilité a posteriori de x(k) sachant Z*
3. D'estimateur qui maximise la vraisemblance de x(k)

4. la solution linéaire récursive au probléme des moindres carrés pondérés [Fav82]

Sous les hypotheses gaussiennes et pour un systeme linéaire, on peut montrer que toutes ces approches
conduisent aux méme équations. Ce sont les équations du filtrage optimal de Kalman [KB61]. Ce filtre
est le meilleur filtre récursif (& variance minimale et non biaisé) dans la classe des filtres linéaires. Il n’est
cependant pas optimal dans le cas des modeéles non linéaires. En pratique cependant, on utilise souvent
une variante du filtre appelée Filtre de Kalman étendu. Ce filtre a révolutionné le domaine de la théorie
de I'estimation dans les années soixante et est a la base de nombreux systemes de guidage et de poursuite

en aéronautique. Il reste la base de la plupart des algorithmes de poursuite ici présentés.
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1.2.1 Equations du filtre de Kalman

Les équations du filtre de Kalman sont données par :

a(klk—1) = H(k)X(k|k—1) (1.5)
Z(klk—1) = (k) — 2(k|k—1) (1.6)
S(k) = H(k)P(k|k—1)H(k)' + R(k) (1.7)
K(k) = P(klk—1)H(k)'S(k) ™" (1.8)

Partie correction du filtre

X(k|k) = %(k|k—1) + K(k)z(k|k—1) (1.9)

P(k|k) = [T — K (k)H(E)P(k|k—1) (1.10)

Partie prédiction du filtre

x(k + 1|k) = Fx(k|k) (1.11)
P(k+ 1|k) = F(k)P(k|k)F(k) + Q(k) (1.12)
La matrice K(k) est appelée gain de Kalman et z(k|k—1) Iinnovation du filtre. Cette innovation est
un bruit blanc centré de covariance S(k). L’initialisation peut se faire en choisissant %(0/0), P(0]0),
en supposant p(x(0)) ~ N(x(0]/0),P(0]0)) et entrant directement & I’étape de prédiction du filtre. En

simulations, on pourra utiliser la technique de Birmiwal présentée dans le dernier chapitre de ce cours

pour obtenir %x(0]0) et P(0]0)).

1.2.2 Equations du filtre de Kalman étendu d’ordre 1

Le filtrage de Kalman étendu permet d’estimer (pas toujours ...) I’état des systémes stochastiques

non linéaires du type
x(k+1) = f[x(k), k] + v(k) (1.13)
z(k) = h[x(k), k] + w(k) (1.14)

Les équations du filtre de Kalman étendu (EKF) sont alors obtenues en linéarisant (au premier ordre)

les équations du systeme autour de ’état prédit et estimé. On obtient

a(k|k—1) = h[x(k|k—1), k] (1.15)
#(k|k—1) = z(k) — a(k|k—1) (1.16)
S(k) = H(k)P (k|k—1)H(k) + R(k) (1.17)

K(k) = P(klk—1)H(k)'S(k) ™" (1.18)
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Partie correction du filtre

X(k|k) = %(k|k—1) + K(k)z(k|k—1) (1.19)

P(k|k) = [T — K (k)H(E)P(k|k—1) (1.20)

Partie prédiction du filtre

x(k + 1]k) = £[x(k|k), k] (1.21)
P(k+ 1|k) = F(k)P(k|k)F (k) + Q(k) (1.22)

R (k) = E[w(k)w(k)'] (1.23)

F(k) = [VE[x(k), k:]]’x:&(klk) (1.24)

H(k) = [VR'[x(k). K], g upp) (1.25)

F(k) et H(k) sont les matrices jacobiennes de f[.] et h[.] évaluées en 1'état prédit par le filtre & 1'étape
antérieure. Les performances du filtre dépendent de la qualité de 'adéquation entre le modele non-
linéaire choisi et 1’évolution réelle du systeme physique; mais aussi du point de linéarisation choisi.
L’EKF est sensible a la qualité de son initialisation. Pour avoir des performances meilleures, on peut
utiliser une linéarisation au second ordre, ou mieux encore, un filtrage purement non-linéaire basé sur
d’autres techniques (filtrage particulaire par exemple) qui reste souvent plus délicat & mettre en ceuvre.

z est appelée innovation du filtre et V est 'opérateur classique de gradient.



1.2. FILTRE DE KALMAN

1.2.3 Un cycle du filtre de Kalman standard

Etat réel Commande
x(k) u(k)

Estimée de ’état

*(k|k),P(k|k)

Evolution de I’état réel

x(k + 1) = F(k)x(k) + G(R)u(k) + v(k)

Prédiction de I’état
x(k + 1|k) = F(k)x(k|k) + G(k)u(k)
P(k + 1|k) = F(k)P(k|k)F (k) + Q(k)
z(k + 1|k) = H(k)%(k + 1|k)
S(k+1) = H(k + DP(k + 1{k)H(k + 1)’ + R(k + 1)
K(k+1) =Pk + 1|k)H((k + 1)'S 1 (k + 1)

Mesure faite en k£ + 1

z(k + 1)

Innovation

Z(k+1) =z(k + 1) — 2(k + 1]k)

Mise a jour
(k4 1|k + 1) = %(k + 1]k) + K(k + 1)2(k + 1)

P(k+ 1]k +1) = [I — K(k + DH(k + D]S "1 (k + 1)

Fia. 1.1 — Cycle complet du filtre de Kalman
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1.2.4 Un cycle du filtre de Kalman étendu

| Cycle du filtre de Kalman Etendu I

Etat réel a t=KT || Commande
x(k) u(k)

P

Evolution de I'état réel
de t=KT a t=(k+1)T

x(k+1) = f [k, x(k),uk)] + v(k)

4

Estimée a t=kT
Qkik), P(klk)

l

Partie prédiction

: of
Jacobien F(k)=—
9 [&kik)

Rk+11k) = £ [k RKK),u k)]
P(k+11k) = FRPKIOFK) + QK)

Jacobien H(k+1) = oh
ox

Rk+11K)

N N

Z(k+11K) = h [k+1,x(k+11k)]

S(k+1) = H(k+1)P(k+11K)H(k+1)
+ R(k+1)

Kk+1) = P(k+1|k)l-{(k+1)SZIl+1)

Y

Innovation

Y

Mesure faite a t=(k+1)T

z(k+1) = h{k+1,x(k+1)] +w(k+1) 2(k+1) = 2(k+1) —/%(k+llk)

- Y

Mise a jour

___*________________________________________ —_——

R+ =R+ 1K)+ K (k1) Z(k+1)
P(k+1k+1) = [I - K(k+1)H(k+1)]S_(1k+l )

Filtre

Systeme réel i

\

Fia. 1.2 — Cycle complet du filtre de Kalman étendu



Chapitre 2

Modeles cinématiques des cibles

Nous présentons dans ce chapitre quelques modeles simples d’évolution cinématique de cibles
[BSF88, BSL93]. Ces modeles peuvent étre facilement utilisés dans les simulations pour tester les différents
algorithmes de pistage qui vont étre présentés. Des modeles plus sophistiqués peuvent étre par exemple

trouvés en [Sin70, Bar90b, BHvD92, Nah97].

Les filtres de poursuite sont des méthodes numériques qui nécessitent I’emploi de calculateurs. Les
modeles de dynamique des cibles doivent donc étre formulés par des équations discretes pour permettre
leur simulation sur calculateur. En pratique, on peut soit partir des équations (différentielles) continues
d’évolution de la cible que I'on discrétisera; ou bien modéliser directement sous forme discrete 1’évolution
des cibles. La premiere approche est bien sire plus satisfaisante puisqu’elle repose sur la nature physique

du phénomene a observer et a pister. La seconde approche est généralement adoptée en simulations.

2.1 Modeles continus discrétisés

2.1.1 Modele a vitesse quasi-constante

Un objet en mouvement rectiligne uniforme (MRU) (& vitesse constante), est caractérisé par
une accélération nulle sur chacune de ses coordonnées x,y ou z. Pour synthétiser cette présentation,

on notera £ la coordonnée générique qui peut soit désigner x,y ou z. On a donc

£(t)=0 (2.1)

En Dabsence de bruits perturbateurs sur Paccélération, la position £(t) est une fonction polynomiale
(d’ordre 2) du temps ¢. En pratique, la vitesse de I'objet n’est jamais parfaitement constante. En premiére
approximation pour simplifier, on modélise généralement ces changements de vitesse par un bruit

continu d’accélération ©(t) que l'on suppose centré et de variance ¢(t). Ainsi un modele réaliste de

7
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cible évoluant a vitesse quasi-constante est décrit par

£(t) = o(t) (2.2)

avec E[0(t)] =0 et E[o(m)o(t)] = q(t)d(t — 7).

Le vecteur d’état x(t) relatif & la composante générique £(t) s’écrit

x(t) = (2.3)

L’évolution de I’état de la cible est alors représentée par 1’équation différentielle suivante

0 1 0
X(t) = Ax(t) + Bi(t) = x(@t) + | | 9(t) (2.4)
0 0 1

La vitesse §(t) est donc ’intégrale d’un bruit blanc. C’est par définition un processus de Wiener.

La discrétisation [Dez93] de cette équation pour une période T' donnée conduit &

| x(k + 1) = Fx(k) + v(k) | (2.5)
avec
1 T
F=cAT = (2.6)
0 1
et le bruit discrétisé s’exprimant
T
v(k) = / eATBO(ET + 7)dr (2.7)
0

En supposant ¢ constant durant la période déchantillonnage T, la matrice de covariance Q(k)

du bruit d’état discrétisé vaudra

, T 7 i 172
Q(k) = E[v(k)v' (k)] = / (T - 7) 1)gdr = §

(2.8)
1 iT? T

Pour assurer une trajectoire a vitesse quasi-constante, il faudra avoir un niveau de bruit ¢ relativement

faible (i.e. les variations de la vitesse doivent étre petite par rapport a la valeur de la vitesse).

2.1.2 Modele a accélération quasi-constante

Un objet en accélération constante est caractérisé par un jerk nul. Le jerk étant par définition la

dérivée de I’accélération. On a donc maintenant

£(t)=0 (2.9)
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En labsence de bruit perturbateur sur 'accélération, la position £(¢) est une fonction polynomiale (d’ordre
3) du temps t. En pratique, I’accélération de 'objet n’est jamais parfaitement constante mais présente des
fluctuations. En premiére approximation pour simplifier, on modélise ces fluctuations par un bruit
continu de jerk ¥(t) que l'on suppose centré et de variance ¢(t). Ainsi un modele réaliste de cible

évoluant a accélération quasi-constante est décrit par
() =0(t) (2.10)

avee E[6(t)] = 0 et E[o(r)5(t)] = ()8 (t — 7).

Le vecteur d’état x(t) relatif & la composante générique £(t) s’écrit maintenant

x(t) = |&(t) (2.11)

L’évolution de I'état de la cible est alors représentée par 1’équation différentielle suivante

0 10 0
x(t)=Ax(t)+Bot)= [0 0 1|x@)+ 0] 2(¢) (2.12)
0 0 0 1

L’accélération £(t) est alors un processus de Wiener.

D’autres modélisations plus sophistiquées sont possibles. On peut par exemple prendre un bruit de

jerk coloré ayant une fonction d’autocorrélation a décroissance exponentielle (modéle de Singer).

La discrétisation [Dez93] de la relation (2.12) pour une période T' donnée conduit a

|x(k + 1) = Fx(k) + v(k) | (2.13)
avec
1 T 3717
F=cA=10 1 7T (2.14)
00 1

ou lexpression de v(k) reste la méme que la précédente (cf (2.7)). En supposant § constant durant

la période déchantillonnage T, la matrice de covariance Q(k) du bruit d’état discrétisé vaudra
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maintenant

BT Art 4T
Q(k) = Elv(k)v'(k)] =q | t1* 113 117 (2.15)
s ilp2 7

Pour assurer une trajectoire a accélération quasi-constante, il faudra avoir un niveau de bruit ¢
relativement faible (i.e. les variations de l’accélération doivent étre petites par rapport a la valeur de

laccélération).

2.2 Modeles discrets

Nous explicitons ici directement les équations discrétes des mouvements & vitesse et/ou accélération
quasi-constante. Dans ce cas, le bruit d’état v(k) est modélisé comme un bruit blanc centré discret

de variance donnée

Elvrv,] = 026k (2.16)

L’équation discréte d’évolution de ’état pour les mouvements & vitesse et/ou accélération quasi-
constante (pour une coordonnée générique x,y ou z) est de la forme générale (on suppose ici qu’il n’y a

pas de commande déterministe supplémentaire u(k) = 0)

x(k+1) =Fx(k) + Tv(k) (2.17)

ou I' est une matrice de gain agissant sur le bruit discret.

2.2.1 Modele cinématique discret a vitesse quasi-constante

Quand le bruit discret d’accélération v(k) est constant durant la période de discrétisation allant

de kT & (k+1)T, Vincrément de la vitesse sur €(k) vaut v(k)T, et Vincrément sur la position &(k) vaut

2v(k)T?. Par conséquent, I'équation aux différences du vecteur d’état
t
x(k) = §( ) (2.18)
£(k)
s’écrit
|x(k + 1) = Fx(k) + To(k) | (2.19)
avec
1 T iT?
F = I = (2.20)
0 1 T
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La matrice de covariance de T'v(k) vaudra

1
_ n_ 2 2 ZT4 %Ts
Q = ETv(k)v(k)I'] =To.T" = o (2.21)
%T3 T2

x(k+1) 1 T 0 0 iT? 0
z(k+1) 01 0 0 T 0
x(k+1)= = x(k) + v(k) (2.22)
y(k+1) 00 1T 0 ir17
y(k+1) 0 0 0 1 0 T
—_—— — ————
F r
avec v(k) = [vz (k) v (k)]
La covariance Q(k) s’écrira alors
! ! / 0-12} 0 !
Q=FEIvk)VEI]=Tq,I"=T1] r (2.23)
0 o2
Y
Quand la variance 032 = Ugy du bruit de dynamique est faible, on obtient une trajectoire rectiligne quasi-

uniforme (mouvement rectiligne uniforme - MRU ou Constant Velocity model (CV)). L’extension au

cas 3D est immédiate.

En choisissant ce modele discret avec un niveau du bruit d’état élevé, on peut arriver a pister des cibles
faiblement manceuvrantes. Il faut souligner que les résultats obtenus varieront avec la période de

discrétisation T utilisée.

2.2.2 Modele cinématique discret a accélération quasi-constante

Quand le bruit discret v(k) polluant ’accélération est constant durant la période de discrétisation

allant de kT & (k + 1)T, 'équation aux différences du vecteur d’état s’exprime alors

x(k) = |£(k) (2.24)

s’écrit

|x(k + 1) = Fx(k) + To(k) | (2.25)
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avec
1 1
1T L7 172
F=10 1 T INE (2.26)
0 0 1 1
La matrice de covariance de T'v(k) vaudra
1 1 1
A LA Y
Q= ECo(k)u(k)I'] =Tyl =0, |i73 T2 T (2.27)
1
itz
Pour un mouvement en dimension 2 avec bruits de composantes découplés, on aura donc
z(k+1) 1 T 412 0 0 0 iT? 0
i(k +1) 01 T 00 0 T 0
ik +1) 00 1 00 0 10
x(k+1)= = x(k) + v(k) (2.28)
y(k+1) 00 0 1 T 377 0 372
Gk +1) 00 0 01 T 0 T
ik + 1) 00 0 00 1 0 1
L _ L _ L _
r
avec v(k) = [vz(k) v,(k)]'. Quand la variance 02 = Ugy du bruit (discret) de dynamique est faible, on

obtient un mouvement a accélération quasi-constante. Ce modele est adapté a la poursuite des cibles dans

les phases de manceuvre.

2.2.3 Modele du virage coordonné

Le mouvement d’une cible exécutant un virage coordonné (i.e. & vitesse angulaire constante w)

dans le plan (O, z,y) est caractérisé par les équations de mouvement suivantes

(1) = —wit) (1) = wi(t) | (2:29)

Un virage dans le sens horaire (& droite) est obtenu lorsque w < 0. Si w > 0 alors le virage a lieu dans

le sens trigonométrique (& gauche).

e Quand w est connu (cas des avions civils par exemple), on prend pour vecteur d’état

x(t) = [x(t) &(t) y(t) §(1)) (2.30)



2.2. MODELES DISCRETS

L’équation différentielle (non bruitée) du vecteur d’état s’écrit :

010 0
0 0 0 —w

x(t) = x(t) = Ax(?)
000 1
0w 0 0

13

(2.31)

La discrétisation de cette équation [Dez93] & la période d’échantillonnage T, conduit & 1’équation

d’évolution non bruitée suivante

1 sin wT 0 — 1—coswT
AT 0 coswl 0 —sinwT
x(k+1)=e™x(k) = x(
0 l1—coswT 1 sinwT
0 sinwl 0 coswT

En tenant compte des bruits d’états (supposés blancs, gaussiens et indépendants) sur les compo-

santes de vitesse, il vient finalement

|x(k +1) = Fx(k) + Tv(k) |

avec
2
T 0
F =
172
0 ir
0 T
1 0
avec Q(k) = E[v(k)v(k)'] = o2 .
0 1

e Quand w est inconnu, on prend pour vecteur d’état

x(t) = [x(t) () y(t) 9(t) W

L’équation différentielle (non bruitée) du vecteur d’état s’écrit :

0 10 0 o0
000 —w 0
xt)=10 0 0 1 0fx(t)=Ax()
0w 0O 0 0
0 0 0 0

(2.33)

(2.34)

(2.35)

(2.36)

La discrétisation de cette équation [Dez93] & la période d’échantillonnage T, conduit maintenant &



14 CHAPITRE 2. MODELES CINEMATIQUES DES CIBLES

I’équation d’évolution non bruitée suivante

K sinwl g —locosed o_
0 coswl 0 —sinwl 0
x(k+1) = ATx(k) = [0 lzeseT | sneT o) x(k) = F(k)x(k)  (2.37)
0 sinwl' 0 coswI O
0 0 0 0 1

En tenant compte d’un bruit d’état v(k) sur les composantes de vitesses, on aura
x(k+1) =F(k)x(k) + T'v(k) (2.38)

avec

oooﬂmﬂH

(SIS

0
0
T2 (2.39)
T
0

1 0

avec Q(k) = o2

0 1
Dans ce cas la matrice F sera évaluée a chaque pas en utilisant la valeur estimée @ a ’étape

antérieure du filtre.

2.3 Modele de cible absente

Dans certains cas (pour la poursuite multi-modele par exemple), il est parfois utile d’avoir un modele
fictif décrivant I’absence de cible. Le plus simple est d’utiliser le modele & vitesse constante mais en forcant

par ailleurs la probabilité de détection de la cible & zéro (P; = 0).



Chapitre 3
Pistage mono-cible mono-senseur

3.1 Validation des mesures

Dans un environnement dégradé, a chaque instant k£ on dispose généralement d’un ensemble de mesures
délivrées par le senseur d’observation. Nous supposons ici que les cibles apparaissent ponctuelles au
niveau du senseur (la taille des cibles est inférieure & la cellule de résolution du senseur). Lorsqu’une cible
apparalt simultanément dans plusieurs cellules du senseur, on dit que la cible est étendue. Le pistage de

cibles étendues non abordé ici, a déja fait I'objet d’investigations en [Dez98].

Certaines de ces mesures (ponctuelles) proviennent des cibles (lorsqu’elles sont détectées) et d’autres
proviennent de bruits liés au récepteur (réglage des seuils), & environnement (trajets multiples, clut-
ter, etc) et/ou a des phénomenes intentionnels comme par exemple le leurrage ou les contre-mesures
électroniques (ECM - Electronic Counter Measures). Toutes les mesures ne provenant pas des cibles sont

considérées ici comme des fausses alarmes (FA).

Pour limiter le nombre de mesures a traiter, on utilise généralement une technique de sélection des
mesures appelée fenétrage statistique ou test de validation T'(z) (gating) [Sit64]. Pour chaque cible,
Le fenétrage consiste &4 délimiter, & partir de la mesure prédite z(k|k — 1) et de la covariance prédite S(k)
de lerreur prédiction de mesure, un certain volume Vj, de ’espace d’observation ou la mesure de la cible
a une forte probabilité P, de se trouver. Les mesures statistiquement trop éloignées de la mesure prédite
par le systeme de poursuite sont ainsi éliminées pour réduire le nombre de mesures a traiter au niveau

des algorithmes de pistage. Les mesures non rejetées par T'(z) sont dites validées.

Pour construire le test de validation T'(z(k)), on suppose que la mesure & tester z(k) provient de la

cible considérée et que la densité de probabilité de 'état x(k) de cette cible connaissant I’ensemble des

15
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mesures validées antérieures ZF~1 vérifie

p(x(k)|Z*) = N (x(k); x(klk — 1), P(k[k — 1)) (3.1)

ou N (x(k); x(k|lk — 1), P(k|k — 1)) désigne la densité gaussienne de moyenne x(k|k — 1) et de covariance
P(k|k — 1). Les statistiques prédites x(k|k — 1) et P(k|k — 1) sont disponibles & Uinstant k. Avec cette

hypothese et si le modele d’observation est linéaire du type
z(k) = H(k)x(k) + w(k) (3.2)

avec p(w(k)) = N(w(k);0,R(k)), alors la densité de probabilité conditionnelle de la mesure de la cible
p(z(k)|ZF1) s’écrit

p(a(k)|Z51) = N (z(k); 2(k|k — 1), S(k)) (3.3)

ou de maniere équivalente

(k)| ZF1) = N (z(k); _ b s mam .
PERIZ ) = NER:0S0) = s (3.49)

avec

a(klk — 1) = H(k)x(k|k — 1) (3.5)
(k) = z(k) — 2(k|k — 1) (3.6)
S(k) = H(k)P(k|k — 1)H(k) + R(k) (3.7)

3.1.1 Test de validation

Le test de validation s’obtient en imposant un seuil minimal & la densité de la mesure p(z(k)|Z*~1); d’ou

le résultat

1 siz(k)'S™H(k)z(k) < z validée
T(a(k)) = ! (3.8)

0 siz(k)S™L(k)z(k) >~ z rejetée

Le seuil de validation v est fixé en choisissant la taille de la fenétre de validation de telle sorte que la

probabilité de trouver la mesure correcte a I'intérieur de celle-ci soit égale & une valeur choisie Pj.

L’inégalité z(k)’'S™!(k)z(k) < v définit un ellipsoide dans I'espace d’observation. La distance au
carré e,(k) £ z(k)'S™'(k)z(k) est aussi appelée distance de Mahalanobis ou carré de I'innovation

normalisée (NIS - Normalized Innovation Squared).

L’innovation z(k) étant une variable aléatoire gaussienne centrée de dimension n,, €,(k) est une

variable aléatoire qui suit une loi du x2_ & n. degrés de libertés (cf théoreme 1.4.1 de [Mui82]). La
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densité de probabilité de €,(k) s’exprime (cf [Pap84] p.187)

0 our €,(k 0
plealk)) = pour (h) < (3.9)

ln.,—1_—

1p.-1 -1,
sz/g)ez(k‘ﬁ e~ 2% pour e, (k) >0

3.1.2 Probabilité de fenétrage

La probabilité de validation P; et le seuil de fenétrage « sont liés par la relation suivante

P, =P{z(k) e Vi;} = P{X%z <~v}= /0 p(ez(k))des (k) = m/o Egz/2—1eez/2d€z (3.10)

Sous MatLab, le seuil v peut étre calculé par la commande Gamma_Threshold=chi2inv(Pg,nz) ;. L’el-

lipsoide de validation Vi (7y) est mathématiquement défini comme

Vi(y) = {z(k) tel que [z(k) — z(k|k — 1)]'S™" (k)[2(k) — a(k|k — 1)] < 7} (3.11)

Les demi-axes de ’ellipsoide (9.5) sont les racines carrées des termes diagonaux de la matrice vS(k). La

racine carrée g £ /7 est appelée nombre de sigma (d’écarts types) de la fenétre de validation.

Souvent en pratique, on fixe P, = 0.99. Voici quelques valeurs de seuil de fenétrage :

Py 0.995 | 0.990 | 0.975 | 0.950 | 0.900 | 0.750 | 0.500 | 0.250

n,=1] 7.88 | 6.63 | 5.02 | 3.84 | 2.71 1.32 | 0.455 | 0.102

n,=21| 106 | 9.21 | 738 | 599 | 4.61 | 2.77 | 1.39 | 0.575

ny,=3 | 12.8 11.3 | 9.35 7.81 6.25 | 4.11 2.37 1.21

Ny = 14.9 13.3 11.1 9.49 | 7.78 | 539 | 3.36 1.92

TAB. 3.1 — Valeur du seuil v en fonction de Py et n,

3.1.3 Volume de la fenétre de validation

Le volume Vj, de lellipsoide de validation des mesures est donné par

Vi = Co. /IS (k)]y"=/2 (3.12)
ou le coefficient C),, vaut
/2 /2 .
Nz T 7o pour n, pair
Cr. = ﬁ = (3.13)
= nz+1
2 %ﬂ_(nz—l)/Q pour n, impair

(n.+1)!
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Cette constante peut étre obtenue sous MatLab par la commande Cnz=pi~ (nz/2) /gamma(1+nz/2) ; Nous

donnons la valeur de C,,, pour n, =1,...,8

3.1.4 Types de mesures utilisées

— Pour un radar : la distance r (range), le gisement a (azimuth ou bearing) et le site e (elevation).
Plus éventuellement la vitesse radiale 7 et/ou les cosinus directeurs u et v de la direction de visée
du radar [Gué94].

— Pour un sonar passif : le gisement a et la fréquence f (quand le signal est & bande étroite) ou bien

la différence des temps de réception et d’émission (TDOA - Time Difference Of Arrival) et les
variations des fréquences.

— Pour les senseurs optiques : les angles entre deux lignes de visée ou cosinus directeurs

3.2 Filtre NNSF (<1970)

Le filtre NNSF (Nearest Neighbor Standard Filter) consiste a utiliser uniquement a chaque ins-
tant k la mesure validée z(k) la plus proche de la mesure prédite de la cible z(k|k — 1) pour mettre &
jour ’état de la piste. Le filtre de poursuite consiste généralement en un filtre de Kalman standard (KF)

ou étendu (EKF) selon le type de modele utilisé.

La notion de proximité a la prédiction est basée sur la valeur de I'innovation normalisée (NIS) définie

par

ca(k) = [2(k) — a(k|k — 1)]'S(k)~'[a(k) — 2(k|k —1)] (3.14)

On choisit donc la mesure z(k) € Z(k) telle que €,(k) soit minimale. Dans cette méthode, on suppose
que le choix de la mesure la plus proche correspond toujours au bon choix d’association mesure«cible.
Le doute sur la validité d’un tel choix n’est pas pris en compte. Bien qu’extrémement simple a mettre en
ceuvre, cette méthode conduit & des performances tres médiocres de pistage quand la densité des fausses

alarmes est importante. Elle est donc fortement déconseillée.

3.3 Filtre SNSF (<1970)

Le filtre SNSF (Strongest Neighbor Standard Filter) est une variante du filtre NNSF. L’idée
consiste non plus a utiliser & chaque instant k la mesure validée z(k) la plus proche de la mesure prédite

de la cible z(k|k — 1) pour mettre & jour I’état de la piste, mais uniquement la mesure de plus forte
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intensité. Le filtre de poursuite consiste généralement en un filtre de Kalman standard (KF) ou étendu
(EKF) selon le type de modele utilisé. Pour cela, on doit évidemment disposer de l'intensité des signaux

associés aux mesures validées. Ce type de filtre est encore souvent utilisé dans les systéemes Sonar.

Comme pour le NNSF, le SNSF utilise une heuristique d’association mesure«cible. Le doute sur la
validité d’un tel choix n’est pas pris en compte et conduit 1a aussi a des performances trés médiocres de

pistage quand la densité des fausses alarmes est importante.

Une version améliorée du SNSF appelée PSNF (Probabilistic Strongest Neighbor Filter) qui prend
en compte la probabilité d’association correcte de la mesure la plus forte a récemment été proposée en

[LZ96, LZ99).

3.4 Filtre PNNF (1971,1993)

Le filtre PNNF (Probabilistic Nearest Neighbor Filter) consiste & utiliser uniquement & chaque
instant k la mesure validée la plus proche (notée z,(k)) de la mesure prédite de la cible z(k|k — 1) pour
mettre a jour I’état de la piste. La mesure choisie est cependant pondérée par sa probabilité

d’étre correcte.

Cette idée fut initialement proposée en [SS71b, SS73] en utilisant la probabilité a priori de validité

de la mesure la plus proche.
L’introduction de la probabilité a posteriori de validité de la mesure la plus proche dans les
équations de mise a jour du filtre fut proposée d’abord en [JBS72] puis reprise récemment en [Li93,

LBS96b).

L’idée consiste & introduire les événements suivants :

My : aucune mesure est validée (3.15)
My :  la mesure la plus proche de z(k|k — 1) provient de la cible (3.16)
Mp : la mesure la plus proche de z(k|k — 1) provient d’une fausse alarme (3.17)

On montre [LBS96b] (sous les hypotheses d’indépendance des FA et de la mesure cible et d’un clutter

poissonien de densité \) que la probabilité P{My|Z*~!} de n’avoir aucune mesure validée est donnée par

P{My|Z*"1} = (1 — PyP,)e V1) (3.18)
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La densité de probabilité de la mesure la plus proche quand elle provient de la cible est donnée par

Py

. M Zk 1 _Ffa
p *( | T ) }){A4 |Zk 1}

e e N (z;2(k |k — 1),S(k))U(2; Vi (7)) (3.19)

ou Vi () est la fenétre de validation de seuil v et U(z; Vi (7)) est la fonction échelon unitaire définie

comine

1 sizeV;
U (2 Vi()) = € V() (3.20)

0 sinon

V., est le volume de validation de seuil /e,. La probabilité d’association correcte P{Mz|Z*~'} est donnée

par

— Pd K n - - —€
P{MT|Zk 1} = W/O € =/2 16 AVe /2d€ S PdPg (321)

La densité p,, (z| M7, Z*~!) n’est pas gaussienne mais seulement elliptiquement symétrique [FKN90].

C’est a dire,

Pa, (2|Mr, ZF1) = p(e,| My, ZF7) (3.22)

Elle est gaussienne uniquement dans le cas particulier ol n, = 2. Son expression est donnée en [LBS9I6D].

On montre que l'on a

Py nVe e %\,
e ""<U(e; (05 3.23
e UG (3.23)

Pe,, (e|Mr, Zkil) =

La densité de probabilité de la mesure la plus proche quand c’est une fausse alarme est donnée par

e AVe
o (2| Mp, ZF 1) = —— 1 - P,P{? < -(0; .24
Pa. (2| MF, ) PNz 1}[ aP{xx. < eJU(€ (057]) (3.24)
avec
un=/2—1e—u/2
P < - __° 2
0 <= [ S (3.25)

La densité p., (e/Mp,Z"~1) de la NIS ¢,, la plus proche s’exprime alors comme

n, Ve Ae~AVe

. M Zk71
Pea (1M Z50) = = Btz 1y

— PyP{x2_ < e}]U(& (0;7]) (3.26)

La probabilité d’association incorrecte P{Mp} est donnée par

nA [ Ve AVe

P{Mp|Z*1} = [1— PyP{x2. < e}lde =1~ (1— PyP,)e s — P{My|ZF 1}

ou Py est la probabilité du fenétrage définie en (9.6).
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Le calcul des probabilités P{Mp|Z*~'} et P{Mp|Z*~'} nécessite I'utilisation de méthodes numériques
d’intégration. Dans le cas particulier ot n, = 2 et en utilisant le fait que P, =1 — e?/2, on dispose d'une

expression analytique de ces probabilités.

P{Mp|Z"""y = (1 - P))(1 —e™) + Pdg(l —e ") (3.27)

1
P{Mp|ZF"'} = Pd2—(1 —e %) (3.28)
a

avec b £ \C,,_\/|S(k)| et a £ b+ 1.

Quand la densité A\ du clutter tend vers 0 (environnement clair), on a

lim, P{My|Z*~'} =1 - PP, (3.29)
lim P{M7|Z"*"'} = P4P, (3.30)
lim P{Mp|Z*"1} =0 (3.31)

L’estimateur PNNF est alors donné par la regle des probabilités totales conditionnellement aux évenements

Moy, M1 = Mg et My = Mr. Autrement dit,

2

x(klk) =) P{Mi(k)|Z"} Blx(k)|Z*, Mi(k)] = Y Bi(k)%' (k[k) (3.32)
=0

=0

Pour ¢ = 0, Xo(k|k) est donné par X¢(k|k) = x(k|k —1). Pour ¢ = 1,2, on utilise I’équation de mise & jour
de Kalman

% (k|k) = %(k|k—1) + K(k)zi (k) (3.33)

avec 71 (k) = za(k) £ z.(k) — z2(k|k — 1). Le calcul des 3;(k) £ P{M;(k)|Z*} est obtenu de la maniere

suivante
Bi(k) £ P{M;(k)|Z*} = P{M;(k)|z. = =(k),Z* "'} = %pz* (z(k)| M;(k), ZF~1) P{M,(k)|ZF 7'} (3.34)

ol c est une constante de normalisation assurant Z?:o B:(k) = 1. L’expression des probabilités a priori
P{M;(k)|Z*='} et a posteriori py, (z(k)|M;(k),Z*"1) = pe, (€| M;(k),Z*~1) vient d’étre présentée (en
prenant dans le cas Mo(k), la densité dégénérée p,, (0| Mo(k), ZF¥=1) = 1).

La forme globale de lestimateur %(k|k) et de sa covariance associée P(k|k) est la méme que celle
du PDAF classique et ne sera pas répétée ici. La prédiction des performances de ce type de filtre par
la méthode CMIC-HY CA (Current-Mode-Conditional HYbrid Conditional Averaging) est présentée en
détail en [LBS96D).
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3.5 Filtre bayésien optimal (1974)

Nous décrivons ici le principe du filtre de bayésien optimal (FBO) pour la poursuite d’une cible unique
dans un environnement dégradé par des fausses alarmes. Ce filtre a été présenté en 1974 par Singer, Sea
et Housewright [SSH74]. L’idée de base est d’utiliser toutes les mesures disponibles Z* depuis l'instant

initial jusqu’a l'instant courant k.

On définit une séquence particuliere possible (indexée par [) comme un ensemble consécutif de mesures

prises depuis l'instant initial jusqu’a I'instant k. Mathématiquement, on la désignera par

ZM A 7, (1), 2, (k) € ZF (3.35)

Cette séquence est en fait constituée d'une séquence particuliere antérieure notée Z*~1* et de la

mesure z;, (k). Ce qui peut s’écrire
l

ZR = {(ZF18 g, (K)} (3.36)

Le nombre total possible de séquences de mesures que ’on peut ainsi construire au temps k est Ny avec

k
Ny =[] 0m; +1) (3.37)

j=1
ot m; est le nombre de mesures validées & I'instant j. Le rajout de la constante 1 permet de prendre
en compte 'hypothese selon laquelle aucune des mesures validées a un instant j donné ne provient de
la cible pistée. On désigne par m” le vecteur dont les composantes représentent le nombre de mesures
validées a chaque instant, i.e.

[my...my] (3.38)

Pour construire I'estimateur bayésien optimal, il nous faut pouvoir évaluer la probabilité conditionnelle
(c.a.d sachant les mesures disponibles Z* et m*) de réalisation de chaque séquence possible Z*! que I’on

note 6'(k). En d’autres termes, on doit évaluer les probabilités

G'(k) 2 P{0'(k)|Z*, m*} pourl=1,..., N, (3.39)

3.5.1 Forme de l’estimateur optimal

En supposant ces probabilités disponibles, I’estimateur bayésien optimal s’écrit

%(klk) = Elx(R)|Z",m*] = 3 B (k) (kk) (3.40)
=1

on %! (k|k) = E[x(k)|Z*!, m*] est l'estimée conditionnée par la réalisation possible de Z*! et de mP.

Compte tenu de la décomposition (3.36), on aura

< (k|k) = x5 (k|k — 1) + K' (k) [z, (k) — 2°(k|k — 1)] (3.41)
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2°(k|k — 1) est la mesure prédite & partir de la séquence Z*~1* ayant pour covariance S*(k). Le gain
K!(k) vaut
K'(k) = P*(k|k — 1)H(k)[S* (k)] " (3.42)

La covariance conditionnelle P!(k|k) associée & x!(k|k) s’écrit
P!(k|k) = B[(x(k) — %' (k|k))(x(k) — %' (k|k))'|0" (k), Z", m"] = [1 - K'(k)H(K)]P*(k|k — 1) (3.43)

La covariance associée a x(k|k) s’écrit

Ny,
P(k|k) = Zﬂl F)PL(kIk) + > B (k)X (k|k)X" (k|k) — (K| k)X (k|k) (3.44)
=1

3.5.2 Expression des probabilités

On veut calculer pour [ =1,..., Ng
B'(k) £ P{0'(k)|Z*, m"} = P{0;, (), 0°(k — 1)|Z(k), my, Z°1, m" "} (3.45)

On utilisant la regle de Bayes, on a
B (k) = %p[Z(k)wil (k),my, 0°(k — 1), Z 1 m* 11 P{0;, (k) |my,, 0°(k — 1), ZF 1, m*~ 1} (k — 1) (3.46)
oll ¢ est une constante de normalisation. Les probabilités intervenant dans le calcul de 8!(k) s’expriment

mr+1p —1 zi, , s \ i
DIZ )6 (). g 6 — 1), ZF 1 1] — Vi "Ry Nz (k) 2° (kk — 1),8%(k)), i #0

Vo =0

mLPgPd xC, i #0
P{olz (k)|mk7 os(k - 1)7 Zkila mkil} = P{au(k”mk} = i
(1= PyPy) s s 0 iy =0

(mr—1)

avec
_ B pr(myg) 17
C = [Ppa+ (1= PP LR 1)}
3.5.3 Inconvénient du FBO

Bien qu’optimal du point de vue théorique, ce filtre reste inexploitable en pratique car le nombre de
séquences a gérer croit exponentiellement au cours du temps. La mémoire nécessaire a la mise en ceuvre

du FBO augmente donc de maniere exponentielle au cours du temps.

3.5.4 Algorithmes sous-optimaux

D’un point de vue pratique, on est donc amené a envisager des algorithmes sous-optimaux afin de

limiter le nombre de séquences a gérer pour avoir une capacité mémoire constante au cours du temps.
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Plusieurs méthodes sous-optimales existent. Leur présentation fait 'objet des paragraphes suivants. L’idée
consiste soit & éliminer les séquences les moins vraisemblables (approche du Track Split Filter), soit &
recombiner les pistes partageant la méme séquence durant les N coups (scans) précédents. Dans ce cas,

le nombre moyen de séquences utilisées est de 'ordre de

k

Ny= [] (+E[m)

i=k—N

L’algorithme du PDAF de Bar-Shalom correspond au cas le plus simple ou N = 0.

3.6 Approche bayésienne du PDAF (1975)

On désigne par Z(k) Pensemble des mesures validées a U'instant & selon le test de validation présenté

en 3.1

Z(k) 2 {z(k) tel que Z'(k)S(k)*z(k) < 7} (3.47)

Soit my le nombre total d’échos validés a l'instant k. En supposant la cible perceptible par le senseur, il
existe alors my + 1 hypotheses d’association possibles concernant l'origine des mesures. Ces hypotheses

sont caractérisées par les événements

0o(k) : Aucun écho ne provient de la cible & l'instant k&

0;(k) : Le ieéme écho provient de la cible & U'instant &

3.6.1 Forme de 'estimateur

L’estimateur PDAF classique [BST73, BST75, BSF88] est donné par la moyenne conditionnelle basée sur
I’ensemble des mesures validées depuis I'instant initial jusqu’a I'instant k que l’on note Z*. L’estimateur
optimal %(k|k) £ E[x(k)|Z*] (au sens de la minimisation de la variance d’erreur d’estimation) s’écrit

donc, compte tenu du caractere exclusif et exhaustif des hypotheses :

x(k|k) = ZP{H (k)|ZF}E[x(k)|Z", 0; Zﬁl %, (k|k) (3.48)

avec 3;(k) = P{0;(k)|Z*} et x;(k|k) pour i # 0 et %o (k|k) donnés par
xi(klk) = %(k|k—1) + K(k)z; (k) (3.49)
Xo(k|k) = x(k|k—1) (3.50)

En utilisant (3.49) et (3.50) dans (3.48), il vient I’équation de mise & jour de 1’état et de sa covariance

associée [BSF88|
x(k|k) = %(k[k—1) + K(k Zﬂz Zi( (3.51)

P(k|k) = Bo (k)P (klk—1) + (1 — fo(k)) P (k) + P (k) (3.52)
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Pe(k) =1 -K(k)H(K)|P(k|k-1) (3.53)
P(k) = K(k) [Z B (k)2 (k) (k) — 2(k)2 (k) | K’ (k) (3.54)
et )
K(k) £ P(lc|l’<:—1)H'(l<:)S(lf)71 (3.55)
z; (k) £ z;(k) — z(k|k—1) (3.56)

z(k) = Zﬂz(k)iz(k) (3.57)

On montre en [BSF88] que la matrice stochastique P(k) est toujours définie semi-positive.

3.6.2 Expression des probabilités d’association

Le calcul des probabilités a posteriori d’association 3;(k) = P{0;(k)|Z*} (i = 0,...,my) s’obtient en

utilisant la regle de Bayes comme suit :
1 k-1 k-1
Bi(k) = —p(Z(k)|0:(K), my, Z* ") P{0i(k)[mx, 257}
ol ¢ est une constante de normalisation assurant »_."% 3;(k) = 1.
En supposant la densité de probabilité de la mesure correcte (provenant de la cible) normale centrée

sur la mesure prédite z(k|k — 1) et de covariance S(k) et les fausses alarmes indépendantes de la cible et

uniformément réparties dans la fenétre de validation Vi, on a

Vk_m’“HPg’lN[ii(k);0§S(k)] 1=1,...,mp

P(Z(k)|0:(k), my, ZV1) = (3.58)
Vkimk Z == 0
Les probabilités a priori d’association P{6;(k)|my,Z*~!} sont données par
L Faby i=1,...,my
P{O;(k)|my, 2"} = ¢ (3.59)

Lprlme) (1 _p,p) i=0

c1 pr(mi—1)
avec ¢; £ PyPy + (1 — PdPg)% et ol pup(.) est la masse de probabilité du nombre de fausses
mesures validées. Py est la probabilité de détection de la cible et P, la probabilité de fenétrage choisie

pour le test de validation des mesures.

En pratique deux versions du PDAF ont été proposées par les auteurs selon le modele choisi pour pp(.).
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— Version paramétrique du PDAF : Si on suppose que pr est une loi de Poisson de parametre

AVi (X étant la densité spatiale des fausses alarmes) qui s’exprime

() = Q) -

' m=0,1,2,... (3.60)
m.

alors les probabilités d’associations a priori s’écrivent

LaFy i=1,...
P{O,(R)|my, ZF1y = § P A (3.61)
(1=P3Pg)A\Vy

PaPymut(1—PaP AV, © =0

— Version non paramétrique du PDAF : Si on choisit une loi diffuse pour pup, (c.a.d. telle que

wr(m) = pp(m — 1) = €) les probabilités d’associations a priori s’écrivent

P, P, .
—dg i=1,...,mk

P{oi(k)|my, 2"y = ¢ " (3.62)
1— PP, i=0

En remplacant les expressions de p(Z(k)|0;(k), mg, ZE~1) et de P{6;(k)|mg, Z*~1} dans (3.6.2), on

obtient finalement

b
Bo(k) = ——mr— (3.63)
b+ e
€ ..
Bi(k) = ——=m— sii#0 (3.64)
b + Z_j:kl 6]'
avec
e;, = eféig(k)s(k)ilii(k) (365)
(2 /)2 22V, U=E2P)  ergion paramétrique
b= o N (3.66)

(277/7)%/26%27711@(1%3135') version non paramétrique
P, représente la probabilité de détection de la cible et A la densité spatiale des fausses alarmes dans

I’espace des mesures.
La forme équivalente suivante des probabilités peut également étre utilisée

b
Bo(k) = bEST o (3.67)
j=1 %

Bi(k) sii#0 (3.68)

b+ Z;n:ﬁ @;j

avec maintenant

a; £ Py N zi(k); 05 S(k)] (3.69)
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1-P,P, . -
AL=FaP) o 2)  version paramétrique
d
b= (3.70)
my (1_PdPg) . , .
A —p—  version non paramétrique

Une version factorisée du PDAF peut étre trouvée en [Pat77, Ken90, RPBS93].

3.6.3 Equations de prédiction

Les équations de prédiction du PDAF sont identiques & celles d’un filtre de Kalman standard [SM71,
BH92, BSL93] (ou étendu selon le modele choisi) & savoir
x(k+1|k) = F(k)x(k|k) (3.71)

P(k+1|k) = F(k)P(k|k)F' (k) + Q(k) (3.72)
avec éventuellement (si EKF)

F(k) = [Vf/[k,x(k)u/x:,z(mk)

La mise en évidence de la consistance du PDAF peut étre trouvée en [BSB83].

3.6.4 Filtre PDAF enrichi par la reconnaissance

L’information supplémentaire de reconnaissance des signaux regus peut (et devrait) étre utilisée pour
améliorer la qualité de la poursuite. Nous présentons la prise en compte d’une telle information dans le

formalisme classique du PDAF.

Filtre ATIPDAF (1990)

Ce filtre appelé AIPDAF (Amplitude Information PDAF) proposé en [LBS90a, LBS93a] utilise ’am-
plitude du signal, notée a(k), ou la surface équivalente rayonnée par un radar - SER - (RCS - Radar Cross
Section) associée aux mesures validées. Ces informations supplémentaires sont des informations de re-

connaissance qui aident & discriminer la mesure correcte des fausses alarmes.

Les mesures élémentaires z(k) sont maintenant constituées des mesures traditionnelles augmentées

des informations de reconnaissance a(k) associées, i.e.
z(k) = (3.73)
On suppose alors disponibles les densités de probabilité de la mesure de reconnaissance a(k) condition-
nellement & Iidentité I'd de son origine (T pour la cible et FA pour les fausses alarmes)
pra sild=FA

pla(k)|Id) = (3.74)
pr sild=T
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Dans [LBS90a, LL97], les auteurs supposent que ’amplitude a(k) de la vraie mesure & 'instant k est

une variable aléatoire de Rayleigh dont la densité vaut

pla(k)|Id = T) = é%e*% La(k) — 1) (3.75)

ou t est le seuil du détecteur, d est le SNR moyen (Signa-to-Noise Ratio) et 1(.) est la fonction échelon

unitaire. L’amplitude a(k) des faux échos suit une autre loi de Rayleigh de type

_a%(k)
2

pla(k)|Id=F) = (ke 1(a(k) — ) (3.76)

Pro"

ol Py, est la probabilité d’avoir une fausse alarme dans une cellule de résolution du senseur d’observation.

Les équations de PAIPDAF sont les mémes que celles du PDAF standard excepté I'expression des

probabilités d’association 3;(k) qui compte tenu du fait

(s (k) [6:(k), i, Z81) = plas (k) [1d = T) P, N [7:(k); 0; S (k)] (3.77)
plz: (k)| 8o (k) my,, Z1) = Vikpmi(k)ud — FA) (3.78)

s’écrivent dorénavant

b

k)= ——=mr———— 3.79
folk) b+ 525 el (379

eil; .
() = —cili 0 3.80
Bi(k) S SN si i # (3.80)

avec e; et b donnés en (3.65) et (3.66) et
J(K)Id=T

" plai(k)|Id = FA)
Plus la discrimation sera forte (i.e. plus les densités p(.|Id = T') et p(.|Id = FA) seront différentes),

meilleures seront les performances de ’AIPDAF.

Filtre PDAF avec classifieur d’échos (1990)

En pratique, I'information de reconnaissance peut soit apparaitre sous une information de nature
continue (cas de l'amplitude des signaux) comme on vient de le présenter, ou bien plus généralement
sous la forme d’une décision issue d’un systeéme de reconnaissance auxiliaire que 1’on appelle classifieur.
Dans ce cas, on suppose que l'on dispose d’'une mesure de la qualité du classifieur. Cette approche a
été développée initialement en [Dez90, Dez92] pour la navigation autome d’engin. La prise en compte
de données de reconnaissance de nature incertaine (i.e. non décrites en terme statistique) basée sur la
théorie de I’évidence [Sha76] a également été proposée au sein du PDAF en [Dez90]. L’application
de cette approche au recalage de centrale inertielle d’'un missile en vol basse altitude est présentée en

[Dez99a]. La prise en compte d’informations floues sur les attributs de reconnaissance a été développée
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ne [SS98].

Nous présentons ici une application particuliere [MD95] de cette approche oli 'on cherche & pister une
cible particuliere (par exemple un bombardier/AWACS) dans un ensemble de cibles de nature différente

(escadrille d’avions de chasse) en présence de fausses alarmes.

Les décisions sur la reconnaissance des échos validés sont notées D (k)= {d;(k)} -, . La reconnaissance
notée d;(k) du iéme écho validé peut prendre trois valeurs possibles : d;(k)=dp si ’écho est déclaré du
type fausse alarme (hypothese hg), d;(k)=d; si 'écho est déclaré de type objet interférant (hypothese
h1) ou d;(k)=dz si ’écho est déclaré de type cible (hypothese hs).

La qualité globale du classifieur utilisé est caractérisée par une matrice de confusion C=|c;;] sup-
posée connue dont les éléments sont donnés par ¢;; =P(d(k)=d;|h;) i,7=0,1, 2. Les décisions d;(k) sont

supposées indépendantes sachant ’origine de toutes les mesures.

En utilisant la méme démarche de développement que celle du PDAF standard, 'estimateur est alors

donné par

%(klk) 2 Elx(k)|Z*,DF] = 3 Biki(kk) (3.82)
1=0

avec D* 2 (D(k), D*~1) et %x;(k|k) donné par (3.49) et (3.50).

Les probabilités 3;(k)= P(0;|Z*, D*) sont obtenues par la régle de Bayes
1
Bi(k) = —=P(Z(k)|0;(k), Z" ", D* mi) P(D(k)|0; (k), Z* 1, D my) P(0;(k)|ZF 1, D1 my) - (3.83)
c
ol ¢ est une constante de normalisation. Dans le cas ot i =0 (la cible est non détectée ou non validée),

on a [MD95]

— — P[NO a:mk](l—PdP)
P(6o(k)|ZF 1, D1 my,) = ! g 3.84
(B ()] ™) (1 = P4Py)P[Noga=mu) + PaPyP[Nofa=mp—1] (3.84)

ot Nofq £ No+Nytq, est la somme du nombre d’objets N, et de fausses alarmes Ny, validées. N, et N¢,
étant supposés suivre une loi de Poisson de parametres respectifs AoV (k) et AfoV(k), Nogq suivra une
loi de Poisson de parametre (A, + Arq)V (k). La Py, (probabilité de fausse alarme) étant donnée, Az, est
connue; il nous reste & estimer \,. Si 'on admet I’hypotheése que les mesures Z(k) sont statistiquement
indépendantes des décisions D* et que les objets interférants et fausses alarmes sont uniformément répartis
dans V(k), on a alors

P(Z(k)|00(k), ZF~1, D* my,) = V (k)™ (3.85)
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P(D(k)|0o(k), ZF=1, D*=1 my) = P(D(k)|0o(k), mz) est calculé en considérant toutes les affectations des
échos

P(D(k)|00 (K ZPl (3.86)

mn AO " Afa "
fﬁ(n) ::})UV; ::nweo,ﬂlk] (j Af X;——;TX—

avec

En parcourant tous les sous-ensembles ® a n éléments parmi my, il vient

[HP k)hs) T P(di(k)|hg ] (3.87)

1€P iede

Py(n) = P(D(k)|N, = n, by, my) =

o ®€ est le complémentaire de . En remplagant P;(n) et Py(n) par leur expression dans (3.86), il vient

PID) o) = [ [ |55 P 0IG) + 535 Plashlng)| (3.59)

P(d;i(K)|h%) est I'élément c¢;; de la matrice de qualité C connue a priori. D’autre part, en notant 0; le

complémentaire de 6; et en tenant compte du fait que

X _ 1 Afa
P hZ ,97; = — E N a =
(holme, 0;) p— [Nfalmy] N A
: _ 1 Al
P h} ,Qi =—F ]VQ -
(1l 00) = = BN ] = 55
il vient finalement
P( |90,mk | | P |91,mk)

Dans le cas i # 0, le calcul des §;(k) se déroule de fagon similaire en introduisant la densité gaussienne
tronquée dans V (k). L’expression finale des (;(k) est alors donnée par (3.67) et (3.68) avec e;(k) et b

maintenant donnés par

e; = Ai(k)eiéié(k)s(k)ilii(k) (3-89)
ny/2

2 1 - PP,

b— (_ﬂ) (Mo + )\fa)V(k)M (3.90)
v Fa
ou

P(d; (k)|6; P(d;|h

z(k) a (dz(/f)|91) . [)‘o + )\fa] (dz|h2) (3.91)

P(d;(k)[0:) — ApaP(dilhy) + Ao P(d;| 1)
Il reste a estimer la densité spatiale A\, des objets interférants. Le nombre M d’échos validés s’écrit

Noso+1 (ciblee V(k)) (I désignant la fonction indicatrice qui vaut 0 ou 1) et a pour densité de probabilité

1 my—
P(M=my) = m—k'[PdPgmk + (1 = PaPy)(Afa + /\O)V(k)]((/\fa + )\O)V(k:)) Fl o= (at o)V () (3.92)
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La maximisation de (3.92) par rapport & A, conduit a Uestimateur du maximum de vraisemblance suivant

< miV(k)(1 = 2PsPy) + VA
Ao = sup{0, V(R = PaP,) Afa} (3.93)
avec
A £ mp2V (k)2 (1 — 2Py Py)* + dmy(my, — 1) PyPy(1 — PyPy)V (k)? (3.94)

A partir des informations de reconnaissance disponibles, un test de confirmation de piste basé sur le

SPRT (Sequential Probability Ratio Test) de Wald [Wal47] été proposé en [MD95].

3.6.5 Filtre PDAF modifié (1994)

Les travaux récents [Gué94, Gué96, Li98b] ont mis en évidence une légere erreur dans 1’évaluation de
la matrice de covariance P(k|k) lorsque I’éveénement my = 0 est réalisé. En fait, I’équation de mise & jour
du PDAF standard (3.52) doit étre modifiée afin de prendre en compte le fait que si mjy = 0 est vrai, il
est tout aussi probable que cela soit dii a une erreur sur ’estimation de la position de la cible plutot qu’a

une mesure cible réellement mauvaise. L’équation du PDAF modifié s’écrit quand my # 0

P(k|k) = fo(k)[I + oK (k)H(k)P(k|k — 1) + (1 — fo(k))P°(k) + P(k) (3.95)

et quand my; =0

| P(k|k) = [T+ qoK (k) H(R)P(k]k — 1) (3.96)

o est un facteur de pondération donné par [Gué96, L197]

Py(P, — P, PyP,(1 —
g 2 d(Fy 99) — 2d o cr) (3.97)
1—- PP, 1—-P4P,
ou P, Py, et cr valent
P, 2 Plix; <7} (3.98)
Pyg - P{Xiz+2 <~} (3.99)
Tr 14+n,/2
cr 2 M (3.100)
(nz/2)I'(n./2)
cr est le rapport de fonction Gamma incomplete
Lo(z) & / u” e du (3.101)
0

Note : Py, ou ¢ sont facilement calculable en MatLab en utilisant les fonctions chi2cdf(.), gammainc(.)

et gammay(.). De plus, on a toujours gy > 0 puisque pour P, < 1 on a [AS68, Gué9ot]

9\=/2 = /2
T i

= 0 3.102

L’utilisation de cette équation est encore malheureusement trop méconnue.
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3.6.6 Avantages/inconvénients du PDAF

L’avantage essentiel du PDAF est sa facilité de mise en ceuvre et sa faible charge en calculs (& peine
supérieure & la charge d’un filtre de Kalman classique), sa prise en compte des fausses alarmes et de la

détection non unitaire de la cible.

Ses inconvénients restent la nécessité d’avoir un module spécifique d’initialisation de piste, et une
plage limitée de fonctionnement. Il a été montré qu’en général les performances du PDAF se dégradent
vite lorsque le nombre moyen d’échos validé est supérieur & 3 (ceci correspond en général a des environ-
nements fortement dégradés). Le développement du PDAF de Bar-Shalom suppose implicitement la
perception de la cible; c’est a dire I'existence réelle de la cible dans le champ d’observation du senseur.
Cette hypothese peut étre supprimée et I’évaluation de la probabilité de perception de la cible peut étre
en fait intégrée directement au formalisme du PDAF. Ceci conduit & 'FIPDAF (Integrated PDAF) qui
va étre présenté dans la section suivante. Les applications du PDAF sont multiples et sont discutées en
[BSL95]. L’évaluation des performances de PDAF a priori (sans simulations Monte-Carlo) est discutée en
[LBS91c, KE96]. La prise en compte d’une période de mise & jour non constante du PDAF est proposée
en [Mar79, BSM80, AHWO96]. Une version de filtre PDAF avec lissage a été proposée en [MPG86]. Une

extension du PDAF & la prise en compte de scans multiples est discutée en [Dru93a, Dru93b].
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3.6.7 Un cycle du PDAF

| Cycle du PDAF I

k=k+1

Etat et mesure prédite

Acquisition

&(klk-1), P(klk-1), Z(klk-1), S(k)| | des mesures

Y

Calcul des innovations
z;(k) = z; (k) - 2(klk—1)

{zj(k)}
<_—

Fenétre de validation

{Zj(k), j=1,..., m(k)}

J

Probabilités d'association
{B;(k), j=0,..., m(k)}

Innovation combinée

(k) =), BiZ;K)

Y

Calcul du Gain K(k)

|

seuil

Mise a jour de I'état

§(klk) Kalman standard
P(klk) équation Riccati stochastique

Y

Partie prédiction

R(k+11k), Pk+11k), 2(k+11k), S(k+1)

F1G. 3.1 — Schéma de principe d’un cycle complet du PDAF

33
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3.7 Approche bayésienne de 'IPDAF (1985-1998)

Le développement de 'IPDAF (Integrated PDAF) a d’abord été donné par Colegrove en [CAS85,
CDAS86, CA87], puis repris par Musicki en [ME92, MES92a, MES94] et Li en [LL97, Li97a]. La présentation
ici faite de 'TPDAF est basée sur [JD99b].

3.7.1 Perception de la cible et évéenements d’association

A tout instant k, la perception de la cible et sa non-perception peuvent étre représentées par les deux

évenements exclusifs et exhaustifs suivants :

Oy £ {la cible est perceptible au temps k}
Oy, £ {la cible est imperceptible au temps k}

Pour simplifier, Oy, désignera dans la suite aussi bien le fait que la cible soit perceptible que ’éveénement
aléatoire lui-méme. Lorsque I'on a des mesures validées a 'instant k, I'intersection de ces évenements de

perception avec les évenements d’association classiquement introduits dans le formalisme du PDAF

0;(k) % {z;(k) provient de la cible au temps k}, i=1,...,mg

Oo(k) = {Aucune des mesures ne provient de la cible au temps k}

permet de définir le nouvel ensemble d’événements suivant :

E_i(k) & Ornbik) i=1,...,my (3.103)
Eo(k) & Orpnby(k) (3.104)
Eo(k) = Orpnbo(k) (3.105)
E(k) & Opnoi(k) di=1,...,m (3.106)

Puisque la mesure de la cible ne peut pas avoir lieu sans la perception de celle-ci par le senseur, on
peut d’ores et déja affirmer que les évenements £€_;(k),i = 1,..., my sont non réalisables. Par conséquent,
on a d’emblée £_;(k) = 0 et P{E_;(k)|Z*F} = P{E_;(k)|ZF1} = P{€_;(k)} =0 pouri=1,...,my. Seuls

les évenements E(k), Eo(k) et E;(k) (i =1,...,my) peuvent avoir une probabilité non nulle d’occurence.
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3.7.2 Forme de l’estimateur
Cas1:my;#0

En utilisant le théoreme des probabilités totales, ’estimée de 1’état de la cible, minimisant ’erreur

quadratique moyenne, s’écrit :

x(klk) = Elx(k)|Z*] = 55 (k)% (klk) + Zkﬂi(k)fq(klk) (3.107)
=0

ot %;(k|k) & E[x(k)|Ei(k), Z*] est I'état mis & jour de la cible conditionné par 1’événement &;(k) =
Oy, N 0;(k) correspondant au fait que la cible soit & la fois perceptible et que la iéme mesure va-
lidée soit correcte. x5(k|k) est I'estimée de I’état de la cible conditionné par la réalisation de 1’événement
E(k) = Oy Ny(k) qui a lieu lorsque la cible est imperceptible et que toutes les mesures proviennent du
bruit. 8;(k) £ P{&;(k)|Z*} représentent les probabilités a posteriori d’association intégrées. La termino-
logie intégrée nous permet de spécifier que la perception de la cible par le senseur de poursuite est prise
en compte dans le processus méme d’association des données du filtre. Le calcul des nouvelles probabilités

B:(k) pour i = 0,0,1...my va étre bridvement explicité au prochain paragraphe.

L’estimée conditionnelle de ’état de la cible pour chacune des hypotheses d’association suit le forma-
lisme classique du filtre PDAF, & savoir (3.49). Le gain K (k) est identique & celui calculé par le filtre de

Kalman standard car le conditionnement par &;(k) élimine de fait I'incertitude sur 'origine de la mesure.

Pour i = 0 et ¢ = 0, si aucune des mesures n’est correcte (peu importe la perception ou non de la

cible), les estimées conditionnelles de I’état s’écrivent :

g (k|k) = %o (k[k) = *(k|k — 1) (3.108)

En combinant toutes ces estimées conditionnelles par pondération bayésienne, on obtient finalement

lestimée globale de ce nouveau filtre IPDAF.

x(k|k) = %(k|k — 1) + K(k)Z(k)

ot I'innovation combinée z(k) est donnée par

z(k) = Z Bizi(k)
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La matrice de covariance P(k|k) associée & U'estimée précédente est donnée par

P(klk) £ B[x(k) - x(klk)][x(k) — x(k|k))'|Z"]

S Gk E[[x(k) — xR — (KB Z, € (k)]

i=0,0,...
= P + P24 (P?) +P? (3.109)
avec
my
pl = Bi(k) R (k[ k)X (k) + Pi(k| k)]
i=0,0,...
my
P* = —x(klk) > Bi(k)E[x(k)|Z" (k)] = —x(k|k)X (k|k) = (P?)’
i=0,0,...
my
PP = R(kR)X'(K[k) D Bi(k) = X(k[k)X (k|k)
i=0,0,...
Les covariances conditionnelles P;(k|k) pour i = 1,...,my sont données par
P;(k|k) = Pe(k|k) = [T — K(k)H(k)]P(k|k — 1) (3.110)

Sous les hypotheses Ey(k) et Ey(k), les matrices Po(k|k) et Py(k|k) valent respectivement

Py (k|k) P(k|k — 1) (3.111)

Po(klk) = [T+ qoK(k)YH(E)P(kk —1) (3.112)

ol qo est le facteur de pondération donné en (3.97).

La relation (3.112) du PDAF modifié confere plus de robustesse au filtre de poursuite devant fonc-
tionner dans des environnements tres défavorables (i.e. ayant un taux élevé de fausses alarmes et/ou avec

une faible probabilité de détection des cibles).

A partir de I’équation (3.109) et des équations précédentes, on obtient finalement

P(klk) = Bo(k)P(k[k — 1)+ Bo (k)X + qoK(k)H(K)P(k[k — 1)

+(1 = Boo(k)Pe(k|k) + P(k) (3.113)

olt la notation B o (k) £ betag(k)+ Bo(k) a été utilisée par souci de simplification. La matrice stochastique

définie semi-positive P (k) est donnée en (3.54).
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Cas2:mp =0

37

Lorsque 'on a aucune mesure validée dans la fenétre du filtre, c’est & dire Z¥ = {Z(k) = 0, mp =

0,Z*='} | on a théoriquement, de par le théoréme des probabilités totales

%(klk) = E[x(k)|Z"] = Elx(k)|my = 0,Z2"'] = P,y 0% (klk) + (1 = Py 0)% (k|F)

avec

(1- PdPg)Pﬁkfl
1— PdPgPﬁk,l

o) _
P10 =

et

xO(klk) & E[x(k)O,m, =0,ZF1]

(1>

%0 (k|k) Ex(k)|Og, my = 0,ZF]

(3.114)

(3.115)

(3.116)

(3.117)

En fait, quand on ne dispose d’aucune mesure (peu importe la perception ou non de la cible), on doit

avoir

KO (k|k) = O (k|k) = %(k|k — 1)

Par conséquent,

% (klk) = x(k[k — 1)

La covariance P(k|k) associée & lerreur d’estimation du filtre est donnée par

P(k|k) = P _1 0P (k[k) + (1 — Py, _1 o )P (k[k)

avec

PO(klk) = [+ goK(k)H(K)P(k|k - 1)

PO(klk) = P(klk—1)

Finalement, on obtient la matrice de covariance cherchée

P(k[F) [T+ qoPyfs—1 oK (k)H (k)P (k[k — 1)
PyPy(1 = cr)PQ,_,

L= PyPy PG,

- I+ K (k)H(E)P(k|k — 1)

(3.118)

(3.119)

(3.120)

(3.121)

(3.122)

(3.123)
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3.7.3 Equations de prédiction

La prédiction de I’état de la cible et de sa mesure au temps k + 1 sont obtenues comme a ['étape de

prédiction du filtre de Kalman classique. La covariance de 'erreur de prédiction associée est donnée par
P(k + 1|k) = F(k)P(k|k)F'(k) + Q(k)
P(k|k) est donnée par I’équation (3.113) ou (3.123) selon le nombre de mesures validées my & l'instant

k. La covariance de I'innovation S(k) est identique & celle du filtre de Kalman standard.

3.7.4 Calcul des probabilités d’association intégrées

Nous donnons d’abord 'expression des probabilités d’association intégrées quand my # 0. On veut

donc évaluer ici

Bi(k) & P{&(k)|Z(k), my, Z*"1},  i=0,0,1...my (3.124)

En utilisant la regle de Bayes, on a

Bi(k) = %p[Z(k:)|5i(k),mk,Zk’l]P{Hi(kﬂOk,mk,Zk’l}P{Ok|mk,Zk’1}
Bo(k) = %p[Z(k:)|50(k),mk,Zk’l]P{Ho(kﬂOk,mk,Zk’l}P{Ok|mk,Zk’1}
Bo(k) = %p[z(kﬂgé(k)amkvZk*l]P{i%(k)@kvmk,Zk*l}P{OMmk,Zk*l}

ou ¢ est une constante de normalisation.

— pour ¢ = 1...my, en supposant la distribution de la mesure cible normale autour de la mesure

prédite et les fausses mesures indépendantes et uniformément réparties dans Vi, on a

PIZ(R)IEi (k) mi, ZF1] = Vim ™ PN [z (k)5 03 S (k)]

. k—17 _ 1 PaP '
P{0;(k)|Op,my, ZF71} = -5t (3.125)

P{Og|my, Z*"} 2 Pt

ou ¢; vaut
2 pPp 1—-P,P _pr(me) 3196
c1 = PyPy + ( d g)uF(mkfl) ( )
— pour ¢ =0, on a

plZ(K)|Eo (), mk, ZF~1] =V,

P{0o(k)| Ok, my, 271} = LU (1 — PyPy) (3.127)

P{Oy|my, ZF'} = P,
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— pour i =0, on a

plZ(k)|Es (k) my, ZFT] = V7™
P{0o(k)| Ok, mi, ZF1} =1 (3.128)
P{Oy|my, ZF1} =1- Pko|k—1,mk

La probabilité prédite de la perception de la cible Plg\)kq,mk conditionnellement & mj est donnée au

paragraphe suivant. En combinant les équations précédentes, il vient finalement ’expression finale des

probabilités d’association intégrées cherchée

1
Bi(k) = Eai(k)Plg\k—l,mk (3.129)
Bo(k) = %bo(k)P,S‘k_Lmk (3.130)
1
Bo(k) = Ebé(k)(lfng\kq,mk) (3.131)

La constante de normalisation ¢ est donnée par

my
c= b@(k)(l - Plg|k71,mk) + bo(k/’)PkO\kfl,mk + Pko\kfl,mk Z ij(k/’) (3132>

j=1
avec

ai(k) £ P N(zi(k); 0;S(k))

A my 1=PaPy  pr(myg)
bo(k) = Vi PaPy  pr(mip—1)

bo(k) & e ple- [PaPy + (1 - pdpg)%]

3.7.5 Remarques

— On peut facilement vérifier que ces nouvelles expressions restent parfaitement cohérentes avec celles
du PDAF de Bar-Shalom qui supposait implicitement la totale perception de la cible. En effet, si

l’on fixe P?

= 1 dans les expressions précédentes on retrouve bien l’expression originelle des
klk—1,my

Bi(k) pour i = 0,...,my, (By(k) étant nulle des lors que P, ,  =1)

— En adoptant la méme démarche que dans les travaux antérieurs [LBS90a, Dez92, LL97] la prise en
compte d’une information de reconnaissance/classification et/ou d’amplitude peut étre facilement
intégrée & ce nouveau filtre IPDAF. 11 suffit, pour cela, de remplacer les terms e;(k) par les termes
a;(k)L;(k) dans les expressions des probabilités d’association intégrées. L;(k) désigne le rapport de
la densité de probabilité de 'amplitude du signal cible (ou tout autre type d’information statistique
lié & la reconnaissance de la cible) au signal des fausses alarmes. Nous renvoyons le lecteur aux

références précitées pour de plus amples détails.
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— Les probabilités Gy(k) et Gg(k) peuvent étre additionnées par souci de simplification de notation.

On aura
N 1
Bo,o(k) £ P{&(k)|Z"} + P{&(k)|Z"} = P{0o(k)|Z"} = ~boo(k)
avec
c=byo(k) + Pko\k—l,mk Z o (k)
j=1
et
£ bg(k)(1 - Plg\k—l,mk) + bo(k)PI?w—l,mk
MF(mk) }
pr(my — 1)

1
[( - Plg\k—l,mk)PdPg + (1 - PyPy)

- Vi PyP,
Si on suppose une loi a priori diffuse pour la distribution du nombre de fausses mesures up (i.e

wr(mg) = pp(mg — 1), on obtient
PdPg}

mg 1 0
[1 - Pk‘k*l,mk

bo,o(k) = V. PP
g

Si on suppose une distribution de Poisson pour up avec comme parametre AV, on obtient

1 1

bo G(k?) = VdeP
g

, [mdePg(l - Plg|k71,mk) +(1 - PdPg))‘Vk}
Comme en général la vraie densité A du clutter reste inconnue, on doit I’estimer en ligne a chaque

pas du filtre. Souvent I’estimateur 5\k = my,/Vj, est utilisé. Mais l'estimateur suivant
(3.133)

mk:()

0
A =
VLdePgP,gHmk my # 0

Mg _

Vi
semble beaucoup plus judicieux du point de vue théorique. Cependant puisque Pk‘ k—1.m, ©st elle-

méme une fonction de la densité inconnue A comme nous le montrerons, cet estimateur ne peut pas

étre utilisé directement sous la forme précédente. En fait, on devra prendre pour estimation de A
(3.134)

la solution positive de 1’équation du second degré suivante :
o 1 0 a
Ak — My — PaPy P11, ()] = 0

k
D’autres estimateurs plus sophistiqués [LL98c| basés sur le maximum de vraisemblance, les moindres

carrés ou la méthode des moments peuvent aussi étre choisis.
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3.7.6 Calcul de Pﬁkflvmk

Le calcul complet des probabilités d’association intégrées nécessite 1’évaluation de la probabilité de

perception conditionnelle prédite de la cible ng_l i Son calcul s’obtient simplement en utilisant la

regle de Bayes. En effet, on a

Plitim, = PAOslmi 251}
B P{m4|Ox, Zk*l}}jﬁkq (3.135)
PlmilOn, 2 T1PG,_, + Plmil O, 25 TH1 = BG,_) |
avec
PQ,_y £ P{Ox|Z" 1} (3.136)
PG, 2 P{OyZF1} =1- PG, _,

et ott P{my|Oy, Z*1} et P{m4|Oy, Z*~1} sont données par

(1= PaP,)ur (0) mi = 0
P{my|O, 2"} = !
PyPypp(my) + (1 — PyPy)pr(my —1) mp #0

B wr(0) my, =0
P{my|Oy, Z*~1}
pr(my) mg #0

En remplacant ces expressions dans (3.135), on obtient
— pour my = 0,
po . (1_PdPg)PI§\)k—1
Mkt 1 — PPy PO,

— pour my # 0 et avec une loi diffuse pour g, on a
o) _ pO
Prik—1,mp = Prjr-1

— pour my # 0 et avec une loi de Poisson pour pp, on a
[1— PaPy(1 — 3351 P,
1-P;P,(1—- )\m—v’;)ngil

O _
Pk\k—l,mk -

On obtient finalement la forme concise suivante [LL98c],

1— )P
ro — w (3.137)

[k=1,mp — _ O
1 Ekpk\k—l

avec

PdP mg = 0
A g (3.138)

PyPy(1— ) my #0

€k

La probabilité de perception prédite non conditionnelle P,ﬁkfl doit donc maintenant étre évaluée pour

o}
achever le calcul de Pk|k71’mk_.
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Calcul de la probabilité de perception prédite

En utilisant la regle de Bayes, on a

Py = P{Oi|Z"7"}

P{Oy|Oy_1,ZF 1} P{Oyx_1|ZF" '} + P{O4|O_1,Z* "} P{Oy_1|ZF 1}

T11 21

Avec la notation Pk071|k71 2 P{O,_1|ZF 1} et Pgl'kfl £ P{Oy4|ZF 1)} =1~ Pkoil‘ki17 on écrit

PR =muP oy (1= Py, ) (3.139)

Au temps k, la probabilité (inconditionnelle) de perception mise & jour Pﬁk £ P{O.|Z*} est donnée par

Pi(1—e) Py

PG, = 3.140
klk P(1- ek)PkOUc—l + Py(1— ng_l) ( )
avec
P & P{Z(k)O,my,Z" 1}
P, & P{Z(k)Oy,my,Z" 1}
On peut facilement montrer qu’avec une loi de Poisson pour p g, on obtient
P{Z(k:):(mOk,mk:O,Zk*l}:l mg =0

—nLk+1

sz() P{Hi, Z(k/’)|0k, mg, Zk_l} = ka [(1 — PdPg))\ + PdPg Z;Zkl ai] mig 7é 0

C2

P{Z(k) = 0|Ok,m = 0,Z*" 1} =1 my =0
Py =

Vkimk my # 0

ou la constante ¢y est définie comme
ca = PyPymy + (1 — PiP)A\Vi = (1 — ex)AVj, (3.141)

Apres substitution de Py et P, dans (3.140), on obtient

(1- ¢k)PI§\)k71

3.142
1 7¢kplgk—1 ( )

o _
Py =

avec
PyP, mp =0
br =
PiPy(1— £ 37 i) my #0

(3.143)
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On voit donc que les probabilités de perception de la cible P | o1 €t P |, peuvent étre évaluées en
ligne récursivement grice aux relations (3.139) et (3.142) deés lors que les parametres de réglages w11, ma1

et PO

170 sont fixés.

Les premieres investigations théoriques sur 'optimisation de ces parametres de réglage pour I’amélioration
de la perception des cibles peuvent étre trouvées en [LL98b]. Dans leurs travaux, les auteurs supposent
que la perception {Ox} d’une cible & chaque instant suit un processus de Markov homogéne d’ordre

1; c’est a dire

1 & P{Ok|Ok-1,Z" '} ~ P{Ok|Op_1} (3.144)

To1 P{Ok|Ok_1,Zk*1} a2 P{Ok|Ok_1} (3.145)

3.7.7 Commentaires sur le calcul des j;

D’apres le théoreme des probabilités totales, on a

P{O|Z"} + P{Oy|Z"} =1 (3.146)

En introduisant tous les évenements d’association 6;(k), i = 0,..., my, il vient

ZP{Ok, IZk}+ZP{Ok, (k)|z*} =1

soit encore

%P{f)_z |zk}+ZP{5 (k)|ZF} =1

Comme les évenements £_;(k) ont une probabilité nulle d’occurence, il nous reste donc

P{&(K)|Z"} + P{&(k IZ’“}+ZP{5 (k)|z*} =1

ou de facon équivalente

B(k) + Bo(k +Zﬂz )=1

Nous prouvons ici que les expressions des [3;(k) précédentes restent cohérentes avec I’équation (3.146).

En d’autres termes, on montre que 1’on a bien

P{O|Z*} Ba(k) = P{Ox, bo(k)|Z"} (3.147)

P{OZF} = Bolk) + D filk) (3.148)
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La lere relation (3.147) est immédiate. En effet, puisque P{0o(k)|Ox, Z*} = 1 et d’apres la regle de

Bayes, il vient

Ba(k) = P{Oy, 00(k)|Z*} = P{0(k)|Ox, Z"} P{Ox|Z*} = P{O;|Z"} (3.149)

La seconde relation (3.148) nécessite un peu d’algebre. A partir des relations (3.137), (3.125),(3.127)
et (3.128), on obtient pour F5(k),B0(k) et B;(k) (avec pur de type Poisson)

1 1 PP

Bi(k) = T aB v <o mkgvku — k) Pyl (k) (3.150)
klk—1 k
1 1 \V,
Bo(k) = T aB Jvo X Em—k(l — PaPy)(1 — ex) Py (3.151)
klk—1 k g
1
Bo(k) x 1= Pl (3.152)

(1= Pl )e/Vi™

En utilisant le fait que,

1 AV,

(1_¢k)PIS\k—1 = C_—(l_PdPg)(l_ek)Plg\k—1
1 Mg
1 PyP, 0
+— Vie(1 — €x) Pyjp a;(k 3.153
c1 M i ( k) |k 1; (k) ( )

on peut facilement vérifier que la constante de normalisation ¢ peut en fait s’exprimer comme

1—¢pPY,
c=Vme Mkl (3.154)
1-— ekPkHc—l

Le terme intervenant au dénominateur des relations (3.150),(3.151) et (3.152) s’exprime donc comme

1-— €kP;?k,1
R Y (3.155)
Vi

Par conséquent, en utilisant (3.153) et (3.155) nous obtenons

ok _ (1—- ¢k)PJS|k71
Bo (k) + ;ﬁi(k’) = W

k-1

= P{Ox|Z*} = Py, (3.156)

Ce qui démontre la validité de la relation (3.148).

De plus, on peut facilement vérifier & partir des relations (3.150) et (3.154), que 'on a

1*P18k—1
Bo(k) = 7 |

— i PP :1*P18|k :P19|k:P{Ok|Zk} (3.157)
klk—1
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3.8 Filtre non-bayésien TSF (1975)

Cette approche [SB75a] peut étre utilisée juste apreés la phase d’initialisation d’une piste. L’idée
consiste & séparer la piste (Track Split Filter - TSF) a 'instant £ = 1 en autant de branches qu’il y
a de mesures validées & k = 1 dans la fenétre centrée autour de la mesure prédite z(1|0). Pour chaque
branche, on met en ceuvre un filtre de Kalman classique, puis on prédit I’état de la cible a l'instant
k = 2 et on réitére cette procédure aux instants suivants. Pour limiter le nombre exponentiellement
croissant de branches, on évalue la vraisemblance de chaque branche et on élimine les branches les moins
vraisemblables. On considére que la branche (la séquence de mesures) la plus vraisemblable correspond &
la piste de la cible. Dans cette approche on suppose que la probabilité de détection de la cible est

unitaire (P; = 1).

3.8.1 'Vraisemblance d’une séquence

Une séquence (branche) possible est notée (comme pour le FBO) Z*!. On note #'(k) I’événement

suivant :

0'(k) £ {Z"' est la piste correcte} (3.158)

La fonction de vraisemblance de 6'(k) s’écrit :

k
A(0'(k)) = p[Z"'10" (k)] = H plzi, (7)|Z77",0' (k)] (3.159)

ot Z7~! représente I’ensemble de toutes les mesures disponibles jusqu’a I'instant j— 1. Sous les hypotheses

de modele linaire/gaussien, c.a.d.
p[ziz (j)|zj71a Hl(k)] = N(Ziz (k)v iiz (Jlj - 1)7 Siz (J)) = N(ilz (])7 0, Siz (J)) (3'16())

la vraisemblance A(6'(k)) s’écrit

k

AW (k) = [I1

j=1

1

7} o= Th1 7, ()8, ()2, () (3.161)

Généralement, on préfere utiliser le logarithme de la vraisemblance modifiée défini comme

k k k
X (k) 2 ~210g [A(0'(K)) [T V2S5, G| = D2, (108 ()2, (1) = D 0., () (3.162)
j=1 j=1 j=1
(k) peut alors s’exprimer récursivement sous la forme
M(k) = Mk — 1) + 2, (k)Ss, (k)zi, (k) (3.163)

Puisque sous les hypotheéses de modele linaire/gaussien, €z;, est une variable du X%z (cf 3.1), la quantité

A (k) est une variable aléatoire qui doit suivre un x2, lorsque 0'(k) est vraie.
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3.8.2 Test de confirmation/élimination de branches

L’élimination ou I’acceptation d'une branche Z*! est basée sur le test statistique suivant [Leh83] :

M(k) <a accepter la séquence Z*!
(3.164)

MN(k) >a rejeter la séquence Z5!
ol a est le seuil d’acceptation du test que 'on calcule & partir des tables de la loi du xj,, [AS68, Spi8l]

en se fixant la probabilité d’erreur de décision « suivante
P{Xin. > a} =« (3.165)

Généralement, on prend a = 0.01.

3.8.3 Avantages et inconvénients du TSF

Le seul avantage du TSF est sa simplicité au niveau de la mise a jour de chaque branche puisqu’elle

nécessite uniquement un filtre de Kalman classique. Ses principaux inconvénients sont les suivants :

— il ne prend pas en compte les cas ou Py < 1. On peut cependant I’étendre en prenant des séquences
incompletes et en utilisant des heuristiques de décision du type ”conserver la séquence si ’on a au
moins m détections pendant n scans” et si la vraisemblance A (k) est encore acceptable.

— il ne fournit pas la probabilité pour que la séquence soit correcte (on a a faire & une méthode non
bayésienne),

— en pratique, il faut soit utiliser des séquences de mesures de taille limitée ou bien utiliser un facteur
d’oubli pour pondérer les mesures les plus anciennes de la séquence afin d’avoir une bonne sensibilité
(temps de réponse) du test (3.164),

— il ne peut étre implanté sur calculateur qu’avec des heuristiques de gestion des branches difficiles a
mettre au point. La capacité mémoire nécessaire au TSF est souvent prohibitive,

— il ne prend pas en compte le fait qu'une mesure peut provenir d’autres cibles (la vraisemblance est
évaluée de maniére margignale dans le TSF contrairement au MHT).

— il peut théoriquement étre utilisé en environnement multi-cibles o le nombre de cibles est inconnu ;

cependant les performances du TSF restent relativement médiocres.



Chapitre 4

Pistage multi-cibles mono-senseur

par approches bayésiennes

Dans les problemes de pistage de cibles multiples, la solution la plus simple envisageable consisterait
a utiliser en parallele les filtres de poursuite mono-cible décrits au chapitre précédent. Cette solution
s’avere en fait satisfaisante uniquement lorsque les cibles sont tres éloignées les unes des autres et donc
bien séparables dans ’espace d’observation du senseur. De telles conditions, exceptionnellement favo-
rables pour le pistage, sont rarement rencontrées en pratique. Ainsi tous les problemes de surveillance et
contrdle du traffic aérien (Air Traffic Control (ATC) problem) ou de surveillance de champ de bataille par

exemple, ne peuvent ils malheureusement pas étre résolus efficacement par ce type d’approche simpliste.

La difficulté essentielle du pistage multi-cibles provient a la fois de I'incertitude sur l'origine des me-
sures (et donc de la combinatoire inhérente au probleme) et de la capacité de manceuvre des cibles a pister.
Dans le cas de cibles multiples proches, les mesures non issues d’une cible pistée ne se comportent pas
toutes comme de simples fausses alarmes car certaines peuvent provenir de cibles proches interférentes.
On doit donc au sein méme du processus de filtrage de chaque cible chercher a prendre théoriquement
en compte a la fois les hypotheses possibles d’associations conjointes des mesures avec les cibles environ-

nantes et la perception ou non des cibles par le senseur d’observation.

Ce chapitre et le suivant sont consacrés au cas du pistage mono-senseur de cibles non manceu-
vrantes. La poursuite des cibles manceuvrantes fera I’'objet d’un chapitre particulier. Nous présentons ici
les principaux algorithmes développés pour résoudre le probléeme ainsi que leurs avantages, inconvénients
et limitations. Nous décrivons d’abord ’étape dite de regroupement (clustering) des cibles interférentes

indispensable avant la mise en ceuvre des méthodes de poursuite multi-cibles.

47
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Ce chapitre décrit les 3 principales approches bayésiennes développées pour la poursuite multi-cibles :
le JPDAF, le MHT et le PMHT. Dans ces méthodes, aucune décision ferme d’assignation mesure<-cible
n’est prise. L’idée de ces méthodes consiste essentiellement a évaluer d’abord les probabilités d’association
mesure«cible et a effectuer ’estimation des états des cibles par une pondération probabiliste des
hypotheses d’associations possibles. On parle parfois de méthodes de décision douce soft decision logic

& lopposé des méthodes de décision dure (hard decision logic) présentées au chapitre suivant.

4.1 Séparation et regroupement des cibles

Afin de diminuer la combinatoire du probleme d’association mesures<cibles, il est indispensable a
chaque instant k d’effectuer avant toute chose un prétraitement de séparation et/ou de regroupement
des cibles (appelé clustering dans la littérature anglo-saxonne) qui a pour but de discriminer 1’espace
de toutes les mesures validées Z(k) pour toutes les cibles en sous-ensembles disjoints qui pourront étre

traités en parallele par des algorithmes de pistage appropriés.

Une cible t est dite isolée, lorsqu’aucune des mesures validées associées (contenues dans la fenétre de
validation de la cible) Z!(k) € Z(k) n’appartient & une fenétre de validation d’une autre cible. Chaque

cible isolée doit alors étre pistée par un algorithme classique de pistage mono-cible.

En général, dans les environnements denses en cibles et FA, certaines mesures peuvent appartenir &
I'intersection de plusieurs fenétres de validation prédites. Les cibles associées a ces fenétres sont alors
interférentes et doivent étre traitées conjointement par la méthode de pistage. On ne peut alors utiliser

en parallele les techniques classiques de pistage mono-cible. Lorsque M cibles partagent au moins une

mesure, on dira que ces M cibles constituent un groupe ou cluster de taille M.

L’étape de clustering (regroupement) consiste donc & examiner le contenu de chacune des fenétres
de validation afin de détecter ou non la présence de mesures communes a plusieurs fenétres. On constitue
ainsi une liste de fenétres (cibles) isolées et une liste de clusters de tailles différentes. Les cibles isolées
seront ensuite pistées par des algorithmes de pistage mono-cible tandis que chaque cluster sera traité par

une des méthodes de pistage multi-cibles que I'on va présenter dans ce chapitre.

4.1.1 Exemple

Considérons le cas d’une poursuite de 7 cibles évoluant dans le plan. A linstant k& on dispose de
my, = 10 mesures. La validation des 10 mesures Z(k) = {z1(k),...,z10(k)} correspond & la figure sui-

vante. Les centres des fenétres (ellipses) de validation {z'', ... 2!} correspondent aux positions prédites
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des 7 cibles.

Dans cet exemple, les mesures z5(k) et z7(k) ne sont pas validées; les cibles no 3 et 7 sont isolées; les

cibles no 1 et no 6 forment un cluster de taille 2 ; les cibles no 2, no 4 et no 5 forment un cluster de taille 3.

s

4.1.2 Matrice de validation utile

Pour effectuer automatiquement la séparation et le clustering des cibles, nous devons d’abord
construire la matrice de validation initiale du pistage, puis la matrice de validation utile. Une routine de

séparation et de clustering est donnée au paragraphe suivant.

La matrice de validation initiale, notée ; est une matrice de taille mj x T dont les éléments
binaires w;; décrivent la validation ou non de la mesure i avec la cible j. w;; vaut 1 si z; appartient a la

fenétre de la cible no j ou 0 sinon. Pour I’exemple précédent, nous avons
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000110 0]z
000000 1]z
1 0000 1 0z
0000 10 0]z
QI(k):oooooooZg,
010110 0|z
000000 0]z
010100 0]z
00000 1 0]z
10000 0 0]z

Puisque les mesures zs5 (k) et z7(k) ne sont pas validées, elles ne serviront pas & mettre & jour les pistes.
On peut donc les supprimer de la liste des mesures utiles. D’autre part, la fenétre de la cible no 3 est
vide. Cette cible ne pourra donc pas étre mise a jour par 'utilisation de mesures, mais uniquement par

une propagation de sa dynamique. La colonne de 2 correspondant a cette cible peut donc étre supprimée.

Plus généralement, la matrice de validation utile, notée (2, est donc obtenue a partir de la matrice
de validation initiale £2; en supprimant a la fois les lignes correspondant aux mesures non validées et les

colonnes correspondant aux fenétres vides. Pour 'exemple considéré, nous aurons

00110 0|z
00000 1z
1000 1 0|z
Q(k):000100z4
0111 0 0z
01100 0z
0000 1 0fz
1 0 0 0 0 0z

Dans un tel processus, nous devons bien évidemment mémoriser dans deux piles les index des cibles

et des mesures intervenant dans cette matrice de validation utile.

4.1.3 Routine de clustering

Pour aider le lecteur souhaitant réaliser rapidement des simulations de pistage multi-cibles, nous don-
nons ici une routine MatLab de clustering développée par ’auteur. Une routine Fortran peut également

étre trouvée en [DBS93].
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La fonction Compress permet de compresser la matrice de validation initiale {; =Omega_Matrix en
matrice de validation utile {2 =Omega_Compress. Les piles Target_Indices et Measurement_Indices

contiennent la liste des index des cibles et des mesures relatives a ).

Qosottsose stttk ok ko oo sk ok sk ot ok skt ks ks ok skt o ko sk ok skt ok sk sk ks ks ko ok ko ook
function [Omega_Compress, Target_Indices,Measurement_Indices|]=Compress(Omega_Matrix);
B R Bt R T ]
% Purpose : This function returns the useful validation matrix computed from the
% initial validation matrix. This function must be called just before clustering .
% Author : Jean Dezert
B R B T L g LT ]
if (isempty (Omega_Matrix)==1)
Omega_Compress=Omega_Matrix;
Target_Indices =[];
Measurement_Indices=[J;
disp( ’ Warning in Compress .m routine ===> Omega_Matrix is empty ’)
return
end
Target_Indices=find(sum(Omega_Matrix,1)"=0); % Index of non empty gates
Measurement_Indices=find (sum(Omega_Matrix,2) "=0);% Index of validate measurements
% Compression of initial validation matrix
Omega_Compress=Omega_Matrix;
Omega_Compress(find (sum(Omega_Compress,2)==0),:)=[];
Omega_Compress(:,find(sum(Omega_Compress,1)'==0))=[];

return

La fonction Clustering permet d’effectuer automatiquement la séparation et le regroupement des
cibles a partir de la matrice de validation utile 2 =Omega_Compress. Le résultat est stocké dans la

matrice de clustering Cluster_Matrix. Chaque ligne de cette matrice correspond & un cluster de cibles.

Qoo skttt stk ok ok ook ko sk ot ok skt s ko sk stk sk sk sk kot ok ook sk sk ok sk sk o ok
function [Cluster_Matrix]=Clustering(Omega_Compress);

sttt skttt ok ok ok ook sk ko sk ok ok skt ok ko sk ko sk sk ok sk kot ok ook sk sk ok sk ok ok o ok

% Purpose : Decomposition of a validation matrix into

% a set of independant clusters in order to reduce the

% combinatorics involving with MTT problems.

% Author : Jean Dezert

Qoo skt koo ko ook sk ko sk ok ok skt ok ko sk stk sk sk ok sk kot ok ks sk ok sk sk ok o ok

% Note : Each row gives the set of target involved in a cluster.

% Omega_Compress is the useful validation matrix obtained from Compression function.
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[Nz,Ntarget]|=size(Omega_Compress);

% Input checking

if (isempty(Omega_Compress)==1)

Cluster _Matrix=[];

return

end

% All targets are independant

if (sum(sum(Omega_Compress))==size(Omega_Compress,1))
Cluster_Matrix=eye(Ntarget,Ntarget);

return

end

% Cluster separation
Null_Row=zeros(1,size(Omega_Compress,2));
Cluster_Matrix=0Omega_Compress;

for j=1:size(Omega_Compress,2)
L=(sum([Cluster_Matrix(find(Cluster _Matrix(:,j)"=0),:);Null_Row]) "=0);
Cluster_Matrix (find (Cluster_Matrix (:,j ) "=0),:)=[];
Cluster_Matrix=[Cluster_Matrix;L];

end

return

4.2 Pistage multi-cibles par JPDAF (1980)

Le JPDAF (Joint Probabilistic Data Association Filter) [FBSS80, FBSS80, FBSS83, BSF&8] est une

extension du filtre PDAF au cas de la poursuite multi-cibles. C’est donc une approche bayésienne.

4.2.1 Hypotheses du JPDAF

— le nombre T de cibles a pister est supposé connu

— pour chaque cible ¢, toute I'information disponible obtenue & partir de la séquence de mesures Z*
est résumée par 1'état estimé a I'instant courant X*(k|k) (qui approxime la moyenne conditionnelle)
et sa covariance Pt (k|k)

— achaque instant k, 1’état réel x* (k) d'une cible ¢ est supposée gaussien avec N (xt(k); X! (k|k), P*(k|k))

— chaque cible ¢ possede une dynamique propre observable au travers du senseur

— la probabilité de détection P! de chaque cible ¢ est supposée connue

— les T cibles sont supposées perceptibles par le senseur
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4.2.2 Principe géneral de la méthode

Considérons un groupe de T cibles représentées par les indices ¢ = 1,...,7T a un instant donné k
regroupées en un seul cluster (cf paragraphe précédent). L’ensemble des mj mesures de ce cluster est

noté

Z(k) ={Z'(k)u...Z"(k)} (4.1)

Chaque mesure z;(k) du cluster provient soit d’une cible parmi les cibles ¢ = 1,...,T ou bien provient

d’une fausse alarme que 'on caractérise par 'indice ¢ = 0.

On note z‘(k|k — 1) la mesure prédite de la cible ¢ et I'innovation associée a la mesure i est notée

zi(k) £ zi(k) — 2" (klk—1)  i=1,...,my (4.2)

2

L’innovation pondérée s’écrit

() = Y B (4.3

ol B! (k) est la probabilité pour que la mesure i corresponde a celle de la cible t. 8 (k) est la probabilité
pour qu’aucune des mesures ne provienne de la cible ¢. Cette innovation pondérée interviendra alors dans

la mise & jour x!(k|k) de I’état de la cible t. Ceci sera fait de la méme fagon pour n’importe quelle cible.

L’algorithme JPDAF évalue les (3!(k) conjointement avec I'ensemble des T cibles et des fausses
alarmes présentes dans le cluster. La mise a jour de I’état d’une cible prendra alors en compte a la fois

les fausses alarmes et les mesures des cibles proches interférentes.

La clé du JPDAF [FBSS83, BSF88]| réside dans 1’évaluation des probabilités conditionnelles de tous

les évenements d’association suivants

o) = (0L (k) (44)

ou @fl(k:) représente I’évenement pour que la mesure ¢ provienne de la source associée t;, 0 < ¢; < T
t; > 0 désignant la source ayant généré la mesure i au temps k. L’indice ¢; = 0 signifie par convention que
la mesure ¢ est une fausse alarme. Les évenements d’association faisables sont les éveénements conjoints

pour lesquels une mesure est associée a une cible au plus.

Les probabilités 3!(k) pour que la mesure i provienne de la source ¢ s’obtiennent en ajoutant la

probabilité de tous les évenements d’association conjoints faisables © (k) pour lesquels cette condition est
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vraie; c’est a dire

Bi(k) = Z P{O(k)|ZF}oi(O(K)) i=1,...,my (4.5)
o(k)
Bk =1= Bi(k) (46)

Wit (©(k)) représente la composante correspondante de la matrice d’association caractérisant ’événement

o(k).

4.2.3 Matrices d’associations faisables

On désigne par = [w;¢] la matrice d’hypothéses construite & partir de la matrice de validation utile
du cluster considéré et augmentée d’une colonne unitaire en ¢t = 0 correspondant & l'origine FA.
Cette matrice d’hypotheses est généralement appelée matrice de validation par abus de langage dans la

littérature.

Q2 wy] di=1,....mp t=0,...,T (4.7)

On rappelle que la colonne t = 0 caractérise le fait que l'origine des mesures peut étre une fausse
alarme. A partir de cette matrice d’hypotheses, on peut construire un ensemble {O(k)} exclusif et ex-
haustif d’hypotheses d’association conjointes mesures«origines possibles (faisables). Chaque événement

(hypothese d’association conjointe possible) est caractérisé par une matrice d’associations faisables

QO(k)) = [wit(O(F))] (4.8)

Chaque matrice Q(O(k)) représente un évenement faisable O (k) si et seulement si les conditions suivantes
sont satisfaites

— n’importe quelle matrice Q(©(k)) doit rester compatible avec la matrice initiale d’hypotheses Q()

1 if O4k) € O(k)
wit(O(k)) = (4.9)

0 sinon

— chaque mesure provient d’une seule source a la fois

T
> ouOk) =1 Vi (4.10)
t=0

— une cible ne peut générer qu’une seule mesure au plus

%ait(e(k)) <1 t=1,...,T (4.11)
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4.2.4 Indicateurs de détection, d’association et de FA

Pour les besoins des calculs, on définit les indicateurs §;:(©), 7;(0) et ¢(O) suivants :

1. Indicateur de détection d’une cible §;(©)

mg
5(©) &> du(©) <1 t=1,..T (4.12)
i=1
2. Indicateur d’association des mesures 7;(0)
T
7(0) £ Z@it((a) (4.13)
t=1
3. Indicateur du nombre de FA ¢(0)
my
(4.14)

$(©) £ [1-7(0)]

i=1

La génération automatique des matrices d’associations faisables est donnée apres I’exemple qui suit.

4.2.5 Exemple

Considérons un cas tres simple ou seulement deux cibles interferent et ou la matrice initiale de validation

[FBSS83, BSF88] est la suivante

t 01 2

0=’ (4.15)
1 110
5 11 1

Ceci correspond par exemple a la situation suivante en 2D,

Dans ce cas, ’ensemble des matrices d’associations faisables est

100/ . 100
0y =

§>
Il

1 0 0 0 10
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A 1 0 0 A 010
Q?’: Q4:
0 01 |1 00
A 010
05 =
00 1]

4.2.6 Génération des matrices d’associations

La génération automatique des matrices d’associations possibles Q(@(k)) a partir de la matrice d’hy-
potheses 2 est délicate et rebute souvent les utilisateurs potentiellement intéressés par ’évaluation du
JPDAF. Pour ne pas les décourager, nous donnons ici, sans entrer dans le détail, le code MatLab per-

mettant de générer automatiquement les matrices Q(O(k)).

Il faut savoir cependant que le nombre de matrices a générer augmente exponentiellement avec
les dimensions du probleme d’association. Ceci reste 'inconvénient majeur du JPDAF. Compte tenu
de la nécessité d’une énumération exhaustive des matrices d’association, le JPDAF ne peut étre utilisé
que dans des configurations telles que les dimensions des clusters et des mesures associées ne soient pas
trop importantes. Certains algorithmes JPDAF sous-optimaux ont été développés dans la littérature afin
d’éviter une recherche exhaustive des matrices Q(O(k)) et/ou faciliter un traitement rapide (et en pa-
rallele) des calculs [FC89, DN93, ZB93, CM95]. L’algorithme présenté ici est ’algorithme DFS (Depth

First Search) utilisé en [Zho92, ZB93]| (initialement codé en Fortran en [Dez88]).

Dosorststsksortssoksort ok sok ok sk ok kR kR skt kR ok kR skok Rk ko kb okok ok
%3 Purpose : This code implements the DFS algorithm for generating

%x* exhaustive list of feasible joint association events from a given

% initial validation matrix.

%ox

%x* Author : Jean Dezert

Qloskosotss sk otk sk ok ok ok sk sk o ok sk ok Sk Kk RSk ok Sk kot ok sk ko sk ok ook o ok ok ok
% mk= nbr of measurement

% nt = nbr of true targets (without FA)

% You can modify Omega_Matrix here as you want to see other DFS results
clear all

close all

Omega_Matrix=[110;1 1 1];

[mk nt]=size(Omega_Matrix);

nt=nt—1;

disp([’ number of measurements --> mk=’ numZStr(mk)D
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disp ([> number of true targets --> nt=" num2str(nt)])
disp(’ )

Z7=zeros(mk,nt+1);

for j=1:mk

disp ([’ Origin for measurement no =’ num2str(j)])
Zj=find(Omega_Matrix(j,:) "=0)—1;
Z7(j,1: size (Zj,2))=Zj;

end

Eps_Sol=zeros(mk,1);
NS=1;
disp ([* Feasible matrix number NS=’,num2str(NS)])
Omega_hat=[ones(mk,1) zeros(mk,nt)] % Trivial solution
L=0;j=1;jL=0;Ej=0;In_Loopl1=1;XjL=0;X=zeros(1,2);
while(In_Loopl==1)
if (j <=mk)
In_TLoop2=1;
while(In_Loop2==1)
if ((L<min(nt,mk))& (j<=mk))
Xj=[J;index=find(ZZ(j,:) >XjL);
if (isempty (index)==0),Xj=ZZ(j,index(1));end
if (isempty (Xj)==1) % Xj is empty
XjL=0;j=j+1;
else % Xj is non empty
XjL=Xj;
if (isempty(find (Xj==X(:,2)))) % Xj is compatible
NS=NS+1;L=L+1;X(L,:)=[j Xj];j=j+1;XjL=0;
disp ([* Feasible matrix number NS=’,num2str(NS)])
% Construction of a feasible association matrix (optional)
Omega_hat=[ones(mk,1) zeros(mk,nt)];
for 1l=1:size(X,1)
Omega_hat(X(11,1),1)=0;
Omega_hat(X(11,1),X(11,2)+1)=1;
end
Omega_hat=Omega_hat

% Derivation of joint association probability
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% must be implemented here)
end % if(Xj-Compatible==1)
end % if(isempty (find(Xj==X(:,2))))
else
In_Loop2=0;
if (L>=1) % Backtracking
J=X(L,1);XjL=X(L,2);X(L,:)=[};L=L—1;
end % if(L>=1)
end % if((L<min(nt,mk))&(j<=mk))
end % while(In_Loop2==1)
else ,
In_Loopl1=0; % Exit flag
end
end % while(In_Loopl==1)
disp(’ )

disp([’ -=> All ’,num2str(NS),’ solutions have been generated by DFS’])
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Exemple de génération par algorithme DFS

Considérons le cas tres simple a 3 mesures ou seulement 2 cibles interferent avec la matrice initiale

de validation est suivante :

t 01 2
J
Q=1 11 0 (4.16)
2 1 1 1
3 1 01

La génération des matrices par 1'algorithme DF'S consiste & parcourir successivement les branches de

l’arborescence suivante :

lére ligne

100 010

2eme i
111 2¢me ligne

/ N\

100 100 100 010 010
100 010 001 100 001
101 101 101 | 3éme ligne 101 101 101
100 100 100 100 100 0 010 010 10 010 1
100 100 010 010 001 1 100 100 0 001
100 001 100 001 100 [0) 100 001 0 100
A~ A A A ~ ~ A
Q O, Q5 Qs Q Q Qg
0, 6 03 04 05 B¢ 67 Og

FiG. 4.1 — Exemple de génération des matrices par algorithme DF'S

4.2.7 Expression des probabilités d’associations conjointes

Pour mettre en ceuvre le JPDAF, il nous faut d’abord évaluer les probabilités d’associations conjointes
P{O(k)|Z*}, puis pour chaque cible ¢, les probabilités marginales d’associations 3!(k) en utilisant les re-

lations (4.5) et (4.6).
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En utilisant la regle de Bayes, on écrit

P{O(k)|Z*} = %p[z(k)l@(k),mk, 25 P{O(k)|mi, 271} (4.17)

ou ¢ est une constante de normalisation.

Pour simplifier le développement des calculs, on suppose
— que I'on a un seul volume de surveillance V' englobant toutes les fenétres de validation du cluster a
analyser,
— que les états des cibles sont mutuellement indépendants sachant ’ensemble des mesures
disponibles [BSL95],
— que les mesures ne provenant pas des cibles sont uniformément réparties dans le volume de sur-

veillance V' du senseur.

Fonction de vraisemblance des mesures

La (fonction de) vraisemblance des mesures conditionnellement & O(k) s’écrit

PIZ(K)|O(K), mu, ZH1] = ﬁp[zz‘(kﬂ@?(k)vmk, A (4.18)

my, étant le nombre total de mesures validées présentes dans le cluster de cibles considéré. La densité de
probabilité d’'une mesure z; sachant son origine s’écrit
V-1 si 7 (0(k)) =0
plzi(k)|©7 (k), my, 2] = (4.19)
e, (2i(k)) £ Nzi(k); 2" (k|k — 1),8" (k)] si (O(k)) =1
zti (k|k — 1) est la mesure prédite de la cible ¢; avec pour covariance de I'innovation associée S (k). En

tenant compte de ces expressions, on obtient la vraisemblance suivante

PIZ(K)|O(k), my, ZF~1] = V—9(O) ﬁ [er, (i (k)] O™ (4.20)

i=1

On rappelle que ¢(©(k)) indique le nombre de mesures considérées comme FA dans 'événement ©(k).

Probabilité a priori d’un événement O (k)
La probabilité a priori d’'un événement O (k) peut étre décomposée [BSLI5| selon
P{O(k)lmx, Z*"'} = P{O(k)[mi} = P{O(k),8(O(k)), 6(O(k))mu} (4.21)
Ce qui peut encore étre décomposé avec la regle de Bayes sous la forme

P{O(k),5(0(k)), p(O(k))Imi} = P{O(K)|6(O(K)), (O(k)), mi} P{6(O(k)), p(O(K))|mx}  (4.22)
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La premiere probabilité P{O(k)|6(O(k)), p(O(k)), my} est égale a I'inverse du nombre de permutations
de my, — #(O(k)) mesures (associées aux cibles dans O(k)) prises parmi les my, disponibles. On suppose

ici que toutes ces permutations sont équiprobables. Ainsi, on a

PLO)IS(O(K)), 6(O(R)), mi} = = — O (4.23)

mp

mie—g(©(k) !
La probabilité P{5(©(k)), »(©(k))|mx} est obtenue en supposant ¢ et ¢ indépendants. On a alors

P{5(O(k)), p(O(k))[my.} = ur(@(©(k) [T (FH™ ™ @ — pjyt~*E®) (4.24)

t=1

En remplacant les expressions précédentes dans (4.21), on obtient finalement

PO me 251 = PO o) TT (PH* O (1 - ppyt=50®) (4.25)

mp!
k —

Expression finale de P{O(k)|Z*}

En remplacant (4.20) et (4.25) dans (4.17), on aboutit a 'expression finale cherchée

PlO®)|2") = -

" ¢(®(k'))!MF(¢(®(k)))V_¢(®(k)) ﬁ [er, (zi(k))] " O™ 11 (P1)*O®) (g _ piy1=o(©)

t=1

(4.26)

ou ¢ est une constante de normalisation.

En pratique deux versions du JPDAF sont utilisées selon le modele choisi pour pp(®) [FBSS83, BSF8S|.

4.2.8 Version paramétrique du JPDAF

Dans ce cas, on suppose que le nombre ¢ de fausses alarmes suit une loi de Poisson de parametre \.

) représente la densité spatiale du clutter dans ’espace d’observation. Ainsi, on suppose donc

¢
pr (o) = (AZ!) e (4.27)

Sous cette hypothese, les probabilités a posteriori des évenements d’associations s’expriment alors comme

Pr[z} = LT 3o, aati) ™ T 1P - =5 (4.28)

ou ¢ est une nouvelle constante de normalisation.
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4.2.9 Version non paramétrique du JPDAF

Dans ce cas, on suppose n’avoir aucune information sur la masse de probabilités de ¢ et ’on adopte

Ihypothese de loi diffuse pour pr(¢) & savoir,

1e(9) = € (4.29)
Les probabilités a posteriori des éveénements conjoints d’association s’expriment maintenant comme

51(0) 1-6,(0)
[P — Py

1

Pwm%%ﬁw%mmww> (4.30)

T
t=

ou ¢ est une autre constante de normalisation.

Dans l'expression de P{O|Z*} obtenue avec la version non paramétrique du JPDAF intervient le
terme ¢!/V? que 'on appelle pseudo-densité spatiale des FA. Ce terme est analogue au terme \?

intervenant dans la version paramétrique du calcul de P{©|Z*}.

4.2.10 Equations de mise a jour et de prédiction

Une fois I’énumération exhaustive des évenements conjoints d’associations faisables effectuée, on évalue
les probabilités P{©|Z*}. Puis pour chaque cible ¢, les probabilités marginales d’associations 3¢(k) sont

calculées en utilisant les relations (4.5) et (4.6).

La mise & jour de chaque cible (i.e. le calcul de x!(k|k) et de P!(k|k)) est réalisée simplement par les
équations de mise & jour du filtre PDAF standard, ou mieux encore par les équations du filtre PDAF

modifié.

La prédictions x¢(k + 1|k) et P*(k + 1]k) sont obtenues par les équations de prédiction classiques du

filtre de Kalman (ou de Kalman étendu selon la linéarité du modele de dynamique choisi).

4.2.11 Version couplée du JPDAF

Les équations de mise a jour précédentes ne sont valables que si ’on admet 1'indépendance des cibles

entre elles conditionnellement aux mesures passées. C’est bien siir une approximation.

En fait, des Iinstant ou les cibles ont interféré, elles ne peuvent plus étre théoriquement considérées
comme indépendantes. On doit alors considérer des termes de couplage entre les différentes estimées. Ces
termes de couplages sont caractérisés par des matrices (non nulles) de covariance croisée. Pour prendre
en compte la correlation des cibles, on utilise donc un super-vecteur d’état qui est tout simplement ’em-

pilement des vecteurs d’état de chaque cible du cluster. Ce super-vecteur d’état est estimé globalement
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ainsi que sa matrice de covariance (globale) associée. Ceci consitue le principe de la version couplée du

JPDAF - appelée JPDAFC (JPDAF Coupled).

Les probabilités d’associations conjointes sont alors données par

T
1 _ , 5:(O(k —5:(O(k
POIZF} = — N er g (ilk) i (O(R) = 1) [T (2™ O = PO s
t=1
ol €, t,,,--. est la densité de probabilité conjointe des mesures associées aux cibles sous ©. Dans la

version couplée du JPDAF, on utilise directement ces probabilités P{0|Z*} dans la mise & jour de 1’état

global et non plus les probabilités marginales comme on le faisait dans la mise en ceuvre découplée.

Il faut savoir que le JPDAFC, bien que théoriquement plus satisfaisant, est rarement employé en

pratique.

Exemple simple du JPDAFC

Soit 2 cibles t; et to appartenant au méme cluster (c.a.d. ayant des mesures appartenant & U'intersection
des fenétres de validation des cibles), 1’état global prédit et la matrice de covariance globale prédite
s’écrivent

% (klk —1)

x(klk —1) = (4.32)
x%2(klk — 1)

Pivti(klk —1) Ptot2(klk—1)
P(klk—1) = (4.33)
Pzt (klk —1) Pt2t2(klk —1)
Pti-tz = Pt2:t1 gont les matrices de cross-covariance entre les estimées des états des deux cibles. La mise

a jour de ’état global est obtenue par ’équation suivante

x(klk) = %(k[k — 1) + K(k) S P{O|Z*}[a(k, ©) — a(klk — 1) (4.34)
o (k)

2k, @) = | (F:©) (4.35)

ZJz (ka 6)

H' (k) 0
H(k) = (4.36)

0 H-=(k)

R'(k) 0

R(k) = (4.37)
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1

K(k) = P(k|k — )H(k)'[H(k)P(k|k — 1)H(k)" + R(k)]” (4.38)
. o (klk — 1) .
a(klk—1) = = H(k)x(k|k — 1) (4.39)
z'2(klk — 1)

La mise & jour de la covariance globale est donnée par par I’équation (3.52) du PDAF avec ici So(k)

définie comme

Bok) = P{@0]Z"} =1~ 3" P{O]zZ") (4.40)
O (k)#60

ou I’évenement particulier O correspond a ’hypothese selon laquelle toutes les mesures sont des fausses

alarmes.

Extension au cas des mesures multi-sources

Dans la présentation précédente, on a supposé que chaque mesure provenait d’une seule origine et que
les cibles étaient résolues (inférieure & la case de résolution du senseur). En fait, selon la taille des cibles
et la résolution du senseur, il est possible que plusieurs cibles soient dans la méme case de résolution du
senseur. Dans ce cas, le senseur ne voit qu’une seule mesure. On parle alors de mesure multi-sources.
Une extension du JPDAF et du JPDAFC a conduit au développement des filtres JPDAM (JPDA Merged
measurement) et JPDAMCEF en [Cha83, CB83, CB84b, Cha86]. Nous ne détaillerons pas ici le principe

de ces filtres qui sont basés sur une modélisation spécifique de la mesure multi-sources.

4.2.12 En résumé

Les hypothéses du JPDAF

e Il y a plusieurs cibles & pister dans du clutter

e Le nombre T de cibles est connu

e Les T pistes des cibles sont déja initialisées

e La probabilité de détection de chaque cible est connue et ne dépend pas de ’état des cibles

e Les cibles sont supposées perceptibles

e Les modeles de dynamique des cibles peuvent étre différents

o Il existe des mesures communes aux fenétres de validation des cibles

e Chaque cible génére au plus une mesure (pas de réflexions multiples, pas de cibles étendues)

e Chaque mesure provient d’une seule source (pas de mesure multi-source)

e la densité de probabilité de ’état de chaque cible conditionnée par les mesures passées est supposée
gaussienne et indépendante des autres cibles. Toute l'information passée est résumée dans ’état

prédit et la covariance prédite au dernier instant.
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Principe de mise en ceuvre du JPDAF
e Prédire I’état et la mesure de chaque cible
e Valider les mesures regues dans chaque fenétre de validation
e Isoler et regrouper les cibles en clusters
e Pour chaque cible appartenant & un cluster de taille > 2 :
— Générer la liste des matrices d’associations conjointes faisables
— Calculer la probabilité des évenements d’associations conjointes

— Evaluer les probabilités marginales d’associations 3;(k)

Mettre a jour 1’état de la cible avec les équations du PDAF
— Prédire I'état de la cible avec les équations du modele

Avantages du JPDAF

e Relative simplicité de mise en ceuvre

e N’exige pas de stockage en mémoire (0-scan back)

e Donne de bons résultats lorsque la densité du clutter n’est pas trop importante
Limitations du JPDAF

e Le nombre T de cibles pistées doit étre connu

e Les pistes doivent étre initialisées

e Les cibles doivent étre perceptibles

e Le nombre de matrices d’association croit exponentiellement avec la dimension du probléme
Extensions du JPDAF[BS74, FBSS80, FBSS83, SOG&9]

e Des versions sous-optimales existent [Fit86, BS90, RP93, Roe93, Roe94]

e Version couplée possible (JPDACF) [BW87]

e Version avec mesures multi-sources (JPDAMF) [TW81, Cha83, CB83, CB84b, Chag6]

e Version couplée avec mesures multi-sources (JPDAMCF)

e Prise en compte possible de la perception des cibles (IJPDAF) [DLLIg]

e Prise en compte possible de mesures de reconnaissance [LBS90a, Dez90, Dez92]

4.3 Pistage multi-cibles par IJPDAF (1998)

Nous présentons ici 'extension du filtrage IPDAF au cas multi-cibles. L’idée de base consiste a re-
prendre le formalisme du JPDAF standard en y incluant la notion de perception des cibles. Dans le
JPDAF standard, les auteurs ont implicitement supposé que les T' cibles présentes dans un cluster étaient
toujours perceptibles par le senseur. En pratique, ce n’est bien évidemment pas toujours le cas et on
doit donc intégrer la probabilité de perception des cibles au sein méme de ’algorithme de pistage tout
comme pour l'algorithme IPDAF développé pour le pistage mono-cible. Ce filtre sera dorénavant désigné

sous lacronyme IJPDAF (Integrated Joint Probabilistic Data Association Filter) [DLL98]. Dans son
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essence, 'TJPDAF suit 'idée du JPDAF standard mais I’évaluation des probabilités (intégrées) d’asso-

ciations conjointes differe.

Tres récemment, certains auteurs [SP98] ont proposé un algorithme de pistage multi-cibles intégrant
aussi la perception des cibles. Cet algorithme est basé sur la méthode de Viterbi pour réaliser I’association
des données. Le point faible reste toutefois la non-prise en compte du croisement possible des cibles. Ceci

renforce le choix de 'TJPDAF pour le pistage multi-cibles robuste.

4.3.1 Hypotheses de 'IJPDAF

Les hypotheses de 'TJPDAF sont exactement les mémes que celles du JPDAF (voir section 4.2.1)

excepté que I'on ne suppose pas ici la perception totale des cibles présentes dans le cluster.

4.3.2 Principe général de la méthode

Considérons un cluster de cibles représentées par les indices ¢t = 1,...,7 & un instant donné k.

L’ensemble des m; mesures associées a ce cluster est noté
Z(k) ={Z'(k)u...Z"(k)} (4.41)

Chaque mesure z;(k) du cluster provient soit d’une cible perceptible parmi les cibles t = 1,...,T ou bien

provient d’une fausse alarme que 'on caractérise par 'indice t = 0.

On note z'(k|k — 1) la mesure prédite de la cible ¢ et I'innovation associée a la mesure i est notée

7i(k) £ zi(k) — 2" (klk—1) di=1,...,my (4.42)

3

L’innovation pondérée s’écrit

z'(k) = Z Bi (k)z; (k) (4.43)

Cette innovation pondérée interviendra alors dans la mise a jour x!(k|k) de I’état de la cible t. Ceci sera
fait de la méme fagon pour n’importe quelle cible. Comme pour 'TPDAF, on définit 3!(k) comme étant
la probabilité marginale d’association intégrée pour que la mesure i corresponde a celle de la cible
perceptible ¢, 8¢ (k) la probabilité pour qu’aucune des mesures ne provienne de la cible perceptible ¢ et
ﬁ%(kz) la probabilité pour que la cible ¢ soit imperceptible au temps k. La terminologie slintégrée indique
le fait que l’on prend en compte (i.e. on integre) la probabilité de perception de la cible dans le calcul des

probabilités d’associations.
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Les approches IJPDA et IPDA utilisent les mémes équations de filtrage pour Iestimation récursive
de I'état des cibles. La seule différence entre ces deux approches concerne la fagon dont les probabilités

marginales d’associations 3¢ (k) sont calculées.

Pour l'algorithme IPDA, les 3!(k), i = 0,0,...,m; sont évaluées séparément pour chacune des
cibles en supposant explicitement que toutes les mesures n’émanant pas de la cible d’intérét sont
nécessairement des fausses alarmes et en prenant en compte de surcroit la probabilité de perception

de celle-ci.

Pour 'IJPDA, on évalue les 3! (k) conjointement avec I’ensemble des T cibles et des fausses alarmes.
La mise a jour de I’état d’une cible prend alors en compte a la fois les fausses alarmes et les mesures des

cibles proches et interférentes.

4.3.3 Exemple

Le calcul des probabilités d’associations conjointes intégrées repose sur I’évaluation des probabilités
conditionnelles de tous les évenements intégrés faisables qui prennent en compte 1’état de perception
des cibles. Pour clarifier les choses, reprenons I’exemple précédent en introduisant la notion de perception
des cibles. Reprenons le cas simple de deux cibles interférentes et correspondant & la matrice initiale de

validation suivante

t 01 2

o= " (4.44)
1 1 1 0
2 1 1 1

Les matrices d’associations faisables (©) doivent maintenant étre modifiées afin de prendre en compte
la possibilité ou non de perception des cibles par le senseur. Ceci peut étre réalisé simplement en ajoutant
une ligne supplémentaire (indexée par l'indice j = 0) correspondant & une mesure fictive zg. Chaque
élément Wg; de cette ligne décrira I’état de perception d’une cible ¢ par le senseur. On dira que la cible ¢
(t > 0) est perceptible lorsque &p; = 1. Sinon on aura &y = 0. L’élément &gy qui n’entre jamais dans les
calculs peut étre pris & n’importe quelle valeur. Par convention, on prendra dans la suite wgg = 0. Par une
telle modification des matrices d’associations faisables {2 du JPDAF standard, nous sommes maintenant
en mesure de générer Pensemble des matrices ! caractérisant les événements conjoints intégrés faisables.

On obtient pour notre exemple
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00 0 01 0
R 100 R R
Q) = - Q=100 2A=|10 0
10 0
1.0 0| 10 0|
[0 1 1] [0 0 1]
O — O —
3 1 00 1 10 0
10 0| 10 0|
(001 1] [0 1 0]
Q:loo —)QI: QI:
2 L 100 L 10 0
01 0
01 0| 01 0|
(001 1] [0 0 1]
R 100 R R
Qs = — U=1100]| U=|10 0
00 1
0 0 1| 0 0 1|
01 1 01 0
R 01 0 R R
Q4 = - Q=101 0 Ao=101 0
10 0
100 1 00
01 1
R 01 0 R
952001 - Q=101 0
00 1

Il est clair que la génération des matrices O a partir des matrices ) tient bien str compte de la contrainte
de faisabilité supplémentaire suivante :

(C1) : Toute cible détectée est nécessairement perceptible.
Chaque matrice d’associations Qg ,j =1...,11 caractérise un évenement intégré d’associations conjointes
que l'on désigne par &;. On note par P(&;|Z¥) la probabilité a posteriori de chaque évenement £;. Comme
les évenements &; sont mutuellement exclusifs et qu’ils forment un ensemble exhaustif d’hypotheses

d’associations intégrées, on a toujours

> Pg|zF) =1 (4.45)

uand les probabilités P(E;|Z") sont évaluées (cf section suivante), les probabilités intégrées marginales
b j , 1% g g

d’associations ! (k),i = 0,0, ..., my sont obtenues en ajoutant les probabilités P(E; |Z*) des évenements
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conjoints &; dans lesquels I’évenement marginal a lieu.

Dans notre exemple, les probabilités intégrées marginales relatives aux cibles t = 1 and ¢ = 2 s’expriment

comme
1. pour les probabilités marginales d’associations de la cible ¢
By (k) = P{OL N 05(k)|Z*} = P(£1|Z%) + P(E4|ZF) + P(&5|Z")
By (k) = P{OL N 05(k)|Z*} = P(&2|Z%) + P(&5|ZF) + P(&:|Z%)
Bi(k) = P{Oy N0} (K)|Z"} = P(£0|Z") + P(&10|Z") + P(&11|Z")
Ba(k) = P{Oy N 03(k)|Z"} = P(&5|2%) + P(Es|Z")
2. pour les probabilités marginales d’associations de la cible ¢,
33 (k) = P{OR N O3 (k)|Z*} = P(&1]Z") + P(E2|Z%) + P(E6|ZF) + P(£10|Z")
B3 (k) = P{OR N 05 (k)|Z*} = P(E5]Z") + P(E4|Z") + P(E5|ZF) + P(&|Z")
i (k) = P{OR N 67 (k)|Z*} =0
B3 (k) = P{OR N 03(k)|Z*} = P(&7|Z") + P(E|Z") + P(En|ZY)
On peut en outre facilement vérifier que

Yo Blk=1  Vt=1,2 (4.46)

i=0,0,1,...,mp

La mise & jour (puis la prédiction) de 1’état de chaque cible est ensuite réalisée par les équations de

filtrage de 'TPDAF présentées précédemment.

4.3.4 Expression théorique des probabilités P{£|Z*}

Un évenement intégré d’associations conjointes £ au temps k peut étre mathématiquement défini par

E(k) = [ﬁ ok N [ﬁ Pi()] (447)

ou O;(k) représente ’origine de la mesure i (soit du clutter, soit la cible 1, ..., soit la cible T)).

P, (k)représente I’état de perception de la cible ¢ par le senseur. P, (k) vaudra O}, lorsque la cible ¢ est
perceptible ou bien O}i dans le cas contraire). L’évenement £ integre a la fois les hypotheses sur lorigine
des mesures et les hypotheses sur les perceptions de cibles. Ceci justifie la terminologie intégrée utilisée.

Matrices d’associations intégrées

Chaque évenement (k) est caractérisé par une matrice d’associations intégrée de taille (my+1) x (T'+1)

Q&) = [@in(&)] (4.48)
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dont les éléments valent soit 0 ou 1. Les éléments valant 1 doivent étre compatibles avec ceux de la matrice
de validation initiale ) et correspondre a la description de I’événement £ considéré. En d’autres termes,

on devra avoir pour t =0,1,..., T ett=1,...,myg

wir(E) = (4.49)

0 sinon
et pourt=1,...,T

SonlE) = 1 si(Pu(k)=0L) €& (450)

0 sinon
Un évenement d’association £ sera dit faisable s’il satisfait les contraintes suivantes

(1) chaque mesure provient d’une seule origine, i.e.,

T
Y wuE)=1  Vi>0 (4.51)
t=0

(2) chaque cible perceptible génére au plus une mesure

mg
S(E) &Y wn(€) <1 t=1,...,T (4.52)
=1

(3) toute cible détectée est nécessairement perceptible

Oot(E) = 8(E) >0  t=1,...,T (4.53)
|

La variable binaire §;(£) est appelée indicateur de détection de la cible t. Les indicateurs d’associations
des mesures 7;(£) et de fausses mesures ¢(&) ont été définis dans le JPDAF standard. La variable binaire
7 (E) £ Qi (E) est appelée indicateur de perception de la cible car elle décrit 1’état de perception de

celle-ci dans I'évenement £.

La génération des matrices Q) (€) peut étre obtenue & partir des matrices d’associations intervenant dans
le JPDAF classique. Pour cela on doit ajouter, comme on I’a montré dans 1’exemple précédent, une
ligne supplémentaire d’indice 0 qui décrit les hypotheses concernant 1’état de perception des cibles.
Ainsi & partir de chaque matrice Q(©) du JPDAF classique, on doit générer No matrices d’associations

intégrées O () avec

T
No =[] 2" (4.54)
t=1

Remarque

Contrairement a ce qu’on pourrait croire, la mise en ceuvre de 'IJPDAF ne nécessite pas en fait

la génération exhaustive des matrices Qf(£) mais uniquement celle des matrices Q(0). Ceci provient
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d’une simplification possible dans le calcul théorique des probabilités marginales d’associations intégrées.
Compte tenu de cette remarque importante, on peut donc affirmer que P'IJPDAF ne sera pas beau-
coup plus coiiteux en calculs que le JPDAF standard. Seule, une faible charge supplémentaire
en calculs provient de 1évaluation des probabilités de perception des cibles. Ceci confere & 'TJPDAF une

caractéristique appréciable pour les applications de pistage multi-cibles en temps réel.

Expression des probabilités

L’évaluation des probabilités intégrées d’associations conjointes est obtenue par la regle de décomposition

de Bayes suivante
1
P{E|Z*} = P{&|Z(k), my, ZF '} = —p[Z(K)|E, my, ZF 1| P{E|ms, ZF71) (4.55)
c
ou ¢ est une constante de normalisation.
Si on suppose que les états des cibles, étant données les observations disponibles, sont mutuellement

indépendants, alors la fonction de vraisemblance des mesures p|Z(k)|E, my, ZF~!] reste identique &

celle obtenue dans le développement du JPDAF, a savoir

PIZ(K)|E, my, 271 = Vo) ﬁ lex, (2 (k)] ) (4.56)

ol ey, (z;(k)) 2 Nzi(k); Z% (k|k — 1), S (k)] est la vraisemblance de la mesure z;(k) associée & la cible
ti = O;(E). 2% (k|k — 1) est la mesure prédite de la cible ¢; dont la covariance de I'innovation associée est

Sti(k). V est le volume d’observation du senseur de poursuite.

La probabilité a priori de chaque événement £ s’exprime comme

T
P{&|my, ZF1} = P{&|my} = ¢n(,i)!!MF(<I>(5)) H [Pcﬂzit(S)[l B Pcﬂlﬂst(g)

T
¢ () . 17 (E)
<L PG—rmd 1= P i m] (4.57)
t=1
ou pr(¢) représente la masse de probabilités du nombre de fausses mesures ¢ dans I’événement .

Plgll—l,mk est la probabilité de perception prédite de la cible. Le calcul de cette probabilité a été présenté

dans le développement de 'TPDAF.

A partir des expressions précédentes, on voit que la probabilité a posteriori P{€|Z*} de chaque évenement

intégré d’associations conjointes £ est finalement donnée par
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P{5|Zk} _ l(b(g)' :uF((b(g)) ﬁ [etl(zz(k))]n(g)

c mg! V&)

1—7(E)

T
71',(5)
X H |k 1omy) [1- P |k 1 mk] (4.58)
t=1

4.3.5 Version paramétrique de 'lJPDAF

Si on suppose que pup(¢) est une loi de Poisson, les probabilités intégrées d’associations conjointes
s’expriment

mg

PleZ*) = 3 T[N en, sl ™

i=1

T
5:(E 1—64(E)
< [T - py =

t=1

T
t(g) 1—m (&)
X H k|k 1omy) [1— Pk|k 1) (4.59)
t=1

ou ¢ est une nouvelle constante de normalisation.

4.3.6 Version non paramétrique de 'lJPDAF
Avec une loi diffuse pour pp(¢), les probabilités intégrées d’associations conjointes s’expriment alors

() 11

c

P{E|Z"y = [Ver, (z: (k)]

i=1

T
% H 6t(8) ]1—6t(5)
t=1

T
ﬂ't(é') t 1—7(€)
x H |k 1omy) [1— ko|k—1,mk] (4.60)
t=1

ou ¢ est une autre constante de normalisation.

4.3.7 Probabilités marginales d’associations intégrées

En supposant les états des cibles mutuellement indépendants sachant les mesures disponibles, les proba-
bilités marginales d’associations s’obtiennent en sommant les probabilités conjointes des évenements &

pour lesquels I’événement marginal a lieu (cf exemple précédent). Nous aurons donc pour ¢t = 1,...,T
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Bi(k) £ P{O} NOi(k)} = ) P{E|ZF}u(€) (4.61)
£
Bo(k) = P{O}, NG5 (k)} = ; P{E|ZMY[1 = 6,(E))m (€) (4.62)
By(k) = P{O}, NG5 (k)} = ; P{EIZF}[1 = 8,(E)][L — m(E)] (4.63)
Lorsque les probabilités marginales (k) (i = 0,0, ..., my) sont évaluées, les équations de mise & jour et

de prédiction de 1’état des cibles correspondent a celles du filtre IPDAF. Ceci constitue le schéma global
de 'TJPDAF. La confirmation/terminaison des pistes peut étre gérée par la procédure de décision basée

sur le SPRT [DLL98] ou par d’autres méthodes & caractere plus heuristique [Li97a, LL97, LL98a, LLI8D].

4.3.8 Formulation concise des probabilités marginales d’associations

A premiere vue, I’évaluation des probabilités intégrées d’associations conjointes P{E|Z*} exige de
générer un ensemble trés important de matrices d’associations. Cet ensemble contient nettement plus de
matrices que celui auquel on a a faire dans la mise en ceuvre d’'un JPDAF classique. De ce point de vue,
l'utilisation de 'IJPDAF parait d’emblée tres limitée du fait de son colt prohibitif en calculs surtout
pour les applications denses en clutter et/ou en cibles. Bien que cette remarque soit parfaitement valable
au premier abord, on doit garder en mémoire que seules les probabilités intégrées marginales ! (k) inter-

viennent en fait dans le processus de filtrage.

Comme nous le verrons l’expression théorique de ces probabilités peut heureusement se ramener & une
formulation concise qui n’exige plus I’énumération exhaustive de tous les événements intégrés £ (et donc
celle des matrices (2/(£)) mais uniquement celle des éveénements d’associations (non intégrés) ©. En effet,

avec quelques manipulations algébriques sur les expressions (4.61)-(4.63), on aboutit & la formulation

suivante concise des probabilités marginales ¢(k) (i = 0,0,1,...,my)
ﬁf(k) = ZP{9|Zk}P13k71,mk H[Plg\)ljcfl,mk]éj(g)@it(@) (4.64)
e j#t
(k) =D PAOIZFY Py TP k1, )7 1L = 60(O)] (4.65)
e j#t
(k) = PLOIZFY1 = Py TTIPG 1 )7 1L = 6:(O)] (4.66)
e j#t

Sous cette forme concise, on voit que le colt en calcul de 'IJPDAF est pratiquement équivalent a
celui d’un JPDAF classique. Seul un faible surcoiit sera di a 1’évaluation de la prédiction de la probabilité
de perception des cibles. Ce surcotit est en fait dérisoire aussi bien en mémoire nécessaire qu’en temps

de calcul. Notons aussi que les expressions théoriques finales (4.64)-(4.66) auxquelles on aboutit sont
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parfaitement cohérentes avec celle du filtre JPDAF classique lorsque la probabilité de perception prédite

des cibles P,ﬁ,iflymk tend vers 1.

4.3.9 Variantes possibles de 'IJPDAF

Dans le calcul précédent, nous avons toujours émis I’hypothese que les états des cibles étaient mu-
tuellement indépendants sachant les mesures disponibles. Cette hypothese bien que souvent admise en
pratique peut étre supprimée et une formulation couplée de 'TJPDAF peut aisément étre obtenue en
adoptant la méme démarche que celle de Bar-Shalom concernant le JPDACF (Joint Probabilistic Data
Association Coupled Filter). Nous n’entrerons pas dans les détails de calculs de PIJPDACF puisque cela
n’apporte aucune innovation particuliere a ’algorithme qui vient d’étre présenté. Par ailleurs, il faut sa-
voir que la prise en compte d’une information de reconnaissance de type amplitude par exemple peut aussi
étre introduite sans difficulté dans 'IJPDAF comme il a déja été proposé en [LBS90a, Dez92, LL97]. Une
version IJPDAMCEF exploitant la modélisation de mesures multi-sources proposées dans le JPDAFMCF

peut également étre utilisée.

4.4 Pistage multi-cibles par MHT (1977)

L’approche MHT (Multiple Hypothesis Tracking) proposée par Donald B. Reid en 1977 [Rei77,
Rei79a] est dans son principe une extension de ’approche FBO au cas multi-cibles. Le MHT est donc
une méthode bayésienne. Elle est souvent considérée comme une version bayésienne récursive de la
méthode de Morefield [Mor77] proposée a la méme époque. Contrairement & ’approche JPDAF qui est
une méthode bayésienne orientée sur les cibles (on essaie d’associer des mesures aux cibles existantes), le
MHT est une approche orientée sur les mesures. Dans le MHT, on essaie d’associer aux mesures des
cibles déja existantes ou nouvelles. L’intérét de cette approche réside essentiellement dans sa possibilité
d’initialisation de nouvelles pistes. Comme nous le verrons, la mise en ceuvre du MHT reste en théorie

impossible sans certaines astuces d’implémentations qui lui enléeve malheureusement son caractere optimal

[PDBSW92].

4.4.1 Principe général du MHT

Dans le MHT, on évalue la probabilité a posteriori pour que chaque mesure disponible provienne
soit d’une fausse alarme, d’une cible existante ou éventuellement d’une nouvelle cible. Le nombre de
source n’est pas connu a priori. Le principe du MHT consiste a générer un ensemble d’hypotheses
(représenté par une structure arborescente) sur lorigine de chaque mesure disponible. La probabilité
a posteriori de chaque hypothese est calculée récursivement en tenant compte des détections manquantes,

des fausses alarmes et de "apparition possible de nouvelles cibles. La mise a jour de chaque cible est faite
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par pondération probabiliste des hypotheses pour lesquelles la cible considérée intervient.

4.4.2 Exemple

Considérons au scan k, 2 cibles interférentes et 3 mesures validées correspondant a la configuration

suivante :

Les hypotheses sur 'origine des mesures sont représentées par la structure arborescente suivante :

Chaque nceud de I'arbre correspond a une origine possible de la mesure. L’index 0 correspond & l’origine
FA. Cet arbre devra ensuite étre étendu au scan k+ 1 en générant de nouvelles hypotheses conjointes d’as-
sociation et ainsi de suite. La taille de ’arbre (nombre de branches & générer) croit donc exponentiellement

au cours du temps.
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Mesures Zk)

" 2 0
5
4 g 0
2
5
0
0 < 2
5

1
0
2 5

Origine possible <

des mesures é 0
4 2
5
0
2 0 5
0
4 5
0
0 é 2
5

3
0
2 5
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A Tinstant k et pour cet arbre d’hypotheses, on peut faire correspondre la matrice suivante :

z1 2z z3 No d’hypothese

0 0 O hy
1 0 0 ho
2 0 0 hs
3 0 O hy
0 2 0 hs
1 2 0 he
3 2 0 hr
0 4 0 hs
1 4 0 ho
2 4 0 h1o
3 4 0 hi1
0 0 2 his
1 0 2 his
M= 3 0 2 hi4
0 4 2 his
1 4 2 hi
3 4 2 hi7
0 0 5 h1g
1 0 5 h1g
2 0 5 hag
3 0 5 ho1
0 2 5 ha2
1 2 5 hos
3 2 5 haa
0 4 5 has
1 4 5 hag
2 4 5 hor
3 4 5 hag

Une valeur m;; de cette matrice indique la nature de I'origine de la mesure z; sous ’hypothese conjointe
d’association h;. Dans cet exemple tres simple, on voit qu’il faut générer 28 hypotheses possibles d’as-
sociations conjointes qui décrivent les origines simultanées des 3 mesures validées. Bien que ce nombre
d’hypotheses croisse exponentiellement avec les dimensions du probléme, on voit que pour une cible

particuliere ¢, il existe un nombre restreint N} de possibilités. Ainsi, on a :
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— pour la mise a jour de t; intervient les hypotheses suivantes :

° 981 : t1 n’est pas détectée

° 9? : t1 est associée & z; (au travers de ha, he, ho, hi6, h1g, ha3, hag)
— pour la mise a jour de to intervient les hypotheses suivantes :

° 982 : to n’est pas détectée

° 9? : to est associée & z; (au travers de hs, hig, hao, ha7)

. 9;2 : to est associée a zy (au travers de hs, hg, by, haa, has, has)

. 9? : to est associée a z3 (au travers de hig, his, hi4, his, hig, h17)

pour la mise a jour de t3 intervient les hypotheses suivantes :
° 983 : t3 n’est pas détectée
e 03 : t3 est associbe & z; (au travers de hy, bz, hi1, b4, hi7, hot, hoa, hog)
—etc ...
Supposons maintenant que on sache évaluer (ce calcul sera présenté dans la suite) les probabilités
a posteriori conjointes d’associations P{h;|Z*} (i = 1,...,28). Les probabilités marginales d’associa-

tions seront données par :

P{o4Z*y = > P{hi|Z"} (4.67)
hiCG;‘.

Pour la cible t5 de notre exemple, on aura donc
P{02|Z"} = P{h3|Z"} + P{h10|Z"} + P{hao|Z"} + P{h2r|Z"}
P{052|Z"} = P{hs|Z*} + P{h6|Z"} + P{h|Z*} + P{h22|Z"} + P{hos|Z"} + P{h24|Z"}
P{02|Z"} = P{I12|Z*} + P{h13|Z"} + P{h1a|Z*} + P{h15|Z"} + P{h16|Z"} + P{h17|Z"}
P{0¢|Z"} = 1 - P{07*|Z"} — P{03|Z*} — P{032|Z*}

La mise a jour d’une cible ¢ sera faite par pondération probabiliste ; c.a.d. par les équations

%! (k|k) = P{O§|ZF )% (k|k — 1) + Zg P{0%|Z" )%} (k|k) (4.68)

j=1

ou I'égalité xf(k|k) = x*(k|k — 1) a été utilisée et ot X}(k|k) est I'estimée de la cible ¢ obtenue par le

filtre de Kalman et basée sur 'utilisation de la mesure relative a 9;-.

La matrice de covariance associée s’écrira
N9
P'(klk) =Y P{OY|Z"}E[(x' (k) — %L (k|k)) (x" (k) — X} (k|k))'|Z*] (4.69)
=0

En utilisant la méme démarche que pour le PDAF, on obtient

Pl (k|k) = P{04|ZF Pt (k|k — 1) + (1 — P{6}|Z*}) P! (k|k) + Pt (k) (4.70)
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avec

P'(k) = Y P{0Y|Z" %, (k|k)XE (kIR)'] — %" (k|R)X" (k|k) (4.71)
j=0
P! (k|k) = [I - K'(k)H'(k)|P"(k|k — 1) (4.72)

4.4.3 Construction de ’arbre des associations

Notons QF l’ensemble des hypotheses d’associations conjointes, appelé arbre des associations.
Chaque branche de 'arbre Q* décrit une séquence d’associations possibles de toutes les mesures dis-

ponibles jusqu’a I'instant courant k. On note

oF = {0} (4.73)

Qf représente une branche particuliere de ’arbre d’associations. En théorie, QF est construit a partir de

Parbre antérieur Q51 et des m mesures courantes validées

Z(k) = {zi(k)};2 (4.74)

Pour cela, on étend 'arbre ¥~ en prolongeant ses branches avec les hypotheses d’origine possible pour
z1(k); puis les branches de cet arbre sont a leur tour étendues avec les hypotheses d’origine possible
pour za(k); etc; jusqu’a la croissance compléte qui se termine avec les hypothéses d’origine possible
pour z, (k). On dispose alors en théorie de I'arbre courant Q. Le MHT exige une énumération
exhaustive de toutes les branches de I'arbre d’associations. Chaque branche est prolongée en supposant
que chaque nouvelle mesure validée provient :

e soit d’une fausse alarme

e soit d’une cible existante

e soit d’une nouvelle cible

En pratique, un tel arbre ne peut étre construit a cause du nombre exponentiellement croissant de ses
branches. Une gestion des branches est donc nécessaire pour éviter ’explosion combinatoire du MHT. De

ce fait, tout MHT mis en ceuvre perd inévitablement la propriété d’optimalité du MHT théorique.

4.4.4 Hypothese d’associations conjointes courante

On désigne par ©(k) I’événement associé & une hypothese d’associations conjointes courante. Chaque
évenement ©(k) décrit la réalisation d’une combinaison possible des mesures avec des sources possibles
au temps courant. C’est en fait la réalisation du bout d’une branche particuliere de Q*. Chaque bout de
branche ©(k) est constitué de

— 7 mesures provenant des cibles existantes antérieurement
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— ¢ mesures associées au clutter
— v mesures émanant de nouvelles cibles
Pour chaque hypothese courante ©(k), on definit alors les indicateurs suivants :

1 siz;(k) est associé & une cible existante
7 = Ti[O(K)] =

0 sinon

1 siz;(k) est associé a une nouvelle cible
i = (O] =

0 sinon

1 sila cible t présente en QF~! est détectée au scan k
or = 0:[O(k)] =

0 sinon

Avec ces indicateurs, on definit alors

e Le nombre de pistes prolongées dans O(k)

e Le nombre de fausses mesures dans O(k)

[6[0(k)] = my — 7[O(k)] - VIO (k)]

L’événement d’association courant ©(k) est donc constitué des événements :

|O(k)] = {Or(k), On (k), Or (k)} |

avec

e Or(k) qui représente les associations avec les cibles existantes

or(k) & [ 6 (k)

=1

ou t; désigne l'index de la cible existante associée a la mesure z;(k)

e Op (k) qui représente les associations avec les cibles nouvelles

on(k) 2 () 6 (k)

;=1

ou n; désigne I'index de la nouvelle cible associée & la mesure z;(k)

(4.75)

(4.76)

(4.77)

(4.78)

(4.79)

(4.80)

(4.81)

(4.82)

(4.83)
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e Op(k) qui représente les associations avec les fausses alarmes

Or(k)2 (] 6k (4.84)

2:7; 13 =0

ol t = 0 désigne l'index de la source fausses alarmes.

4.4.5 Hypothese d’associations conjointes cumulées

On désigne maintenant par ©%! I’évenement lié & la réalisation d’une hypothese d’associations conjointes
cumulées; c’est a dire & la réalisation d’une branche compléte de 'arbre QF. Cet évenement peut

étre décomposé sous la forme

okl = {e* 1 ok} (4.85)

4.4.6 Probabilité a posteriori d’associations conjointes cumulées

La probabilité a posteriori d'une branche compléte de 'arbre QF, c’est & dire de 1’évenement

d’associations conjointes cumulées ©%! est obtenue par la regle de Bayes

G LP{OM 24} = POM L, O(k)|Z(K), 24}

= LplZ(R)]O(k), 0%, 251 P{O(k)|OF 12, ZF 1 Plekhe|zk 1)
C

e La vraisemblance de 1’événement courant s’exprime
my
PIZ(R)|O(K), 081, 28] = [T {er [ ()] 1Oy (1o lOWD
i=1

1 1 G
= vommrea L] {enmmno®
=1

e La probabilité a priori de 'événement courant ©(k) se décompose selon

P{O(k)|©""1*, 2"} = P{6(k),5[0], ¢[0], v[O]|©O" 1, Z 1}
= P{O(k)|d[0], ¢[0], v[6], 0"~ 1, ZF 1} P{s[0], ¢[0], v[e]|e* !, Z 1)
= P{6(k)[5[0], ¢[0], v[O]} P{[6], ¢[6], O]}

ou §[0)] est le vecteur des indicateurs de détection des cibles existantes dans (k).
e Le nombre d’événements ayant le méme nombre de détections de cibles existantes 7 et de cibles
nouvelles v est donné par
— le nombre de permutations possibles de 7 = my — ¢ — v mesures prises parmi les my, disponibles
et multiplié par

— le nombre de choix possibles de ¥ mesures prises parmi ¢ + v
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En supposant toutes ces combinaisons équiprobables, on obtient

PLO(RIal6), 6] vie]) = [ « Lo gh) - SOEL s
e La probabilité P{4[O], ¢[O], v[O]} vaut
P{3[0], 6[0], ¥[01} = ur ([0 un (vO)]) [T (P41 — pi* 1! (4.87)

ou pr et pun sont les masses de probabilités du nombre de fausses mesures et du nombre de nouvelles
cibles respectivement. On suppose généralement que ces masses suivent des lois de Poisson de densité
)\F et )\N-

En combinant ces expressions, on obtient donc la probabilité a priori suivante

sle][e)]

mk!

P{O(k)|OF 1, ZF 1) = ur @Oy wO) TT (P - Py 1T (a88)

t

La probabilité a posteriori d’'une branche d’associations possible est donc finalement obtenue récursivement

par la formule

ﬂk,l A P{@k,l|zk}

1 ¢[O]lv[e]! e 0]) o . 5.0 s ik
- LA OL e D D T e o T 125" ekt

i=1 t

ou ¢ est une constante de normalisation.

La branche la plus probable est celle dont la probabilité P{©%!|Z*} est maximale. Pour la connaitre

il nous faut donc générer la liste exhaustive de toutes les branches possibles de 'arbre d’associations.

4.4.7 Forme de 'estimateur

La mise a jour de I’état de chaque cible est donnée en théorie par la pondération probabiliste des
estimées conditionnées par les branches possibles d’associations. Ceci a été présenté dans l’exemple

précédent.

En pratique cependant, pour limiter la combinatoire du MHT, on peut utiliser uniquement que la
branche la plus probable pour mettre a jour les pistes, ou bien effectuer une pondération probabiliste
tronquée (et renormalisée) des estimées conditionnelles. Cette étape délicate est souvent basée sur un
savoir faire du développeur. Les regles de fusion de branches et d’éliminations des branches improbables

sont propres & chaque systéme de poursuite MHT.
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4.4.8 En résumé

En théorie, les étapes d’un cycle du MHT sont les suivantes :
e On dispose d’un arbre d’hypotheses au temps k — 1 et des prédictions des états de cibles existantes
e Au temps k, on recoit my mesures validées
e On étend l'arbre des hypotheses d’associations en prolongeant les branches avec les hypotheses
possibles sur l'origine des mesures validées
e On évalue la probabilité a posteriori de réalisation de chaque branche (enumération exhaustive
coliteuse)
e On calcule les probabilités marginales d’associations relativement a chaque cible
e On met a jour les états des cibles par pondération probabiliste
e On prédit ’état des cibles a I'instant k + 1
En pratique, pour limiter la combinatoire du MHT, on sépare d’abord les cibles en clusters indépendants ;
puis on utilise un MHT pour chaque cluster. Cette technique ne suffit pas a limiter la combinatoire. On
est donc amené & [Rei79a, PS83]
e éliminer (pruning) les branches ayant une probabilité d’occurence négligeable
e combiner (merging) les branches ayant conduit au méme nombre de cibles pistées avec des estimées
comparables
Généralement le résultat présenté concerne celui obtenu avec I’hypothese d’associations la plus pro-
bable. Ce résultat n’est pas forcément hélas celui correspondant a la réalité ... On peut aussi adopter la
présentation décrite en [BB89]. Dans les environnements tres denses, seul le pistage par MHT des clusters

de cibles reste possible. Cette approche est présentée en [DBP90].

4.4.9 Avantages du MHT

e prise en compte de cibles multiples en nombre inconnu
e prise en compte des fausses alarmes
— initialisation des nouvelles cibles détectées

— calcul récursif des probabilités d’associations conjointes cumulées

4.4.10 Inconvénients du MHT

e le nombre d’hypotheses a gérer croit exponentiellement au cours du temps

le MHT théorique n’est pas exploitable

on doit utiliser des heuristiques de gestion d’hypothéses pour limiter la combinatoire

le MHT mis en ceuvre en pratique perd donc son caractere d’optimalité

e la mise en ceuvre d'un MHT opérationnel est tres difficile et délicate [Bla86]
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4.5 Pistage multi-cibles par PMHT (1995)

Les algorithmes proposés précédemment (JPDAF, MHT) utilisent une énumération exhaustive de
toutes les associations possibles des mesures aux pistes. On est alors confronté a un probléeme d’explosion
combinatoire qui se résout par élimination des séquences les moins probables (principe d’élagage des
branches pour le MHT et/ou de la recombinaison O-scan back du JPDAF). La méthode PMHT (Proba-
bilistic Multi-Hypothesis Tracking) proposée en 1995 par R. Streit et T. Luginbuhl [SL93, SL94a, SL95]

permet d’éviter I’énumération exhaustive des hypotheses d’associations conjointes possibles.

L’idée principale du PMHT consiste & modéliser les associations (assignations) comme des va-
riables aléatoires. Les mesures ne sont plus associées a des pistes précises, mais simultanément a toutes
les sources avec des probabilités estimées au moyen de 1’algorithme EM (Expectation Maximization) de

Dempster [DLR77].

Contrairement au JPDAF et au MHT, le PMHT est une méthode de poursuite de type batch
et non temps réel. On doit en effet stocker les mesures obtenues pendant plusieurs scans avant de pouvoir

mettre en ceuvre le PMHT. La présentation du PMHT faite ici est basée principalement sur [Gau97].

4.5.1 Formulation du probléme

On fixe & K la durée du batch (le nombre de scans & mémoriser) et on suppose qu’il existe
M sources présentes. Ce nombre M n’est pas restrictif et un modele particulier de source pourra cor-
respondre aux fausses alarmes comme on le verra. L’évolution de chaque cible ¢ est modélisée par un

processus de Markov qui est exprimé en temps discret sous la forme classique

[x'(k+1) = P (k) V(K] k=1... K| (4.89)

ol vt(k) est un bruit blanc gaussien centré de covariance Q?(k). La mesure associée & la cible ¢ s’écrit

|2'(k) = h'[x' (k). w'(k)] k=1, K] (4.90)

ol wt(k) est un bruit blanc gaussien centré de covariance Rf(k). En pratique, & chaque scan, on dispose
d’un ensemble de my mesures validées Z(k) = {z1(k),...,2m, (k)}. La mesure z!(k) de la cible ¢ peut
appartenir & Z(k) si la cible est détectée au scan k. La taille my, de Z(k) varie d'un scan a lautre. On

note Z¥ I’ensemble des mesures cumulées et validées depuis k =1 & K,
Z5 = (Z(1),...,Z(K)) (4.91)
Le vecteur cumulé des états des M sources est noté

XK = (X(1),...,X(K)) (4.92)
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ou X (k) = (x1(k),...,xp(k)) désigne 'ensemble des états des sources au scan k.

Afin de pouvoir prendre en compte 'incertitude sur l'origine des mesures, on définit le vecteur cumulé

©F d'une combinaison des associations conjointes possibles sur la longueur du batch,
of =(0(1),...,9(K)) (4.93)

ou O(k) = (01(k),...,0m,(k)) désigne une hypothese d’associations conjointes possible sur lorigine des
mesures disponibles pour le scan k. 6;(k) = i caractérise 'association du type : la jieme mesure au scan
k est associée a la source no 1.

K

Une piste notée 7/

-, définie jusqu’a l'instant K, est une séquence de mesures associées a une méme

source i ; c’est a dire

=z (k)|0;(k) =i, 1<k<K 1<i<M} (4.94)

K2

Une telle définition de piste prend en compte les détections manquantes possibles d’une source. Comme

un modele de source correspond aux fausses alarmes, on a une piste particuliere de type fausse alarme.

Une partition P des mesures en pistes est définie comme un ensemble possible de pistes non vides,

ie.

) (4.95)

Chaque partition correspond en fait & une certaine hypothese d’associations conjointes cumulées de Z*.

Le probleme général de ’association consiste a trouver la partition possible la plus probable. Dans
les algorithmes précédents, on utilisait une énumération exhaustive des partitions possibles soit avec une
mémoire minimale 0-scan back (JPDAF) ou maximale (MHT) et I'évaluation récursive des probabilités
des partitions générées. La méthode PMHT de Streit et Luginbuhl évite I’énumération exhaustive des
partitions en assignant toutes les mesures a toutes les sources avec une pondération probabiliste em-
pirique. Le vecteur d’assignation inconnu ©X est considéré dans le PMHT comme un vecteur aléatoire

que 'on cherchera a estimer.

Le probleme de base a résoudre est donc le suivant :

Comment estimer XX & partir de ZX quant on ne connait pas ©X ?

L’idée originale proposée en [SL95] consiste & estimer simultanément le vecteur des états cumulés

XX et les probabilités d’assignation II¥ des mesures aux sources. On note ®X le vecteur des
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parametres XX et IIX A estimer. ®¥ constitue les données completes du probleme de Iextraction multi-

pistes (EMP).

oK & (XK TIK) = (®(1),..., ®(K)) (4.96)

ott ®(k) £ (X(k),II(k)) représente les parametres & estimer au scan k avec

>

(k) 2 (my(k), ..., 70 (k) (4.97)

La notation 7;(k) désigne la probabilité a priori d’associer une mesure au modele de source i.

Le probleme fondamental & résoudre consiste donc & estimer ®¥ & partir des mesures disponibles

cumulées Z¥. Nous verrons comment le PMHT apporte une solution & ce probleme.

4.5.2 Hypotheses du PMHT

On précise ici les hypotheses et les contraintes liées a la méthode. On rappelle d’abord que dans les
approches probabilistes traditionnelles (JPDAF et MHT), on utilisait les contraintes suivantes pour la
génération des hypotheses d’associations :

e (C1) : chaque mesure provient soit d’une piste soit d’une fausse alarme (pas de mesure

multi-sources [MCTW86]). Ceci implique que les associations doivent étre exclusives et exhaustives,

c.a.d
P
U =2z" (4.98)
i=1
avec la contrainte pour Vi # jet i, =1,...,p
i ﬂTjK =0 (4.99)

oll p < M est le nombre de pistes d'une partition quelconque PX. Cette contrainte implique d’avoir

pour les probabilités des variables d’affectations

M M
Z P{0;(k) =i} = Z mi(k) =1 (4.100)

Les probabilités 7; (k) sont inconnues et font partie du vecteur ®(k) a estimer.

e (C2) : chaque source (cible et/ou FA) génére au plus une mesure (pas de source étendue
ou de trajets multiples). Cette contrainte implique d’avoir pour k = 1,..., K et 4,5/ = 1,...,my
avee j 7 J,

O;(k)=i=0j(k)#1i ied{l,...,M} (4.101)

Pour le PMHT, le fait d’introduire ’association des données dans le probleme méme d’estimation

revient en fait & relacher la deuxiéme contrainte (C2). On suppose que certaines mesures peuvent
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provenir de la méme source (en particulier du clutter). A la limite, toutes les mesures peuvent tres bien
étre associées a une source unique. Cette possibilité du PMHT est originale et tout a fait réaliste car
une source peut en pratique étre & l'origine de plusieurs mesures (cas des cibles étendues, des trajets
multiples, etc). On prend de ce fait en compte beaucoup plus d’hypotheses d’associations que dans les

approches bayésiennes classiques du JPDAF et du MHT.

Pour le développement du PMHT, les auteurs supposent cependant que les probabilités m; (k) sont

e (H1): indépendantes de la valeur des mesures, c.a.d.

mi(k) 2 P{0;(k) =i}  Vi=1,...,my (4.102)

e (H2) : indépendantes entre elles, c.a.d.

P{OK)} = ﬁ P{0,(k)} (4.103)

Remarque importante

Ces hypotheses (discutables), se justifient uniquement par leur nécessité a la mise en ceuvre de 'al-
gorithme EM qui servira & l'estimation des données completes &% = (XX 1K) & partir des données

incompletes Z¥. C’est 14 qu’intervient ’empirisme de la méthode du PMHT.

On suppose aussi que
e (H 3) : les affectations des mesures ©(k) et les vecteurs d’état des sources X (k) sont indépendants
o (H 4) : les états des différentes sources sont indépendants entre eux

Analogie avec ’estimation des parameétres de mélange de densités

Avec ces hyptheses, la fonction de vraisemblance du parametre ®¥ basée sur les données incompletes

s’écrit
p(¥[0%) = T] pEw|o(k) = ] pEmIX(E). 1) (4.104)

k=1 k=1
K

TS P00 X (). TI(R), © (k) PLO ()X (k). TI(K) } (4.105)
k=10 (k)

=TT 3 T plzs () X (k). 11G8) P10, (k) (4.106)
k=10 (k) j=1
K mip M

= [T I >_ plei(0) X (k). 05(0)) P{6; ()} (4.107)

ZP(Zj(k)lxi(k))ﬂ'i(k)} (4.108)
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Les relations (4.104) et (4.105) proviennent du théoréme des probabilités totales et de la regle de Bayes.
La relation (4.106) provient de 'hypothése d’indépendance des variables 6; (k). Cette relation traduit le
fait que toute mesure peut étre affectée a I'une des sources sans tenir compte des mesures préalablement
affectées. La relation (4.107) provient d’'une simple factorisation et du fait que chaque 6;(k) décrit le

méme ensemble.

Avec cette décomposition, on voit clairement que la densité de probabilité de chaque mesure
s’exprime comme un mélange des M densités associées a chaque modele de source. Le
probléme & résoudre (estimer ®¥ A partir de ZX) est donc strictement équivalent au probléme de Pes-
timation de parametres d’une loi de mélange de densités ou de nombreuses méthodes de résolution
sont disponibles [TSM85]. L’algorithme EM (Expectation-Maximization) que nous allons présenter est la
méthode adoptée par Streit et Luginbuhl pour résoudre ce probleme et développer le PMHT. Le choix
de la méthode EM est justifié car cet algorithme est bien adapté a I’estimation de parametres lorsque la

fonction de vraisemblance est délicate & évaluer et/ou lorsque son optimisation est difficile.

4.5.3 Présentation de ’algorithme EM

L’algorithme EM (Expectation-Maximization) proposé par Dempster, Laird et Rubin en [DLR77,
Lai93, FH93] peut étre considéré comme un cas particulier de la méthode ICE (Iterative Conditional
Estimation) proposée récemment par Pieczynski en [Pie92, Pie95] dans le cas particulier ou les densités
de probabilité appartiennent & la famille des exponentielles [Del97]. Nous rappelons ici brievement le prin-
cipe de cette méthode et donnons un exemple de son application au cas de I’estimation de parametres de
mélange (mixture) de densités [Sun76, RW84]. L’étude de la convergence de I’algorithme EM est présentée

en [Wu83|.
Considérons deux espaces X et Z et une application de X dans Z. On note

X(z) ={xe X |zx) =2z} (4.109)

On note p(z|®) la densité de probabilité conditionnelle de z sachant ® et p(x|®) la densité de probabilité
conditionnelle de x sachant ®. Le probléme consiste a estimer le parametre inconnu ® au sens du maximum

de vraisemblance a partir des observations z avec ® de la forme
®=(¢1,...,¢m) € QCRY (4.110)

On suppose que 'on ne peut pas accéder directement a x. Ceci correspond & de nombreux probléemes

physiques ou des données sont manquantes. On qualifie x de données complétes et z de données
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incompletes. Ces données sont réliées par la relation

p(z|P) :/X( )p(X|‘I))dX (4.111)

D’autre part, puisque z est une fonction de x, on a
p(x,2/®) = p(x|®) (4.112)

Compte tenu de cette remarque, la densité de probabilité conditionnelle de x sachant z et ® qui représente

la densité de probabilité des données manquantes s’écrit

p(x|z, @) = p(x,2|®) = p(x[®) (4.113)

p(z®) — p(z|®)

En théorie 'estimée & au sens du maximum de vraisemblance est obtenue en maximisant la valeur de
la densité des données completes p(x|®). Mais ici, on de dispose pas de cette densité mais uniquement
de p(z|®). L’idée de 'algorithme EM consiste & approcher le maximum de vraisemblance

e en estimant itérativement lespérance conditionnelle de p(x|®) & partir des données incompletes z

et d’une estimée antérieure ®"

e en maximisant la valeur de cette espérance par rapport aux parametres de ® pour obtenir une

meilleure estimée $7+1,
Ce processus itératif est mené jusqu’a la convergence de I'estimée cherchée ®. Nous détaillons maintenant

les 2 étapes de I'algorithme.

e Etape E : Expectation
A partir des parametres estimés " A Ditération précédente, on calcule 'espérance de la log-

vraisemblance conditionnée par la mesure z qui s’exprime

Q(®|9") £ Eloglp(x|®)]|z, "] = L(®) + H(D|D") (4.114)

avec

L(®) = log[p(z[®)]

H(®|d") = E[loglp(x|z, ®))|z, "]

e Etape M : Maximization
On maximise Q(®|®") afin d’affiner notre estimation du vecteur de paramatres ® pour litération

suivante

! = arg max Q(®|d") (4.115)
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4.5.4 Interprétation de ’algorithme EM

Ne connaissant pas la fonction de vraisemblance p(x|®) des données completes, on 'estime (en fait
sa log-vraisemblance) & partir des observations z et des parametres estimés Pr disponibles a l'itération
r. On peut montrer qu’en combinant ces deux étapes et avec I'inégalité de Jansen que la fonction log-
vraisemblance L(®) = log(p(z|®)) est croissante [DLR77]; ce qui assure la convergence vers des points

stationnaires.

4.5.5 Application de l’algorithme EM aux lois de mélange

On présente succintement 1'utilisation de ’algorithme EM pour l'estimation des parametres de mix-
tures de densités [RW84]. Cette utilisation de I’algorithme sert de base & la méthode PMHT qui sera

présentée plus loin.

On désigne par X les données completes et par Z les données incomplétes du probleme. On dispose
de my mesures indépendantes Z = {z1,...,%Zpy, }. Chacune de ces mesures appartient & une famille

paramétrée de densité de probabilité de la forme générale

ZJ|(I) Zﬁzpz ZJ|¢’L (4116)

ou chaque 7; est un coefficient de pondération positif ou nul vérifiant la contrainte

M
> omi=1 (4.117)
1=1

Chaque densité p;(.) est une densité de probabilité paramétrée par ¢;. En d’autres termes, chaque mesure
z; peut provenir d'une des M densités p; avec une probabilité m;, ¢ = 1,..., M. Le vecteur ® des

parametres a estimer ici correspond a

(I)é(ﬂ-la"';ﬂ-Maqﬁia"w(b]\/f) (4118)

En supposant les mesures indépendantes entre elles, la vraisemblance et la log-vraisemblance de

® sachant les données incompletes Z s’écrivent

mg my M
p(21®) = [[ptasl®) = [T 3 mims(as16,) (4119)
Mg my M
L(®) = log[p(Z|%)] = log[ [ ple;[#)] = 3 1oa[3 mpi(zy11)] (4.120)

Pour mettre en ceuvre les itérations E et M de 'algorithme, on doit introduire la densité p(X|Z, ®)

ot X £ (Z,0) = (X1,...,Xm, ). Chaque donnée complete x; est définie par le couple (z;,0;). les 6; sont
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les données manquantes du probleme qui prennent leur valeur dans {1,...,M}. Chaque 6; indique
le type de la densité d’oli provient la mesure z;. Dans cet exemple, le vecteur des données completes X
est un vecteur hybride dont les composantes prennent a la fois des valeurs continues et discretes. La

probabilité des données manquantes, en supposant les ¢; indépendants entre eux s’exprime

mp mi
P{O|®} = P{01,...,0m,|@} = [ P{0;|®} = [] m, (4.121)
j=1 j=1
En utilisant la regle de Bayes, on peut écrire
my
pIX|9] = pIZ, 0]0] = P{O|Z. D}p(Z|D) = p(Z|O, ®)P{O|0} = [ po, (25160, )0, (4.122)
j=1

La densité p[X|Z, ®] intervenant dans I’étape E s’écrit alors d’apres (4.113) et avec (4.122)

p[X|®] _ P{O|Z,2}P(Z|P)
p(Z[®) p(Z[®)

IT521 o, (2190,)m0, ﬁ pe, (5], )mo
172 p(z;]®) o p(z]®)
(4.123)

p[X|Z, 9] = = P{O[Z,2} =

e Etape E : Expectation
Supposons disposer de ®”  I'itération antérieure r, et calculons maintenant 'expression de Q(@\CTDT)

pour l'itération courante r + 1

Q(@[3") = Elloglp[X|9]|Z,$"] = 3 P{O]Z. 8"} log [pX|4]] (4.124)
5}
me 7 o, (2015,)

eli_l Z [H Z,|(I)r)

my=1 j'=1

} [% log[mo, po, (|¢s, )]} (4.125)

En considérant les my sommations sur un des éléments de I’expression entre crochets et en regrou-

pant les termes, on obtient finalement [GJC95, GCJ97]

mi M my
Q(2]07) Z[Z Aibi(161) PLEBC  tog(m) + 3 > loglpi(2160)] Aipi(2107) (4.126)
11 plz|dn) 1 i1 p(z;|®7)
=1 j= i=1 j=
ou plus simplement en posant
r 7 pi(z |¢ )
e - (4.127)
p(z| ")
mE M my
Q(e|8") = Z[Z wr“] log(mi) + Y > log[pi(z;]¢:)w]t" (4.128)
=1 j=1 i=1 j=1

On va chercher &4 maximiser cette fonction par rapport aux parametres m; et ¢; pour i =

1,..., M dans I'étape M de l'algorithme. On remarque déja que
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1. Q(®|®") est la somme de 2 termes. Le premier terme Zi\il [Z;"’“l w;jl] log(m;) est une fonc-

tion linéaire des parametres log[m;] que 'on peut explicitement maximiser. Le deuxiéme

terme S 1 2 log(pi(zi]di)]w] +1 est uniquement fonction des ¢;.

2. Si on suppose les parametres ¢; indépendants entre eux, alors la maximisation du second

terme reviendra a M maximisations individuelles

e Etape M : Maximization

1. Maximisation du premier terme de Q(<I>|<i>r) en les parametres m; sous la contrainte

Zi]\il mi =1

Pour cela, on écrit le lagrangien de la fonction a maximiser

L(m,\) = Z; [z_; % log(m;) + A(1 — Z;m) (4.129)

La maximisation est obtenue en annulant le gradient du lagrangien,
VeL(m,A) =0 (4.130)
On aboutit & I'expression suivante pour les valeurs m;
. T pi(z
:+1 5 Z Pzzj|f1)|fﬁ 5 Z r+1 (4.131)
En utilisant le fait que p(z;|®") = vail frfpz(zﬂéﬁf) et la contrainte Z?il m; = 1, on montre
que le multiplicateur de Lagrange vaut A = my. Par conséquent, on obtient finalement la mise

a jour des parametres estimés par

1 &
e 1 4132
;i My Z w],z ( )
Jj=1
2. Maximisation du deuxiéme terme de Q(®|®") en les parametres (¢, . . ., dar).
On cherche maintenant & maximiser
S wpi(2i]00) o
9(®) = >_ > loglpi(z;[0i] ™ ooy~ 2o 2 oelpileloug (4.133)
=1 j=1 =1 j=1

Puisque 'on suppose les parametres ¢; indépendants entre eux, les composantes ¢; (pour

i=1,...,M) du vecteur ® seront estimées (mises & jour) en prenant

Yl - T pi(z|6T)
& eargn;gx{Z1og[pz<zg|¢l>]7pi(zj@)} (4.134)
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Cette maximisation n’est en général pas triviale a faire et 'on doit souvent utiliser des al-
gorithmes spécifiques d’optimisation [DS83]. La maximisation est cependant donnée explici-
tement dans le cas des densités de la famille exponentielle et donc lorsque les densités sont

gaussiennes [RW84] (voir cas particulier plus loin).

r+1 & 7 pi(z]|67) N c1ep 2 . .
= —=—=’ correspond a la probabilité a posteriori pour que la mesure z;

Chaque poids wy; ENPRE T

provienne de la 7eme hypothese sachant I’estimation courante ®" a l’itération r.

Résumé de I’algorithme EM

L’algorithme EM appliqué a lestimation des parametres d’une loi de mélange consiste a itérer les

étapes suivantes jusqu’a la stabilité des valeurs obtenues.

1. Mise a jour des parameétres m; par

1 <&
~r+1 r+1
ATt = — Zwﬂ (4.135)
j=1
avec R
witt & TP i(2191) (4.136)
p(z;]®7)
2. Mise a jour des parameétres ¢; par
~ Mk
9t € argmax {3 loglpi(z o) } (4.137)
j=1

4.5.6 Cas particulier du mélange de gaussiennes

Dans le cas ou les densités p;(z|¢;) sont des gaussiennes de moyenne z; et de covariance R; inconnues,

on a

1 —1(z—2:)R; (z—2;
pi(zli) = 2 (a2 Ry (a—2:) (4.138)

[
(2m)""*/R]

La mise & jour des parametre 7; est obtenue comme précédemment. La maximisation de g(®) quant &
elle, peut étre obtenue explicitement et la mise & jour des parametres ¢; = (z;, R;) & Uitération r + 1
sera donnée par

e Pour I’estimation des moyennes z;

my, #ypi(z;|0)) me
A A e k T
é’r‘i’l — Z‘]il J p(zj‘q)T) — ijl ijjvz (4 139)
B ka AT pi(2z5]97) Z;nz’“l wﬁl

7=l p(z|@r)
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e Pour la mise a jour des covariances R;

mg (. sr4l  artly 7Dz 97) 2 >
]?{f"'l _ Zj:l(zj Z; )(ZJ z,; ) ;(;J‘ér)l _ Z_;Tgl (Zj — Z:+1)(Zj — ZZ+1)/U};;1 (4 14())
g S 71 pi(2i|7) P w;jl .
=1 " p(a,187) S

4.5.7 Application de I’algorithme EM a 'EMP

Le probleme d’estimation des parametres de mélange que ’on vient de présenter peut étre vu comme
un probleme d’estimation & un instant k£ donné. Le probléme de ’extraction multi-pistes (EMP)
est en fait une généralisation du probleme précédent qui prend en compte 'aspect temporel. La

généralisation de la méthode est quasi-immédiate.

Pseudo-modeéle alloué aux fausses alarmes

Dans la présentation antérieure, nous n’avons volontairement pas fait de distinction particuliére entre
les modeles de sources. En fait, dans le probleme de 'EMP, nous devons distinguer le cas particulier de
la source allouée aux fausses alarmes. Si I'on veut tenir compte des fausses alarmes en plus des M cibles
supposées présentes dans le batch de mesures, on devra donc rajouter un pseudo-modele de source
que 'on indexera par i = O. La vraisemblance, notée p(z;(k)|xo(k)), d’une mesure z;(k) allouée & ce
pseudo-modele de source correspondra a la densité (supposée uniforme) d’une fausse alarme car aucun
parametre cinématique ne caratérise une fausse alarme (xo = (). Ceci justifie la notation Zi]\io utilisée

dorénavant dans les formules.

Expressions des densités utiles

On a un batch de mesures, noté Z¥, obtenu & partir de K scans successifs du senseur. Le vecteur
cumulé des associations conjointes ©X est inconnu. ZX constitue les données incompletes du probleme
et (Z%,0%) les données completes. OF sont les données manquantes. En généralisant la présentation
précédente au cas temporel, on peut exprimer les différentes probabilités intervenant dans I’algorithme
EM. Ainsi,

e la probabilité des données (cumulées) manquantes s’écrit

K’mk

P{eX1o%} =TT ] o, (k) (4.141)

k=1j=1

ot ®F est le vecteur des parametres (cumulés) i estimer défini en (4.96) et qui vaut
O & (X5, 1Y) = (2(1),..., ®(K)) (4.142)

avec

(k) = ((xo(k) = 0,m(k)), (x1(k), 1 (K)), ..., (xpr(k), mar (K))) (4.143)
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e la vraisemblance du parameétre basée sur les données complétes s’écrit (en supposant

I'indépendance des variables)

K K my
P{zX, 0|0} = T] pl2(k), 0(k)|®(k)] = [ [] plzs (%)Ixa, (k))mo, () (4.144)
k=1 k=1j=1

e la vraisemblance du parameétre basée sur les données incomplétes s’écrit d’apres (4.108)

K miy M

p(Z5105) = TT T D p(z (k) |xi (k))mi (k) (4.145)

k=1 j=117=0
e la probabilité a posteriori du vecteur d’associations s’écrit
K myg

K K
POz oK) = % — TLTL P46 )l o math) (4.146)
k=17=1

p(z; (k) |xe, (k))m, ()

P{0;(k)|z;(k), ®(k)} = —37 (4.147)
> im0 Pz (k) |xi (k)i (k)
On rappelle que les probabilités m;(k) sont soumises a chaque instant k & la contrainte
M
> milk) =1 (4.148)
i=0

Nous sommes maintenant en mesure de décrire les étapes de ’algorithme EM qui découle de la généralisation

du cas précédent.

e Etape E : Expectation

Supposons disposer de K 3 Ditération antérieure 7, I’expression de Q(CI)K@K’T) pour l'itération

courante 7 + 1 est obtenue en généralisant la relation (4.124); soit

Q@K 657) = Ellog[p[z", 0K [0F1]|ZK, 65 7] = 3 log [plZ*, 0K |0K]) P{OF 2, 57

@K
(4.149)
En tenant compte des expressions de p[ZX, K |0X] et P{OK|ZK &K} il vient
K myg
Q&K Ky = Z{ZZlog p(z; (k) [xq, (k)] 7 }{H T P16 (k)2 (k @Kﬁr}} (4.150)
oK k=1j=1 k=1j=1
Apres décomposition et simplification des sommations [Gau97], il vient
K myg M K my M
QNS =3 "% D" log[me, (k)] wjl (k) +> Y D log[p(z;(k)[xe, (k)] w) ;! (k)
k=1j=16;(k)=0 k=1j=16;(k)=0

(4.151)
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avec

2 TR E)
Wi ) & 18 () (4152

Puisque Vk = 1,...,K et Vj = 1,...,mg, 0;(k) prend ses valeurs dans {0,1,..., M}, on peut

intervertir les sommations pour obtenir finalement

M K mp M K mp
QK |y Z Z [Z er } log[m; (k)] + Z Z Z log[p(z; (k)|x;(k ))]w;fl(k) (4.153)
i=0 k=1 j=1 =0 k=1 j=1

On va chercher & maximiser cette fonction par rapport aux parameétres m;(k) et x;(k) pour

1=20,1,..., M dans I"étape M de lalgorithme. Comme dans la remarque précédente, on voit que

1. Q(®K|®K") est la somme de 2 termes. Le premier terme est une fonction linéaire des pa-
rametres log[m;] que 'on peut explicitement maximiser. Le deuxiéme terme est uniquement

fonction des x; (k).

2. Si on suppose les états des cibles x; indépendants entre eux, alors la maximisation du second
terme reviendra & M maximisations individuelles (le pseudo-état xo de la source des fausses

alarmes étant toujours égal ().

e Etape M : Maximization
La maximisation de Q(®X|®¥") se décompose en 2 maximisation : I'une suivant les paramétres
de mélange 7;(k), et autre suivant les parametres cinématique des sources. En fait cette seconde
maximisation se traduit par ’estimation des parametres cinématiques a 'instant initial £ = 0 que

I'on note X(0) = (x1(0),...,xa(0)).

1. La maximisation du premier terme de Q(®X|®%") en les parametres de mélange 7; (k)

. M s . c s .
sous la contrainte Y ;” m;(k) =1 Vk nous conduit & la relation de mise a jour suivante

my

1
Atk = — Tk 4.154
(k) mkzwj,l() (4.154)

j=1

2. La maximisation du deuxiéme terme de Q(®X|®X") en les parameétres cinématiques
a l'instant initial x(0); On cherche & estimer les composantes x;(0) (pour ¢ = 1,...,M) du

vecteur X(0). Ces quantités seront obtenues a l'itération r + 1 par

K my

X7H1(0) € argmax > > " log[p(z;x;(0))]w} T (k) (4.155)

b'e
xi(0) k=1 j=1
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4.5.8 Application de l’algorithme EM pour le MAP : Algorithme PMHT

Jusqu’a présent, on a utilisé ’algorithme EM pour 'EMP en cherchant & maximiser la fonction
de vraisemblance du parametre. Les auteurs du PMHT, Streit et Luginbuhl utilisent 1’algorithme EM
pour maximiser le critere du maximum a posteriori (MAP) en introduisant une information
supplémentaire sur la distribution a priori P{®X} = p[X¥ 11¥] des parametres & estimer. Le
calcul du MAP par I'algorithme EM donne exactement la formulation du PMHT proposée par Streit et

Luginbuhl qui aboutissent & un filtrage de Kalman dans le cas d’une équation d’observation linéaire.

Il est montré en [DLR77] que lestimée au sens du MAP du vecteur des parametres peut étre obtenue par

'algorithme EM en prenant non plus la fonction Q(®% |<i)K7’”), mais la fonction suivante

M (K |BET) = Q(K|BKT) 4 log[ P{BK}] (4.156)

L’expression de log[P{®%}] s’écrit en supposant que les vecteurs d’états suivent un processus

markovien (équation de dynamique) d’ordre 1

log[P{®"}] = log|p[X*, "]

On a volontairement omis les parametres II du mélange car on a aucune information a priori sur ces quan-

tités. Par ailleurs le pseudo-modele ¢ = 0 est aussi omis car il ne représente pas de parametre cinématique.

Compte tenu de cette expression, on a maintenant la fonction suivante & maximiser

M K _my M K my

M (S5 |5r) ZOI;[leTH )| togmi(k —i-zogzllog[p 2, () i (k))Jw] + (k)
M M K
+> loglp(xi(0))] + > > plxi(k)[xi(k — 1))
=1 i=1 k=1

Cette maximisation est toujours séparable en deux maximisations indépendantes. Les parametres du

mélange sont toujours estimés a 'itération r + 1 par la relation

M

1
Artlp) = — § r+l 4.1
7 (k) _ wi (k) (4.157)

j=1
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Les parametres cinématiques estimés pour ¢ = 1, ..., M sont maintenant mis a jour a l'itération r + 1 en

prenant

K mi K

k=1j=1 k=1

(if+1(0),---7>?f+1(K))Gargmax {Zzlog p(z; (k) i (k) Jw T (k) + loglp(xi(0))] + Y p(oci (k)i (k —

)}

(4.158)

4.5.9 Cas particulier des processus linéaires markoviens gaussiens

Dans ce cas particulier intéressant, au lieu de maximiser I’expression précédente, on va chercher plutot

a maximiser ’exponentielle de celle-ci; c’est a dire

(5(§+1(0), . ,5(§+1(K)) € argmax { ﬁ [ k)|xi(k — 1)) Hp (z; (k fjl(k)} }

k=1
(4.159)
Puisque les densités p(z;(k)|x;(k)) sont des gaussiennes de la forme
p(z; (k)[xi(k)) = N (z;(k); Hixi(k), Rq(k)) (4.160)
mg |
Le produit Hp zj(k)|x;(k ))wJT *) géerit
Jj=1
1 with( wi T (k)
L p(z; (k)1 (k) HN zj(k); Hixi(k), Ri(k)) ™
j=1
, -1
= HNZJ s Hixi(k), (ngl(k)) Ri(k))
= N2 (k); Hixi(k), Rq (k))
avec par définition
2 (k) 2 7+1 Zw’“ (4.161)
et
2 R; (k)
R;(k) & ——~F— 4.162
( ) mkﬁ_r+1(k) ( )

Cette maximisation se ramene donc a un filtrage de Kalman ou la mesure est remplacée par le
centroide z; T (k) des mesures & I'étape courante r+1 de matrice de covariance R;(k). z; T (k) est appelée

mesure synthétique du modele 7 a l'itération r + 1. Rz(k:) est la covariance synthétique associée.

4.5.10 Résumé du principe général de la méthode EM pour PEMP

e on choisit une longueur K du batch
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on suppose connu le nombre M de sources présentes

la probabilité détection (inconnue) des sources peut étre < 1

mettre le compteur d’itération & r =0

on doit initialiser le vecteur de parametres &0 = (X0 [[K:0)

on affine 'estimation de ® a l'itération courante r+1 a partir de ’estimation a l'itération précédente

O A partir des 2 étapes suivantes :

1. Mise a jour de I1X :Vk=1,... . K et Vi=0,...,.M
AT k) = — Y with (k)

avec

2. Mise é\jourdeXK Vi=1,...,M

e Pour le ML (maximum de vraisemblance)

K myg

%0) € argmax ZZlog[p z;|x;(0))]w T+1(k)

xi( k131

e Pour le MAP (maximum a posteriori)

(5(;-%1(0), .. .,5(;+1(K)) € argmax { ﬁ [ k)|xi(k—1)) Hp (z;(k ))wﬁl(k)} }

Les maximisations pour mettre a jour XX nécessitent des algorithmes d’optimisation spécifiques de type

newtonien (pour le ML) ou filtrage de Kalman (pour le MAP).

4.5.11 Résumé du PMHT

Le PMHT est en fait I’application de la méthode précédente dans le cas particulier ou les sources

suivent un processus gaussiens markovien avec des équations de dynamique et d’observation

linéaires. L’algorithme est le suivant :

on choisit une longueur K du batch

on suppose connu le nombre M de sources présentes

la détection des sources peut étre < 1

mettre le compteur d’itération & r =0

on doit initialiser le vecteur de parametres &0 = (X0 [[K.0)

on affine 'estimation de ® a l'itération courante r+1 a partir de ’estimation a l'itération précédente

O A partir des étapes suivantes :

1. Mise a jour de II¥ :Vk=1,... . KetVi=0,...,.M
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(a) Calculer les probabilités d’associations a posteriori

~r4+1 +1
Tk = — > Wit (k)
my <
j=
2. Calculer les mesures synthétiques des sources i = 1,..., M et leur covariance par

27k & —— Zuf“ (k)

’ mpal (k)
3. Pour chaque source ¢ = 1,..., M, utiliser un filtrage de Kalman avec lissage pour obtenir les
nouveaux états estimés X#r+1 — (XIr+t ,Xﬁ’rﬂ) en utilisant les mesures synthétiques

7t (k) et le covariances R; (k).

4. incrémenter r et retourner a ’étape no 1 jusqu’a ce que le critere d’arrét soit satisfait.

L’expérience montre que généralement 3 a 5 itérations suffisent a obtenir une estimation précise des

parametres. La stabilité est atteinte en moyenne entre 10 et 20 itérations selon le probleme.

Des exemples d’application du PMHT a la poursuite angulaire dans le contexte du sonar peuvent étre
trouvés en [GJC95, Gau97, GCJI97] et des résultats plus récents en [Wor98|. Une extension du PMHT au

cas multi-senseurs est également proposée en [Gau97].

4.5.12 Mise en garde

Des modifications complémentaires sont nécessaires a 'implémentation du PMHT pour lui conférer
des performances acceptables (c.a.d comparables & celles que I'on obtiendrait avec le PDAF et le JPDAF
pour un méme scénario). Nous n’entrerons pas dans ces détails techniques dans ce cours. Pour plus d’in-
formations, nous renvoyons le lecteur & [RWS94, Gau97] et [WRS98] pour une discussion des variantes

du PMHT.

Outre les problemes de mise en ceuvre numérique, un des problémes essentiels du PMHT reste
son initialisation. Actuellement, on ne sait pas initialiser le PMHT de maniére robuste afin qu’il génere
la solution globale au probleme. Selon 'initialisation choisie, le PMHT peut générer des solutions locales

qui peuvent étre éloignées de la vraie solution cherchée. . .
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En conclusion, le PMHT bien que théoriquement séduisant n’est pas encore arrivé a une maturité
opérationnelle et reste une méthode délicate a mettre en ceuvre. Des recherches sont en cours pour

améliorer V'efficacité de I’algorithme [Wor98].
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Chapitre 5

Pistage multi-cibles mono-senseur

par approches non bayésiennes

A Topposé des méthodes bayésiennes présentées au chapitre précédent, on présente ici les principales
approches non bayésiennes permettant d’effectuer le pistage multi-cibles. Dans ces méthodes, on cherche
a trouver ’assignation optimale du probléme par des méthodes d’optimisation combinatoire. On
n’effectue pas de pondération probabiliste des états par les probabilités des hypotheses d’associations
possibles. On cherche directement laffectation (la partition) optimale des mesures aux pistes et c’est
cette partition qui servira & la mise a jour des pistes. La recherche de la partition optimale peut étre
élaborée en utilisant soit

e lensemble cumulé des mesures disponibles Z*

e ’ensemble cumulé des mesures disponibles durant un certain nombre de scans (fenétre glissante)

e uniquement les mesures du scan courant z(k)

Le probleme général consiste donc a associer les mesures délivrées lors d’une suite de k scans afin de
former des séquences de mesures relatives aux différentes cibles a pister. C’est un probleme d’assignation k-
D (k-dimensional) qui est NP-difficile dés que k > 2. Autrement dit, la complexité numérique du probléeme

n’est pas une fonction polynomiale de la dimension k£ mais une fonction a croissance exponentielle.

5.1 Pistage multi-cibles par programmation entiére 0-1 (1977)

5.1.1 Formulation du probleme

On suppose qu'’il existe un certain nombre T" de cibles dans I’espace d’observation du senseur ayant
chacune une probabilité de détection unitaire (P} = 1V¢). Le nombre 7' n’est pas nécessairement

connu. Cette présentation suit la démarche de C. Morefield en [Mor77]. Chaque cible ¢ est supposée suivre
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un processus gaussien/markovien classique du type

xt(k +1) = FH(k)x! (k) + v (k)

z' (k) = H'(k)x' (k) + w' (k)

ou les quantités x,z, w, v, F et H ont leur sens habituel. L’état initial des cibles est supposé gaussien

avec

x'(0) ~ N(x'(0] — 1), P*(0] — 1)) (5.1)

Les my mesures courantes au temps k et les mesures antérieures cumulées jusqu’a 'instant k& sont notées

Z(k) et Z*. Le nombre total cumulé de mesures disponibles & I'instant k vaut

k
M = Z mpg: (52)

k=1

Comme pour le FBO, TSF et MHT, une séquence particuliere de mesures cumulées est notée Z*!

ZF 2z, (1), ..z, (k) = {ZF 1 2, (k)} € ZF (5.3)
Soit N le nombre de séquences possibles et pour [ = 1,..., N on note §'(k) 1’événement suivant :
0' (k) 2 {Z*' correspond & piste correcte} (5.4)

Afin de réduire la dimension du probléme, on considére uniquement les séquences Z*! dont la log-

vraisemblance négative \!(k) de 6'(k) définie par

N (k) = —logp[Z"'|6" (k)] (5:5)

est en dessous d’un certain seuil fixé a priori (voir la section sur le TSF). Apres ce seuillage, on dispose
de L < N séquences Z*! potentiellement acceptables. L’ensemble des séquences de mesures acceptables

est noté

S Az (5.6)

Le probleme général a résoudre est le suivant :
Parmi ’ensemble des séquences acceptables possibles, trouver la partition faisable de Z*

la plus vraisemblable.

5.1.2 Notion de partition faisable des mesures

Une partition possible P des mesures de Z* est un ensemble fini de séquences Z*! acceptables appar-

tenant & S vérifiant les contraintes suivantes :
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e I’ensemble de toutes les mesures des séquences de la partition vaut Z*, i.e.

I
zh =z (5.7)
i=0
e Chaque mesure appartient a une séquence et une seule
Zk,li m Zk,lj — @ Vlz # l] (58)

Une partition faisable est donc de la forme

P={Z""}, 69)

. k.0 . .z N .
Par convention, I’ensemble Z*0 = Z7;" contiendra toutes les mesures associées a aucune piste dans
la partition P considérée. Ces mesures seront considérées comme des fausses alarmes uniformément

réparties dans le volume V' de surveillance du senseur.

5.1.3 Critere pour la recherche de la meilleure partition

Soit P une partition faisable des mesures au sens indiqué précédemment. A toute partition P on peut

faire correspondre 1’éveénement suivant :

0(P) £ {la partition P est correcte} (5.10)

On note P l'ensemble de toutes les partitions P faisables possible. La partition optimale P*(au sens du

maximum de vraisemblance) est celle qui maximise la fonction de vraisemblance p(Z*|0(P)), c’est & dire

* = Z*10 11
P argglg%p( 10(P)) (5.11)

Comme nous le verrons, ce probleme de maximisation est strictement équivalent a un probleme en pro-

grammation entiere 0-1 de minimisation sous contrainte.

5.1.4 Expression de la vraisemblance d’une séquence

On rappelle ici (cf la section sur le TSF) que la log-vraisemblance négative d’une séquence vaut

N(k) = — log p(Z"1 |6/ (k) (5.12)

On note 0°(k) 1’évenement particulier suivant
6° (k) £ {toutes les mesures sont des fausses alarmes} (5.13)

En supposant les fausses alarmes uniformément réparties dans le volume V' a chaque instant et indépendantes

d’un scan a I'autre, on a
N

P16 (k) = [ 7] (5.14)
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ot N; = Card(Z*') est le nombre d’éléments de Z*!. Le rapport de vraisemblance d'une séquence va

donc s’écrire

_ p(ZH0' (k)

A(k) = o(ZF00(h) (5.15)
et 'opposé de son logarithme va s’écrire
~ kgl
3 (k) = o[ ()] = —log ZZrrizn ] = —loglp (246 (k)] + logp(@10°(1)]  (5.16)
soit finalement
M(Ek) = M(k) + Ny log[V ™Y (5.17)

Pour chaque séquence acceptable Z*!, on devra calculer S\Z(k) et construire le vecteur \ des rapports
de vraisemblance défini par
AL (k)
PN (5.18)
N (k)
Ceci exige donc une énumération exhaustive de toutes les séquences possibles. La méthode

devient vite coiiteuse en calculs et mémoire lorsque les dimensions du probleme augmentent.

5.1.5 Equivalence du probléme avec la programmation entiére 0-1
Indicateur d’appartenance d’une séquence a une partition

Pour chaque partition faisable P, on peut construire un vecteur binaire p(P) de dimension L x 1 qui
décrit 'appartenance ou non de toutes les séquences de mesures acceptables a la partition P considérée.

Autrement dit, pour chaque P = {Zk*li };0 on construit

p*(P)
pP)2| (5.19)
p*(P)
avec
1 sizhklieP i=0,...,1
pi,(P) = (5.20)
0 siZkligp

Indicateur d’appartenance des mesures a une séquence

On construit pour chaque séquence acceptable Z*! un vecteur ¢! de dimension N = Card(Z*) a
composantes binaires décrivant ’appartenance ou non des mesures de Z* & la séquence Z*! considérée.

Autrement, dit

T (5.21)
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avec

. 1 siz; € ZF et z; € ZF! ( )
(O 5.22
0 siz; € ZF et z; ¢ ZM!

A partir de ces L indicateurs, on peut construire la matrice binaire suivante de dimension N x L

AL [yl (5.23)

Les conditions de faisabilité d’une partition P de Z* sont alors équivalentes & la contrainte suivante

Ap(P) <1 (5.24)

ol 1 est un vecteur de dimension N x 1 dont les composantes valent 1.

5.1.6 Résolution du probleme par programmation entiere 0-1

La recherche de la partition optimale s’obtient par la maximisation de p(Z*|0(P)) suivant P. Ceci

est équivalent au probleme de la minimisation de — log[p(Z*|0(P))] ; autrement dit

max p(Z"0(P))] & i — log[p(Z"*|6(P))] (5.25)

En supposant les séquences (constituant chaque partition) indépendantes entre elles, on a la décomposition

suivante
—log[p(Z*|0(P))] = —logp(Z5°, 2", ZV1|6(P))
~ —log [11 p(Z"10(P))]
—  loglp(Z5|6(P))] — ilog[mzkﬂe(m)]
= 2% (k) + IXLEMZ(/@)
= —Nolog[V~Y] + ipz(P)/\l(k)

L
No=N = p(P)N, (5.26)
=1

En remplacant Ny par son expression, il vient
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—log[p(Z*|6(P))] = =Nolog[V 1+ > pu(P)N (k)
.
= —Nlog[V '+ > p(P)Nilog[V 1+ > pu(P)N (k)
=1 =1
= —Nlog[V ']+ Y pu(P)[N (k) + Nilog[V™]]
=1

L

= —Nlog[V~'1+ Y pu(P)N (k)
=1

= p(P)’A = Nlog[V ']

Puisque —N log[V ~!] est une constante, la minimisation de — log[p(Z¥|0(P))] est donc rigoureusement

équivalente & la minimisation de p(7)’X suivant p sous la contrainte Ap(P) < 1.

En résumé, on vient de montrer que

min p'A
p
k . k
%12&5 p(Z7|0(P))] < glel% —log[p(Z"|0(P))] < q sous la contrainte inégalité (5.27)

Ap<1

Ce type de probleme d’optimisation est fréquemment rencontré en recherche opérationnelle et de nom-
breux algorithmes permettent de le résoudre. Morefield, a ’époque, utilisa 1’algorithme de Pierce et
Lasky [Pie68, PL75]. Depuis d’autres algorithmes d’optimisation plus performants ont été développés
[GMW81, PS82, Ber82, Ber91].

Remarque

Dans le cas ou il n’y a pas de fausses alarmes mais uniquement les T cibles détectées a chaque scan
la contrainte (inégalité) de faisabilité des partitions devient alors une contrainte égalité, et le probleme a

résoudre s’exprime

min p’'\
P
gleafg p(Z¥16(P))] & 7131161% — log[p(Z"|0(P))] & sous la contrainte égalité (5.28)

Ap=1
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5.1.7 En résumé

La méthode de pistage multi-cibles proposée par Morefield possede les caractéristiques suivantes :

e c’est une méthode de type batch - on doit mémoriser un certain nombre de scans

e c’est une méthode non bayésienne - on recherche la partition optimale au sens du maximum de
vraisemblance

e le nombre des cibles présentes est inconnu

e la probabilité de détection des cibles est unitaire

e la complexité du probleme est NP-hard

e elle permet initialisation de pistes [DPBS92b)]

e clle peut étre étendue au cas ou la Py < 1 - cf section suivante

e clle peut étre étendue au cas multi-senseurs puisque le probleme d’assignation de mesures d’un
senseur au cours du temps est analogue au probleme d’associations entre mesures issues de plusieurs
senseurs délivrées au méme instant [PDBSW92, PDBSW90].

e le probleme d’assignation 3-D - (multi-scans multi-mesures et multi-senseurs) par l’extension de ce

type d’approche est aussi possible [DPBSY94]

5.1.8 Extension de la méthode au cas des détections manquantes

Pour tenir compte des détections manquantes dans une piste lorsque la probabilité de détection des
cibles est non unitaire, on construit un vecteur binaire indicateur des mesures manquantes dans chaque
séquence acceptable Z*! associée & une piste possible notée '(k). Autrement dit pour chaque séquence

envisagée [, on construit

5(1)
gras | (5.29)
5! (k)
avec

1 sila piste 6'(k) a été détectée au temps j
5(j) = (5.30)

0 si la piste n’a pas été détectée au temps j

La fonction de vraisemblance d'une piste incompléte (ayant des détections manquantes) 6'(k) est la
PDF (Probability Density Function) conjointe de la séquence Z*! et des détections 6*! sachant 6(k),

c.a.d

k
PIZM, 5516 (k) = p(2! (0)6' (k) [ P10 = PO (531)

j=1
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Le rapport de vraisemblance X'(k) d’une piste incomplete 6! (k) va alors s’écrire

P[zM!, 8%'10' (k)]

N () = ~log = oo e)

(5.32)

Ce rapport n’a pas de dimension ; ce qui permet de pouvoir comparer des séquences de mesures de
longueurs différentes et la résolution du probléme de recherche de la partition optimale suit alors la
méthode décrite précédemment. Des extensions pour prendre en compte I'apparition de cibles nouvelles

et la durée des pistes ont été proposées en [Bla86].



Chapitre 6

Pistage multi-senseurs

Dans ce chapitre, nous abordons successivement les points suivants :

e Le pistage multi-senseurs mono et multi-cibles

On traite ici le probleme de ’association des mesures relevées par plusieurs senseurs pour estimer

I’état de chaque cible présente dans ’environnement. Deux types d’architectures de fusion sont

présentés.

1. La fusion centralisée

Senseur s;

Fenétrage

Plots

Senseur So

Fenétrage

Plots

Processeur

Central

Piste

Cette architecture consiste a estimer 1’état des cibles a partir de toutes les mesures fournies

par les senseurs. Dans le cas général, il faut résoudre ’association plot a plot avant de pouvoir

mettre a jour les pistes.

111
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2. La fusion distribuée

Senseur s;

CHAPITRE 6. PISTAGE MULTI-SENSEURS

Senseur so

~ Filtre Piste
Fenétrage
Local Locale
Processeur .
Piste
Central
~ Filtre Piste
Fenétrage
Local Locale

Cette architecture permet d’obtenir le méme résultat en ne transférant a un filtre central

que les états estimés et leurs covariances d’erreur obtenues par des filtres locaux traitant les

mesures de chaque senseur. Le résultat de la fusion étant ensuite renvoyé vers les filtres

locaux.

L’architecture distribuée est tres intéressante car elle permet de réduire le flux d’informations vers

le filtre central. Elle sera donc préférée a ’architecture centralisée si les modules de pistage locaux

permettent de prendre en compte les informations retournées par le filtre central. Les traitements

développés ici gerent les fausses alarmes et permettent également d’intégrer des informations issues

de la reconnaissance, ceci étant d’une aide précieuse pour gérer les probleme d’association.

e Le pistage multi-senseurs par fusion de pistes

Senseur s;

]

Fenétrage

Senseur so

Fenétrage

Filtre Piste
Local Locale
Filtre Piste
Local Locale

]

Processeur

Central

Piste

Dans ce cas, chaque senseur et processeur associé effectue un pistage. Le résultat obtenu étant

transmis au niveau du processeur central chargé de fusionner ces informations. Il n’y a pas de

retour de boucle de retour d’information vers les filtres de pistage locaux. Cette architecture est

sous-optimale par rapport aux architectures précédente. Cependant, elle est tres souple car elle



113

permet d’une part, de limiter les flux d’informations, et d’autre part, d’exploiter des senseurs qui
ne permettent pas d’accéder a la mesure ou d’intervenir sur la fonction pistage (senseurs rustiques,
anciens ... ). Le principe de la fusion ainsi que le probléme de 'appariement des pistes sont traités
dans ce paragraphe.

e Le pistage multi-senseurs par fusion pistes/plots

Senseur S Fenétrage Filtre Piste
Local Locale
Processeur
Central Piste
Plots
Senseur Sso Fenétrage

Dans certains systemes multi-senseurs hétérogenes, les pistes sont initialisées et maintenues a partir
de senseurs infra-rouge (IR). Les mesures (plots) radars servent d’informations complémentaires
pour a confirmer ou infirmer les pistes IR. Ce type d’approche peut étre rattaché aux techniques
classiques de la trajectographie mono-senseur par pistage PDAF.

e Association optimale de données multi-senseurs

Nous présenterons un algorithme récent d’association optimale des données multi-senseurs visant a
sélectionner les cibles vues par les différents senseurs. La méthode est une méthode d’optimisation

combinatoire issue de la recherche opérationnelle.

e Méthodes de gestion de piste

Les algorithmes, que ’on vient succintement de présenter, permettent de créer des pistes intégrant
les informations issues de différents senseurs. Il est clair que toutes ces méthodes de fusion de pistes
ou de fusion de plots n’ont de sens que si les informations que I'on cherche a fusionner représentent
effectivement bien la méme cible. En parallele du probleme de la fusion, se pose, donc, le probleme
de la qualification des pistes locales et/ou globales obtenues : s’agit-il de pistes correspondant &
de vraies cibles, de fausses pistes, ou de pistes fantdéme (dans le cas d’un systéme multi-senseurs
infrarouge) ? Nous présenterons ici un certain nombre d’outils permettant de traiter le probleme de

la gestion des pistes.
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En complément de ce chapitre, nous conseillons les références [WL90, Hal92, BSL95, Bel98]. Une

terminologie pour le pistage multi-senseurs est donnée en [Dru93b).

6.1 Modélisation des cibles au niveau des senseurs

La modélisation de la dynamique des cibles et de leurs observations par un systéme de surveillance
multi-senseurs, quel qu’il soit, dépend intimement de la nature des cibles, des senseurs et aussi de ’archi-
tecture de traitement choisi. On suppose dans la suite, que la modélisation (dynamique et observations)

d’une cible correspond a un des deux types suivants :
1. Modélisation avec Modeles Locaux Identiques (MLI)

2. Modélisation avec Modeles Locaux Réduits (MLR)

6.1.1 Cas de la modélisation avec modeles locaux identiques

Dans cette modélisation, on suppose que ’état d’une cible t est modélisé selon un processus de Gauss-
Markov du type :
x'(k+1) = F(k)x'(k) + v'(k) (6.1)

ol x'(k) est 1’état global de la cible ¢ & I'instant k, F(k) représente la matrice de transition de 'état de

la cible et v¥(k) est un processus aléatoire blanc et gaussien centré et de covariance connue
BV (k)v'(5)'] = Q" (k)dk; (6.2)

01 est la fonction delta de Kronecker qui vaut 1 si k = j ou 0 sinon .

Cette modélisation est adoptée aussi bien au niveau global qu’au niveau de chaque or-
gane de traitement local (dans le cas des architectures distribuées) et on la désigne sous 'acronyme

de modélisation MLI (modélisation & Modeles Locaux Identiques).

Les mesures issues d’un senseur ¢ relativement a une cible ¢ sont modélisées par ’équation de mesure
suivante :

z (k) = H'x (k) + w'(k)  k=1,2,... (6.3)

ot H%!(k) représente la matrice d’observation de la cible ¢ liée au senseur i et w'(k) représente le bruit de

mesure du senseur i. Ce bruit est supposé gaussien centré indépendant de v?(k) et de covariance connue

Blw' (k)w'(j)'] = R' (k); (6.4)
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6.1.2 Cas de la modélisation avec modeéles locaux réduits

Dans cette modélisation, appelée modélisation MLR. (modélisation & Modeles Locaux Réduits), on
suppose que la dynamique d’une cible ¢ au niveau central et que son observation par un senseur i est

modélisée par

xt(k + 1) = FH(k)x' (k) + v! (k) (6.5)

z (k) = H (b)x" (k) + w' (k)  k=1,2,... (6.6)

x!(k) est I’état de la cible t au niveau global a I'instant k, F*(k) représente la matrice de transition de
I’état global de la cible ¢ et v'(k) est un processus aléatoire blanc, gaussien, centré de covariance connue
Qt(k), Qi(k) > 0. w'(k) représente le bruit de mesure du senseur i. Ce bruit est supposé gaussien centré

indépendant de v(k) et de covariance connue R*(k).

Dans le cas des systemes distribués, la dynamique et ’observation d’une cible ¢ sont modélisées, au niveau

local (pour chaque organe de traitement local associé & chaque senseur ), par un modele local réduit du

type

X"k +1) = Fo* (k)x"" (k) + v" (k) (6.7)

2t (k) = HE (R)x"t (k) + wi(k)  k=1,2,... (6.8)

xt(k) est I’état réduit (ou état local) de la cible ¢t au niveau local (du ieme senseur) a Iinstant k,
F%t(k) représente la matrice de transition de 1’état local de la cible ¢ et v¥!(k) est un processus aléatoire
blanc et gaussien centré et de covariance connue Q%*(k), Q%*(k) > 0. HiL”5 est la matrice d’observation

locale de la cible t par le senseur 1.

On suppose en outre que le bruit de mesure est correctement modélisé au niveau des nceuds. Par
conséquent w' (k) apparaissant dans (6.8) est supposé identique au bruit de mesure w*(k) de la modélisation

globale dans (6.6).

6.1.3 Remarques

Les deux modélisations précédentes ont ici été supposées linéaires afin de simplifier la présentation des
méthodes qui va suivre. Il est bien entendu que ces modeles peuvent aisément étre généralisés au cas des
modeles & dynamique et observations non linéaires. Les matrices F(k) et H(k) seront alors remplacées
par les fonctions non linéaires judieusement choisies f[., k] et h[., k]. Les équations des méthodes de pistage
proposées seront toujours utilisables en mettant en ceuvre les techniques de linéarisation au ler ou 2eme
ordre des modeles selon une approche identique a celle du filtrage de Kalman étendu (EKF). Par

ailleurs, il faut souligner d’ores et déja que la modélisation MLI apparait en fait comme un cas particulier
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de la modélisation MLR. Les équations de pistage proposées avec la modélisation MLR couvrent donc
potentiellement un champ d’application beaucoup plus large que les équations basées sur la modélisation

MLI généralement adoptée dans la littérature.

6.1.4 Notations

Dans un cadre plus général, on supposera que l'on dispose, a chaque instant k, non pas d’une mesure
unique z"'" (k) représentative de chaque cible d’intérét ¢, (n = 1 a4 T'), mais d'un ensemble de m}
mesures disponibles zé- (k) représentatives de 'univers observé par chaque senseur ¢. L’origine des mesures
est diverse : cibles, fausses alarmes, clutter, etc ... On supposera cependant, pour simplifier I’analyse,
qu’au plus une mesure est associée a chaque cible d’intérét t,,. L’ensemble des mesures délivrées

a linstant k par le senseur ¢ (toutes origines confondues) est noté :

Zi (k) = {2 (k)} ™ (6.9)

J j=1

L’ensemble des mesures délivrées par le senseur ¢ depuis 'instant 1 jusqu’a l'instant k est noté

ZHF = {Z' (D)}, (6.10)

Pour alléger les notations, I'indice de cible ¢ sera volontairement omis dans la suite si aucune ambiguité

de notation n’apparait et en particulier pour le cas des méthodes traitant de la poursuite mono-cible.

6.2 Pistage par architectures centralisées et distribuées

Pour simplifier, on supposera d’abord que les mesures issues des différents senseurs sont disponibles
aux mémes instants (synchronisme des capteurs) et que l'origine des mesures n’est pas mise en
doute. On suppose donc a priori que ’association des mesures délivrées par les différents senseurs avec
les différentes cibles a pister est déja réalisée. On examine alors les différentes architectures possibles de

traitement des informations.

L’hypothese d’association parfaite des données est bien sur tres restrictive en pratique et des traite-
ments aptes a s’en affranchir seront proposés au paragraphe suivant. L’hypothese de synchronisme des
mesures est une hypothése moins forte car elle peut toujours étre théoriquement satisfaite en extrapolant
les mesures a une référence de temps commune aux différents senseurs. On étend les architectures au cas

du pistage en environnement dégradé.
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6.2.1 Filtre de Kalman avec fusion centralisée des mesures
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Cette architecture de traitement consiste a prendre en compte a chaque instant et de fagon simul-

tanée les mesures issues des différents senseurs s, s2, ...,sn, (N désignant le nombre total de

senseurs du systeme). Ceci revient & construire un filtre de Kalman dont le vecteur de mesure z(k)

n’est rien d’autre que le vecteur empilé des différents vecteurs de mesures z*(k) i =1,..., N;.

Le schéma de principe de ce traitement est le suivant :

2 (k)

Senseur s; Fenétrage

z* (k)

Senseur Sso Fenétrage

Filtre de

Kalman

% (k|k)
P(k|k)

Les équations du filtre de Kalman (étendu) centralisé, appelé encore filtre & structure paralléle, sont

alors données par :
z(k|k—1) = h[x(k|k—1), k]
z(k|k—1) = z(k) — 2(k|k—1)
S(k) = H(k)P(k|k—1)H(k) + R(k)

K(k) = P(k|lk—1)H(k)'S(k) ™"

Partie correction du filtre centralisé

x(k|k) = %(k|k—1) + K(k)Z(k|k—1)

P(k|k) = [I — K (k)H(E)]P(k|k—1)

Partie prédiction du filtre centralisé

x(k + 1|k) = £[x(k|k), k]

P(k + 1|k) = F(k)P(k|k)F (k) + Q(k)

(6.11)
(6.12)
(6.13)

(6.14)

(6.15)

(6.16)

(6.17)

(6.18)
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21 (k) hi[x(k), k] wl (k)
z(k) = = + = h[x(k), k] + w(k) (6.19)
ANy WV (), K| W ()
et
R(k) = Elw(k)w(k)'] (6.20)
P(h) = [V, 1) e (6:21)
H(k) = [Vh/[x(k)v k]] /x:ﬁ(k\kfl) (6.22)

Autre formulation intéressante possible

En utilisant la forme information du filtre de Kalman, les équations de mise & jour s’écrivent :

% (kk) = x(k[k—1) + K(k)z(k|k—1) | (6.23)
P(klk)™" = P(klk—1)"" + H(k)'R(k)” "H(k) (6.24)
K(k) = P(k|k)H(k)R(k) ™" (6.25)

Les équations précédentes sont celles du filtre basé sur une modélisation générale non linéaire de la dy-

namique et de 'observation de la cible d’intérét.

Cas particulier des senseurs a bruits non corrélés

Dans le cas particulier ol les senseurs ont des bruits de mesures non corrélés la matrice R(k) est

diagonale par bloc

R(k) = diag [R'(k),...,RN=(k)) (6.26)

Par conséquent R(k)_1 est aussi diagonale par bloc avec

—1 -1

R(k)™' = diag [RY (k)" ,...,RN(k) ] (6.27)

Les équations de mise a jour du filtre peuvent alors s’écrire

%(k|k) = %(k|k—1) + Z K'(k) [2'(k) — h'[%(k|k—1), k]] (6.28)

i=1

P(klk) ™ =Pklk—1)"" + ZSHi(k)’Ri(k)’lHi(k) (6.29)

i=1
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avec pour ¢=1,..., Ny

Ri(k) = E[w' (k)w' (k)] (6.30)
H (k) = [V [x(k), K] s (6.31)
Ki(k) = P(k|k)H (k)R (k)" (6.32)

On notera que la forme particuliere des équations (6.28) et (6.29) suggere un traitement pseudo-

séquentiel des données (cf section suivante).

6.2.2 Filtre de Kalman avec fusion pseudo-séquentielle des mesures

Dans l'architecture centralisée du filtrage de Kalman, la mise a jour de 1’état est obtenue a partir de
I'ensemble des mesures z(k). C’est un traitement central par bloc de mesures. Ce traitement peut étre
également réalisé de maniere pseudo-séquentielle si les bruits de mesure des différents senseurs
sont non corrélés. Ceci impose, dans le cas de bruits gaussiens, d’avoir une matrice R(k) diagonale

par bloc

R(k) = E[w(k)w(j)] = diag[R'(k), ..., RN=(k)] (6.33)

Sous cette condition, la mise a jour peut étre réalisée de maniere pseudo-séquentielle; c’est a dire en
utilisant successivement les mesures des différents senseurs conformément au schéma de principe de la

figure ci-dessous.

Senseur s; Senseur so

z°' (k) z*2 (k)

b3

(k|k —1)| Filtre de | x°*(k|k) | Filtre de | %x(k|k)
P(klk —1) Kalman Ps1(k|k) Kalman P(k|k)

La mise a jour de I’état d’une cible est alors donnée par la séquence de traitement suivante. On part de
Pétat prédit x(k|k—1) et de sa covariance prédite P(k|k—1) & I’étape antérieure et on pose
%0 (k|k) £ x(k|k—1) (6.34)

PO(k|k) 2 P(k|k—1) (6.35)
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Puis on effectue la séquence d’opérations suivante pour ¢=1,..., Ny
Si(k) = H' (k)P (k|k)H' (k)" + R (k) (6.36)
K' (k) = P (k|k)H (k)'S* (k) (6.37)
X' (k|k) = %" (k|k) + K'(k) [z (k) — h'[&" " (k|k), k]| (6.38)
Pi(k|k) = [I - K'(k)H' (k)P (k|k) (6.39)

L’estimée x(k|k) et sa covariance associée P (k|k) incorporant toutes les mesures sont alors données par
%x(k|k) = %N+ (k|k) (6.40)
P(k|k) = PV« (k|k) (6.41)

Le calcul pseudo-séquentiel de I’état estimé (6.40) qui vient d’étre décrit est rigoureusement équivalent

dans le cas des modeles linéaires a ’équation de mise a jour

x(k|k) = %(k|k—1) + Z K'(k) [z'(k) — h'[x" " (k|k)]] (6.42)

i=1

Ce type de traitement est bien adapté aux cas des systémes multi-senseurs spatialement
distribués ol les bruits de mesures peuvent généralement étre considérés indépendants d’un senseur a

Pautre.

Cas des senseurs a bruits corrélés

Dans le cas ot les bruits de mesures sont corrélés (R(k) non diagonale par bloc), on peut toujours
appliquer une transformation linéaire sur les mesures afin de diagonaliser R(k) et pouvoir appli-
quer le traitement pseudo-séquentiel. Une méthode efficace de diagonalisation de R(k) est la méthode de

factorisation de Cholesky qui permet d’écrire R(k) sous la forme

(6.43)

ou L(k) est une matrice triangulaire inférieure et D(k) est une matrice diagonale ayant des éléments
positifs ou nuls. Le vecteur de mesure en bloc z(k) est alors modifié en vecteur z(k) par la transformation
linéaire

#(k) = L(k) z(k) (6.44)

et la matrice H(k) en

H(k) = L(k) "H(k) (6.45)

Le traitement pseudo-séquentiel peut ensuite étre appliqué avec ces mesures modifiées.
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6.2.3 Présentation du filtre de Kalman avec architecture distribuée

Dans cette approche, 'architecture du systéme multi-senseurs (MS pour simplifié) est supposée de
type distribuée. On parle alors d’architecture DSN (Distributed Sensor Networks). Le principe de
fonctionnement le plus simple d’'un DSN consiste a associer a chaque senseur un organe de traitement
local, appelé processeur local, dont la fonction est d’estimer ’état des cibles uniquement a partir des
mesures délivrées par le senseur auquel il est associé. L’ensemble senseur/processeur local constitue un
noeceud du systeme distribué. Chaque nceud du systéeme communique périodiquement son estimée
locale a un processeur unique, appelé processeur de fusion global ou coordinateur, au travers d’un
réseau de communication. Le coordinateur est chargé de combiner (fusionner) les estimées locales des
différents nceuds en une estimée globale de 1’état associée a chaque cible d’intérét. Les estimées globales
sont ensuite retransmises & chaque nceud du DSN conformément au schéma de principe de la figure

suivante pour le cas d’une architecture a 3 senseurs

Senseur s;

Filtre de
Kalman
A
Coordinateur
Filtre de Filtre de
Kalman Kalman
A A
Piste
Senseur s Senseur sj3

Cette architecture de DSN n’est bien évidemment pas unique et d’autres architectures sont possibles
selon le type de réseau de communication utilisé et la robustesse du systeme que 1’on souhaite. En effet,
on peut, par exemple, aussi envisager une structure de DSN plus complexe et sans coordinateur (voir
figure suivante) dans laquelle chaque nceud est directement connecté aux autres et ot chaque processeur
local joue alors le role de coordinateur. Cette architecture présente alors ’avantage de rendre le DSN plus
fiable face aux pannes ou a une destruction partielle du systeéme mais au prix d’un cout élevé en calculs

et moyens de communication a mettre en oeuvre.



122 CHAPITRE 6. PISTAGE MULTI-SENSEURS

Senseur s;

Filtre de
Kalman

, Piste

Filtre de Filtre de
Kalman Kalman

A A
Senseur So Senseur ss3

Un grand nombre de combinaisons intermédiaires d’architectures de DSN sont bien str possibles entre celle
présentée sur la figure 7?7 de la section 6.2.1 et la figure précédente. Abstraction faite de l’architecture
envisagée du DSN, nous rappelons ici le principe général de la fusion distribuée que doit réaliser le
processeur de fusion. On s’intéresse d’abord au cas particulier ou 'on suppose disposer d’'une méme
représentation d’état (méme dynamique) au niveau du processeur global qu’au niveau des processeurs
locaux (i.e. modélisation MLI). Les équations optimales de la fusion distribuée sont ensuite explicitées

au cas plus général de la modélisation MLR.

6.2.4 Filtre de Kalman distribué avec modélisation MLI

Le cas le plus simple de représentation du systeme physique dynamique observé correspond a celui
ou la dynamique de la cible est représentée de maniere unique au niveau des nceuds et au niveau du
processeur de fusion. Ceci correspond, par définition, & une modélisation & Modeles Locaux Identiques
(modélisation MLI) du systéeme décrite en 6.1. L’équation d’évolution de la dynamique d’une cible est

donnée par (6.1) et les observations délivrées par chaque senseur ¢ concernant la cible vérifient (6.3).
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Equations optimales de la fusion distribuée (Chong 1979)

L’estimée locale & variance minimale au niveau d’un nceud i de I’état d’une cible (I'indice ¢

de la cible est volontairement omis ici) est donnée par l'espérance conditionnelle

%' (k|k) = E[x(k)|Z%*, Y] = /x(k)p(x(k)\zi’k,Yi’k)dx(k:) (6.46)

ot YiF = {Yi(l)}f:1 et Yi(I) désigne I'information regue (statistique suffisante) par le noeud i durant
la période d’échantillonnage de [ — 1 & [. Y¥(I) représente I'information transmise par le processeur de
fusion et disponible au noeud i & instant [. En fait, Y(I) résume toutes les informations issues des autres
neeuds jusqu’au temps [ — 1 car cette information est envoyée au processeur de fusion entre les instants

[—1etl.

En supposant un réseau de communication sans perte, la statistique suffisante Y** est théoriquement

équivalente a toutes les mesures délivrées par les senseurs jusqu’au temps k — 1 et I'on a

%' (k|k) = / x(k)p(x(k)|Z"*, Z* ) dx (k) (6.47)

ol i désigne les senseurs autres que 4.

Au niveau du processeur de fusion, I'estimée globale a variance minimale de ’état d’une cible est

donnée par

x(k|k) = /x(k:)p(x(k)|Zl’k, o ZNFYax (k) (6.48)

Le probléme de la fusion distribuée consiste alors & reconstruire l'estimée globale x(k|k) & partir

de la connaissance des estimées locales x*(k|k)i =1,..., N;.

En supposant 1’association parfaite des données (c.a.d. une connaissance parfaite de lorigine
des mesures délivrées par chaque senseur) et en utilisant la forme information du filtrage de Kalman,
I’estimée locale d’une cible au niveau d’un nceud ¢ est donnée par (I'indice de cible ¢ est ici omis

pour alléger les notations) :

-1

Piklk) " = Pi(klk—1)"" + Hi(k)R' (k)" H(k) (6.49)

—1 —1

Pi(klk) % (k|k) = Pi(klk—1)" % (klk—1) + H (k) R (k)2 (k) (6.50)

Ce qui permet d’écrire directement

1 -1

Hi(k)YRi(k)"Hi(k) = Pi(k|k)” - Pi(klk—1) (6.51)

-1 -1 -1

H' (k)R (k) z'(k) = Pi(k|k) X'(k|k) — P (k|k—1) %x'(k|k—1) (6.52)
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Par ailleurs, ’estimée centralisée optimale est donnée par

Ns
P(klk) ™ = P(klk-1)"" + Y H'(k)R' (k) H(k) (6.53)
N
P(k|k) ™ %(k|k) = P(k|k—1) " %(k[k—1) + > Hi (k) Ri(k) 2 (k) (6.54)

En remplacant directement H(k)'Ri(k)” 'Hi(k) et Hi(k)'R(k) ™ 'z¢(k) par (6.51) et (6.52) dans (6.53)

et (6.54), il vient les équations optimales de la fusion distribuée [Cho79)

P(klk)™" = P(klk—1)"" + i[rﬂ(mk)‘l —Pi(klk—1)"] (6.55)
N . 1 .. . 1.
P(k|k) " %(k|k) = P(k|k—1)""%(k|k—1) + Z[Pl(kug)‘ X (k|k) — Pi(k|k—1)" %'(klk=1)]| (6.56)

Ces équations peuvent aussi étre obtenues directement a partir de ’expression de la densité a

posteriori globale de ’état, en supposant :

1. identiques les densités conditionnelles a priori (p(x(k)|Z**~1) = p(x(k)|Z*~1)) au niveau des nceuds

et du processeur de fusion
2. connues les densités conditionnelles a posteriori au niveau des nceuds p(x(k)|z*(k), ZF~1)
3. indépendantes les mesures d’un senseur & Pautre conditionnellement & I’état vrai x(k) de la cible

La densité a posteriori globale de I’état peut se décomposer par la regle d’inférence bayésienne classique

sous la forme

px(R)|ZE) = & p((R) (k). 24 p(oe()] 24 )
1 S [p<zi<k>|x<k>,Zk*)p(x(k)Zk*)
e [pOe(R[ZF= D=1
1 T o)1z (k), Z1)
= e o0

c= Z:[p(x(kz)|zk—1)]Ns—1 dx(k) (6.58)

On peut remarquer alors que la densité globale a posteriori (6.57) est obtenue par la combinaison
(multiplication) des densités locales et extraction (division) de la densité globale (commune) a priori.
On peut vérifier facilement, que dans le cas de densités gaussiennes I’équation (6.57) se réduit aux rela-

tions (6.61) et (6.62) précédentes.
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En résumé, on voit qu’il est fondamental de soustraire I’information redondante pour effectuer correc-
tement la fusion des données. Dans le cas contraire, un biais apparaitra inévitablement dans le résultat

du processus de fusion.

Dans le cas non linéaire (filtrage PDAF, JPDAF etc), les équations optimales de fusion ne peuvent
malheureusement plus étre exprimées par une simple combinaison linéaire des estimées locales comme

nous le verrons.

lere forme particuliere des équations de fusion distribuée

Quand tous les nceuds posseédent les mémes estimées a priori pour i =1,..., Ny, c.a.d.
X' (k|k—1) = %(k|k—1) (6.59)
Pi(klk—1) = P(k|k—1) (6.60)

Les équations (6.55) et (6.56) de la fusion distribuée optimale se réduisent &

P(k|k)~ ZPl klk) " — (N, — D)P(k|k—1)"" (6.61)

P (k|k) " % (k|k) = ZPl klk) % (k|k) — (No — 1P (k|k—1)""%(k|k—1) (6.62)

Larelation (6.61) met clairement en évidence le fait que I’information redondante commune P (k|k—1)

est retirée automatiquement dans 'opération (linéaire) de la fusion distribuée.

2eéme forme possible des équations de fusion distribuée

On suppose que tous les noeuds possedent les mémes estimées a priori, mais n’ont pas les mémes

covariances; Le traitement local au niveau d’un neeud 4 est donné par (6.49) et (6.50) mais avec

% (k|k—1) = %(k|k—1) (6.63)
Pi(klk—1)"" = a;P(klk—1)"" (6.64)
Zsai =1 a; >0 (665)

Les coefficients «; intervenant dans chaque nceud peuvent étre choisis arbitrairement. Généralement, on
prend «; = 1/Ng. Il faut cependant savoir que l'introduction des coefficients «; au niveau de I’équation
(6.64) introduit nécessairement une inconsistance entre I’estimée a priori x‘(k|k—1) et la

matrice de covariance P‘(k|k—1). Au niveau du processeur de fusion, les équations sont toujours
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données par

P(k|k)” ZP% klk) ™ (6.66)
P (k|k) ' (k|k) = ZPZ k|k) T % () (6.67)

6.2.5 Filtre de Kalman distribué avec modélisation MLR

On se place ici dans le cadre plus général ou I’état complet de la cible n’est pas connu au ni-
veau de chaque nceud mais uniquement au niveau du coordinateur. Cette modélisation, appelée

modélisation & Modeles Locaux Réduits (MLR) est décrite en 6.1.

Au niveau global, la dynamique de la cible modélisée par (6.5) et son observation par un senseur i

par (6.6). Ce modele est connu au niveau du processeur de fusion.

Au niveau de chaque nceud ¢ (¢ = 1,. .., s), la dynamique de la cible et son observation sont modélisées

par un modele local réduit décrit par (6.7) et (6.8).

Si 'on cherche les équations optimales de la fusion distribuée dans le cas d’une modélisation MLR des
cibles, alors le choix des modéles locaux ne peut étre arbitraire [AB85, Alo86, AB86, Alo87b].
Chaque modele local doit impérativement satisfaire une certaine contrainte algébrique [AB88, Alo90] pour
permettre la reconstruction de l'estimée optimale de ’état global x(k) & partir des estimées locales. Cette
contrainte est en fait une condition d’existence, pour chaque modele local, d’une transformation

linéaire L‘(k) : R™* — IR"+" telle que [WBCT82],[Alo86]

Hi(k) =H, (kLi(k) k=1,2,... (6.68)

Equations optimales générales de la fusion distribuée (Alouani 1986)

En supposant ’association parfaite des données (c.a.d. une connaissance parfaite de l'origine des
mesures délivrées par chaque senseur) et en utilisant la forme information du filtrage de Kalman, 1’estimée
locale d’une cible au niveau d’un nceud 7 est donnée par :

-1

Pi(klk) ' = Pi(klk—1)"" + Hi (k)Ri(k)”H (k) (6.69)

Pi(klk) % (klk) = PP(klk—1) "% (klk—1) + HE (k)R (k) HE (k) (6.70)

Ce qui permet d’écrire directement

1

H (k) Ri(k)” Hi (k) = Pi(k|k) ' — Pi(klk—1)" (6.71)

—1 -1 —1

H (k)R (k) 2z (k) = Pi(k|k) X'(k|k) — P(klk—1) %'(k|k—1) (6.72)
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Par ailleurs, lestimée globale (centralisée) optimale est donnée par

P(klk) ™ = P(klk—1)"" + ZHZ kY Ri(k)”HI (k) (6.73)
N, .
P(k|k) "'k (k|k) = P(k|k—1)""%(k|[k—1) + > H'(k)R'(k)" 2 (k) (6.74)
i=1
En tenant compte de la contrainte (6.68) dans (6.73) et (6.74), on a
P(klk)™ = P(klk—1)"" + ZLZ k)H: (k ’Ri(k:)leiL(k:)Li(k) (6.75)

P(k|k) " %(k|k) = P(klk—1)""%(k|

En utilisant (6.71) et (6.72) dans (6.75) et (6.76), il

de la fusion distribuée

k—1) +ZL1 k)'HS ()R (k) 2'(k) (6.76)

vient finalement les équations générales optimales

P(klk) ™ = P(klk—1)" +ZLZ YIPU(klk) ! = Pi(klk—1)" L (k) (6.77)
P(k|k) " '%(k|k) = P(klk—1)""%(k|k—1) + Z Li (k) [Pi(k|k) ™ % (k&) — Pi(k|k—1) % (k|k—1)]
- (6.78)

Ces équations optimales de la fusion distribuée découlent directement de ’expression de la densité

conditionnelle de 1'état p(x(k)|Z(k)) qui est obtenue par la regle d’inférence bayésienne classique par

p(x(R)|Z) = £ p((R) x(K), 25 )p(x (k)2
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(6.79)
p(Li(x(k), k)|ZF1)

dx(k) (6.80)
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et ot L¢(x(k), k) est un opérateur linéaire connu

x'(k) 2 Li(x(k), k) = Lix(k) (6.81)

Il est facile de vérifier que les équations de fusion (6.77) et (6.78) coincident exactement avec les
équations de fusion précédentes (6.55) et (6.56) quand I'opérateur L’ coincide avec I'opérateur (matrice)
identité I*. La densité (6.79) est alors identique & (6.57). Ces équations de fusion constituent donc les

équations optimales générales de la fusion distribuée.

6.2.6 Filtre sous-optimal PDAF multi-senseurs

Dans le cas du pistage mono-cible multi-senseurs en environnement dégradé, la fusion directe des
mesures (PDAF multi-senseurs & architecture centralisée) est pratiquement impossible & réaliser & cause de
la combinatoire tres élevée du probleme d’association des mesures délivrées par les senseurs. Ce probleme
pourra étre résolu théoriquement par des méthodes d’optimisation combinatoire sophistiquées (cf plus
loin). L’idée la plus simple [HBS89] consiste a utiliser une mise a jour de 'état de la cible avec des
filtres PDAF exploitant séquentiellement les mesures de chaque senseur. Comme on ne prend pas
simultanément en compte toute I'information disponible pour la mise a jour de la piste, 'approche n’est
pas optimale. Elle est cependant simple & mettre en ceuvre et peut donner des résultats intéressants dans
des environnements pas trop dégradés. Le principe général de cet algorithme appelé MSPDAF consiste

pour le cas de 2 senseurs en les étapes suivantes :
1. A partir de lestimation x(k — 1|k — 1) et de P(k — 1|k — 1) obtenue a l'instant k — 1, on prédit
Détat x(k|k — 1), P(k|k — 1) et la mesure attendue 2°' (k|k — 1) pour le ler senseur s;.
2. Avec z°1 (k|k — 1) et S®'(k) et les mesures Z°' (k) validées par le ler senseur, on met en ceuvre un

premier filtre PDAF. On obtient une premiére mise a jour de I'état x°* (k|k) et de P*1(kl|k).

3. A partir de x*' (k|k) et de P°*(k|k), on calcule la mesure attendue par le 2iéme senseur z°2 (k|k) et
S%2(k). Avec les mesures validées par le 2iéme senseur on met en ceuvre un 2iéme filtre PDAF pour
obtenir la mise & jour finale X(k|k) = x°2(k|k) et P(k|k) = P*2(k|k). On continue la poursuite en

retournat a 1’étape no 1.

Dans le cas ou les senseurs ne sont pas synchronisés, on doit les synchroniser artificiellement en itérant

les équations de prédiction.

6.2.7 Filtre PDAF distribué avec modélisation MLR

Nous généralisons maintenant les équations optimales de la fusion distribuée au cas ou les mesures

délivrées par chaque senseur sont d’origine incertaine.
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Nous considérons d’abord le cas du pistage mono-cible par un algorithme PDAF distribué avec une

modélisation MLR, puis expliciterons les équations du filtrage au cas de la modélisation MLI de la cible.

Nous décrirons ensuite le principe des algorithmes de pistage multi-cibles du type JPDAF distribué

avec modélisation MLR et/ou modélisation MLI des cibles.

Hypotheses

On suppose d’emblée la modélisation de la dynamique et des observations de la cible de type MLR
c’est & dire gouvernée par les équations (6.5) -(6.8). On suppose aussi vérifiée la contrainte algébrique
(6.68) permettant I'obtention des équations optimales de la fusion distribuée & partir des modélisations

locales réduites quand il n’existe pas d’incertitude sur ’origine des mesures.

Forme générale des estimateurs PDAF locaux

Si a D'instant k, chaque senseur i délivre mj, mesures notées Z*(k) = {z, (k)};ni | Pouvant potentielle-
ment étre associées a la cible, alors au niveau du traitement local, I’estimée locale optimale ”0-scan back”
% (k|k) = E[x!(k)|Z"*] et sa covariance associée P?(k|k) sont données par le filtre PDAF de Bar-Shalom

[BSF88] associé au senseur no i.

On rappelle d’abord les équations du PDAF construit au niveau local ¢ (i.e. associé & un senseur ).

L’estimée locale s’écrit (cf section du PDAF) [BSF8§]

x'(k|k) = B[x' (k)|Z""] = Zﬁﬂ 5 (k) (6.82)

7i=0

avec X! (k|k) £ E[x'(k)|Z"*,0! (k)] pour j; # 0 et j; = 0 donnés par

%% (klk) = %' (k|k—1) + K'(k)Z} (k) (6.83)

%5 (k|k) = %" (k|k—1) (6.84)

et les probabilités a posteriori d’associations g% (k) = P(0} (k)|Z**) données par

. bt
Bo(k) = ———— (6.85)
My,
bt + Z efi
;=1
% 6;1 C
(k) = —— siji #0 (6.86)

k
bt + Z ey,
;=1
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), = exp{—32;, (k)'S(k) "2, (k)} (6.87)
b = (am e oy LD (6.5
;
Zi* S 7)Y, (6.89)
z;, (k) £ 25, (k) — 2 (k|k—1) (6.90)
# (K[k—1) = Hy (k)% (k|6 —1) (6.91)
S'(k) = HY (k)P (k|k)HE (k) + RY(k) (6.92)

1

Ki(k) 2 P'(k|k—1)H: (k)'S' (k) (6.93)

et P! représente la probabilité de détection de la cible , sz‘ la probabilité de validation de la mesure

correcte et \! la densite spatiale des fausses alarmes au niveau du senseur .

La covariance de l'erreur d’estimation du PDAF classique est donnée au niveau de chaque nceud par
P (k|k) £ E[[x' (k) — %' (k[k)][x' (k) — %' (k|k)]'|Z""]

=Y B, (R)E[[x (k) — X (k|k)][x' (k) — X (kk)]'|Z"*, 65, (k)]

ji=0
:ﬁg(k)Pi(Mkz—l)—kZﬁj—i( ¢ (k|k) + Z (KIR)XS (k[k)" — X (k|k)X" (k|k)' (6.94)
Ji=1 4i=0

avec

P; (k|k) = E[[x' (k) — %5, (k|k)][x" (k) — %5, (k[k)]'|Z"", 05, (k)]

_ P’ (k|k—1) pour j; =0,
Pl (k|k) = (6.95)

[T — K (k) (B[P (k|k—1)  pour ji 0.

Forme générale de ’estimateur global

Connaissant I’ensemble des estimées locales x‘(k|k), P?(k|k) on cherche alors & construire 1'estimée

optimale globale x(k|k), P(k|k) donnée par

x(klk) = Ex(k)|Z", ... 25" = Z Zﬁgl, L3s (R)%y g (K[E) (6.96)

Jj1=0 Js=0

avec

61 k éP91 I{/’,...’es. k Zlvk’_._7zs,k) 6.97
Thede 7 Js
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Xj1 ..o (K[K) £ Ex(K)|Z5F, 0, (K),.... 2", 05 (k)] (6.98)

7701

03, (k) représente la réalisation de 'hypothese d’association : “la j;éme mesure du senseur ¢ correspond &

la cible”. B3}, ... ;. (k) représente la probabilité a posteriori pour que les mesures z’

.....

%1+, 2;, correspondent

VA

a la cible. x;, ;. (k|k) représente 'estimée (conditionnelle) optimale globale de 1'état quand z TP

correspondent a la cible.
Forme des estimateurs conditionné par les hypothéses d’associations

En supposant les erreurs de mesure indépendantes entre les différents senseurs, 'estimée

globale peut alors étre reconstruite a partir des équations générales de la fusion distribuée (6.77) et (6.78).

On obtient :
%o (1K) = Py g, (k) [P<k|k—1>*fc<k|k—1>
) 11- i L (6.99)
+ ZL 5 (kIR) K5 ([R) = P (kJR— 1)K (k] 1)]]
avec
P, (k) =Pklk—1)"" + ZU L (kk) T = P(k[k—1) " ILi(k) (6.100)
Pour le cas particulier ou j; = ... =js =0, on a
Po.o(klk) = P(k|k—1) (6.101)
Xo,....0(k[k) = %(k[k—1) (6.102)

Expression des probabilités 3;, ;. (k)

Il nous reste & évaluer les probabilités a posteriori 3, ... ;, (k) & partir des probabilités 5, (k),. .. ,8;, (k)

fournies par les filtres PDAF locaux. Pour calculer ces §;, ... ;, (k), on suppose indépendantes les me-

sures entre les senseurs. Cette hypotheése permet de considérer indépendantes les probabilités a priori
des évenements d’associations 6] (k),..., 65 (k). Sous cette hypothese, on peut calculer 3;, ;. (k) en

utilisant la regle de décomposition bayésienne et il vient :

Bjr s (k) = - (91( Do ]S Hﬁzl (6.103)

S

cs étant une constante de normalisation telle que

1
my,

oD Biri (k) =1 (6.104)

1=0  js=0
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Le facteur de corrélation (0}, (k), ..., 05 (k)) s’écrit

S

_H [p(x (k)62 (k), Z0F, 20+ 1)]
A0 0,05, 2 [ oz e o

En supposant les distributions gaussiennes, il vient alors

20P, . (k{R) [ T f2 (k=)
Y0} (K),...,05 (k) = — exp(—1d? ) (6.106)
27 P (klk— 1)/ T 127 P%, (k1K)
i=1
avec
i -1 o i -1
| Z (k|k)' P (k|k) ™ %L (k|k) — %' (k|k—1)"P*(k|k—1)" %' (k|k—1)]
- 6.107
+ %(k|k—1)P(k|k—1) "% (k|k—1) (6.107)
= Ky, (KR Py g (R R g (k)
Covariance de I’estimateur PDAF distribué
La matrice de covariance P(k|k) associée & Pestimée globale distribuée est alors donnée par
mE o M
P(k|k) = Bo, oR)P(RIE=1)+ > ... Y By s ()P, . (K[E)
j1=0 js=0
————
Jite s #0 (6.108)

+ Z Z[ﬂjl ..... 5o (B)Rjo g (RIR)R;, . (RIR)" — % (k[R)% ()]

Extension a la prise en compte d’informations de reconnaissance

Jusqu’a présent les mesures délivrées par les différents senseurs étaient implicitement supposées de
type cinématique (position, vitesse ...). Nous pouvons également chercher & améliorer la qualité du pis-
tage distribué en utilisant des informations de reconnaissance des échos (basées sur les mesures de SER
ou SIR par exemple ou des décisions délivrées par un classifieur auxiliaire). Ceci a déja fait 'objet d’une

présentation dans la section consacrée au PDAF.

Ces informations de reconnaissance qualifient la nature méme des échos regus qui sont supposées pro-
venir soit d’une fausse alarme (FA), soit d’un objet interférant (O) ou d’une cible (T). A chaque instant k,

. . . . ’ . 7 ; mi
chaque senseur ¢ dispose donc en plus des mj, mesures cinématiques Z*(k) = {z}, (k)}J ", d’'un ensemble
i =
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i
k

¥, sur la nature des échos validés. La reconnaissance

de mesures de reconnaissance D*(k) = {dzl(k:)};n
décrétée d;l (k) concernant le j;éme écho validé peut prendre trois valeurs possibles déi (k)=dy si écho
est déclaré du type bruit thermique ou fausse alarme (hypothese hy), d; (k)=d; si I'écho est déclaré de

type objet interférant (hypothese hi) ou d; (k)=ds si I’écho est déclaré de type cible (hypothese hs).

La qualité du processus de reconnaissance mis localement en ceuvre est caractérisée par une matrice

. i 1.4 , 212 , i i 1 )
de confusion locale C'=|[c}; | supposée connue dont les éléments sont donnés par ¢, = P(d' (k) =d;, |h;)
7=0,1,2. En utilisant la méme démarche de développement que celle précédemment exposée, 1'estimée

locale s’écrit

X' (k|k) = E[X'(k)|Z"%, D" = >~ 81 (k)% (k|k) (6.109)
Ji=0

avec X (k|k) £ E[x'(k)|Z"*, D", 0 (k)] pour ji # 0 et j; = 0 donnés par (6.83) et (6.84) et les

7

probabilités a posteriori d’associations i (k) £ P(0% (k)|Z**, D"*) données par (6.85) et (6.87) avec

el = A (k) exp{—1z (k)'S'(k) 7 (k)} (6.110)
b = n g iy g (6.111)
ou
Aji (k) = < Engza]P(d;im%) - (6.112)
fa (dji|h0) +>‘OP(dji|h1)

Les densités spatiales A} des objets interférants étant inconnues seront remplacées par leur estimée au
sens du maximum de vraisemblance a savoir

mi,Vi(k)(1 —2PjP}) + VA?
2Vi(k)2(1 — PyP})

Al = sup{0, — i} (6.113)

avec
A" £ mi V' (k)*(1 — 2PiP})? 4 4mj,(mj, — 1) PiP(1 — PiP))V*(k)? (6.114)
P! représente la probabilité de détection de la cible; sz‘ la probabilité de validation de la mesure correcte ;

)\}a et AL les densités spatiales des fausses alarmes et des objets interférant au niveau du senseur i.

La covariance P'(k|k) £ E[[x(k) — X' (k|k)][x" (k) — X' (k|k)]'|Z"*, D"*] de I'erreur d’estimation du
PDAF est donnée au niveau de chaque noeud par (6.94) et (6.95).

Connaissant I’ensemble des estimées optimales locales X' (k|k), P?(k|k) on cherche & construire 'es-

timée optimale globale x(k|k), P(k|k) donnée par

x(k|k) = E[x(k)|ZVF, DV 2R DY = N8 (k)% (klR) (6.115)

J1=0  js=0
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avec

Bi....i. (k) = PO} (k),..., Hjs(k)|Z1’k, DUF . Z5F D) (6.116)

X1, (K|k) £ E[x(k)|ZY*, DY, 05 (k),..., 25", D>*, 65 (k)] (6.117)

..... 05

En supposant les erreurs de mesure indépendantes entre les différents senseurs et les densités gaus-
siennes, l'estimée globale X, . ;. (k|k) peut alors étre reconstruite & partir des équations générales de la
fusion distribuée (6.77) et (6.78). On obtient alors les mémes équations d’estimation (6.99) a (6.107). La

matrice de covariance P(k|k) associée & ’estimée globale est alors donnée par (6.108).

6.2.8 Filtre PDAF distribué avec modélisation MLI

Si 'on suppose maintenant les modeles locaux d’évolution et d’observation de la cible iden-
tiques au modeéle du processeur central, on adopte alors la modélisation MLI décrite en 6.1 par

(6.1) et (6.3). Onapouri=1,...,s

x'(k) = x(k), vi(k) = v(k), w'(k) = w(k) (6.118)
Fi(k) = F(k), Q'(k) = Q(k), R'(k)=R(k) (6.119)
H'(k) = HE (k), Li(k)=1,, (6.120)

..........

modifiée en

R (k1K) = Py (IR) [P (klR—1) " 5k~ 1)

s "y . " (6.121)
+ DCIP (klR) S (k[E) — P (k[ —1)” % (bR 1]
P, . (klk) T =Pklk—1)"" + i[P;li(km)’l —Pi(klk—1)"] (6.122)

Cas d’un bouclage a chaque période
Si les prédictions globales x(k|k—1) et P(k|k—1) sont retransmises & chaque période & chaque noeud
du systeme, on a pour i =1,...,s

%' (k|k—1) = %(k|k—1) (6.123)

Pi(klk—1) = P(k|k—1) (6.124)
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Par conséquent les quantités x;, ;. (k|k) et Pj, . ;. (k|k) se réduisent &
. oy —1oi
Rjr,....js (K[K) = Py 5, (k[k) {[Z[Pji (k[k) x5, (k[F)]
P (6.125)
— (s = )P(k|k—1)""%(k|k—1)]
P, (klk)” ZPQ k)] = (s — DP(k|k—1)"" (6.126)
Le facteur de corrélation (6], (k), ..., 05,

(k)) intervenant dans les probabilités a posteriori d’association
Bijr.....j. (k) se réduit &

Js

, 27 P, (k|k)|[Y? |27 P (k| k—1)| D/
7(0311(k)7...79§ (k)): | Ji, ,]s(sl )| | ( | >|

exp(—1d3, ) (6.127)
[T 127P, (ke
i=1
avec
i =1 i
Z (kKPS (k[k) 55, (k[R)
12

— (s — Dx(k|k—1)P(k|k—1)""%(k|k—1) (6.128)

.....

= Kiyoge (KR Py g (RIE) ™ R g (R R)
Cas particulier : MLI/PDAF distribué 4 2 senseurs

Il est facile de voir que pour un systeme distribué comportant uniquement 2 senseurs, les équations
optimales (6.96) et (6.108) du PDAF distribué se réduisent a

k|k Z Z 6]17]2 thjz(klk)

(6.129)
71=072=0
et
ml  m?
P(klk) = Boo()Pklk—1)+ S S 8j, 50 k)P, ju (k[K)
Jj1=0j2=0
N—_——
145270 (6.130)
ko Mg
3 S 18500 (K)o o (KIR)Rj, o (KR — R (K[R)X(E[K)']
J1=07j2=0
avec
%, o (K1) = Py iy (k|R) [PL (k)T &5, (Klk) + P2 (k[k) ™ &2, (|k)
X1 ,j2 1,42 i1 X5, ja X5,

(6.131)
— P(k|k—1)""%(k|k—1)]
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P, i (klk)™ =P} (k[k) ™ + P2 (klk) " — P(k|k—1)"" (6.132)

B (1) =~ (6%, (), 02, (1) 85 ()32, (1) (6.133)

1/2 1/2
_ [27P5, s (k| )2 [27P (ke —1)]

7(65, (), 63, (k) 73 ~— exp(—4d3, ;) (6.134)
27 P} (k[k)|"% |20 P2, (k[k)|
~ -1, ~ —1.
a2, 5, %5 (k[k)'P] (klk) %5, (k|k) + %5, (k)P3, (k|k) %, (k)
— %(k|k—1)"P(k|k—1)""%(k|k—1) (6.135)

N 1.,
— %, o (kIR) Py, gy (kIK) %5, gy (K|K)
co étant une constante de normalisation telle que
my mi
Z Z ﬁjhjZ (k) =1 (6136)
Jj1=0j2=0
Remarque

L’extension du filtrage MLI/PDAF distribué & la prise en compte des informations de reconnaissance

est directe compte tenu de la formulation du MLR/PDAF distribué enrichi décrite précédemment.

6.2.9 Filtre JPDAF distribué avec modélisation MLR

On se place maintenant dans le cas plus général du pistage multi-cibles en environnement riche en
fausses alarmes par un systeme distribué constitué de s senseurs. On suppose qu’il existe T cibles a pister

par le DSN. Chaque cible est indicée par t,, n=1,...,T.

La modélisation globale et locale des cibles & pister t,, (n = 1,...,T) est identique & la modélisation
MLR décrite en 6.1 & savoir :

Au niveau du processeur de fusion

xi (k + 1) = F' (k)x' (k) + v'* (k) (6.137)

2" (k) = H' (k)x™ (k) + w'(k)  k=12,... (6.138)

Au niveau de chaque nceud 7 du systeme distribué, la dynamique et l'observation d’une cible t,, sont

modélisées par un modéle local réduit du type

X0 (k1) = Fo0 (k)x" () + v (k) (6.139)

70t (k) = HY (k)xbt (k) + wi(k) k=1,2,... (6.140)
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Calcul des estimées locales par JPDAF local

RN . . s 7 7 L 7 mi .
Si a I'instant k, chaque senseur i délivre mj, mesures notées Z*(k) = {z’, (k)}j_il pouvant potentiel-
lement étre associées aux cibles, alors au niveau du traitement local, I’estimée optimale ”0-scan back”

d’une cible t,, est donnée par le filtre JPDAF [FBSS80]. Cette estimée locale s’écrit

R0 (R) = Bt (0[] = BIL (0 12

*ZP () ZF) Bt (k) 25, X5 (k)
Jl—o

= Zg”n X" (k|k) (6.141)
7:=0

ol X; " (k) correspond a I'évenement d’association : “z’ (k) (la j;éme mesure du senseur ) provient de la

.t s Trgos . )
cible t,,” et ou Xl " (k) correspond a I’évenement : “Aucune des mesures issues du senseur 4 ne correspond

a la cible t,,”. La probabilité de chacun de ces évenements marginaux d’associations est donnée par :

Byt (k) £ POG (R)|ZHF) = > POC(R)|ZPF)@0, 4 (X (F)) (6.142)
X (k)

o x'(k) est un des événements d’associations conjointes possibles au niveau du iéme senseur a l'instant

k. Cet événement est défini comme

ﬂ Xt ( (6.143)

Jji=1

@k 4 (x*(k)) est Pindicateur binaire d’association de la cible ¢, avec la mesure 2z} (k). Les estimées locales

conditionnelles Xl I (kk) & Elxbtn (k)| Z0F, X" t"(k)] pour j; # 0 et j; = 0 sont données par
(k) = XM (k|k—1) + K" (k)Z5"™ (k) (6.144)
xgtn (k|k) = %5t (k|k—1) (6.145)
olt
20" (k) £ 25" (k) — 2" (k|k—1) (6.146)
o (klk—1) = HY™ (k)% (k|k—1) (6.147)
Shtn (k) = Hy' (k)PU (k|k)HY™ (k) + R (k) (6.148)

-1

Ko (k) £ Poln (k|k—1)HS" (k)'S%' (k) (6.149)

La covariance P;*f" (k|k) associée & f(;f" (k|k) est donnée par le filtre de Kalman standard

P (k[E) = [T, — K" () HG™ (1)) P (k= 1) (6:150)
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Au niveau de chaque nceud 4, et pour chaque cible t,, la covariance de Perreur d’estimation x“» (k) —

%4t (k) du JPDAF est donnée par

PHHR) & B[ R (1) =54 (124

B P (1) £ S B (P

Ji=1
+ Z G (kIR (kIR) — %5 (k[R)% (k]k) (6.151)
Jji=0
On observera que l'on a pour j; = 0,
5 (k|k) = %5 (k|k—1) (6.152)
P5 (k|k) = PP (k|k—1) (6.153)

Calcul des probabilités P(x’(k)|Z**) au niveau local

On rappelle que ces probabilités conjointes P(x*(k)|Z**) interviennent dans le calcul des probabilités
marginales ﬁl t"( ). En reprenant les équations du JPDAF standard (cf section sur le JPDAF), on peut

montrer que l'on a

. & )\Z.¢(Xi(k)) 1 i s "
P(x"(k)|Z"") = o omSiin (h 73 exp{— 3%}, " (k)8 (k) : (k)}
T i ey= (2SSt (k)] 6150
I e I a-r"
Oty (x*)=1 nt Ot (X*)=0

et Pé’t" représente la probabilité de détection de la cible ¢,, et A\; la densité spatiale des fausses alarmes

au niveau du senseur 7. ¢; est une constante de normalisation assurant
§P k)| Z0F) = (6.155)

75, (X") et &, (x*) sont respectivement l'indicateur d’association de la mesure z} (k) et I'indicateur de
détection de la cible ¢, dans I’événement d’association x’ considéré. On note ¢;, la cible associée a la

mesure z;, dans I’événement x* considéré. Ces deux indicateurs sont définis comme :

oA L st >0
L (6156)
0, si tj-; =0

s i
1, sitj, =1, pour une mesure zj,

b, (') 2 (6.157)
0, sit;, #t, pour tous les indices j;
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En utilisant la représentation matricielle Q(x?) = [@j:1;, (X")], les indicateurs 7, (x*) et d;, (x*) peuvent
alors étre facilement calculés par

(6.158)

(6.159)
#(x*(k)) représente le nombre total de fausses mesures dans I’événement conjoint d’association x* considéré
¢(Xl(k)) est donné par

S (k) = D[ =75, (X (k)]

(6.160)
ji=1

Calcul de ’estimée globale distribuée de chaque cible

Connaissant, pour chaque cible ¢,,, 'ensemble des estimées optimales locales X% (k|k), P%!" (k|k) on

cherche & reconstruire son estimée optimale globale x'= (k|k), P*" (k|k) donnée par

% (k|k) = E[x'"(k)|Z*] = E[x (k)|Z"F, ..., Z5"]

1) n wvn
=3 ) PG R, X
j1=0  js=0

(K)|ZVF, ... Z5F)

Bl (k)2

G (R), 2P XS ()]
Soit finalement
xtn(km)zz...z:g;; ,,,,, S (R)& L (k|k) (6.161)
J1=0 Js=0

avec

B (k) & PO (k),

XS (k)22

(6.162)
G g (kIR & B (B2 G (k). 200 G

(k)]
= /xt” (k)p(x' (k)|ZYF, X;;t" (), ..., Z5%, x;:" (k) dx'~ (k)
Bin

VARTEREY K]

(6.163)

(k) représente la probabilité a posteriori pour que les mesures z
cible t,. X}

Y-, 25, correspondent & la

‘ représente 'estimée conditionnelle optimale globale de 1’état quand z

;. (kK ésente 'estimé diti 11 timale globale de ’état d
correspondent a la cible t,,.

i

S
o B,
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Calcul des probabilités 35" . (k)

.....

nellement & I’état vrai des cibles et aussi indépendants les éveénements d’associations x!(k) & x*(k)
conditionnellement a l’état des cibles. Ces hypotheses permettent alors d’écrire en utilisant la regle de

décomposition bayésienne et le théoreme des probabilités totales

B B)= D o Y PO k), X (R)|ZYF, 2o, (M (R) -5, (O (R))

""" KR xe(R)

=3 Y A E )

xt(k)  xs(k)

[T PO ®NZH Z )] o, 4 (6 (R)) - 05,0, (0 (R)

i=1

(6.164)

¢s étant une constante de normalisation.

Le facteur de corrélation v(x 't (k),..., x>t (k)) s’écrit

YO (R, .. x5 (R)) é/.../p(xtl(k),...,xtT(k)|zlwk*1,...,ZSw’H)

[T TGt (o)X (R), Z0%, 24 1) (6.165)

n=11i=1 th t
X — dx" (k). ..dx'T (k)
[T [Tpect (k)1zi+)
n=1i=1
En supposant les distributions gaussiennes on peut montrer que I’expression analytique de V(X}l (k) ..., X, (k))
est donnée par
n 12 1 itn 1/2
P N (20 i | 12 RG]
s i=1
A = I | 5 -
— 1/2 i
n=1 2P (klk—1)|"* [ [P | (kik)| (6.166)
i=1
x exp(—Ld? - )
p 2 jtn,(xl) """ Jtn (x3)
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avec
2 AZS Aistn I tn =1 ity
d‘jtn(xl) ..... jf'n(XS) - L [Xjf'n(xi) (k|k) P]t (XZ)(k“C) X‘jtn(xi)(k“{:)
Sihtn itn _1"ia n
— X" (klk—1)PY* (k|k—1) %" (k|k—1)] (6.167)

1t (k|k—1)P (k|k—1) "%t (k|k—1)

-1

stn Stn
_thn(xl)""hjtn(xs) (k| ) Jt (x1) Jtn (x5) (k|k) X]t (1) 7]tn(X5)(l{:|k>
: X0 (k[k—1) + K" (k)2 (k) siel L (k) =1
syt (klk) = R et (6.168)
tn (X* .
xbtn (k|lk—1), sinon
: [Tn,.., — K" (k) Hy™ (k)| PO (k[k—1), si@f , (X'(k) =1
P (kR =4 : it (6.169)
. Pitn (k|k—1), sinon
%t , (k|k) et Pt (k|k) sont donnés par les relations (6.171) ou (6.173) et (6.172)

Tt (x1)r Jtn (x*) Jtp (x1yr jf’n(XS)

ou (6.174) en ayant préalablement effectué la substitution des indices j; par jy, (i) pouri=1,...,s.

Expression de )Aczg’](ldk)

K (Klk) £ BIxt (k)| ZYF, x5 (R), . 25 x5 (k)]

. t (6.170)
= [ (B2 () 2 () (1)

Xl ;. (k|k) représente I'estimée conditionnelle optimale globale de l'état quand z! Z5  corres-

g1t A
pondent a la cible t,,. En supposant les erreurs de mesure indépendantes entre les différents senseurs,

les estimées (conditionnelles & l’association des mesures) f{ﬁi‘ ;. (k|k) sont obtenues & partir des des

équations générales de la fusion distribuée (6.77) et (6.78) et I'on a

X (KIR) £ B (k)| Z1F, G (), Z5F G (k)

=Pl (kR [P (l—1) %" (k1) (6.171)

-1

+ZL” YIPU (klk) Ko (klk) — P (k[ —1) " & (k| k—1)]

Expression de P;; ;. (k|k)

.....

Pir . (klk) =Pt (klk—1)" +ZL” kY [P (klk) T — PO (k[k—1) Lt (k)| (6.172)

J1seeesds
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Pour le cas particulier j; = ... = j; = 0, on prend
Py o(k[k) = Pt (klk—1) (6.173)
xo. o (k[k) = X" (k|k—1) (6.174)

Matrice de covariance de ’estimée par JPDAF distribué

La matrice de covariance P! (k|k) associée & 1’estimée globale (6.161) d’une cible ¢,, est donnée par

P (k[k) = 85..o(k)P"" (klk—1) +Z 3% ot Y )
J1=0 Jjs=0
———
it +is#0 (6.175)

+Z Z i RR (RR)RS (k[R) = & (k[ k)& (k[ k)

Jj1=0 Jjs=0

JPDAF distribué avec modélisation MLR et reconnaissance

Si 'on dispose au niveau de chaque senseur d’informations de reconnaissance alors on peut enrichir
le filtrage MLR/JPDAF distribué pour améliorer la qualité du pistage. Les informations cinématiques
Z' (k) = {z}, (k)}:i , et de reconnaissance D'(k) = {d},(k )} , disponibles sont les mémes que celles
décrites dans le MLR/PDAF distribué enrichi. Le developpement du filtre JPDAF enrichi étant quasi-
similaire au développement du MLR/JPDAF précédent, on explicitera ici uniquement les points de calculs

ou apparaitra une différence entre les deux types de filtres.

Au niveau local, 'estimée optimale “0-scan back” d’une cible t,, est donnée par
% (k|k) = B (k)] 2, D]

my
= Z PO (k)| Z0F, DY) B (k)| Z5F, DY, G (k)]

_Zﬁ”" 5t (k|k) (6.176)

Ji=0

ol X; (k) correspond & l'évenement d’association : “(z5,(k),d?, (k) (la jiéme mesure du senseur i)

. N Lt N 7 .
provient de la cible t,” et ot xi " (k) correspond & I'événement : “Aucune des mesures issues du senseur
i ne correspond a la cible t,,”. La probabilité de chacun de ces éveénements marginaux d’associations est

donnée par

Gt (k) 2 POGT (MIZHF DY) = 3 POV ()20, DY), (1 () (6.177)
X (k)
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olt x!(k) est un des évenements d’associations conjointes possibles au niveau du iéme senseur a l'instant

ket & , (x'(k)) est I'indicateur binaire d’association de la cible t,, avec la mesure (2} (k),d’ (k)). Les
estimées locales conditionnelles X;t" (k|k) & E[x"t (k)|ZF, Dbk, x;’f" (k)] et P;’f" (k|k) sont données par
les équations (6.144) a (6.150). Le calcul des probabilités qui intégre les informations de reconnaissance

s’écrit alors
(N + AL)o O (k)
Ci

I A

Jarm; (x)=1

I re II a-r™

tn: ¢, (xH)=1 tn: ¢, (x*)=0

P(x'(k)|z"*, D) =

1 5htn it (1) Laitn
s P WS W) )

Pj’t" représente la probabilité de détection de la cible ¢, ; )\ZJ} et Al sont les densités spatiales des

a
fausses alarmes et des objets interférant au niveau du senseur zA;Z (k) représente la vraisemblance pour
que ’écho j; soit associé a une cible. Cette vraisemblance est calculée selon (6.112). En pratique les

densités inconnues A} seront replacées par leurs estimées A’ données en (6.113). ¢; est une constante de

normalisation assurant

Z P(x'(k)|Z%F DY) =1 (6.179)

Au niveau de chaque nceud i, et pour chaque cible t,, la covariance de I'erreur d’estimation x*» (k) —
%4t (k) du JPDAF local enrichi est donnée par (6.151). Connaissant, pour chaque cible ¢,,, 'ensemble des
estimées optimales locales %% (k|k), P"' (k|k), 'estimée optimale globale %= (k|k) = E[x'~ (k)|Z*, D¥)
et sa covariance associée Pt~ (k|k) seront données par les équations de fusion classiques du MLR/JPDAF

(6.171) & (6.175).

6.2.10 Filtre JPDAF distribué avec modélisation MLI

Si I’on suppose les modeles locaux d’évolution et d’observation de chaque cible (6.137)-(6.138) iden-

tiques au modele du processeur central (6.139)-(6.140), onapouri=1,...,setn=1,...,T
xbin (k) = x!(k), vitn (k) = vin(k), w'(k) = w(k) (6.180)
Fiin (k) = Fin(k), Q"' (k)=Q'(k), R'(k)=R(k) (6.181)

Hitn (k) = hivtn (k), Litn (k) =1 (6.182)

Mptn

Les équations du JPDAF distribué avec modélisation MLI des cibles sont identiques aux équations de

fusion précédentes [CCB86]. Seule 'expression des quantités fcé;’h (k|k) et PE;’] (k|k) est modifiée en

i (klk) =Pl (k[k) {Pt" (klk—1)" &t (k|k—1)

j17~~~;js
2 i -1, . 1 (6.183)
+ Y P (klk) X5 (k[k) — PO (k|k—1) fc“t"(k|k71)}}

Ji
i=1
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pt» -1

J1seeesds

(k[k)

= P (klk—1)"

S

+ S [P RE) T -

i=1

1

' Pt (klk—1)" ]

(6.184)

Cas particulier

Si les prédictions globales x' (k|k—1) et P (k|k—1) sont retransmises & chaque période & chaque

neeud du systéeme, on a pour i =1,...

Par conséquent les quantités f{ﬁi‘
.

x5 g (klk) =P
tn
P317 wJs k|k

Le facteur de corrélation y(x'(k), ...

, S

x4t (k|k—1) = %™ (k|k—1) (6.185)
Poin (k|k—1) = P (k|k—1) (6.186)
. (k|k) et P%r . (k|k) se réduisent &
5 R [P (R lR) ™ 5 (il )
i=1 (6.187)
— (s = P (klk—1) " %" (klk—1)]]
= ZP” (klk) ] = (s — )P (klk—1)"" (6.188)

,X°(k)) intervenant dans les probabilités a posteriori d’associations

5;; _____ ](k) se réduit &
n 1/2 itn (s—1)/2
L 2P ét oy Jtn<xs>(k|k)| 27 P>t (k|k—1)]
A (k). (k) = [T
n=1 H |27TPZ tnX k|k’)| (6189>
x exp(—id? )
p Tty (x1)r ],n(XS)
avec
2 A - Lhtn Ipistn =1 _it,
djf'n(xl) """ Jtn(x®) 2[thn(xi)(k|k) Pjtn(xi)(k|k) thn(xi)(k;“ﬂ)}
— (s — 1) %" (k|k—1) Pt (k|k—1)" "% (k|k—1) (6.190)
&in tn —1..¢.
- Ten (x1yr e jtn(xs)(k| ) Tty (x1)ree jtn(xs)(k| ) Ttn (x1)r o j,,n(XS)(k/’lk)

Cas particulier du JPDAF distribué a 2 senseurs

Il est facile de voir que pour un systeme distribué comportant uniquement 2 senseurs, les équations

optimales (6.161) et (6.175) du JPDAF distribué avec modeles locaux non réduits sont :

X (k|k) =

mk mk

PIPIL AL

j1=072=0

k|k) (6.191)

J1 Jz(
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et
m;, mi
P (k[k) = By ()P (k[k—1) + > > pir s (k)P (klk)
71=0j2=0
———
J1+72#0 (6.192)
My mi
+ Z Z [ﬁ;ih( Jl ,J2 (k|k) J1 J2 (k|k)/ —x" (k/’lk)f(tn (k|k)/]
J1=072=0
avec

1 <> n sln -1 < n
i (klk) = Py (k[k) [P (k[k) %" (klk) + P (klk) %5 (k|k) (6.193)
— P (klk—1)" "% (k|k—1)]]
—1 -1 -1 —1
Pl (klk) =Pr"(klk)  + P (klk)  — P (klk—1) (6.194)
Bl 5, (k) = P0G (k) x5 (k)| Z1F, 22%)
1 The 3 ke
=2 D [0 B RN POC (R)ZHE 2N PO (R) 258, 224 (6.195)
Xt x? 2
@j 0, O (R))@F, 0, 0P (R))]
c2 étant une constante de normalisation et y(x* (k),x*(k)) et d7 ety 2y Sont donnés par
n(x*)tn (x
/2 1/2
T |27Pl o (klk)| P 20Pt (k[k—1)]
Jtn 1) P tn (x
Y (k). P (k) = ] Dol 7— op(—3dj, ) (6:196)

. 1/
n=t |27TP;QZ(X1)(1<;|1€)| |27TP“( (k|k)]|

2)
et
2 & 41 bl -1 %2 "p2 k2
djtn,(xl)vjr,n(x2) B thn(X )(k|k) PJr (x 1)(k|k) th (x 1)(k|k) +thn,(><2)(k|‘l€) Pjtn(XZ)(k|k) thn(XZ)(k|k)
< ([l —1) Pt (klk—1) " %" (k|k—1)
—x SRR R (kIR

Jtn (x1) T tn (x2) Jtn (x1) I tn (x2) Tt (x1) T tn (x2)

(6.197)
6.3 Pistage multi-senseurs par fusion de pistes

6.3.1 Présentation de la fusion de pistes

Nous présentons dans cette partie, la technique sous-optimale de pistage multi-senseurs souvent

utilisée dans les systemes de pistage actuels. Cette méthode est communément désignée par méthode de
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pistage par fusion de piste. Son principe consiste, dans une premiere étape, a évaluer par un filtre de
poursuite local associé a chaque senseur, un ensemble de pistes locales; puis, dans une seconde étape, a
fusionner judicieusement les estimées locales qui correspondent & une méme cible afin d’obtenir une piste

globale de meilleure qualité.

On voit que cette méthode engendre d’emblée certaines limitations. La premiere limitation concerne
la possibilité ou non de construire un filtre de poursuite associé au senseur. En effet, on sait par exemple
que la poursuite par un senseur IR ne permet de restituer qu'une partie de 1’état d’une cible, de plus,
I'observabilité de la cible dépend étroitement de la géométrie du probleme. Autrement dit, la nature des
senseurs est un facteur important pour la mise en ceuvre des algorithmes de pistage locaux. La seconde
limitation est la nécessité d’avoir au niveau de chaque filtre local la restitution complete de 1’état du
systeme indispensable aux équations de fusion. La encore, cette reconstitution pourra ou ne pourra pas

étre possible selon la nature des senseurs utilisés.

En pratique, les systemes sont souvent de nature hybride pour pouvoir s’accommoder de ces deux
limitations majeures. L’idée de I’hybridation consiste & utiliser des senseurs de maniére groupée (2 ou 3
senseurs IR par exemple) et & effectuer le pistage au niveau d’un groupe par les techniques de pistage
distribuées précédentes. La fusion des estimées locales (complete) issues de chaque groupe est ensuite
fusionnée par la méthode de fusion de piste que ’on va maintenant rappeler. Pour une analyse plus ap-

profondie de cette approche, on pourra se repporter & la référence [SC98].

Les 2 problemes doivent impérativement étre résolus pour mettre en ceuvre la méthode de pistage par

fusion de pistes
1. On doit d’abord savoir reconnaitre (identifier) les pistes locales relatives & une méme cible.

2. On doit ensuite savoir fusionner les estimées locales relatives & une méme cible afin de contruire

une estimée globale (sous-optimale) de la cible.

Cette technique, comme on le verra, n’est que sous-optimale car 1’estimée fusionnée obtenue
ne coincide pas avec l’estimée globale que 'on obtiendrait & partir de I’exploitation de toutes les
mesures relatives a une méme cible et issues des différents senseurs. Malgré tout, cette méthode présente le
gros avantage (si la nature des senseurs le permet) d’étre facilement implantable et intégrée aux systemes
opérationnels de poursuite déja développés. Nous détaillons maintenant les réponses aux deux questions

fondamentales précédentes.
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6.3.2 Test de concordance entre pistes locales

Avant toute étape de fusion, il est nécessaire de s’assurer que les pistes locales sont effective-
ment “fusionnables”. En d’autres termes, on doit d’abord chercher a déterminer si deux pistes locales
caractérisées par leurs statistiques ™ (k|.), P®"i (k|.) et %77 (k|.), P9 (k|.) représentent, ou non, une
méme cible t. n; et n; désignent ici le numéro arbitrairement associé a la piste au niveau de chaque
senseur. Ces estimées pourront étre aussi bien des estimées a priori (on posera alors (k|.) = (Hk—1)) que

des estimées a posteriori (on posera alors (k|.) = (k|k)).

Soit
A, (k].) = X" (k|.) — %77 (k|.) (6.198)
I'estimée de la différence
AF (k) = X" (k) — x" (k) (6.199)

ot X" (k) et x"i (k) désignent les états complets vrais des cibles associées & chacune des pistes locales

n; et nj.

Le test instantané de concordance (encore appelé test d’association ou parfois test de corrélation)

entre deux pistes locales n; et n; consiste alors & tester I'hypothese

Ho : Ailjmj (k)=0 = concordance des pistes x"" (k) = x7" (k) = x* (k)
contre
Hi Affmj (k) #£0 = discordance des pistes x*" (k) # x?" (k)

Sous I’hypothese de concordance des pistes n; et n;, l'erreur Aﬁfn] (k) définie par

AU (k)2 AY (k) —AY (k) (6.200)

n;n; n;n; ning

doit étre & moyenne nulle.

6.3.3 Cas simpliste des pistes locales indépendantes
Si 'on admet en premiere hypothese que l'erreur

% (k| = x™ (k) — %57 (K. (6.201)
est statistiquement indépendante de 'erreur

%Im (k|.) = I (k) — %I (k|.) (6.202)
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alors on a [MABS85]

Pl (kl.) = B[ (k)%™ (k].)'] = 0 (6.203)
P (k) £ E[x™ (k)%™ (K].)'] = P, (k) =0 (6.204)

Sous I'hypothese Hy, la covariance de la différence (6.200) est alors donnée par

T3, (k) = EIAY, (K[.)AY, (K].)']
= B[(x"" (k|.) — 7™ (k[.) (X" (k|.) — %™ (k].))]
=P, (k) + P, (k) (6.205)

En supposant les erreurs d’estimations locales distribuées selon une loi normale, le test optimal

de concordance, basé sur la distance de Mahalanobis d, est donné par

A .. — A Hl
a2 A (kLY [T, (R)) AR, (K 2 0 (6.206)

n;n;
Ho

Le seuil § du test est tel que

| P{d > 6|Ho} = o (6.207)

oll « est une valeur choisie a priori (généralement on prend 0.005 ou 0.001). Le choix du seuil § est basé
sur ’hypothese de normalité de Ai{'mj (k) sous Hyg. Sous Hy, d doit alors suivre une distribution du x? de

degré n, (n, étant la dimension du vecteur d’état complet x), c.a.d :

§=x2 (1-a) (6.208)

6.3.4 Cas réaliste des pistes locales dépendantes

Dans le cas général, les pistes locales ne peuvent étre considérées indépendantes puisqu’elles
partagent en fait le méme processus de bruit de dynamique. Il faut donc impérativement tenir
compte de cette propriété au sein du test de concordance. On notera que le fait d’avoir des bruits de me-
sures indépendants au niveau de chaque senseur n’assure pas forcément I'indépendance des erreurs locales
d’estimation X" (k|.) et %/" (k|.). Il nous faut donc évaluer les covariances croisées E[x"" (k|.)x7"i (k|.)’]

et E[x?™ (k|.)x"™i (k|.)] pour mettre en ceuvre le test.

Pour simplifier la présentation, on supposera les senseurs synchronisés. Cela signifie simplement
que les termes de conditionnement (k|.) sont les mémes au niveau du senseur i et au niveau du senseur j.
Le cas des senseurs non synchrones ne pose aucun probléme particulier en soi (a part celui de la notation

bien siir) et peut étre traité d’une fagon rigoureusement analogue.
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Calcul des covariances croisées

Le principe de calcul des covariances croisées est basé sur I’équation de mise a jour de l'estimée locale
au niveau de chaque senseur m, m = i,j. Cette équation est donnée par le filtre de Kalman standard

(pour simplifier, on admet ici implicitement que c’est ce type de filtre adopté pour la poursuite) & savoir :

£ (k|k) = Flem (K — D)™™ (k — 1k — 1)
(6.209)
+ K™ () [z (k) — H™ " (k) Fim (b — 1)X™ " (K — 1|k — 1)]
ou K™"m (k) est le gain du filtre de Kalman associé au processeur local m pour la piste locale n,

(m =14,j). z™" (k) est la mesure locale de senseur m associée & la piste n,, représentative de la cible

b,

Compte tenu de (6.209), 'erreur d’estimation correspondante vaut :

™ (k) & xtrm (k) — 2™ (k| k)
= [T — K™ () H™ " (k)| Ftom (k — 1)E™ " (k — 1]k — 1)
+ [ = K™ (B)H™"™™ (k)]virm (k — 1) — K™"™ (k)w"™ (k) (6.210)
En considérant la méme cible d’intérét ¢ au niveau de chaque senseur (i.e. t = t,, = t,;) et en

multipliant (6.210) pour m = ¢ par sa transposée prise en m = j, on obtient le calcul récursif suivant de

la covariance croisée P (k|k) :
i

Pyl (klk) = [L= K" (k) H"™ (k)P (klk — 1)[I — K" (k)H™ (k)] (6.211)
avec
P (klk—=1)=F'(k— )P, (k= 1k - DF (k- 1)+ Q'(k — 1) (6.212)

et pour condition initiale

P, (0/0) =0 (6.213)

Test de concordance des pistes locales

Sous ’hypothese Ho, la covariance de la différence (6.200) est alors donnée dans ce cas par

1% _ A ©J At !

= B[(&"" (klk) — %7 (k[k)) (X" (k[k) — %77 (k|k))']

=P, (klk) + P), (klk) — P}, (k|k) — P (k|k) =T, (k[k) (6.214)

L’effet de dépendance des erreurs d’estimation locales induit une réduction de la covariance de

la différence (6.200) des estimées. Le test de concordance des deux pistes n; et n; est le méme
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que précédemment (6.206) excepté que la matrice Tf{mj obtenue par (6.214) est comparativement

plus petite que celle obtenue en (6.205).

6.3.5 Principe de la fusion des pistes locales concordantes

Lorsque le test de concordance de piste décrit précédemment est satisfait (Ho est déclarée), on peut
alors réaliser la fusion des estimées locales (i.e. des pistes locales concordantes). Les équations de fusion
découlent directement des propriétés des vecteurs aléatoires conjointement gaussiens qui conduisent aux

relations classiques d’estimation linéaire [BSF88].

Equations de fusion pour des erreurs locales indépendantes

Sous I’hypotheése Hp, on peut combiner les estimées locales [BS81] %" (k|k) et %7 (k|k) de 1'état de
la cible associée x'»i (k) = x"i (k) £ x*(k). L’estimée fusionnée, notée X!, et sa matrice de covariance

associée P! sont obtenues par

%<t = P [Pi,m + Pj,nj]—lf(iﬂi 4 pPoni [Pi,m 4 Pjﬂj]—lf(jﬂj (6.215)

Pt — Pi,ni [Pi,ni + Pjﬂlj]_lpjanj (6216)

Les indices temporels & ont ici vonlontairement été omis pour alléger la notation.

Equations de fusion pour des erreurs locales dépendantes

Si 'on se place dans un cadre plus général et réaliste ou les erreurs d’estimation locales sont

corrélées a cause du processus de bruit de dynamique commun aux senseurs, il vient les équations

suivantes :
! (k|k) = %" (k|k) + K" (k)[x7™ (k|k) — %" (k|k)] (6.217)
P! (k|k) = P (k[k) — K'(k)[P"" (k|k) — P, (k|k)] (6.218)
=P (k|k) — K" (k) [P (k|k) — P, ([k)) (6.219)

Le gain de Kalman K? de la fusion est donné par :

K'(k) = [P (k[k) — Py, (K[R)][P"" (k[k) + P77 (k|k) — P, (k|k) =P (k)] 7| (6.220)

On peut facilement vérifier que les équations de fusion sont symétriques par rapport aux indices ¢ et j et

que (6.217) et (6.218) se réduisent aux équations (6.215) et (6.216) quand P{jjn = Pfljmj =0.
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Il est important de rappeler que ces équations de fusion ne permettent pas d’obtenir I’estimée
globale et optimale de 1’état de la cible considérée, mais uniquement une estimée sous-optimale
[RMSS]. L utilisation de cette technique de fusion sous-optimale est cependant justifiée dans de nombreux
systemes multi-senseurs car sa mise en ceuvre est simple et peu colteuse et par le fait que la perte de
performance engendrée par rapport & I'estimateur optimal ne dépasse généralement pas les 7 % [BS90].
De plus, une méthode d’approximation du calcul des covariances croisées peut étre adoptée pour réduire

le cott de calcul [BS90].

6.4 Pistage par fusion plots/pistes

Dans certains systemes de surveillance, on peut chercher a faire du pistage par une méthode de fusion
plots-pistes entre des sensures de nature hétérogeéne (radar+IR par exemple). On dispose généralement
de pistes élaborées a partir d'un type de senseur que ’on va chercher a mettre a jour avec les mesures
délivrées par les autres senseurs. La gestion de ce type d’information utilise les méthodes classiques de
pistages présentées précédemment. La seule contrainte est d’avoir un modele d’observation reliant les

mesures des senseurs a I’état des pistes déja établies.

6.5 Association entre mesures issues de senseurs multiples

6.5.1 Présentation

Dans les problemes de pistage de cibles multiples en environnement dégradé par des systemes multi-
senseurs (& architecture centralisée), la fusion des mesures est I’étape préalable indispensable et pri-
mordiale au traitement de I'information. Cette étape est essentielle puisqu’elle conditionne en grande par-
tie la qualité des résultats des algorithmes de poursuite choisis. Le but de la fusion des mesures consiste a
trouver ’ensemble des appariements (mises en correspondance) des mesures issues des différents senseurs.
Autrement dit on cherche & répondre a la question : telle mesure de tel senseur (supposée provenir de

telle source) correspond-t-elle & telle mesure de tel autre senseur ?

Dans le cas mono-senseur, seule 'origine de la mesure est importante et des techniques classiques
d’évaluation des vraisemblances d’origine sont disponibles [BSF88]. Dans le cas multi-senseurs, l'origine
des mesures joue un role important certes, mais aussi la mise en correspondance des mesures et le
probleme de 'assignation optimale des mesures devient tres complexe des que le nombre de senseurs
est supérieur a 2 et le nombre de mesures par senseur est supérieur a 10. Dans de telles situations,

les techniques de balayage exhaustif de toutes les correspondances (partitions) possibles (et le calcul de



152 CHAPITRE 6. PISTAGE MULTI-SENSEURS

leur vraisemblance) devient prohibitif en temps de calcul méme pour les calculateurs actuels. Pour s’en
convaincre, il suffit de considérer le cas de 3 senseurs (2 senseurs IR et 1 senseur MM par exemple) ayant
chacun a un instant donné 20 mesures. La recherche de la partition la plus vraisemblable pour cet exemple

221x21x21 _ 99261 partitions d’associations de mesures ainsi que

nécessite alors le balayage exhaustif de
Iévaluation de leur vraisemblance associée. Le nombre 21 (et non 20) & été utilisé car on doit également
tenir compte de Porigine “bruit thermique/FA” possible des mesures. On voit donc que ce nombre de
partitions a générer est tres important et varie de fagon exponentielle avec la dimension du probleme.

Le probleme général de I'assignation est bien connu pour étre un probleme “NP-hard”; c¢’est a dire non

résolvable par un algorithme dont la complexité est une fonction polynomiale de la dimension du probleme.

Cette section présente le principe d’une méthode récente de résolution approchée du probleme général
de l'assignation qui présente l'avantage d’étre a complexité polynomiale. Il faut savoir que cette
méthode qui découle des travaux de S.Deb [BS90] reste une méthode, en général, sous-optimale dans
le sens ou la solution trouvée ne correspond pas toujours a la partition optimale du probléme
d’assignation. Cependant elle présente le gros avantage, contrairement aux méthodes d’optimisations
plus communément employées (telles que le recuit simulé, algorithmes génétiques, recherches par méthodes
tabou, etc), de fournir une mesure de proximité de la solution générée a la solution optimale
inconnue. On peut donc en pratique utiliser cette méthode avec un critere d’arrét qui correspondra a
la précision d’assignation choisie (typiquement inférieure & 2 pourcents pour une centaine d’itérations de

lalgorithme). Elle reste d’un intérét certain pour les systémes multi-senseurs actuels et futurs.

6.5.2 Associations entre des mesures délivrées par 3 senseurs

Hypotheses et modélisation adoptées

On considére une région de Pespace dans laquelle sont supposées évoluer T cibles (T est inconnu).
Chaque cible t,, (n = 1,...T) est repérée par ses coordonnées (xt_, 4, , 2, ). On suppose disposer de 3
senseurs délocalisés s = 1,2, 3 positionnés en (xs,ys, 25s). Chaque senseur observe l'espace et fournit un

mS
ensemble de mesures {z;_ (k)}js’;l.
Pour simplifier la notation, on compléte cet ensemble par une “mesure” purement fictive z§(k)

qui permet d’envisager toutes les associations possibles mesures<origines incluant le cas d’une détection

de cible par seulement 1 ou 2 des senseurs. L’ensemble des mesures délivrées par un senseur s est noté

Z° (k) = z3(k) U {25, (k)}"", = {z3, (k)}"* (6.221)

Js=1 Js=0
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L’ensemble de toutes les mesures disponibles délivrées par les 3 senseurs a l'instant k est noté

Z(k) = {Z°(k)}® (6.222)

s=1

Le nombre de mesures délivrées mj pour s = 1,2,3 varie d'un senseur a l'autre et, en général, m}C #*
2 3 : :
mg # m;,. On suppose que chaque cible peut engendrer au plus une seule mesure au niveau de

chaque senseur et ’on autorise ici la possibilité de fausses alarmes.

Les mesures j, = 1...m$ délivrées par chaque senseur s sont modélisées par :
k

hin [xt k] + v (k) si la mesure provient de la cible ¢,
25 (k) = (6.223)
w; (k) si ¢’est une fausse alarme

Les bruits de mesures v, (k) sont supposés indépendants d’un senseur a l'autre, gaussiens, centrés de
covariance respective R*(k). La densité de probabilité des fausses alarmes w# (k) est supposée uniforme

dans le volume d’observation V* de chaque senseur s et est donc donnée par

1
Pw;, (0 (W(k)) = 775 (6.224)
Partition des mesures
Considérons un triplet quelconque de mesures (z;, (k),z, (k), 25, (k)) et notons le
Zj,5aja (F) 2 (25, (), 25, (k) 25, (k) = {2}, (6.225)

L’introduction des mesures fictives permet de pouvoir considérer toutes les associations possibles y com-

pris celles ou une cible est détectée par seulement 1 ou 2 senseurs.

A chaque triplet envisagé, on peut calculer une vraisemblance. Supposons par exemple, qu’une cible
t,, soit présente en (x,,y:,,2t, ), que le senseur 1 ne détecte pas la cible et que les senseurs 2 et 3 aient

détectés la cible, alors la vraisemblance du triplet Zoj, ;, (k) est donnée par

N (Zojyjs (K)ot Y, 2t,) = (L= Py(tn))Pi(tn)p(z5, ()| @4, , Yt 2, ) PL (tn)p(25, (k)24 Yt,,, 2¢,.) (6.226)

D’une fagon générale, la vraisemblance d’un triplet conditionnellement a I’état présumé d’une cible t,, est

donné par

3 R s 1=50js R do0js
AZjyjosa B, v 20,) = [T [Pi0)p(@, Wl sy 2] [1= Pitt)] (6.227)
s=1

ou Pj(t,) est la probabilité de détection de la cible ¢, par le senseur s et ol dy;, est la fonction delta de

Kronecker définie par

1 si js = 0 représentant la non détection de la cible par le senseur s
doj, = (6.228)

0 sinon
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Compte tenu du modele choisi, la densité p(z$_ (k)| , Y, , 21, ) vaut N(h' [x"» k], R"*(k)). En pratique,
cette densité, étant inconnue, sera remplacée soit par
e l’estimée obtenue a partir de la prédiction du filtre de poursuite associé a la cible considérée dans

le cas d'un pistage dynamique. On prend alors

p(z5, (k)| we, yr,,, 21,,) ~ N (@ (kb — 1), 8" (k)) (6.229)

e l'estimée obtenue (dans le cas statique) en maximisant un certain rapport de vraisemblance généralisé

(cf ci-apres). On prendra alors

p(z5, (B)lae,  yr,. z1,) ~ N (' [ k], R (k) (6.230)

Partition faisable des mesures

L’ensemble des mesures Z(k), peut étre divisé en deux sous-ensembles possibles de triplets de mesures

Z. et Zy associés ou non a une cible. On désigne par v une partition possible de ’espace des mesures :

Y= {Zmzf} (6.231)

Z. est ’ensemble des triplets de mesures associés aux différentes cibles. Pour chaque triplet de Z. au
moins une mesure du triplet correspond & une cible véritable. Z; est I’ensemble des triplets de

fausses mesures envisagés pour la partition « choisie.

La construction d’une partition faisable nécessite que soient respectées les 2 contraintes suivantes :

1. Chaque mesure délivrée par un senseur provient d’une seule source. Ceci impose d’avoir

‘Z(k) =Z,UZ; ‘ (6.232)

2. Chaque mesure ne peut étre associée qu’a une cible et une seule au plus; ce qui impose

Zjljsz n Zj{jéjé = @ Vjs 7é ];, S = 1, 27 3 (6233)

Désignons par I' £ {7} I’ensemble de toutes les partitions faisables vy possibles et par ((v)
I’évenement suivant : “la partition v est correcte”. Pour normaliser la fonction de vraisemblance
de maniere & ce qu’elle soit indépendante du nombre de mesures délivrées par les senseurs, on définit la

partition particuliere vy € I' comme

Yo2{Z, =0 et Z;=17Z} (6.234)
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Partition la plus vraisemblable

La partition des mesures la plus vraisemblable v* est obtenue en recherchant la partition v € T’

qui maximise le rapport de vraisemblance normalisé

max £ (6.235)

L(7o)
vel

ou la vraisemblance d’une partition v est donnée par

L(7) = plZ(R)IC()] = [ 1 Ao Dot 11,1 {E(%)miﬂﬂ (6.236)
et la vraisemblance L(vo) de 7o par
3 my
Lioo) = sl2®lc6o] = T |77 (6.237)

Ts(7) est le nombre de cibles supposées détectées par le senseur s dans la partition . En pratique,
les positions des cibles (4, , Y1, , 2, ) sont évidemment inconnues; ceci empéche 'utilisation directe de

(6.236).

11 existe cependant 2 approches possibles pour la mise en ceuvre de (6.235) selon le contexte du probléme.

1. dans un contexte d’assignation dynamique : les pistes sont déja formées et ’on dispose déja
de l'ensemble des positions prédites des cibles (par les filtres de poursuite) & savoir 7 2 {(&; =

Te(klk—1),9: = 9e(k|k — 1), 2t = Z(k|k —1))}. Ainsi dans (6.235), on remplacera directement L(7y)

par
3
. . L 1 s
i =| T A, o) [TLGm ) (6.239)
Zjijaizen s=1 °°

ot AM(Zj, jois (K)|Et, , Gt , 21,) est donné par
A WA s At s t s 1=b0;, s dojs
MZi s )i s 22,) = T [Pita) N @l = 1), 8% ()| [1= Pitta)] " (6.239)

s=1
et ou (&4, = &y, (k|k — 1), 0¢, = G¢, (klk — 1), 2, = 2, (k|k — 1)) est la position prédite d’une des

cibles pistées générant la meilleure association du triplet de mesure envisagé Z;, ;,;,(k), c’est a dire :

(i‘tn ) :'Qtn ) 27571,) = arg (2 Zp%x)eTA(Zjljzjs |i‘t7 gt’ 275) (6240)
tyYt,~t

2. dans un contexte d’assignation statique : on ne dispose d’aucune information a priori sur la

position des cibles, il nous faudra remplacer la position inconnue des cibles (z,, v, ,2t,) par
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leur estimée au sens du maximum de vraisemblance a partir du triplet de mesures Z;, ;, ;,

a savoir

(jtn ) gtn ) étn) =arg max A(ZjlijS |$t’ Y, zt) (6'241)

(zt,yt,2t)

La vraisemblance L() de la partition sera alors remplacée par son estimée L(v) donnée en (6.238)

avec

3
MZjjasa B, G 20,) = T [Pi(bn) N = K] RO (8) |

0js

o [1 - P;(tn)r T (6.242)

Dans le cas ou les senseurs sont passifs (IR), on sait qu’au moins 2 senseurs sont nécessaires
a la reconstruction de la position d’une cible par triangulation. Ainsi, dans le cas statique, on fera
I’hypothese que tous les triplets du type Z; 00, Zoj,0 ou Zgg;, seront uniquement associés a Zy.

Cette hypothese n’a, bien entendu, plus lieu d’étre dans le cas du pistage dynamique.

Prise en compte de la reconnaissance

Dans le cas ou des informations de reconnaissance sont également disponibles au niveau de chaque
écho recu, en plus des mesures purement cinématiques, alors il conviendra de modifier la valeur des

vraisemblances (6.239) ou (6.242) par

80

A(Zjljzjs (k)ljtn,7gtn’2tn,) = H [Pj(tn)A;S (k)N(itmé(kU{; - 1>7 Stn’s(k/’))} 1o [1 — Pj(tn)} (6243)

s=1
ou bien

~ 0js

3 140y, .
AZ503s )0, 51-20) = T [PR0AL BNt 0 kLR k)] [0 = Pre] ™ (6209

ot Aj (k) est la vraisemblance pour que la mesure j, du senseur s corresponde & une cible compte tenu

de la décision de reconnaissance prise d; . Cette vraisemblance sera donnée par (6.112).

Formulation mathématique du probleme

Le probleme auquel on s’intéresse maintenant est celui de la recherche de v* tel que

L(y)
* 6.245
VT rE L(7) ( )

Comme dans la présentation de la méthode de pistage de Morefield, ce probleme de maximisation est

équivalent & la minimisation de la log-vraisemblance négative J(v) du rapport, soit

* s . E(’V) . 7
J* = glellglJ(v) = 21161121[— In L(%)] = 131611{1 [In L(v) — In L(v)] (6.246)
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En utilisant (6.237), (6.238) et (6.239) et apres quelques manipulations algébriques élémentaires, il vient

finalement I’expression suivante du critére J(7)

Jy)=MLv)—WmI)] = > s (6.247)

ZJ'1J'2J'3 €Z,

avec dans le cas dynamique

3 nas /2 at,.s11/2
2m) s/ 2|Stns
iy 23 j[u P et i
s=1

Pi(t,)Vs

1 S 5 s s -1, 5 S S
+ 5 (25, (k) = 2" (klk = 1))'S™* (k) (], (k) — 2" (k[k = 1))] = do;, In(1 — Fj (tn))} (6.248)
ou dans le cas statique

3 ney /210t 511/2
2m) = 2| R

Cjrjags £ E {(1 - 50]'5)[111(( )Ps(t| e | )

d\tn

s=1

310,00~ BT YR, () - B D)~ s 1 Pi,)] - (6249)

Js Js

N | =

Probléeme primal d’assignation 3-D

Ce probleme de minimisation peut étre reformulé comme un probléme classique d’assignation 3-D.
Pour cela, on définit, pour js = 0,1,...,m{, les variables d’événements binaires
1 sile triplet Zj, j,j, € v
Pirjajs =
0 sinon

En utilisant ces variables binaires, la fonction de coiit dans (6.247) se simplifie en

J*= min J(p) (6.250)

Piriziz €P

avec

ml m2 md
TO) =D CiipnjsPirsis (6.251)

J1=07j2=073=0
P est ’'ensemble des partitions acceptables (i.e faisables). On rappelle qu'une partition est dite acceptable

si elle remplit les deux hypotheses de base énoncées en (6.232) et (6.233). La faisabilité d’une partition

peut mathématiquement étre caractérisée par ’ensemble des contraintes égalités suivantes :

1
M

mj
Z Z Pjijajs = 1 Vis =1...mj (6.252)

Jj1=0j2=0

mi  mj,
Z Z Pj1jajs = 1 Vjo=1... mi (6253)

Ja=071=0
mi my
Z Z Pjijajs = 1 Vi1 =1...mj (6.254)
J2=0j3=0
Les équations (6.250)-(6.254) constituent la formulation générale du probleme primal de 1’assignation

3-D.
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Méthode de recherche de la partition optimale

Les équations (6.250)-(6.254) constituent la formulation générale du probléme de 1’assignation 3-D.
Ce probleme est connu pour étre un probleme “NP-hard”, c’est a dire qu’il ne peut étre résolu par un
algorithme dont la complexité est une fonction polynomiale de la dimension du probleme. Par conséquent,
on souhaiterait disposer d’une méthode rapide ‘a complexité (temps d’exécution) polynomiale qui donne
une solution aussi proche que 'on veut de la solution optimale. On aimerait également pouvoir savoir

mesurer la qualité de la solution fournie par la méthode par rapport a la solution optimale inconnue.

Plusieurs méthodes ont déja été proposées dans la littérature pour répondre (partiellement) au
probleme. Mais la plupart de ces méthodes (comme les méthodes de tri d’arbres binaires, de recuit simulé)
fournissent généralement une solution sous-optimale locale sans indicateur de mesure de proximité de
la solution optimale. Ceci est tres préjudiciable dans les problémes de pistage actuels ou ’association des
mesures est une étape primordiale qui conditionne la qualité du filtrage mis en ceuvre. Jusqu’a présent,
seule la méthode développée par S. Deb at K. Pattipati [DPBS92b, DPBS93| basée sur 'algorithme de
I’ Auction (vente aux enchéres) de D. Bertsekas [Ber88, Ber91, Ber92, Gau97] présente tous les atouts
qui viennent d’étre mentionnés. Nous proposons donc de rappeler les principes de cette méthode et la

validons par un certain nombre de simulations démonstratrices.

Principe de la méthode de Deb et Pattipati

Le principe général de cette méthode consiste a résoudre le probleme de assignation 3-D par la
résolution successive de problémes d’assignation 2-D. Cette méthode est une méthode de relaxa-
tion lagrangienne primal-duale. Pour cela, on associe d’abord un ensemble de multiplicateurs de Lagrange
u = [ug,uj,), (js =1,...,m}) & la contrainte (6.252) ainsi qu'un parametre fictif ug = 0 pour simplifier

les notations. Nous obtenons alors la fonction duale

ml m2 m? m3
g2 min YN (Cujags — i) Pins + D s (6.255)

Pi1injs EP j1=0j2=0 j3=0 J3=0
13233

avec les contraintes égalités restantes

mZ  md
S piiis=1  VYi=1..mj (6.256)
Jj2=0j3=0
’ml ’ms

k k
SO i =1 Yia=1...mj (6.257)
Jj1=073=0

On remarque alors que pour un vecteur de multiplicateurs de Lagrange u donné, le probleme de minimi-
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sation (6.255) est équivalent au probléme d’assignation 2-D. En effet, posons

m?
Wijs £ pirjais Vi =0...mj et Vja=0...m} (6.258)
j3=0

Les contraintes (6.256) et (6.256) s’expriment alors comme

mi
wip =1 Vii=1...mj (6.259)
j2=0
my,
_ C_ 2
wip =1 Vig=1...m} (6.260)
j1=0
D’autre part, puisqu’on a toujours
m? m3
Z Pj1j23s (cj1j2j3 - ujs) = Z pj1j2j31r;?n(cj1j2j3 - ujs) (6'261)
J3=0 J3=0 °
mj;
> H}’in(leijS - U’js) Z Pj1j23s (6'262>
? j3=0
il vient, en posant
dj1j2 S H}iH(lejsz — ’LL]'3) le =0... m,lc et \V/jg =0... mi (6263)
3
I'inégalité fondamentale
mi
dj1j2wj1j2 < Z (lejzja - uj3)pj1j2j3 (6264)
jz3=0
et par conséquent on a Vu
gm (1) < g(u) (6.265)

avec

ml m? m3
gm(u) £ min YN " dj w0, + Y (6.266)

I
P72 §1=0 j2=0 ja=0

Le probleme de la minimisation (6.266) sous les contraintes (6.259) et (6.260) est donc un probléeme
classique d’assignation 2-D dont la solution est aussi, compte tenu de (6.265), solution du probléme

dual (6.255). Les assignations binaires wj, ;, solutions de (6.266) seront notées {w7 ;, } et la valeur prise

par gm(u) en w} ;, sera notée gy, (u). Il faut savoir qu'il existe différentes méthodes de résolution pour ce
probleme. Parmi ces méthodes, la méthode relativement récente de la “vente aux encheres” ou “auction”
développée par le Professeur Bertsekas [Ber88] (et adaptée & notre contexte particulier) se revele étre la
plus performante. Nous allons maintenant rappeler brievement le principe de 'algorithme de ’Auction

et de I’Auction modifié par Deb et Pattipati.
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Rappel du principe de I’Auction standard

L’algorithme de I’Auction standard développé par D. Bertsekas permet de résoudre le probleme
symétrique d’appariement optimal entre n personnes et n objets. Ce probleme primal peut

mathématiquement s’exprimer comme :

maximiser Z Z aij fij (6.267)
)

=1 j€A(i

sous les contraintes

Y fy=1 Vi=1,...n (6.268)
JEA()
Y o fij=1 Vi=1,...n (6.269)
i|jEA(D)
0<fij Yi=1,...,n jecA®) (6.270)

N

ou n est le nombre d’objets et de personnes a appairer; a;; est le gain de 'appariement de la
personne i avec I'objet j. Le probleme consiste a trouver l’assignation optimale S'; c’est a dire un en-
semble d’appariements (i, j) possibles, tel que le gain global de l’assignation Z(z} j)es @ij SOit maximum.
fij est l'indicateur binaire d’appariement cherché associé & (i,j). fi; vaut 1 si I'appariement (i) est
valide dans S ou 0 sinon. A(%) est ensemble des objets j potentiellement associables & une personne i.
Les trois contraintes expriment le fait que chaque personne doit étre associée a un et un seul objet et
réciproquement. Dans sa formulation initiale, les gains a;; sont des entiers relatifs, mais il faut sa-

voir que l'utilisation de cotits a valeurs réelles est toujours possible moyennant un facteur d’échelle adapté.

Par la théorie de la dualité [Roc70], on peut montrer que le probléme dual associé au probleme

primal énoncé plus haut consiste & trouver les appariements (r;, p;) tels que

n

min_ Y ri+ Zn:pj (6.271)
j=1

(ripi)

sous les contraintes

T +p; > aij Vi, j € A(i) ‘ (6.272)

Les variables duales r; et p; peuvent étre assimilées (dans un contexte économique) respectivement
aux profits des personnes i et aux prix des objets j et correspondent aux contraintes (6.268) et
(6.269) du probleme primal d’assignation 2-D. Cette remarque justifie la dénomination de vente aux
encheres ou “auction” donné par D. Bertsekas & la méthode. On sait [Ber88] de plus que la solution
du probléme dual génére automatiquement la solution primale optimale. D’apres (6.271), on voit

que le critére dual est minimisé lorsque les profits r; sont égaux a la valeur maximale de leur marge
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a;; —p; pour j € A(7). Par conséquent, le probleme dual peut étre énoncé sous la forme équivalente

suivante

min 6.273
p‘pjzoq(P) ( )

avec

q(p) £ Z max {a;; —p;}+ ij (6.274)

=1 jean

Pour un vecteur de prix donné p, on désigne par marge de profit maximale réalisée par une

personne ¢ la quantité

o Z max {a;; —p;} (6.275)
= jeaw

Nous sommes maintenant en mesure d’énoncer le principe de la méthode de Bertsekas qui consiste en 2

phases essentielles :
1. une phase de mise aux encheéres
2. une phase d’adjudication

Au départ (pour l'initialisation de l'algorithme), les prix des objets p; (j = 1,...,n) sont mis & zéro et
aucun appariement n’est fait (S = )). Les étapes successives intervenant dans les 2 phases de I’algorithme

de ’Auction sont les suivantes :

1. Phase de mise aux enchéres

Pour chaque personne ¢ non encore assignée dans S, on doit

e Calculer la valeur courante de chaque objet j € A(7) donnée par
Vij = Gij — Pj (6.276)
e Chercher le meilleur objet j* donnant la marge de profit maximale,i.e.

Viix = INax U;; 6.277
= maxo, (6:277)

puis trouver la seconde meilleure marge w;;+ offerte par les objets autres que j*, i.e.

Wi+ =  IMax Ui 6.278
T jeaw gz (6.278)

e Calculer ’enchere b;j« de la personne ¢ qui vaut

bij* = Qjj* — Wijx + € (6279)
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2. Phase d’adjudication

Pour chaque objet j :

On désigne par P(j) Uensemble des personnes ayant enchéri sur 'objet j. Si P(j) est non vide, alors
on augmente le prix p; de 'objet & sa meilleure enchere (adjudication de 'objet & la personne i*),
ie.

= max by 6.280
pj = max b (6.280)

On modifie (complete) Passignation S de la maniére suivante :

(a) on enleve de lassignation courante S appariement (i, j) pour lequel 'objet j était précédem-

ment associé.

on rajoute a e nouvel appariement (27, 7) 1ssu de l'adjudication de l'objet j.
b j a Sl 1 i ;*, 7) issu de I’adjudication de I'objet j

Cet algorithme fonctionne efficacement et garantit la solution optimale tant que le parametre
€ reste inférieur & 1/n. De nombreuses simulations effectuées ont permis de valider cette méthode dont

lefficacité est redoutable pour les problemes de trés grandes dimensions.

Rappel du principe de I’Auction modifié

Le probleme de ’assignation 2-D qu’on doit résoudre dans le cas multi-senseurs, ne correspond pas
exactement a la formulation du probleme d’assignation 2-D standard décrit précédemment. Car, compte
tenu de l'introduction des mesures fictives pouvant étre associées a I'’hypothése de bruit thermique,
les contraintes du probleme se voient modifiées. De plus, la cardinalité de la liste des personnes
(i.e. du nombre de mesures du senseur 1) est, en général, différente de la cardinalité de la liste
des objets (i.e. du nombre de mesures du senseur 2). Des modifications de la méthode de Bertsekas
peuvent cependant étre appliquées pour résoudre ce nouveau probleme. On aboutit alors a I’algorithme
de I’“auction” modifié proposé par Somnath Deb dans sa these. Le probleme primal modifié consiste

donc a résoudre

ni ng
maximiser > > ai; fi; (6.281)
i=0 j=0
sous les contraintes
n1
 fii=1 Vi=1,...,ny (6.282)
=0

I
—

Zfij:1 Vi=1,...,m (6.283)
§=0

fi; €{0,1} Vi=0,...,ny VYj=0,...,ny (6.284)
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Le probleme dual associé a ce probleme primal modifié est alors (on suppose avoir agy = 0)

ni

min Y ri+ ipj (6.285)
j=1

(ri,pj) =1

sous les contraintes

ri+pj>a; Vi=1,...,n1 et Vj=1,...,no (6286)
ri>ap Yi=1,...m] (6.287)
\pjzaoj ijl,...,ng‘ (6.288)

On voit que lecritére dual modifié est minimisé lorsque les profits r; sont égaux a la plus grande des
valeurs entre a;o et la valeur maximale de leur marge a;; — p; pour j = 1,...,no. Par conséquent, le

probleme dual peut étre énoncé sous la forme équivalente suivante

min ¢(p) (6.289)

plpj>aoj;

avec

ni

na
a(p) £ Zmax{aZUvj:rlﬂaXn {ai; — pj}} + ij (6.290)
yeees T2 =

i=1

En utilisant les changements de variables,

’I“iéh‘—aio V’L'Zl,...7n1 (6.291)

piEpi—ao; Vi=1,....n (6.292)

le probleme précédent peut étre énoncé sous une forme proche de la formulation standard, a savoir

min ¢ (p’ 6.293
s (P) ( )
avec
ni n2 n2 ni
'(p') & oo / ) )
q(p) 2 Z;maX{O,j_rggfm{a i pj}} +ij +Za0] +Zalo (6.294)
1= j=1 j=1 =1
et

a'ij éaij—aio—aoj V’L':07...,n1 Vj:O7...,n2 (6295)

L’algorithme de ’auction modifié consiste donc en les mémes étapes que l'algorithme de 'auction

standard précédemment décrit en apportant les 3 modifications suivantes :
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1. Les variables a;; et p; de lauction standard seront modifiées en a’;; et p’ ; et les variables in-

termédiaires v;;, vijx, wij, bij« en

v'ij=dij =1, (6.296)

Ve = maX{O’j:IE%},(nzvlij} (6.297)

w'ijr = maX{O, . max v/ij} (6.298)
J=1,...,n2,j#j*

Vige = d'ije —w'ije + € (6.299)

2. Lors de la phase d’adjudication, si toutes les personnes ont été assignées, alors les objets restant
non assignés dans S seront affectés a la personne 0; Si par contre, tous les objets ont été assignés,

alors toutes les personnes non encore assignées dans .S seront affectées a ’objet 0.

3. Pour assurer 'optimalité de la solution générée, on devra prendre € < 1/ max{ni,na}.

Intérét de ’approche duale

L’approche duale présente deux propriétés fondamentales a savoir :
— ¢r,(u) reste toujours une borne inférieure de la solution primale J* cherchée; autrement dit

on a toujours Yu

gm(u) < J* (6.300)

En effet, supposons que { Pi1js js} soit I'assignation 3-D optimale du probleme primal. Alors, compte

tenu de (6.252) et du fait que u;,—o = 0 on a toujours

md mb m?
> u (1= ph i) =0 (6.301)

j3=0 j1=072=0
et par conséquent Yu
my mi o my mi my mi
J = Z Z Z cjljzjsp;1j2j3 + Z uja(l - Z Z pgljzjs) = q:;l(u) (6'302)
31=0 j2=0 j3=0 J3=0 J1=0j2=0

L’idée consiste alors & maximiser ¢, (u) pour tendre inférieurement vers la solution optimale J*.
— la convexité de g¢,,(u). Cette propriété permet alors d’utiliser des techniques classiques d’opti-
misation convexes des fonctions non continuement différentiables pour maximiser ¢, (u). La valeur

maximale de ¢%,(u) sera notée ¢, (u*). Nous expliciterons plus loin, le principe de maximisation de

G ().
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Majoration de la solution primale

Apres avoir minoré la solution primale, on cherche maintenant a la majorer de facon & construire
un encadrement de J* qui servira d’indicateur de performance de la méthode (et également de critere
d’arrét). Avant d’aller plus loin dans l'analyse, il faut d’abord remarquer que l’assignation {p?1 Jaigs )
associée a la solution duale ¢, (u*) par la construction directe
W3 i si jg = argmgn(cjljw — Up)

d
Pjijajs = (6.303)

0 sinon

n’est, en général, pas une solution faisable au probléme primal (la contrainte (6.252) ayant été
relaxée). La différence J* — ¢ (u*) entre la solution primale et duale est appelée classiquement saut
de dualité exact en théorie de la dualité. Ce saut reste évidemment inconnu en pratique et n’a pas
lieu d’étre nul puisque le probléeme primal est non convexe. Par contre, il est toujours possible

de construire des assignations faisables notées P/ = {p;1 ja jg} a partir de la solution duale. Parmi ces

*

riags )t dui est la meilleure et on note JoF(ur, {pt 1)

assignations faisables, il en existe au moins une {p s

sa valeur associée. Autrement dit, {pjlf2 j, 1 est donnée par

pid s =arg  min S (wr {p] 0 (6.304)
{pJflﬂéjs}epf

Comme Passignation est faisable (mais non nécessairement optimale), on a toujours

J*< g s {5 ) (6.305)

J1J2J3

Compte tenu de (6.300) et de (6.305), nous avons donc 1’encadrement de J* cherché

g (u*) < T < T {3 (6.306)

L’encadrement trouvé permet de mettre en évidence que le saut de dualité approximatif corres-
pondant & J*f(u*, {pjjﬂd}) — g, (u*) fournit une “surestimation” de l’erreur entre la solution

faisable et la solution optimale puisque 'on a toujours :

(77 o] D) — am()) = (T (@ {p)d 1) = T7) + (7% = @5, (u) = 0 (6.307)

L’indicateur de performance (i.e. précision de la solution générée) de la méthode correspond alors au

saut de dualité approximatif relatif défini comme

572 IO L)) — ()
| g (u*) |

(6.308)
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Résumé de la méthode de Deb et Pattipati

En résumé, la méthode de Deb consiste en la séquence d’étapes suivantes :

1. Initialiser la méthode en choisissant u = [0,...,0] (et éventuellement le nombre maximum

d’itérations de relaxation souhaité).

2. Calculer les coiits du probleme dual
djj, = H}in(cjlijS - ujs)

3. Résoudre le probléme dual (6.266), sous les contraintes (6.259) et (6.260) par 1'auction modifié
afin d’obtenir {w3 ; } et g5, ().
e Construire I'assignation duale associée {p% ;, ;. } par (6.303)
e tester si cette assignation est faisable
e Si {p} ;,;.} € P alors on a la solution optimale du probleme, i.e. {p} ;,;.} = {p%,,;,} et c’est
terminé

of

Vinjs) associée & la solution duale

4. Sinon, rechercher la meilleure assignation faisable {p;
et calculer J*/ (u, {p;g; s 1)- Cette recherche est également obtenue par l'algorithme de 'auction

modifié comme on le verra.

5. Evaluer le saut de dualité approximatif relatif 6J. Si dJ est inférieur a la précision fixée
(typiquement 2 & 3 %) ou si le nombre d’itérations est supérieur & la valeur maximale choisie, alors

la méthode est stoppée et on a généré une solution quasi-optimale faisable { p;1§2 j3} ~{ Pjvia j3}

6. Sinon, améliorer la solution duale en mettant a jour le vecteur des multiplicateurs de Lagrange

u par une méthode d’optimisation convexe de maniére & maximiser ¢}, (u) et retourner & 1’étape 2.

Principe de construction de la meilleure assignation faisable

Nous présentons maintenant le principe de recherche de la meilleure solution faisable associée a une
solution duale donnée (g, (u), {w},;,}) (étape 4 de la méthode de Deb). L’idée consiste tout simplement
a fixer les assignations (ji,7;,) données par la solution duale (i.e. n;, correspond & l'indice de la mesure
du senseur 2 associée & la mesure j; du senseur 1 dans I’association duale), puis & résoudre le probléme

d’assignation 2-D suivant :

ml md
(J*7fa {p;i§2]3}) = I’Illl’l Z Z Cjinj, s Pjing, js (6309)
Piing, i3 §1=0 j5=0
sous les contraintes
mj,
Z pjlnjljz =1 VJB = 13---7m% (6310)

Jj1=0
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k
D s =1 Yii=1,...,m (6.311)

j3=0

En pratique, la solution du probleme d’assignation 2-D pour la recherche de la solution faisable sera, la

encore, obtenue par l'algorithme de 1’ “auction” modifié comme on l'avait été évoqué précédemment.

La valeur de n;, est, en pratique, obtenue pour j; = 1,...,m} par :

Vig =1,...,m; Ny =7Jo si wi. =1 (6.312)

J1J2

La dimension du probléme d’assignation 2-D qui vient d’étre formulée devra étre augmentée dans le cas
ou plusieurs mesures du senseur 2 sont affectées a I’hypothese “bruit thermique” lors de la génération
de la solution duale. Cette remarque n’engendre aucune difficulté particuliere quant a ’obtention de la

solution faisable.

A propos de la maximisation de ¢, (u)

Il existe de nombreuses techniques d’optimisation permettant la maximisation de ¢},(u). On peut, par
exemple, utiliser les méthodes de base telles que la méthode de I'ellipsoide de Khachiyan ou la méthode
des plans de coupe de Kelley. Ces méthodes cependant présentent une convergence d’autant plus lente
que la dimension du probléeme est grand. Elles sont donc & déconseiller dans de tels cas. Des méthodes de
type sous-gradient accéléré (Space Dilatation methods de Shor) présentent une convergence plus rapide
et peuvent étre employées. La méthode semblant donner actuellement la convergence la plus rapide, selon

Somnath Deb et Krishna Pattipati, consiste & mettre & jour, & I'itération (I 4+ 1), les composantes de u

(pour js =1,...,m3}) par la procédure suivante :
Fae (1 @
LD 0 Jor O g ® MJJ (1)
]3 ujg + 0 2 1 (l) g (6313)
| g® |5 m? (Zj 1M )

ott J*() représente la meilleure valeur de la solution faisable obtenue jusqu’a litération )

incluse, c’est a dire

JoHD = min J*f( @ fprh (6.314)

i=1,. J1J273

(jr*r;(l) représente la meilleure solution duale obtenue jusqu’a litération (1) incluse, c’est & dire

s = 'Hllin gm(u?) (6.315)

=1,..

O]

g est le vecteur des sous-gradients A Ditération (1) dont les composantes g;, sont données pour

j3:1,...,mi par

gJS» =1- Z Z p]1]2]3 (6-316)

Jj1=0j2=0
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et {,Ll,g?,jg =1,...,m}} sont les prix atteints par les objets a I'itération (I) en sortie de I'algorithme de
*1f7(l)}_

I’“auction” modifié lors de la construction de la solution faisable {p} %"

Il faut cependant savoir que cette procédure n’est pas une procédure classique issue de l’analyse
convexe mais une heuristique (partiellement basée sur la méthode de sous-gradient accéléré) proposée
par S. Deb. On peut donc légitimement supposer qu’il existe potentiellement d’autres méthodes (ou
heuristiques) induisant des convergences encore plus rapides . ..a découvrir! L’enjeu est important dans

les problemes d’assignation multi-senseurs de grandes dimensions.

Exemple de simulations

Nous présentons ici 2 exemples de résultats de convergence obtenus sur un cube et un parallélépipedes
générés aléatoirement ayant une densité maximale. La dimension du coté de chaque parallélépipede (ou
cube) représente directement le nombre de mesures délivrées par chaque senseur & un instant donné. Un
grand nombre de simulations a été réalisé pour différentes tailles de parallélépipedes et différentes bornes
de cotits. Pour les problemes de petites dimensions, les solutions générées par la méthode de Deb ont

toujours été en accord avec les solutions optimales obtenues par une méthode de balayage exhaustif.

Comme on peut le constater sur ces 2 exemples, la convergence de la méthode est trés rapide pour les
premieres itérations et on atteint généralement une précision de l'ordre de 5 % au bout de la trentieme
itération. La convergence tend a se ralentir sensiblement pour les itérations suivantes et il n’est pas rare
de devoir attendre une centaine d’itérations pour étre & une précision de 1 % de la solution optimale.
Malgré tout, la méthode est fiable et rapide compte tenu des dimensions des problemes a résoudre et
comparativement aux méthodes concurrentes. Cette méthode reste donc un outil puissant hautement

recommandable pour les systemes de pistage multi-cibles multi-senseurs futurs.

Dans les 2 simulations présentées les cotits cj, ;,;, ont été générés aléatoirement entre les bornes -1000
et 1000. La figure 6.1 présente le résultat obtenu par la méthode de Deb appliquée a un cube de dimen-
sions (20+1) x (20+1) x (204 1). On constate dans cet exemple que la solution quasi-optimale (i.e. avec
moins de 1 pourcent d’erreur) a été atteinte a l'itération 63. La figure 6.2 présente le résultat obtenu par
la méthode appliquée & un parallélépipede de dimensions (104 1) x (15+1) x (204 1). Ici on obtient une
précision de 1.7 % a la centieme itération. Ces résultats sont représentatifs du comportement de la conver-
gence de la méthode basée sur I'heuristique de Deb (relation (6.313)). Des essais réalisés pour la méthode
de lellipsoide ou de I’état dilaté confirment la supériorité de cette heuristique. On peut cependant penser
que d’autres méthodes peuvent encore accroitre la vitesse de convergence de la méthode d’assignation

par relaxation lagrangienne, en particulier les techniques de “Bundle Processes” développées a 'INRIA
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par C. Lemaréchal.

Intervalle dual estime

Pourcentage

0 10 20 30 40 50 60 70 80 90 100

Iteration k

x104 Solution duale et primale realisable
2R ]
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4 4
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[ 10 20 30 40 50 60 70 80 920 100
Tteration k
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F1G. 6.1 — Assignation 3D sur cube 21 x 21 x 21
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H 201
4

10

0
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Tteration k
x10¢ Solution duale et primale realisable

o -19F : E
S
E Ll .
=3
=]
3 2.1F 4
=
> a2t -

o

10 20 30 40 50 60 70 80 90 100
Tteration k

Fia. 6.2 — Assignation 3D sur parallélépipede 11 x 16 x 21

6.5.3 Extension au cas multi-senseurs

La méthode d’assignation quasi-optimale de Deb et Pattipati qui vient d’étre présentée dans le cas
simplifié & 3 senseurs peut étre généralisée au cas de S senseurs (S > 3). L’extension des notations au cas
S-senseur est immédiate. Au niveau de la partition des mesures, on devra, non plus considérer un triplet

de mesures, mais un S-uplet de mesures du type

Zj,...js (k) 2 (2}, (k) 25, (K), ..., 25, (k) = {2}, })_, (6.317)

J1 J2
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La vraisemblance d’un S-uplet conditionnellement a 1’état présumé d’une cible ¢,, est donné par

S0js

[Pt p (@, (Bl e, )] 1= Pie)] (6.318)

o

A(Zjl ...Js (k) |xtn, y Yt Ztn,) =

s=1

ou Pj(t,) est la probabilité de détection de la cible ¢, par le senseur s et ol dy;, est la fonction delta de

Kronecker définie en (6.228).

A chaque instant, 'ensemble des mesures Z(k), peut étre partionné en deux sous-ensembles possibles
de S-uplets de mesures Z. et Z; associés ou non a une cible. On désigne par v une partition possible de

I’espace des mesures :

Y= {Zc,Zf} (6.319)

Z. 2 {Zj, js(k), js=0,....,m; s=1,...,5} est I'ensemble des S-uplets de mesures associés aux

cibles et Z; est 'ensemble des S-uplets de fausses mesures envisagés pour la partition - choisie. Z¢

correspond aux N = (m} +m? + ...+ my) événements indépendants (pour j, = 1,2,...,m§ et s =
1,2,...,9):
1 si la mesure j; du senseur s est fausse
s = (6.320)
0 sinon

Comme dans le cas simplifié a 3 senseurs, la construction d’une partition envisageable nécessite que soient

respectées les deux conditions suivantes :

1. Chaque mesure délivrée par un senseur provient d’une seule source, c’est a dire

|Z(k) = 2. U Z; | (6.321)

2. Chaque mesure ne peut étre associée qu’a une cible et une seule au plus. Ceci impose la contrainte

Zj, s NZyj . = ) Vjs # Jji, s=1,...,8 (6.322)

On définit, comme précédemment, les variables d’événements binaires (js = 0,1,...,mj) par

1 sile S-uplet Z;, ;s €7y
Pji...js =
0 sinon
Compte tenu du fait que chaque cible est supposée étre détectée au moins par un senseur, on a toujours

poo..0 = 0. Avec ces notations, I’ensemble des contraintes de faisabilité est équivalent & ’ensemble de

contraintes égalités linéaires suivant (pour js =1...mj et s=1,...,5)

Z zk: > Z Pirjs b, =1 (6.323)




6.5. ASSOCIATION ENTRE MESURES ISSUES DE SENSEURS MULTIPLES 171

Désignons par I' £ {7} I’ensemble de toutes les partitions v possibles et par ¢(7) I’événement suivant :
“la partition « est correcte”. Pour normaliser la fonction de vraisemblance de maniere a ce qu’elle soit

indépendante du nombre de mesures délivrées, on définit la partition particuliere vy € I' comme

Vo2 {Z.=0 et Z;=17} (6.324)

La partition des mesures la plus vraisemblable 7* est obtenue en recherchant la partition v € I'

qui maximise le rapport de vraisemblance normalisé (6.235) avec

S
L(y) = pZRIC()] = [ T A <k>|mtn,ytn,ztn>] [Hl<vis>mi—ﬂ<v>] (6.325)
et
S qmi
Lioo) = stz = [T |7 (6.326)

Ts(7) est le nombre de cibles supposées détectées par le senseur s dans la partition . En pratique, les po-
sitions des cibles (z¢,, , Y., , 2, ) étant inconnues, les fonctions de vraisemblance A(Zj, . ;s (k)|ze, , Yt , 2¢.,)

seront remplacées par leur estimée A(Zj, s (k)|&t, , 91, , 21,) (cf paragraphe précédent).

Le probleme général de partitionnement optimal est le méme que précédemment, & savoir (6.245) ou
de fagon équivalente, & la minimisation de la log-vraisemblance négative J(v) du rapport (cf (6.246)).

Compte tenu du fait que Z; € v N+, la contribution des éléments de Z; dans L(v)/L(vo) se simplifie et

le critere J a minimiser s’exprime comme
Y p

J(y)=[mLw) ~WmL)] = > s (6.327)

ol les coiits ¢;, .. ;g sont donnés par (6.248) dans le cas dynamique ou par (6.249) dans le cas statique (

avec l'indice de sommation s variant de 1 & .5).
Ce probleme de minimisation peut étre reformulé comme un probleme d’assignation S-D a savoir

J* = min J(p) (6.328)

Pi1...ig €EP
avec
T) =D CirgsPinis (6.329)
71=0 js=0
P est ’ensemble des partitions faisables (i.e acceptables). Chaque partition est considérée comme

acceptable si elle remplie les hypotheses de bases énoncées en (6.232) et (6.233). La faisabilité d'une

partition revient mathématiquement & satisfaire ’ensemble des contraintes d’inégalités suivantes (pour
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js=1..miets=1,...,9):

s+1
my

my, m271 mf
PR D D T R | (6.330)

J1=0 Js—1=0js41=0 Jjs=0

Ce probleme général pourra étre résolu par un mécanisme semblable a celui déja présenté. Il faut ce-
pendant savoir qu'un prétraitement de coloration doit étre fait au niveau de I'affectation des cotits
associés aux mesures fictives afin de transformer I’ensemble des contraintes d’inégalités en un ensemble
de contraintes d’égalités. Le détail de ce prétraitement est donné en [PDBSW90, DPBS92b, DPBSY94].
Nous nous contenterons ici d’expliciter uniquement le principe général du mécanisme de la méthode d’as-

signation S-D proposée par Deb et Pattipati.

Dans le cas 3-D, on a vu que le probleme d’assignation était résolvable par une série de 2 problemes 2-D
(1 pour la recherche de la solution duale et 1 pour la construction de la solution faisable). Dans le cas S-D,
lidée est exactement la méme et consiste a relacher successivement » = 1,...,5 — 2 contraintes (phase
de descente) jusqu’a descendre au probleme de base 2-D qui sera résolu par par I'auction modifié. La
seconde phase (appelée phase de remontée) consiste & utiliser la solution 2-D pour construire la solution
3-D optimale faisable en maximisant le vecteur u®~2 des multiplicateurs de Lagrange de I’étape 2-D.
D’une fagon similaire, la construction de la solution & I’étape r utilisera la solution du probléeme relaxé
de dimension (r-1). Ce mécanisme de remontée est itéré jusqu‘a 'obtention de la solution du probléme

primal de dimension S. A la r-eme étape, le probleme dual a résoudre est du type

maxqm, (u") (6.331)
o
ol
mZ“ my my,
ry A : r r r
gm(u") = i Z Z dsrisWiinogs T Z u’ (6.332)
Ird1dS =0 js=0 Jr=0
avec
T A o gr—1 P
di e = Hﬁndjr...js uj (6.333)

et ot {wf . } est la solution de probleme d’assignation de dimension S —r — 1 et dj, .. = ¢j; _js-

A chaque étape 1, la maximisation de ¢,,(u") exploitera une des des méthodes classiques d’optimisation

convexe discutées antérieurement et basées sur 'exploitation des sous-gradients

r4+1 s

k
) _ d,(l),r
g == D o 2 P s (6.334)

Jr+1=0 js=0

d,(1),r

et ou {pjrjr+1"'

js} est la solution duale du probleme d’assignation de dimension S —r — 1. Cette solution
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est obtenue par la construction directe

(1) .. . el ,
jrt1--d si jr = argmin(d e —u )
d,(l),r _ Jr41.--Js y Diri1oeds p (6'335)

jro+1 JS
0 sinon

6.6 Meéthode de gestion des pistes

6.6.1 Présentation

Dans un contexte de pistage multi-senseurs multi-cibles, la méthode de Deb d’association optimale
des mesures et les méthodes de pistage présentées conduisent généralement a de bons résultats mais pour
une complexité importante voire rédhibitoire lorsque la densité de cibles et/ou de clutter est élevée. En
fait, dans la plupart des applications actuelles de surveillance embarquées, on ne dispose que de moyens
de calculs limités et, par conséquent, les filtres de poursuite utilisés restent le plus souvent rudimentaires.
En conséquence de quoi, les pistes générées ont une qualité beaucoup moins bonne que celle obtenue par

les méthodes plus élaborées décrites précédemment.

Dans un tel contexte, il faut donc pouvoir gérer les pistes dégradées (résultant d’une mauvaise associa-
tion de mesure ou d’une mauvaise fusion multi-senseurs par exemple) qui risquent de saturer inutilement
le systeme de surveillance. La gestion de ces pistes n’est pas une chose aisée, en général, car la nature de
la dégradation de la piste doit d’abord étre identifiée avant la gestion proprement dite de la piste (c’est

a dire la déclaration de son maintien, sa confirnmation ou son élimination).

En effet, I’élimination d’une piste déclarée ne doit pas étre effectuée directement car la nature méme

de sa dégradation peut avoir trois origines complétement différentes :
1. Soit un disfonctionnement du ou des senseurs,
2. Soit un mauvais choix dans ’association des mesures pour la mise a jour de la piste,

3. Soit enfin une manceuvre de la cible.

La gestion des pistes dépend donc fortement de leur qualité conditionnée par la nature de la dégradation
inhérente. En pratique, a priori, on ne connait pas la nature de cette dégradation et il faut donc I’estimer
par des méthodes tres fines pour décider soit de ’abandon ou du maintien de la piste au cycle suivant.

Nous présentons dans la suite une méthode simple et efficace permettant la gestion des pistes.
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6.6.2 Evaluation de la dégradation d’une piste

La base des méthodes de gestion de piste s’appuie sur 'exploitation du résidu de mesure z(k) =
z(k) — z(k|k — 1) du filtre de poursuite pour tester la défaillance du senseur [May76], détecter I’associa-
tion incorrecte de la mesure [Jef89] ou la manceuvre de la cible [Bla86], [BSF88]. Des travaux récents
ont néanmoins montré que dans certaines applications 'utilisation de ces résidus ne permet pas toujours
une bonne discrimination. Dans de tels cas, la détection de la dégradation peut cependant étre faite par
I’apport d’information de reconnaissance suffisante au niveau des plots recus. Cette approche spécifique

peut étre trouvée en [MD95].

On ne considere pas ici les problemes de détection de panne de senseur car il existe le plus souvent,
dans la plupart des systemes de pistage actuels, des moyens “hardware” ou “software” spécifiques au
contrdle du bon fonctionnement des senseurs. L’attention est portée sur la détection des manceuvres et
des mauvaises associations qui engendrent la dégradation d’'une piste. On rappelle que des méthodes
sophistiquées dans le cadre du MHF et du JPDAF existent déja pour un cott en calcul généralement
important [Gau84] et [BBS84] et [SI89]. On préconise ici une méthode classique et plus ”économique”

pour résoudre le probleme.

Pour simplifier la présentation, on supposera n’avoir a faire qu’a une seule piste. Cette piste globale,
qui résulte de la fusion des informations délivrées par les différents senseurs (par une méthode de fusion
choisie a priori par le concepteur), est représentative de 1’état complet de la cible (position en 3-D,
vitesse, accélération). Ceci peut étre par exemple obtenu par traitement adapté des mesures angulaires de
plusieurs senseurs IR passifs (2-D) par exemple, ou par mesures issues d'un RADAR 3-D ou encore d’'une
combinaison d'un RADAR-2D avec un senseur IR, etc . ... La méthode la plus simple pour gérer la piste
consiste & examiner la séquence (ou une partie de cette séquence) des résidus de mesures z(i),i =0, ...,k

en construisant la statistique D*~!*1 définie comme

k
D1 23D, (6.336)
i=l
ot D; & D(z(i)) = z(i)'S(i)"'2(i); | désigne I'instant de départ de la fenétre temporelle servant &

construire D*~!*+1 . k désigne I'instant courant et S(i) représente la matrice de covariance de I'innovation

globale calculée a U'instant q.

En supposant que toutes les mesures z(i) soient correctes et que les innovations z(i) soient
gaussiennes, la statistique D¥~!*+1 est une variable aléatoire du x? de degré (k — [ + 1) x n.. On peut

alors mettre en ceuvre le test statistique classique du x? & savoir

DFIFL <~k —141) (6.337)
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y(k — 14 1) est le seuil du test du x2. Sa valeur est choisie a priori en fonction de la qualité du test que

l’on veut.

Une variante de la méthode consiste a utiliser une fenétre & oubli exponentiel pour construire la
statistique D¥~!+1. Si 'on désigne par a le parametre d’oubli exponentiel, compris entre 0 et 1, DF~+1

sera construit selon la forme récursive suivante :

D12 DMl 4 ;| (6.338)

On peut montrer [BSF88] que sous I’hypothése d’un modéle gaussien-markovien, la statistique
DF*=+1 suit pratiquement une loi du x? de degré n,(1+a)/(1—a). L'utilisation seule de cette statistique
ne permet pas cependant de déterminer la nature de la dégradation quand elle apparait.
De plus, elle ne garantit pas forcément que la piste retenue soit la bonne (cf paragraphe suivant). Elle

permet seulement de détecter une dégradation de la qualité de la piste.

6.6.3 Probabilité d’acceptation d’une fausse piste

Comme on vient de le signaler, le test précédent ne garantit en rien que la piste retenue corresponde a
une bonne piste (i.e piste associée & une cible réelle). En effet, on va montrer qu’il existe une probabilité
non nulle Pppr pour qu’une fausse piste satisfasse aussi ce test. L’'idée consiste donc a évaluer cette pro-
babilité en fonction de la taille kK — [ 4+ 1 de ’échantillon. Du point de vue opérationnel, la valeur de Ppr
sera une contrainte du cahier des charges du systeme; celle-ci imposera la valeur minimale de k —1+1 a

utiliser pour le test.

Supposons que toutes les mesures choisies pour l’association correspondent a des fausses alarmes

uniformément réparties dans la fenétre de validation du filtre de volume

V,={z telque D(z) <~} (6.339)

alors on a pour 0 < a <7y

Pr{D; < a} = (a/)"*/? (6.340)

La densité de probabilité de D; pour 0 < D; <~y s’écrit

(n2/2)—1
n, D,
La moyenne et la variance de D; est alors donnée par [Pap84]
a Nz
i = E|D;] = 6.342
i = BIDi] = == (6.342)
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an
o? 2 Var[D;] = n =7 (6.343)
(ny+4)(n,+2)

Si 'on suppose que les fausses alarmes sont temporellement et spatialement indépendantes

d'un balayage & I’autre, alors la densité p(D¥~!*+1) de D¥~!*+1 est la convolution des k — [+ 1 densités

p(D;) pour i = [, ..., k. La moyenne et la variance de D*~!*1 est alors donnée par
w2 EDFY = (B — 14 1), (6.344)
02 2 Var[DF"") = (k — 1 4 1)0? (6.345)

Dans le cas particulier ot n, = 2, 'expression de p(D¥~!+1) peut étre obtenue analytiquement [BSLI1].
Dans le cas n, > 2, le calcul analytique devient tres complexe. En pratique, on pourra cependant utiliser
'approximation gaussienne pour évaluer la probabilité d’accepter des fausses pistes Ppy £ Pr{DF=!+1 <

~v(k =1+ 1)}. On prendra donc

_ 1) —
Prp ~ G(M) (6.346)
o
avec
T 2
G(x) é/ eV /2dy (6.347)
oo s

Cette probabilité permettra de quantifier la taille de 1’échantillon a traiter pour répondre aux

exigences du cahier des charges du systeme de surveillance.

6.6.4 Détection et élimination des pistes fantomes

Dans le cas particulier du pistage par deux (voire plus) senseurs 2-D infrarouge apparait le probleme
incontournable de la corrélation des pistes déja évoqué. A ce probleme s’ajoute celui de la génération
éventuelle de cibles fantomes dues a la géométrie du phénomene et la présence possible de cibles multiples.
En pratique la suppression des cibles fantomes peut étre obtenue efficacement en gérant judicieusement
I’évolution de la différence entre les angles d’inclinaison de cibles. L’angle d’inclinaison d’une
cible est défini comme l'angle diedre entre un plan Ppg, s,, contenant la paire de senseurs S; et Se et un
point de référence O, et un second plan Prg,s,, contenant Sy, Se et la cible T' (voir figure 9.1). Dans
I’hypothese ol les 2 senseurs observent la méme cible, les deux angles d’inclinaison I et lo associés a
S1 et Sy doivent étre identiques (au bruit de mesure pres). Il faut savoir que la gestion des angles diedres
n’est pas limitée & la configuration bi-senseurs puisque les angles diedres peuvent étre calculés pour
chacune des paires de senseurs possibles intervenant dans le systéeme multi-senseurs. La discrimination

d’une vraie cible d’une fausse (cible fantéme) va donc exploiter ces angles diedres évalués au niveau de
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Cible

ly Point de référence
(0]

Senseur S,

Senseur S,

Fia. 6.3 — Géométrie du probleme

chaque senseur.

Nous explicitons maintenant en détail le principe de gestion des angles diedres pour la supression des
cibles fantémes. Au niveau de chaque senseur, les mesures angulaires délivrées permettent d’estimer lo-
calement la position estimée Tl et Tg de la cible. Ceci nous permet d’obtenir les plans PT1 5,5, €t PTZ 515,
Nous pouvons alors calculer les vecteurs 01,us et Uy normaux aux plans Py, ¢ o, Pr g, g, €t au plan de
référence Pog, s,. Les angles entre les vecteurs 0y et Q¢ et entre 1; et Q. correspondent aux angles

d’inclinaison Iy et ls cherchés. Lorsque les mesures sont asynchrones, les mesures d’un senseur doivent

alors étre interpolées de facon a les synchroniser avec I’autre senseur.

La méthode de gestion des angles diedres est semblable a la précédente. On définit la statistique

suivante

k
AR &N 4, (6.348)
=l

avec

(L (k) — 12(k))?

2 2
oj, +0j,

lI>

Ay, (6.349)

Ule est la variance de ’angle d’inclinaison au niveau du senseur j, j = 1, 2. Cette variance est donnée par

of = 1) By, (6.350)

J

B est la matrice transformation permettant de passer des mesures 2-D a ’angle d’inclinaison /;. En fait
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I’angle d’inclinaison [; pourra étre exprimé sous la forme classique d’une équation de mesure du type

lj(k) = Bjz;(k) = B;[H;(k)x(k) + v;(k)]
= B;H; (k)x(k) + v; (k) (6.351)
— 15 (k) + v (k)
ou I (k) désigne le véritable angle d’inclinaison (non bruité), v;(k) est le bruit de mesure (supposé
gaussien) du senseur j et v;(k) est le bruit de mesure associé a la “mesure” [;(k).

Compte tenu de cette remarque, on voit que Ay peut aussi s’écrire

a2 GEZBEV g a0 (6:352)
gi, T 0,
by 2 (LK) — (k) (6.353)
of, +aj,

(6.354)

En supposant que les angles d’inclinaisons a chaque instant correspondent bien & la méme cible,
et que les différences (I1(k) — l2(k)) soient gaussiennes, la statistique A*~*! suivra une loi du x? de
degré 1 ou pratiquement une loi du x? de degré (1 + /(1 — «) si 'approche par oubli exponentiel est

adoptée. On peut comme précédemment, mettre en ceuvre le test classique du x2? & savoir

AR <k —141) (6.355)

y(k — 14 1) étant le seuil du test du x>

L’intérét d’utiliser les “mesures” (I3 (k) — l2(k)) tient de son indépendance vis a vis du modéle
d’évolution des cibles. Par conséquent, méme en cas de manceuvre de la cible, la statistique A*~!*+1
conserve théoriquement la méme loi. Ce simple test permet alors, en théorie, de discriminer les pistes
réelles des pistes fantomes. Des précautions doivent cependant étre prises au niveau de la taille de
I’échantillon k& — [ + 1 pour s’assurer que la probabilité d’acceptation d’une piste fantome Pgp reste

suffisamment faible. Une analyse semblable & celle du paragraphe précédent doit donc étre menée.

6.6.5 Probabilité d’acceptation d’une piste fantéme

Comme on vient de le signaler, le test précédent ne garantit en rien que la piste retenue corresponde a
une bonne piste (i.e piste associée a une cible réelle). En effet, il existe une probabilité non nulle Pg7 pour

qu’une piste fantéome (Ghost Track) satisfasse aussi ce test. On cherche donc & évaluer cette probabilité
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en fonction de la taille K — [ + 1 de ’échantillon. Comme pour Ppr, la valeur de Pgr sera une contrainte

du cahier des charges du systeme; celle-ci imposera la valeur minimale de &k — [+ 1 a utiliser pour le test.

On rappelle que pour une piste fantéme, on a nécessairement b(k) # 0 (b(k) = 0 étant uniquement
obtenu lorsque les deux senseurs observent une méme cible réelle). Par conséquent, dans le cas d’une
fusion sur un fantéme a linstant k, la densité de Ay est une loi du x? décentrée de parametre § = b(k)?.
La densité de A*=!*+1 sera également une loi du y? décentrée ayant pour parametre A\ = Zf:l b(i)2.

L’expression analytique de p(A*~!*1) est donnée par [Mui82]

o0 6—5/2(5/2)j o 1/2+] =2 /2
= , 6.356
W) =2 5 s ) (6:356)
Ainsi, la probabilité Pgr d’accepter une piste fantéme sera donnée par
v(k—i+1)
Por 2 Pr{AF""M < y(k—1+1)} = / p(x)dx (6.357)
0

L’expression analytique de Pgr est compliquée. En pratique, elle sera remplacée par 1’approximation

gaussienne suivante

Por ~ G(w) (6.358)

g

olt G(x) est donné en (6.347) et olt i1 et o2 sont respectivement la moyenne et la variance de la variable

AF=1 données par [Mui82]

pE BlAFH =1 4 ) (6.359)

02 2 Var[AFH) = 2 44\ (6.360)

Dans le cas ot la statistique A¥~"*1 est construite & partir d’un facteur d’oubli exponentiel 0 <

a < 1, on aura

k
& BlAR = ﬁ + (14 ) §a2(k: —i)b(i)? (6.361)
k
o? & Var[AF—1H1] = % +4(1+a) goﬂ(k —4)b(i)? (6.362)

Cette probabilité permettra de quantifier la taille k —[ 41 de I’échantillon pour s’assurer la réjection
des pistes fantomes. Il est & noter que le raisonnement ici mené suppose implicitement la connaissance
des b(7). Cette hypothese est généralement non valide. Par conséquent, on utilisera en fait pour la mise

en ceuvre du test, les estimées b(i) données par

b(i) = L) = b)) (6.363)
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avec pour j = 1,2

l; = B;H;(i)x(ili) (6.364)

6.6.6 Résumé de la méthode de gestion des pistes

Nous sommes maintenant en mesure de décrire le principe général de la méthode de gestion des pistes.

Cette méthode est basée sur les 6 étapes suivantes [Roe91b] :

1.

Construire les statistiques (6.336) (ou (6.338)) locales & partir des innovations des filtres locaux et

détecter ou non la dégradation des pistes locales via (6.337).

. Construire A¥~+1 par (6.348) et tester la nature “fantomatique” de la piste fusionnée par (6.355).

Si les deux tests précédents sont satisfaits, la piste fusionnée est déclarée de bonne qualité (i.e. elle

correspond & une cible réelle).

. Sile test (6.337) échoue et le test (6.355) est satisfait, alors on vient de détecter une manceuvre de

la cible et il faut donc adapter le filtre de poursuite a un certain modele de manceuvre ou utiliser

des techniques plus sophistiquées telles que 'IMM par exemple.

Si le test (6.337) est satisfait et le test (6.355) échoue, alors cela signifie qu'’il y a eu une erreur dans
la fusion des deux pistes locales et que 1’on est en train de pister une cible fantéme. On doit alors

tenter une autre association de pistes.

Si les tests (6.337) et (6.355) échouent, alors la piste sera déclarée comme fausse et devra étre

éliminée.



Chapitre 7

Pistage de cibles manceuvrantes

7.1 Bref panorama des principales méthodes existantes

Dans les chapitres précédents, les cibles étaient toujours implicitement supposées non manceu-
vrantes et ’on supposait connues les statistiques des bruits intervenants dans le modele de dynami-
que/observation des cibles (matrices Q(k) et R(k)). En pratique, il va de soi que ces parametres ne sont
jamais bien connus et peuvent varier au cours du temps en fonction de la capacité de manceuvrage
des cibles. De plus, les instants de manceuvre ne sont généralement pas connus du systeme de pour-
suite (sauf dans le cas d’applications civiles avec des avions coopératifs). Les approches possibles les plus
classiques pour traiter le pistage de cibles manceuvrantes, sont basées soit en considérant :

e la commande inconnue mais non aléatoire :

On cherchera alors a estimer la commande. Une cible manoeuvrante peut étre modélisée dans ce

cas par une équation générale de dynamique (on ne considére que le cas linéaire ici) du type

|x(k + 1) = F(k)x(k) + G(k)u(k) + v(k) | (7.1)

ot u(k) est I'entrée (la commande) imposée lors de la manceuvre de la cible. On parle alors de tech-
nique d’input estimation (IE). Deux solutions sont possibles : soit utiliser directement ’estimée
u(k) disponible en conservant le modele de dynamique initialement choisi; soit, selon le niveau de
a(k), on peut changer de modele de dynamique pour améliorer le pistage (exemple du pistage d’une
cible en vol MRU qui soudainement se met & virer). Ce principe est celui du filtre & dimension
variable (VSD) proposé en [BSB82].

¢ la commande inconnue mais aléatoire : 2 approches sont possibles.

1. on peut supposer que la commande a un niveau qui peut varier de facon continue et I’on cher-
chera & augmenter (adapter) convenablement le processus de bruit d’état v(k) de I’équation de

dynamique. On adapte la matrice Q(k) au processus de bruit d’état qui englobe la manceuvre.

181
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En général, cependant les manceuvres n’ont rien d’aléatoire puisqu’elles ont un but bien précis

qui dépend le 'objectif de la mission de I’engin et de son pilote ...

2. on suppose que la commande ne peut prendre qu’un nombre fini (et discret) de valeurs
possibles (les modes de manceuvre m(k)) parmi un ensemble fini IM(k). Chaque mode est
caractérisé par une équation de dynamique particuliere (mouvement MRU, & accélaration
constante, ballistique, virage coordonné, etc) et/ou avec certains niveaux de bruits d’état.
Les techniques d’estimation utilisées dans cette approche sont des techniques d’estimation
hybrides car l'on cherche & estimer a la fois I’état des cibles (variable continue x) et la
probabilité d’occurence des modes (m(k) qui sont des variables discretes). Parmi les méthodes
de ce type, on citera la méthode statique MM (multi-modeles) [TH79, Tug82] qui ne prend pas
en compte la possibilité de basculement possible d’'un mode & autre [Mag65, Tho73, MGT77,
MVM79, MVMS80]. La méthode optimale du FHT (Full Hypothsis Tree) inexploitable en
temps réel. Les méthodes sous-optimale de type GPB (Generalized Pseudo Bayesian)
[AF70, JGT1la, JGT71b, CAT8] et IMM (Interacting Multiple Model) [Blo90].

Dans la suite de ce cours, nous présentons en détail uniquement ’approche par IMM car celle-ci

supplante de loin les autres méthodes antérieurement développées jusqu’alors.

7.2 Estimation hybride par modeles multiples

L’approche la plus naturelle pour I'estimation des systéemes hybrides reste celle basée sur la notion
de modeles multiples. Dans cette approche, un ensemble de modeéles IM(k) est défini soit une fois
pour toute a priori IM(k) = IM, Vk (on parle alors de structure fixe de modéles) afin de couvrir tous
(on lespere tout du moins) les modes possibles du systéme observé, ou bien de maniére adaptative
[LBS96a, Li97c|]. Pour un panorama des méthodes, on pourra se référer a [Li96]. L’estimée de 1’état hy-
bride est obtenue par la combinaison judicieuse des estimées possibles conditionnellement aux hypothéses

concernant la validité des modes courants.

7.2.1 Forme de ’estimateur optimal - Algorithme FHT

L’estimée optimale x(k|k) de I'état x(k) et sa matrice de covariance associée P (k|k) peuvent en théorie
étre obtenus en minimisant la variance de l’erreur d’estimation. En considérant toutes les combinaisons
de changement de modes possibles de I'instant initial jusqu’a l'instant courant k, on aboutit alors aux

relations classiques suivantes [BSF88] :

S(klk) = 3 % (k|k) P{HF| 2"} (7.2)

%
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P(k|k) = Z{Pi(k|k) + [x(k[k) — % (k|R)][x([k) — %i (k[k))'} P{H|Z*} (7.3)

ou X;(k|k) représente I'estimée optimale au temps k conditionnellement & une historique possible de chan-

gement de modes notée HY couvrant la période allant du temps initial au temps courant k.

Il est clair que cet estimateur optimal nécessite le stockage de toutes les séquences possibles
de modes. Il faut bien voir que le nombre de séquences possibles N(k) croit exponentiellement avec le
temps. En effet, si ’on note n(t) le nombre de modes possibles & un instant ¢ donné, le nombre total N (k)

de séquences possibles depuis I'instant initial jusqu’a l'instant k vaudra :

Dans le cas particulier ol V¢ > 0, on a n(t) = n (cas d’une structure & modéles multiple fixe), on

obtient :

N(k) =nF (7.4)

Cette remarque importante montre que l'estimateur optimal, appelé parfois estimateur FHT (Full-
Hypothesis-Tree), est inutilisable en temps réel. Dans la littérature, certaines méthodes sous-optimales
de management de ’arbre de séquences de modes ont été proposées parmi lesquelles on retiendra 1’algo-
rithme de Viterbi [Vit67], Palgorithme GPB (Generalized Pseudo Bayesian) de Ackerson et Fu [AF70],
et lalgorithme IMM (Interacting Multiple Model) de H.A.P. Blom [Blo90]. Il faut savoir que L’IMM
présente des performances équivalentes a un GPB d’ordre 2 ou la méthode de Viterbi pour un cotit de
calcul beaucoup plus restreint. C’est donc ce type d’algorithme que nous présentons ici uniquement. Une

présentation des autres méthodes peut étre trouvée en [BSL93].

7.2.2 Algorithmes MM sous-optimaux

Pour rendre les algorithmes & modeéles multiples (MM) utilisables en temps réel, on doit impérativement
limiter la croissance exponentielle du nombre d’historiques possibles. L’idée consiste, soit a fu-
sionner (merging) les historiques de modes considérées comme similaires au sens d’un certain critére, ou
bien & éliminer toutes les historiques (pruning) dont la vraisemblance, par exemple, reste en dessous d’un
certain seuil (parametre de réglage). Une autre technique consiste & ne conserver que les N historiques
ayant les plus fortes vraisemblances. Quelle que soit I’approche adoptée, on cherche toujours & avoir un
nombre limité de termes intervenant dans les sommations (7.2) et (7.3). Il va de soi, que 'estimateur
%x(k|k) ainsi construit perd son caractere d’optimalité mais au bénéfice d’une implémentation en temps
réel. Selon les techniques de gestion des historiques (pruning, merging) différents alogorithmes sont ap-

parus dans la littérature des méthodes non-FHT & modeles multiples (Viterbi, RSA, GPB, IMM, etc).
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Nous focalisons dans la suite notre attention sur 'IMM : la méthode la plus performante sur le marché

des algorithmes actuellement . .. Quelques rappels s’imposent avant la présentation de 'TMM.

7.2.3 Chaines de Markov discretes

On rappelle que P'historique ou séquence H” représente la séquence d’états du processus markovien de
changement de modes m(k) depuis I'instant initial jusqu’a l'instant k. La notation m(k) au lieu de m(k)
est ici utilisée car dans le cas général le parametre décrivant le mode ne sera pas uniquement un scalaire,
mais plut6t un vecteur de valeurs discrétes qui décrira a la fois le mode principal (1ié au centre de gravité),
le mode propre (lié au mouvement de l'engin par rapport & son centre de gravité) et éventuellement un
mode de forme (1ié & la forme courante de la cible). Cette notation prend toute son importance dans le cas
de la poursuite de cibles étendues [Dez98, DLI8]. Nous pourrons ici assimiler m(k) & un parametre

scalaire car nous considérons ici les cibles comme ponctuelles.

H* 2 {m(1),m(2),...,m(k)} (7.5)

Une séquence de modes limitée dans le passé de l'instant [ a I'instant k, sera notée :

HY 2 fm(l),m(l+1),...,m(k)} (7.6)
L’équation d’évolution du processus markovien s’écrit :

p(m(k)[H""") = p(m(k)|m(k — 1)) (7.7)
On suppose que ces probabilités de transitions sont connues et décrites au travers d’'une matrice de

transition que l'on se fixera a priori.

Dans le cas d’une association parfaite des mesures (pas d’incertitude d’assignation des mesures aux

pistes), 'équation de mesure est décrite par :

p(a(k)|Z"" H") = p(z(k)|/m(k)) (7.8)

Cette égalité provient du fait que par hypothese sur le bruit de mesure (bruit de mesure blanc), la

mesure sera sans mémoire et ne dépendra que du dernier mode m(k) de la séquence H*.

Les principales approches envisageables pour estimer le mode courant m(k) d’un systéme hybride

sont les suivantes :

1. Méthode du Maximum a posteriori (MAP)

Pour tous les modes possibles, on calcule les probabilités p(m(k)|Z*) puis on choisit la valeur qui
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réalise le maximum de cette distribution. En pratique le calcul du MAP est relativement simple car
le calcul récursif de p(z(k)|m(k)) est réalisé par deux étapes successives (la prédiction par équation

de Chapman-Kolmogorov, puis la mise & jour en tenant compte de la mesure).

2. Méthode de Viterbi (VA)
L’idée ici consiste & déterminer la séquence H* représentant le maximum de p(H*|Z*) et de choisir
pour m(k) le dernier élément de H*. Pour cela, on pourra utiliser I’algorithme de Viterbi décrit en

[AITO1].

3. Méthode d’estimation a variance minimale (MMSE)
Cette méthode classique n’est malheureusement pas envisageable ici, car il faudrait réaliser des
combinaisons linéaires & coefficients réels d’éléments appartenant & IM(k), ce qui n’est pas possible.

En effet, 'estimée serait alors donnée par :

m(k) = Em(k)|Z"] = Y m(k)p(m(k)|Z*) (7.9)
m(k)elM (k)

Un des plus simples systémes stochastiques hybrides (SSH) est le systéme linéaire a saut,
designé souvent par acronyme JLS (pour Jump Linear System). Ce type de systéme (& structure

fixe de modeles) est décrit dans [Mar90] et [Blo90]. Les équations qui le régissent sont les suivantes :

| x(k) = F[k — 1, m(k)]x(k — 1) + G[k — 1, m(k)]v[k — 1, m(k)] | (7.10)

| 2(k) = H[k — 1, m(k)]x(k) + wlk, m(k)]| (7.11)

La transition d’un mode a 'autre est supposée étre gouvernée par une chaine de Markov homogéne

du premier ordre selon les probabilités :

‘P{mj(k+1)|mz(k)} = T;j Vmi,mj eM (7.12)

On admet de plus que les hypotheses suivantes sont satisfaites :

— les bruits v et w sont des bruits blancs gaussiens;
— Détat initial x(0) est gaussien de moyenne %(0/0) et de covariance P(0|0) ;

— v et w et x(0) sont non corrélés.

7.2.4 Estimation par IMM a structure fixe de modeles (1984)

Comme on vient de le voir, 'estimateur FHT ne peut étre mis en ceuvre en temps réel a
cause du nombre exponentiellement croissant d’historiques possibles nécessaire. Pour limiter ce nombre,

la méthode IMM classique (c.a.d. d’ordre 1) développée par H.A.P. Blom [Blo84a, Blo84d, Blo86, BBS88,
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Blo90, Bar90b] ne considére uniquement que les modéles courants m (k) possibles et non toutes les
historiques possibles pour construire un estimateur récursif sous-optimal (i.e. non-FHT) %(k|k) exploi-
table en temps réel. L'IMM d’ordre deux (IMMZ2) plus compliqué & mettre en ceuvre n’est pas considéré ici

pour simplfier la présentation. On renvoie le lecteur & [BWH93] pour une présentation détaillée de I'TMM2.

La base de 'IMM tient dans la facon de mettre & jour la densité a posteriori p[x(k)|Z*] en partant
de I’expression de la densité a priori p[x(k — 1)|Z*~1] connue & I'instant antérieur k¥ — 1 et de la mesure
courante z(k). L’estimée optimale cherchée x(k|k) (et sa covariance associée P(k|k) seront données par
les 2 premiers moments de p[x(k)|Z*]. La démarche utilisée s’appuie implicitement sur la mise & jour de

la distribution de 1’état hybride selon les deux étapes suivantes :

plxc(k — 1), m(k — 112 D pi(k), m(®) 251 25 px(k), m(k)[Z¥] (7.13)

Si lon suppose I’état hybride (x(k), m(k)) markovien, la transition @ (étape de prédiction) est obtenue

par I’équation de Chapman-Kolmogorov :

plc(). (k)24 = [ 37 (). m(k) x(k = 1),k — 125 dx( 1)
= [ 3wl ()il = 1), ey~ 1,24
-p[x(k — 1), my(k — 1)|Z""] dx(k — 1)

Si x(0), m(k), v(k) et w(k) sont indépendants, 1’étape de mise & jour @ de la distribution conjointe

est obtenue par la formule de Bayes :

p(z(k)|x(k), m(k), Z")p[x(k), m(k)|Z" "]
p(=(k)|Z1)

La densité marginale a posteriori cherchée p(x(k)|Z*) ainsi que la probabilité a posteriori de chaque

plx(k), m(k)|Z"] =

modele m (k) sont données par les relations :

(k)|Z") Zp (K)1ZF =) p(x(k)|my (k) Z") P{my (k)|Z*} (7.14)

J

Pl (024} = [ plx(b).my (1)[2"] dix(k) (7.19

On détaille maintenant les différentes étapes nécessaires aux calculs des expressions intervenant dans
(7.45) et (7.15) :

e Concernant I’état du systéme : on doit réaliser les étapes suivantes :
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1. Mixage
plx(k —1)lm(k — 1), Z*] — p[x(k — 1)|m(k), 2" ] (7.16)
2. Prédiction
plx(k = 1)|m(k), Z"'] - p[x(k)[m(k), Z* ] (7.17)
3. Mise a jour
plx(k)m(k), 2] - plx(k)|m(k), Z*] (7.18)
e Concernant les modes du systéme : on doit réaliser les étapes suivantes
1. Prédiction
Plm(k —1)|Z*"1] --» P[m(k)|Z* 1] (7.19)
2. Mise a jour
Plm(k)|Z*~] --» Plm(k)|Z"] (7.20)

Mixage de I’état p[x(k — 1)|m(k — 1), Z*" '] --» p[x(k — 1)|m(k), Z*]
Le calcul de la densité obtenue a l'issue de 1’étape de mixage de 1'état (relation (7.16)) se fait en
introduisant tous les modes possibles a l'instant k£ — 1 et utilisant le théoreme des probabilités totales
1)jmy (k), Z*1}

k= 1)fmy(k), my(k — 1), Z*1] P{my(

selon :
plx(l = Dl (0,27 = S it
Comme m; (k) est conditionnellement indépendant de x(k — 1) sachant m;(k — 1), on a Vj :
plx(k — 1)fm; (), ma(k — 1), 251 = plx( — 1)fm(h — 1), 2] (7.21)
—1),ona
(7.22)

D’autre part, puisque m; (k) est conditionnellement indépendant de Z¥~! sachant m;(k

P{m;(k)jm;i(k — 1), Z*"} = P{m; (k)|m(k

P{m;(k — 1), m;(k), Z*~1}
P{m;(k), Z¥}

wi(k—1)

Ceci permet d’exprimer le second terme de la somme précédente, a savoir

)|my (k), Z¥1} =

— 1|k —1) 2 P{m;(k
P{my(k)|m;(k — 1), Z*" '} P{m,(k — 1)|Z* "}
P{m;(k)|Z"""}

ny (k)

il (k
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Soit finalement,

1
My (k)
avec la constante de normalisation p; (k) donnée par
py (k) = mijpi(k — 1) (7.24)
En utilisant ces relations, il vient finalement
plx(k — 1)|my(k), Z¥') = g (k — 1k — 1) plx(k — 1)[my(k — 1), 257 (7.25)

On voit donc que la densité p[x(k — 1)|m;(k), Z*~1] est constituée d'un mélange (mixage) pondéré

des densités p[x(k — 1)|m;(k — 1), ZF1].

Pour obtenir la formulation simple du filtre IMM, on admet que les densités constituant le

mélange sont gaussiennes; c’est a dire :

plx(k — 1)[m;(k — 1), ZF"1 & Nx(k — 1); % (k — L[k — 1), Ps(k — 1|k — 1)]

avec

Xi(k — 1|k — 1) = E[x(k — 1)|m;(k — 1), Z"']

Pi(k — 1k —1) = E[[x(k — 1) — %i(k — 1|k — D][x(k — 1) — % (k — 1|k — 1)) |my(k — 1), 2"

Ces quantités seront obtenues par un filtre de Kalman adapté a chacun des modes m; envisagés

(cf. paragraphe suivant).

Sous cette hypothese, les densités p[x(k — 1)|m;(k), Z*~!] seront des mixtures de gaussiennes dont

les 2 moments seront donnés par [BSF88] :

KOk — 1k —1) = ik — 1k — D&i(k — 1]k — 1)
PO(k—1lk—1)=> p;(k— 1k —1)[Pi(k - 1|k — 1)
+ [%i(k — 1k —1) = %) (k — 1|k — D][%;(k — 1|k — 1) = x)(k — 1|k — 1)]']

A ce stade, on assimile chaque mixture gaussienne p[x(k — 1)|m;(k), Z*~!] en fait & une densité

gaussienne de moyenne x9(k — 1|k — 1) et de covariance P9(k — 1|k — 1). En d’autres termes, on admet

I’approximation :

plx(k — 1)|\m;(k), ZF1) = Nx(k — 1); %9(k — 1|k — 1), PY(k — 1|k — 1)] (7.26)

i




7.2. ESTIMATION HYBRIDE PAR MODELES MULTIPLES 189

Prédiction de I’état p[x(k — 1)|m(k),Z*"] --» p[x(k)|m(k), Z*]

La densité conditionnelle de la prédiction p[x(k)|m ;(k), Z*~!] est obtenue par 'equation de Chapman-

Kolmogorov :
plx(k)|m;(k), Z571) = /p[X(k)IX(k — 1), my(k), Z* p[x(k — 1)[my (k), 2" dx(k — 1)

Compte tenu de ’hypothése gaussienne, sur p[x(k)|x(k — 1), m;(k), Z*~1], on obtient

plx(k)|m;(k), Z°7") ~ Nx(k); %; (k|k — 1), P, (k|k — 1)] (7.27)

avec

%j(klk —1) =F;(k — 1)X)(k — 1|k — 1) + G, (k — 1)v;(k — 1)

P;(klk—1) =F;(k— )Pk — 1|k — )F;(k — 1) + G;(k — 1)Q;(k — 1)G;(k — 1)’

Mise a jour de I’état p[x(k)|m(k), Z¥71] --» p[x(k)|m(k), Z¥]

La mise a jour de I’état conditionnellement & un mode courant (relation (7.18)) est obtenue par la

formule de Bayes suivante :

p(x(k)|my(k), Z*) = plx(k)[m; (k), z(k), Z" ]

= éﬂz(k)lmj(k% x(k), 2" )p(x(k)|my; (k), ZF) (7.28)

ol ¢; est une constante de normalisation qui vaut :

¢j = p(a(k)imy (k), x(k), Z*71) = /p(Z(k)\mj(k%X(k)’Zk*l)P(X(’f)lmj(k)vZk*l)dX(k) (7.29)

La relation (7.28) exprime en fait un cycle de mise a jour du filtre d’estimation adapté au mode courant
m; (k) partant de la densité conditionnelle prédite p(x(k)|m;(k), Z*~1) et de la densité conditionnelle de

la mesure z(k). Nous exprimons maintenant ces densités.

Expression de p(x(k)|m;(k), Z*~1)

La densité p(x(k)|m; (k), Z*~1) peut étre exprimée comme une mixture pondérée de densités que I'on
approximera par une densité gaussienne en adaptant le premier et le deuxieéme moment statistique

[BSF88]. En d’autres termes, on écrit
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p(x(k)|my (k), 2"7) Zuzu = 1k = V)p((k)[my (k), my (k — 1)Z*71)

p(x(k)|my (k), my(k — 1), Z"1) = p(x(k)|m; (k), %i(k — 1|k — 1), Pi(k — 1|k — 1))

= N e(k): Efx(k) my (k). % (k — 1,k — 1), P(k — 1]k — 1)), Covfac(k)| ]
par conséquent, on a
p(x(k) my (k), Z41) = Zuw 1k = gy (k — 1k — DA [x(k); B[], covl]]
19 32 BBk an; (09, &0 = 1k = Dl — Lk = 1), Cool ]

= N[x(k); %, (k|k — 1), P;(k|k — 1)]

Expression de p(z(k)|m;(k),x(k), Z*~1)

La densité p(z(k)|m; (k), x(k), Z¥~1) intervenant dans (7.28) est la densité de probabilité de la mesure
conditionnellement au modele m;(k) et a Pétat x(k). Sous hypothese gaussienne et pour un modele
linéaire & saut markovien (ayant un bruit de mesure w; (k) supposé ici & moyenne nulle w; (k) = 0), cette
densité s’écrit

p(a(k)|m; (k) x(k), Z"1) = N (a(k); H; (k)x; (k), R; (k))

Par ailleurs, compte tenu de 'expression précédente de la densité p(x(k)|m;(k), Z*~1, la quantité c; va

s’écrire
5 = [ a8 () ), R (R (k) %5 (ke = 1) P (k1) (730
Soit encore, compte tenu des propiétés des variables aléatoires gaussiennes (cf p 107 de [Gué94])
1 1
c; = N(z(k); 2;(k|k — 1),8;(k)) = — exp[—2;(k)'S7 " (k)z; (k)] (7.31)
em™ys® 2
avec
zj(k|lk — 1) = H;(k)x;(k|k — 1) (7.32)
z;(k) £ z(k) — z;(klk — 1) (7.33)

S;j(k) = H;(k)P;(klk — 1)H; (k)" + R;(k) (7.34)
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Expression de p(x(k)|m;(k), Z*)

La densité conditionnelle de mise & jour cherchée p(x(k)|m;(k), Z*) s’exprime donc

AV L e ), R (1)) (), (e — 1), (k1)
Pl )m (), 25) = N (a(h): 2, (1 — 1).8,(8)

(7.35)

Compte tenu des lois gaussiennes (cf annexe B de [Gué94]), on aura finalement un filtre de Kalman adapté

au mode m; ; autrement dit

p(x(k)lmy (k). Z8) = N (x(k); %, (k|k), P, (k[ )) (7.36)
K, (k) = P, (k|k — 1)H (k)'S; " (k) (7.37)
% (k[k) = % (k[k — 1) + K, (R)[a(k) — 2;(K[k — 1)]] (7.38)

| P, (klk) = P, (k|k — 1) — K, (k)S; ()K; (k)’

(7.39)

Prédiction des modes P[m(k — 1)|Z*"!] --» P[m(k)|Z*!]

En introduisant tous les modeles possibles a l'instant & — 1, on voit que la probabilité a priori

P{m;(k)|Z*~'} du mode m;(k) peut étre obtenue par :

py (k) & P{my(k)|Z*"} = ZP{mJ )m;(k — 1), 271} P{m;(k — 1)|Z"""}

Tij pr(k—1)

soit finalement,

= Zm‘j pi(k —1) (7.40)

mi; = P{m;(k)|m;(k — 1), Z*¥~!} est I'élément ij de la matrice (supposée connue) de transition de

Markov de changement de modes.
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Mise a jour des modes P[m(k)|Z*"'] --» P[m(k)|Z*]

La mise a jour (7.20) de la probabilité de chaque modele m;(k) possible se fait en utilisant la

décomposition bayésienne :

pi(k) & P{m;(k)|Z"} = P{m;(k)|z(k), Z* "'} = (1)1){2( )|my(k), "1} P{my(k)|Z" "}
Ay (k) py (k)
Soit finalement :
1 _
1 (k) = @Aj(k)uj (k) (7.41)
e(k) = 3" Ay (k)5 (k) (7.42)

J
Aj(k) représente la fonction de vraisemblance du modeéle m;(k) et p (k) est la probabilité a
priori pour que le systéme soit dans le mode mj(k). Cette probabilité est obtenue par (7.40). Si on
suppose que linformation a priori Z*~! peut étre résumée dans les 2 premiers moments mixés

X(k — 1|k — 1) et PY(k — 1|k — 1), alors on peut écrire :

Aj(k) = p{z(k)|m; (k), %5 (k — 1]k = 1), PH(k — 1]k — 1)}

Avec ’hypothése supplémentaire de normalité, on aboutit & :

A (k) = N [(k):s 2 [klk — 13520k — 1k — 1)], S, ks PO(k — L[k — 1)]

Soit encore plus simplement,

A;i(k) :N[ij(k);07sj‘(k)} (7.43)

ou z;(k) est 'innovation du filtre adapté au mode m;(k) donnée par :

zj(k) £ z(k) — 2;[x;(k|k — 1)] = z(k) — 2;[k|k — 1;5(9(/{ — 1k —1)] (7.44)

Xj(k|k — 1) est I'état prédit a partir de I’état mixé xJ(k — 1|k — 1) et du mode m;(k). S;(k) =
S;[k; Pj(klk —1)] = S;[k; PY(k — 1|k — 1)] est la covariance de z; (k).

Reconstruction de ’estimée globale par combinaison

Pour reconstruire I'estimée globale %(k|k), on utilise la densité p(x(k)|Z*) que 'on exprime comme le

mélange des densités suivantes

(k)|Z*) ZP k)|my (k), %] p; (k) = N (x(k); % (k| k), P (k| k) (7.45)
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ou la notation suivante a été adoptée

pi(k) = P{m;(k)|Z"} (7.46)

On approxime ce mélange par une nouvelle densité gaussienne en faisant coincider les 2 premiers moments

statistiques et on obtient

%(k|k) = ZMJ )%; (k|k)

P(k|k) = ZM; P;(klk) + [(klk) — %; (k|k)] [%(k[k) — %; (k|k)]']
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7.2.5 Résumé d’un cycle complet de 'IMM standard

1. Interaction

Probabilité du mode a priori et de mixage
09 = P{m; (912} = 3l = D
pif(k =1k = 1) = P{my(k — 1)lmy (k), 2"} = pi(k = V)i /py (k)

Initialisation des filtres par mixage

(k—1k—1)= Zﬂw — 1k — Dx;(k — 1|k — 1)
POk — 1]k —1) = Z“m (k — 1k — 1)[Ps(k — 1]k — 1)+
[%i(k — 1k — 1) = %0(k — 1]k — 1)][%;(k — 1]k — 1) — %0(k — 1|k — 1)]']

2. Filtrage conditionnellement aux modes

% (k|k — 1) = Fj(k — D)xj(k — 1|k — 1) + G;(k — 1)v;(k — 1)
P;(klk —1) = F;(k — DPJ(k — 1|k — )F;(k — 1)) + G;(k — 1)Q;(k — 1)G;(k — 1)/
zj(klk — 1) = H;(k)%; (k[k — 1) + w; (k)

zj(k) = z(k) — z;(klk — 1)
S;(k) = H;(k)P;(k[k — 1)H; (k)" + R;(k)
K;(k) = P;(klk — 1)H;(k)'S; " (k)

X (klk) = %x;(k|k — 1) + K;(k)z; (k)

P;(klk) = Pj(klk — 1) — K;(k)S; (k)K; (k)

3. Mise a jour des probabilités des modes

Aj(k) = Nz;(K); 0,8; (k)]
pi(k) = Aj(k)p; (’f)/ZAj(k‘)M;(/f)

4. Combinaison

%(k|k) = ZMJ )% (k|k)

P(k|k) = Zug P; (klk) + [%(k|k) — %; (k| k)] [5(K|k) — %; (k|k))']
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7.2.6 Schéma de principe d’un cycle de 'IMM standard

Le schéma de principe pour le cycle de 'IMM standard a 2 modeles est le suivant

%1(k — 1)k — 1) %a(k — 1|k — 1)
Pi(k—1lk—1) Py(k— 1]k — 1)
Interaction/Mixage
8 (k k) . 3 (k k)

0 Mz'\j( ) 0
P (k|k) P (k|k)
Filtre adapté Al(k) Mise a jour A2 (k) Filtre adapté
au mode des probabilités au mode
ml(k) des modes my (k)

(k-1 <= k) (k-1 <- k) (k -> k-1) (k -> k-1)
Xy (k[k) | Po(k[k)  pa(k) pa (k) Xa(k[k) | P2 (k|k)
Combinaison
x(k|k) | P(k[k)

7.2.7 IMM/PDAF pour le pistage de cible manceuvrante dans du clutter

L’algorithme IMM mono-senseur qui vient d‘étre présenté supposait I’association parfaite de la mesure
avec la piste considérée et prenait en compte le basculement possible de I’état d’un modele & un autre
pour modéliser les phases de manceuvre de la cible. En environnement dégradé, on dispose de plusieurs
mesures validées a chaque scan dont une, au plus, est supposée provenir de la cible. On a une incertitude
sur l'origine des mesures. Pour pister une cible manceuvrante dans de telles conditions, 1’idée consiste
a mixer I'algorithme du PDAF pour traiter U'incertitude d’origine des mesures avec 'IMM pour traiter
Pestimation du modele de manceuvre. Il suffit alors de remplacer, dans le schéma précédent, les filtres
de poursuite classiques (KF ou EKF) adaptés & chaque mode m;(k) par des filtres PDAF adaptés aux
différents modeles, selon le schéma de principe suivant, dans le cas de 2 modeles (’extension au cas de

N > 2 modeles est immédiate) :
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%1 (k — 1]k — 1) %o(k — 1]k — 1)
Pi(k—1]k—1) Py(k— 1)k —1)
Interaction/Mixage
R2(k[R) @) || @ $3(k[R)
Py (k|k) ’ P (k|k)
PDAF adapté Al(k) Mise & jour AQ(k) PDAF adapté
au mode des probabilités au mode
ml(k) des modes my (k)

(k-1 <- k) (k-1 <- k) (k -> k-1) (k -> k-1)
x1(klk) | Py(kk)  pa(k) pia(k) Xa(k[k) | P2 (k[k)

Combinaison

X(k[k) | P(k[K)

L’IMM/PDAF a d’abord été proposé en [Blo84a]. Des exemples détaillés de cet algorithme, basés sur
le logiciel MultiDat développé par Bar-Shalom et ses étudiants, peuvent étre trouvés en [BSL95]. Une
information de reconnaissance/amplitude peut étre prise en compte comme dans le PDAFAT et conduit a

I'IMM /PDAFAL Des extensions récentes ont également été proposées pour le pistage de cibles multiples

par Farina et aboutissent & 'IMM/JPDAF.

7.2.8 IMM/MSPDAF pour le pistage multi-senseurs de cible manceuvrante

Dans le cas de senseurs multiples, I'idée la plus simple consiste 1a encore combiner 'IMM avec un
algorithme sous-optimal PDAF multi-senseurs (MSPDAF) déja décrit précédemment et comme le propose
la référence [HBS89]. On suppose avoir M modeles possibles et connues les probabilités de transitions

mi; = P{m;(k)m;(k — 1)}, Vk. IMM/MSPDAF proposé consiste alors en les étapes suivantes :

1. Mixage des estimées antérieures

_ 1 ,
pi;(k — 1|k — 1) = P{m;(k — 1)|m;(k), Z* '} = —mpi(k—1)  i=1,...,M (7.47)
J

avec

M
G2 mipi(k—1) (7.48)
i=1
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Connaissant les états antérieurs X;(k — 1|k — 1) et P;(k— 1|k —1), on calcule les états mixés adaptés

a chaque mode 5 =1,...,. M

M
KOk =1k —1) = gk — 1k — D& (k — 1]k — 1) (7.49)
i=1

M
POk —1lk—1) = payy(k — 1k — 1) {Pi(k k- 1)+
=1

(7.50)
[%i(k — 1|k — 1) = x9(k — 1|k — 1)][%i(k — 1|k — 1) — %} (k — 1|k — 1))’
2. Prédiction des états et des mesures suivant chaque mode j=1,..., M

%j(klk —1) =F;(k)%x)(k — 1|k — 1) (7.51)
P;(klk —1) = F;(k)PY(k — 1|k — 1)F; (k) + Q;(k) (7.52)

3. Prédiction de la mesure pour le senseur s; adaptée aux modes j=1,..., M
ijl (klk — 1) = h**[%x;(k|k — 1)] (7.53)

et des covariances (H®' étant la matrice jacobienne de h®'[] - cf EKF)

S;l (k) = H* (k)P (k|k — 1)H** (k) + R* (k) (7.54)

4. Validation des mesures du senseur s;

Pour ce faire, on doit utiliser la méme fenétre de validation pour tous les modes. On
prend donc la fenétre de plus grande taille (ayant le plus grand volume V' avec le seuil de validation

~ choisi a priori. Autrement dit, on prendra

Vo (k) = Vi (k) = max[ymy /ST (k)] (7.55)

J

ou j* est 'indice du mode ayant la plus grande fenétre de validation correspondante. Une fois cette

fenétre maximale déterminée, on valide les mesures par la procédure classique, c.a.d par

[z (k)™ — 23t (klk — D)'S3: (k) [z (k)™ — 25 (k|k — 1)] < (7.56)

5. Mise a jour de I’état de la cible pour chaque mode par un PDAF appliqué aux mesures validées
du senseur s1. On obtient alors X7 (k|k) et P73 (k|k).

6. Prédiction de la mesure attendue pour chaque mode par le senseur ss.

272 (k|k) = b2 [%5" (kk)] (7.57)
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et des covariances (H®? étant la matrice jacobienne de h®2[] - cf EKF)

S (k) = H (k)P (k[k)H* (k) + R (k)

Validation des mesures du senseur s»

Choisir la fenétre de plus grande taille parmi les modes, i.e.

Ve (k) = V7 (k) = max]ymy /85 (1)

(7.58)

(7.59)

Une fois cette fenétre maximale déterminée, on valide les mesures par la procédure classique, c.a.d

par

[2(k)™ — 232 (k[k)]'S32 (k) [2(k) ™ — 252 (k[k)] <y

(7.60)

Mise a jour de 1’état de la cible pour chaque mode par un PDAF appliqué aux mesures validées

du senseur s2. On obtient alors X;(k|k) = x3*(k|k) et P;(k[k) = P3*(k|k).

Mise a jour de la probabilité des modes par

i k) = A () D mignh — 1)

avec la vraisemblance A;(k) de chaque mode m; donnée par

A5 (k) = p(Z (R), 22 ) (), it i, 24, 7o)
= P2 (k) (k) i, 2 (2 () ) i, 27

— A% (K)AS? (k)

avec (en notant ZF¥~! I’ensemble des données passées)

A5 (k) = p(Z° ()l (), Z4)

5 7’!7151 S1 S1 7m51 1 ~S1 S1 81
=V (k)" yo[mpt] + Vo (k)T Y :—P NIz 0585 i [my]
=1 "9

A3 (k) = p(Z72 (k) |my (k), Z" 1)
—777,52 S S _m52 miz 1 =S8 S S
= V2 (k)" yo[mi] + Vo (k)T Y FgN[zjfl;o;sjz]w[m;]
=1

et les quantités ; données par (dans le cas d’'un PDAF & version non paramétrique)

L]Dd]Dg lzl,...,mk
M

wlmi] =
1- PP, 1=0

(7.61)

(7.62)



7.2. ESTIMATION HYBRIDE PAR MODELES MULTIPLES 199

10. Combinaison des estimées conditionnelles par

x(k|k) = Zﬂa % (k|k) (7.63)

P(klk) = ZM; P;(klk) + [%; (klk) — %(k[k)][%; (k[k) — %(k|k)]'] (7.64)
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Chapitre 8

Ailde aux simulations

Nous donnons dans ce chapitre, certains points importants intervenant dans la mise en ceuvre de

simulations d’un systeme de pistage.

8.1 Test de consistance d’un filtre

8.1.1 Dans les simulations

La consistance d’'un filtre permet de s’assurer (en simulation) que 'erreur d’estimation vraie obtenue
par le filtre %X(k) £ x(k) — %(k|k) est compatible avec sa covariance estimée P(k|k). Pour tester la
consistance, on définit l'erreur d’estimation normalisée au carré (NEES - Normalized Estimation

Error Squared) par

ex(k) £ [x(k) — % (k[k))'P (k|k) " [x(k) — X(k|F)] (8.1)

Sous les hypotheses de modele linéaire/gaussien, ex(k) est une variable aléatoire qui suit un X%I' Pour
tester la consistance, généralement on réalise N essais Monté-Carlo indépendants [Rub81, Rub86] pour

un scénario donné et on peut calculer pour chaque instant k, la NEES moyenne qui vaut

(k) £ > h) (8:2)

Dans ces conditions, la quantité Néx(k) doit suivre, en théorie, un X?\,nm si le filtre est consistant. Le
tracé de Néx(k) et des bornes du x%,, 2 95 % (obtenues dans les tables statistiques) permet de juger de

la qualité du filtre simulé. Souvent en simulations, on teste séparément la consistance sur les composantes

de position et de vitesse en construisant &,(k) = & sz\; e (k) et €,(k) = Zf\il €' (k) avec

ep(k) £ [xp (k) — %, ([R)] Py (k|k) ™ [xp (k) — %y (K|R)] (8.3)
cu(k) £ ey (k) = %o (k|R)) Py (k]R) ™ e (k) — %o (k|R)] (8-4)
ou les indices p et v désignent les comporantes relatives a la position et a la vitesse de la cible.
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8.1.2 Dans les applications réelles

En pratique, on ne connait évidemment pas I’état réel x(k) de la cible pistée et par conséquent le
test de consistance précédent ne peut étre utilisé. Cependant, on dispose des innovations normalisées au
carré (NIS) et le test peut étre effectué sur ces informations disponibles. En effet, sous les hypotheses de

modele linéaire/gaussien et de consistance du filtre, la NIS définie par

ca(k) £ [a(k) — 2(klk — D))'S(k) " [2(k) — 2(k|k — 1)] (8.5)

est en théorie une variable aléatoire qui suit un X%z' La NIS moyenne calculée sur IV essais Monté-Carlo

indépendants pour un scénario donné vaut alors

Q) 2 ) (8.6)

et la quantité N&, (k) doit suivre en théorie un x3,, . quand le filtre est consistant. Le tracé de N&,(k) et des

bornes (& 95 ou 99 % ) du X?Vnz permet alors de mettre en évidence la consistance ou non du filtre simulé.

Un test supplémentaire sur la blancheur des innovations peut étre également effectué. En effet, on sait
que l'innovation [Kal60a, KB61] doit en théorie étre un bruit blanc gaussien de covariance S(k). Il suffit

donc de tester I'autocorrélation moyenne des innovations au cours du temps définie comme

S 7 (k)7 (k+1)
VN kyE () S, # (k4 1 (k + 1)

plk,k+1) = (8.7)

Pour N suffisamment grand, p(k, k+1) peut étre considéré comme une variable aléatoire normale, centrée

de variance 1/N et I’hypothese de blancheur de I'innovation sera acceptée si

plk,k+1) 7,7 (8.8)

e L [
VN
ol [—r,7] est I'intervalle de confiance d’une variable aléatoire u ~ A(0,1) tel que

P{ue[-rnrl}=1-« (8.9)

En géneral on prend [ = 1 pour l'intervalle de corrélation et a = 0.05 ou 0.01.

8.2 Initialisation des filtres pour les simulations

On rappelle ici la technique d’initialisation des filtres proposée par K.Birmiwal et Y. Bar-Shalom
[BSB83]. Cette méthode permet d’assurer la bonne consistance de 'initialisation d’un filtre. On a ainsi

une erreur d’estimation initiale cohérente avec la précision de mesure du senseur utilisé.
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8.2.1 Initialisation des filtres locaux

Nous considérons ici le cas d’un systéme constitué de 2 senseurs uniquement. La généralisation au cas
de N > 2 senseurs est immédiate. L’initialisation d’un filtre local associé au senseur s; (i = 1, 2) utilise la
mesure z% (0) et différence entre z% (0) et une mesure antérieure z% (—1). En effet, considérons une seule
coordonnée notée £ (§ = x ou £ =y peu importe). La mesure de la position de la cible (relativement & la
coordonnée choisie) est de la forme

2% (k) = €(k) + w* (k) (8.10)
avec w* (k) ~ N(0, Ri"). Si I'on dispose uniquement des mesures z°/(0) et 2% (—1), alors I'estimation

de la position et de la vitesse initiale de la cible (relativement & la coordonnée choisie) sera obtenue en

prenant
£(0]0) = 2% (0) (8.11)
: z2%1(0) — 2% (—1
£(00) = 20 -2l T =y (8.12)
La covariance de l'erreur d’estimation initiale (pour la coordonnée &) vaut alors
. R RZ/T
Py(0j0)=| ° ¢ (8.13)

R /T 2R‘2i/T2
Cette méthode est utilisée pour des coordonnées x et y afin d’obtenir I'estimation initiale du vecteur
d’état %% (0]|0). La matrice de covariance initiale du filtre local sera donc (O étant la matrice nulle de

dimension 2 x 2)
P;L,(0/0) o
(0] Pg;y(0|0)

8.2.2 Initialisation d’un filtre centralisé

La méthode d’initialisation du filtre centralisé est faite de maniere analogue mais en utilisant les
mesures fusionnées des 2 senseurs z(0) et z(—1). Ces mesures (relatives & une coordonnée £ = z ou & = y)
sont obtenues par la pondération probabiliste des mesures des senseurs suivantes

_2°1(0) | z%2(0)
z(0) = [R—zl + R—gz]/c (8.15)

251 (=1) = z°2(-1)

-1) = C 8.16
ou la constante de normalisation C vaut
1 1
C = —Rzl + —Rzz (8.17)

La matrice de covariance de lerreur d’estimation fusionnée sera donnée par

P(0/0) = [[P* (0[0)] " + [P*(0/0)] "] ' (8.18)
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Chapitre 9
Articles complémentaires (anglais)

9.1 Sur la génération des fausses alarmes

9.1.1 Introduction

In the Monte Carlo simulations for the study and design of multitarget tracking algorithms [BSL93,
BSL95], one needs frequently to generate false alarms (FA) in target validation gates defined by hyperellip-
soids in measurement space computed from predicted target measurement and covariance of measurement
innovation. False alarms are usually supposed to be independent and uniformly distributed in validation
gates. During many years, the only inefficient method for generating such random points [BSF88] was
to generate points in the minimal hypercube containing hyperellipsoid, and then sort and keep points
which have been drawn in the hyperellipsoid based on a Mahalanobis distance test. This method which
can be used whenever measurement space dimension and spatial density of false alarms are low, become
very inefficient with the growth of FA spatial density and measurement space dimension because of the

exponential rejection ratio which will be presented in section 2.3.

To overcome this major drawback, X.R. Li has been the first one (to the knowledge of the authors) to
propose in 1992 [Li92b] a new algorithm, for generating points uniformly distributed in hyperellipsoids.
In 1999, T.J. Ho and M. Farooq have however pointed out in [HF99] an obstacle in the practical use of
Li’s approach. They have then proposed an improved approach (referred here as HF algorithm ; HF stan-
ding for initials of authors) based on the orthogonal factorization of covariance matrix S which avoids
the indefinite number of iterations occuring within Li’s algorithm. It is worthwhile to note that both
approaches are based on computation of eigenvalues of matrix S. This requirement is time consuming

(high computation burden) when measurement space dimension becomes high.

In recent tracking developments, authors have tested intensively the HF algorithm and have discovered
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the poor performances of this algorithm in term of spatial uniformity of random points generated in
validation gates. A presentation of HF algorithm results will be detailed in the sequel. To overcome this
major drawback, we propose a new fast, efficient and reliable algorithm for generating directly random
points really uniformly distributed in hyperellipsoid which has the following two important properties : its
complexity is O(n3) (n being the measurement space dimension), and it does not require the computation
of eigenvalues of matrix S~ and S~ itself as in previous existing methods. The new method proposed in
this paper follows exactly the same assumptions as in [Li92b, HF99] : 1) the number of false measurements
to be generated can be described by a suitable Poisson model; 2) the false measurements are uniformly

distributed in validation gate and are independent from scan to scan.

9.1.2 Preliminary
Validation of measurements

In target tracking, a validation gate V is used for eliminating sensor measurements which have small
probability to belong to target. The measurements falling in the gate are said to be validated. Let %(k|k—1)
be the one step predicted state vector of a given target at time k and P(k|k — 1) the corresponding one
step prediction covariance matrix of prediction error x(k) — x(k|k — 1). x(k) is the true (unknown) state
vector of target at time k with dimension n,. Given all information about the target up to k, we assume
the probability density function (pdf) p(x) to be Gaussian with mean %(k|k—1) and covariance P(k|k—1),
that is p(x(k)) = N (x(k); %(k|k—1), P(k|k—1)). If the observation model z(k) = h[k,x(k), w(k)] is linear
with additive zero-mean white Gaussian noise w(k) with covariance R(k) (i.e. z(k) = H(k)x(k) + w(k)),
then the innovation z(k) (i.e. difference between measurement z(k) and its prediction z(klk — 1) =
H(k)x(k|k — 1)) is Gaussian with zero mean and covariance S(k) = H(k)P(k|k — 1)H'(k) + R(k) where
superscript ’ denotes the transposition [BSL93]. Therefore, the pdf of true target measurement z(k) is

given by [Mui82]
p(a(k)) = N (z(k); 2(k|k — 1),S(k)) = [20S (k)| /e~ 2l —2(klk=DI'S T ()la(k) ~2(k k1) (9.1)

or equivalently

p(a(k)) = N(2(k); 0,S(k)) = [2nS(k)| /e~ 37 (87 (Ra(k) (9.2)

where z(k) and z(k) are vectors of dimension n., S(k) is a real symmetric and positive definite matrix
of size n, X n, and 0 is the null vector ([0,...,0]’) of size n.. For notation convenience and brevity, the

time index k is from now omitted in the following.

The density function (9.1) is constant whenever the quadratic form ¢ £ [z — 2)'S™![z — 2] in the

exponent is, so that it is constant on the ellipsoid (called hyperellipsoid if n, > 3) defined by

[z —2)S 'z —2] =~ (9.3)
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in R"= for every v > 0. € is called the Mahalanobis distance (or statistical distance) of the measurement
z with respect to its prediction z and is also referred as the NIS (Normalized Innovation Squared) in
[BSL93]. This ellipsoid has center z, while S determines its shape and orientation. Since innovation z is
a zero-mean Gaussian random variable with dimension n,, € is a X%z random variable (see theorem 1.4.1

of [Mui82] for proof). The pdf of € is then given by [Pap84] (p. 187)

0 for e < 0
ple) = (9.4)

1 in,—1,—1¢
STT (L 72) € 2 e 2¢ fore>0

where I'(.) is the Gamma function defined for n > 0 by I'(n) = fooo t"~le~tdt which follows the well known
recurrence formulae I'(n + 1) = nl'(n) and ’'(n+ 1) =n!l if n =10,1,2,.... One has also I'(2) =T'(1) =1
and I'(3) = /7 and the following recurrence formula I'(n) = I'(n + 1)/n holds when n < 0.

The validation (gating) of sensor measurements is obtained by choosing the threshold v in such a way

that the probability of true measurement falling in the validation gate V(7), defined by

V(7)) £z [z —2)'S7 z - 2] <7} (9.5)

corresponds to a given gating probability P;. The gating threshold v and Py, are related through the
following relationship

v 1 v
_ 2 _ 2 _ _ n,/2)—1_—e/2
Py=Pr{zeV"(y)} = Pr{x;_ <~} = /0 p(€)de = T (n./2) /o en=/2)=1e=¢/2(¢ (9.6)

Under Matlab programming environment (with statistics toolbox), the threshold ~ can be easily computed
using the command gamma_threshold=chi2inv(Pg,nz). The square root g = /v is usually called the
“number of sigmas” (standard deviations) of the gate [BSF88]. The semi-axis of ellipsoid V"= (v) are the
square roots of diagonal terms of 4S. In summary the validation test T'(z) is formally defined by
1 ifz’S7 1z <~y =z is validated
T(z) = (9.7)
0 ifz'S™'z>n~ =z is discarded
In most of tracking applications, the observation of the targets is quite often difficult because of small
target detection probabilities, bad conditions of observations due to cluttered environment and the limited
quality of sensors of tracking system. In many practical tracking problems, one has therefore to take into
account the presence of false measurements in the validation gate. For performance evaluation of realistic
tracking algorithms based on Monte Carlo simulations, we are then frequently faced to the problem of
generation of false alarms in validation gates. The usual assumption made is to consider the false alarms
uniformly distributed in validation and independent from scan to scan. The development of our new
algorithm for generating random points uniformly distributed in an hyperellipsoid allows herefater to

efficiently solve this problem with a minimal computational burden.
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Volume of an hyperellipsoid

The volume V"= (v) of an hyperellipsoid V"= () is defined by

Vs (y) = /le?l @z (9.8)

Since S is a real symmetric positive definite matrix, there exists [Mil64] a non singular linear trans-
formation T such that S = TT'. T is called square root of S. Such decomposition is not unique but
the Cholesky factorization allows to get easily an useful solution (in O(n?®) complexity) for S'/2 = T.
Details about implementation of Cholesky factorization can be found in [BSL93] and [Bie77]. From this

factorization, one has

1

Sl=(TT) '=T '"T ' TS 'T=1 (9.9)

In order to compute V"= (7), one has to introduce the following variable transformation y = T~'z. Then

7871z = (Ty)S™ (Ty) =y(T'S™'T)y =¥’y (9.10)
It follows
Ve (y) = / Jdy (9.11)
y'y<y
where J =| g—f, |=| T | is the Jacobian of the transformation from the z variable to the y variable. Since

S™! =T 'T!, then | S7! |= | T|? and therefore J =| T |= 1//|S7I| = /|S(k)]. By using the

generalized spherical coordinate change of variable [Mil64], one has

VAl 27 T ™ ny—2
V() = \/|S|/ / / / r"fl(]'[ sm"z—l—’f@k)drdadcbl...dcbn,z (9.12)
0 0 Jo 0 b1

n,—2
which can be written as
Vi 27 ny—2 ™
Vs (y) = /]| (/ rnz_ldr) (/ de) II / sin™ 1k &, (9.13)
0 0 o1 Y0

But

n 1

/ sin™* "1 F ®ddy, = B((n, — k)/2,1/2) = i) (9.14)
0

where B(.,.) is the Beta function and I'(.) the Gamma function and hence

—2
Nz s Fnz_Q(l) 7-(-("271)/2
con,—1—k 2
s ? Prddy = o = - (915)
kI_Il/o M%) - %)

By reporting previous expressions into (9.13), one gets

Vr() = VBT x L mx T (9.16)
(v) = X X Zm X =Y .
which can be finally expressed as
n ™) % VIS n
v () = TVl e (917)
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where coeflicient ¢, is given by

anz/?

n./2 S for n, even
e = F(L 1) (m/j)! (9.18)
2 2727 (et 1/2) (n(z";;r)llp)!ﬂ(”z_l)ﬂ for n, odd

cn, can be easily obtained under Matlab by using the command cnz=pi~(nz/2)/gamma(1+nz/2).
The volume V< () of an n.-dimensional hypersphere of radius /7 is therefore obtained by choosing

S =1 (i.e. the identity matrix of size n, X n,). One gets directly from (9.17)

Vi (y) = ) (9.19)

The volume V= () of minimal hypercube containing this hypersphere is given by

V() = (2v9)"™ (9.20)

Hence, the ratio r = V= (v)/V* () is equal to (4/m)"=/?T'(% + 1). By using Stirling development of
I'(% + 1), one can show for n. sufficiently large that r is actually proportional to ¢ = (4/m)"=/? x
VL (n./ 2)"2/ 2e=n=/2 With elementary algebraic manipulation, the factor ¢ can be expressed as ¢ =
Jrnge=/2letnnal with e = In(2) — In(7) — 1. This remark shows clearly the exponential increase of r

with n, as reported in following section.

Evolution of V= /V™: with n,

As already stated, during many years the generation of FA uniformly distributed in hyperellipsoid was
based on the generation of FA uniformly distributed in the minimal hyperparallelepiped containing the
validation gate. This method is still frequently used in many tracking simulators. When the dimension n,
of measurement space is low (n. < 3), this method is acceptable since the overcharge of computations is
low. However, whenever n, > 3, such method must really be bannished because of its strong overcharge
of needless computations involved due to the exponential growth of the ratio r of hyperparallelepiped

volume over hyperellipsoid volume with dimension.

We have plotted on figure 9.1 the growth of r = V= /V= with n,. We can see the exponential growth
of r which renders this method very inefficient for Monte-Carlo simulations since most of the time the
method generates FA outside the hyperellipsoid rather than inside. For example for n, = 7, if one wants
to generate on average 100 FA in a given hyperellipsoid, the method requires to generate and to test
on average 2700 FA in hyperparallelepiped. This is the major limitation of this method for Monte Carlo
simulations. The new algorithm presented in this paper does not suffer of such limitation as it will be

shown.
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Evolution of Vc/Vs with nz
450 T T T

350

300

200

150

501

F1a. 9.1 — Evolution of V"= /V™: with n,

9.1.3 Limitations of HF algorithm for simulations

In this section we recall the HF algorithm proposed recently in [HF99] to generate random points
uniformly distributed in validation gate. We point out some problems arising in simulations with this

algorithm and show its practical limitations.

The HF algorithm consists of two stages. The first stage generates the Poisson-distributed number
mpa of false validated measurements in the hyperellipsoid under consideration. T. Ho and M. Farooq
use the Poisson Random Generator (PRG) proposed in [BFS83]. This is only one issue possible among
many other PRG available in the literature [Rub81, Dev86]. We will not discuss here about the quality
of PRG used in stage I. Under Matlab, mp4 can be easily generated by using the simple instruction

m_FA=poissrnd(Lfa*V) where V is the volume of hyperellipsoid given by (9.17) and Lfa is the spatial density
of FA. The stage II generates false measurements supposed to be uniformly distributed in hyperellipsoid.

This is accomplished as follows :

1. Stage I : Poisson Random Generator (PRG) to generate mp4

2. Stage II : Generation of mp4 random points uniformly distributed in gate
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— Obtain the orthogonal matrix L such that

A 0 0 0

0 X O 0
LS 'L =

0 ... 0 X1 O

0 ... 0 0 A,

where each \;, 1 <i < n,, is an eigenvalue of the matrix Sland \y <X <...< An, -
-1=1
— Repeat until [ > mp4

— Form the vector x = [z ...x,,] where

— @1 ~U[—/7/ A1, /7/ 1] and

— for 2 <i <y, x; ~U[—~/Ti/Ni, /Ti /N]

- with, =v— Mz —... — )\i_le_l

— z(l) = Lx (or equivalently z(l) = Lx + 2)

-l=14+1

where v is the gating threshold and z ~ UJa, b] means that x is a real random variable uniformly distri-
buted in the interval [a,d]. Z(l) is the I-th innovation generated in the validation gate by the algorithm.

The [-th false measurement is obtained by adding the center of the gate z to z(1); i.e. z(l) = z(I) + 2.

This algorithm outperforms Li’s algorithm [Li92b] in term of computation cost because it does not
require an indefinite number of iterations since not rejection test is necessary. The first drawback of this
algorithm is its necessity to compute S™! and sort all eigenvalues of S~!. This first step of stage II can
become actually very difficult to achieve with good precision as already reported in [Li92b]. Usually, this
requires a lot of computations when dimension of measurement space becomes high. The second and
most important drawback of HF algorithm is its reliability. Actually, the random points generated by
HF algorithm appear to be not uniformly distributed in the gate (see following examples). All results
reported here have been obtained with the generic Matlab routine (HFalgorithm.m) given in the appendix

to convince the reader about these concluding remarks and results.

Simulation results of random points generated by HF algorithm

We present here three results of random points generation obtained by HF algorithm in 2D measure-
ment space (n, = 2). The gating probability P, has been set to 0.99 which imposes the following gating
threshold v ~ 9.2103. The number of points generated in each validation gate has been arbitrary chosen

to mpa = 10000. The center z of gates has been taken at z = [100 100]’. The simulation results presented
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on figure 9.2 correspond to the three choices of covariance matrices for S

10 1000 500 1000 —500
Sl - SQ = 83 =
0 1 500 1000 —500 1000

As we can easily observe, random points generated by HF algorithm cover the entire validation gates.

Generation of FA based on HF algorithm
104 T T T T T T
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100

971

96 L L L L L L L
96 97 98 99 100 101 102 103 104

9.21:Gatel: S =53

Generation of FA based on HF algorithm Generation of FA based on HF algorithm

L L L L L
0 20 40 60 80 100 120 140 160 180 200

9.2.2: Gate2: S =S, 9.2.3: Gate 3: S =S3

F1G. 9.2 — Simulation results of HF algorithm (n, = 2, P, = 0.99 and mr4 = 10000)

However, simulation results show also that the false alarms are actually not exactly uniformly distributed
in gates since there are two regions (darker areas on figures) in each gate which have a higher spatial
density. This can be observed at left and right side of z-axis for gate 1 and at extremities of major axis

of gates 2 and 3. This clearly indicates that practical use of HF algorithm is questionable. To overcome
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this drawback, we propose a new efficient algorithm which is more reliable both in term of uniformity, in

term of computation burden reduction and which does not require inversion of S.

9.1.4 A new efficient algorithm
Theoretical development of the new algorithm

As in previous algorithms, our new algorithm consists of two stages. The first stage generates the
Poisson-distributed number m g4 of false validated measurements in the hyperellipsoid under considera-
tion with some existing PRG algorithms [Rub81, BFS83, Dev86]. In our Matlab simulations, we simply
use the poissrnd function of Matlab statistics toolbox for stage I. The stage II, which generates mp4

false measurements uniformly distributed in hyperellipsoid, is now presented.

Consider the hyperellipsoid in R™* defined by V":(vy) £ {z € R" : Z/S7'Z < +} where S is a real
symmetric positive definite matrix. This ellipsoid is equivalent, by denoting x = Z/ /7 to 7umit” ellip-
soid V(1) £ {x € R": : x'S7!x < 1}. As already recalled in section 2.2, since S is a real symmetric
positive definite matrix, there exists a square matrix T such that S = TT' < S~! = T/"'T~! Using
the following linear transformation y = T~ !'x, one has x'S™!x = y'y. Consequently, if y is uniformly
distributed in unit hypersphere V=(1) = {y € R"= : y'y < 1}, then x = Ty will be uniformly distributed
in "unit” ellipsoid V"#(1) because of linear mapping between x and y and therefore z = ,/4x will be
uniformly distributed in validation gate V"= () which is what we are looking for. Hence, our problem
is mathematically equivalent to the problem of generation of random points uniformly distributed in
hypersphere V= (1). The solution of this problem is however well established in the milestone book of L.

Devroye [Dev86] (Chapter V, section 4) and we present now the algorithm for generating points in V= (1).

We first recall basic definitions and theorems about radially symmetric random variables in R™=. A
random vector u € R™: is radially symmetric if Au is distributed as u for all orthonormal (rotation)
n, X n, matrices A. If moreover Pr{u = 0} = 0, then u is said to be strictly radially symmetric. u is
uniformly distributed on unit hypersphere V'=(1) when u is radially symmetric with ||ul|=1 (|.|| being
the standard Lo norm). The density p(u) of any radially symmetric random variable u is necessarly of
the form g(||ul|) such that [;°n.V/=r"=~1g(r)dr = 1 where V*» = (ﬂ)%/F(”—; + 1) is the volume of

unit hypersphere derived in (9.19). g(.) is called the defining function of radial density p(u).

The generation of random points uniformly distributed on VI=(1) can be easily obtained via nor-

mal random variates as follows [Dev86] : each random point u; (i = 1,...,mpa) is generated by
1/2
)

drawing n. iid normal random variates u1,...,u,,, computing s = (uf +...+u2_ and returning

u; = [u1/s,...,un,/s]’. The radial transformation theorem [Dev86], states that :
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a) if u is strictly radially symmetric in R+ with a defining function g(.), then » = ||u|| has density
p(r) =nVi=rm="tg(r).
b) if u is uniformly distributed on V7= (1) and r is independent of u and has pdf p(r) above, then ru
is strictly radially symmetric in R™* with defining function g(r).
A random vector is uniformly distributed in V?=(1) when it is radially symmetric with defining function

g(r) =1/Vr=(1) for 0 <r <1 and g(r) =0 for r > 1.

We give here the proof of statement b) not provided in [Dev86]. If we consider a random vector u
uniformly distributed over V(1) and a random variable r uniformly distributed in V=(1) with p(r) =
n,r"=~1 then we want to prove that z = ru is uniformly distributed in V7 (1) which is equivalent to
prove p(z) = Vs%(l)lvé"z(l) (where 1, denotes the indicator function on set a). Consider now the following
pdf p(u) = ﬁlq—(f) defined in hypertorus 7 (¢) £ {u € R" : 1 — ¢ < ||ul|< 1 + ¢} having volume (by
setting S = T and v'/2 = 1 4 € in (9.17)) T(e) = cnz[(l +e)" — (1 — €)"] ~ 2en,c,, when e — 0.
Now, consider the pdf of z which can be expressed as p(z fo z = ru)p(r)dr. By taking into account

previous expressions for p(u) and p(r), p(z) can equivalently be expressed as

[E]
. 1 1 N, 1 1 1 N, 1—e
p(z) = limy T(e)/o L )/ Licespupsire g dr = Ty 72 )/u dr X Ly

1+e

by integration, one gets

2e X Ly<1 = —Ljy<1 =
Cn

n, 1+4+¢€ n
p( ) = lim —— 1Og[—6] X ll\ul\Sl ~ Sen.c ‘/Snz(l) ]'Vsnz(l)

e—0 T'(€) .
which completes the proof.

From the previous theorem, the following steps allow to generate random point y uniformly distributed
in V= (1) :

1. generate a random vector u uniformly distributed on V= (1)

2. generate a scalar random variate r with density p(r) = nr"=—1

3. returny = ru

To generate r (0 < r < 1) following pdf n,r™:~! in previous step 2, we use the standard inverse method

[Rub81, Pap84] as follows. The repartition function associated with p(r) is
t
vEF(t)=Prir<t} = nz/ =T ldr = ¢
0
and its inverse is equal to F~'(v) = v'/*. Hence, the generation of r ~ p(r) is easily obtained by
generating F~1(v) with v ~ U([0;1]).
Summary

We give here the summary of our new algorithm for generating random points uniformly distributed

in hyperellipsoid V"= (7).
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1. Stage I : Poisson Random Generator (PRG) to generate mp4

2. Stage II : Generation of mp4 random points uniformly distributed in gate as follows

— generate iid points u; (i = 1,...,mp4) uniformly distributed on unit hypersphere V= (1). Each
point u; is generated by drawing m, iid normal random variates ui,...,uy,, computing s =
\Jui+ ...+ w2 and returning u; = [u1/s, ..., un./s].

— generate, independently of u;, scalarr; = v%/"* (i = 1,...,mp4) with v ~ U([0; 1]).

— compute y; =ru; (¢ =1,...,mp4). y; is uniformly distributed in V= (1).

— compute square root matrix T of S using Cholesky factorization (S = T'T").
— compute x; = Ty; (i=1,...,mpa).

— return (false alarms) z; = \/7%x; +2 (i =1,...,mpa).
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Simulation results of random points generated by the new algorithm

We present on figure 9.3 the results of random points generation in 2D measurement space obtained

with our new algorithm (provided in appendix for convenience) with same parameters as before (n, =

2,P, = 0.99, mpa = 10000, z = [100 100]') with
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9.3.1 : Gate 1 :

Generation of FA based on new algorithm
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9.3.2: Gate2: S =S,
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9.3.3:

Gate 3: S =S3

F1G. 9.3 — Simulation results of new algorithm (n, = 2, P, = 0.99 and mp4 = 10000)

Simulations results on figure 9.3 show the better quality of spatial uniformity of random points gene-
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rated by our new algorithm with respect to the uniformity obtained by HF algorithm on figure 9.2. This

”visual” conclusion is reinforced by uniformity test results presented on next figure 9.4.2.
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9.4.2 : Uniformity quality of both algorithms

Fi1G. 9.4 — Performance comparison of the new algorithm vs. HF algorithm

The comparison of the averaged number of Matlab flops (floating point operations) of the two algo-
rithms with variation of measurement space dimension n, is plotted on figure 9.4.1. These results are
based on 10 Monte Carlo runs for each value of n,. Each run consists in random generation of covariance
matrix S with dim(s) = n, X n, and generation of mps = 5000 false alarms per gate. Results indicate
the O(n?/3) complexity of our new algorithm with measurement space dimension. The charge of com-
putation is mainly due to Cholesky factorization step involved in our algorithm which requires O(n?/3)

arithmetic operations. All other steps of our algorithm require only O(n) operations. For small values of
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measurement space dimension (n, < 3) the HF algorithm seems to require less amount of flops than our
new algorithm. The difference of computation load between two algorithms is however not that much.
When the dimension n, increases, our algorithm however outperforms drastically HF algorithm in term
of computation loads. We point out the fact that our algorithm does not require the inversion of matrix S
but only Cholesky factorization of S. The number of flops for matrix inversion have not been taken into
account for complexity evaluation of HF algorithm. If this had been done, its complexity would become
greater than the complexity of our algorithm even for small measurement space dimensions. On figure
9.4.2, we present the results of the following uniformity test applied to both algorithms (with parameters
S = S3, mpa = 10000 and P, = 0.99). For any given real symmetric definite positive matrix S and
positive threshold 7, we consider the full gate volume V"= () and any enclosing gate V"= (y1) < V"= (%)
with v, = 7, (0 < r < 1). The ratio of two volumes V"= (v;)/V " () is then exactly equal to r"=/2. If the
random points are exactly uniformly distributed in V"= (), all of them included in any V"= (y1) < V"= (%)
must be necessary uniformly distributed in V"= (;) and therefore the ratio p of number of points ny in
V"= (v1) over the total number mpa of points generated in V"# () must be theoretically equal to r™=/2.
In 2D measurement space, if the algorithms are well designed, one should get the straight line p ~ r for
r varying in [0; 1]. Simulation results clearly indicate the poor performance obtained by HF algorithm by
using such empirical uniformity test. This confirm our previous ”visual” conclusion about HF algorithm
given in section 3.1. On the contrary, the new algorithm provides uniformity performances which appear

to be very close to optimality.

9.1.5 Conclusion

We have presented in this paper a new efficient algorithm for generating directly random points uni-
formly distributed in hyperellipsoid defined by [z — 2]'S™![z — 2] < ~. This algorithm outperforms all
previous existing methods in term of computation savings (since computation of S~ and computation of
eigenvalues of S~! is not required), in term of quality of uniformity obtained and in term of complexity
(O(n?/3)). The choice of this new method is highly recommended specially in multitarget tracking re-

search area for running Monte Carlo simulations requiring an efficient and fast way to generate false

measurements in validation gates.

9.1.6 Matlab routines

We provide here only stage II of the HF and new algorithm. The stage I can be easily accomplished
by using poissrnd function of statistics toolbox of Matlab (if available) or by implementing one of PRG

described in [Rub81, BFS83, Dev86].

Generic Matlab implementation of HF algorithm
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ootttk ok pokskok ok sk kot Rk kR ok Rkt ko sok ok Rk skok Rk ok kb okok ok
function [z_fa]=HFalgorithm(Gamma_Threshold,S_inv,z_hat,m_FA)
Dotttk ook ok kot Rk kR kR skt Rk sk ko sok ko sk sk skok Rk koK kb ok okok ok
% This routine implements the T.J. HO and M. Farooq algorithm for

% generating random points uniformly distributed in hyperellipsoid .

% Inputs: Gamma_Threshold = Gating threshold (>0)

% Sdnv = inverse of covariance matrix S (dim(S)=nzxnz)
% z_hat = center of the gate (dim(z_hat)=nzx1)
% m_FA = number of false alarms to generate in the gate

% Output: Zfa = [z (1),... z(mFA)] set of FA generated by HF algorithm
Dottt ok okt sk ok otk b ok ok ok oKk ok ok o ook o KRRk K KRR
[V,D]=eig(S-inv); % Decomposition inv(V)*S_invkV=Diag(eigenvalues)

[Y,I]=sort(diag(D)); % Sorting of eigenvalues by ascending order

A=diag(Y,0); % Diagonal matrix of sorted eigenvalues

L=V(;I); % Permutation of eigenvectors corresponding to eigenvalues
z_fa =[|;nz=size(z_hat ,1);

for |=1:m_FA

x(1)=sqrt(Gamma_Threshold /A (1,1))*(2+rand—1);
for i=2nz
Tau_i=0;
for j=1:i—1, Tau_i=Tau_i+A(j,j)*(x(j)"2);end
Tau_i=Gamma_Threshold—Taui;
x(i)=sqrt(Taui/A(i,i))*(2+rand—1);
end
zfa=[z_fa (Lxx’+z_hat)];

end

219
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Generic Matlab implementation of the new algorithm

Dotttk koo sok ok ko Rk kR ok Rkt Rk ko sok ok Rk skok ok ok kbt okok ok
function [z_fa]=New_Algorithm(Gamma_Threshold,S,z_hat,m_FA)
Dotttk okt sok ok ko kR kR skt R sk kR sk ok kR sk ok Rk ko kb ook ok
% This routine implements the new algorithm for generating random

% points uniformly distributed in hyperellipsoid for nz>=2.

% Inputs: Gamma_Threshold = Gating threshold (>0)

% S = Covariance matrix S (dim(S)=nzxnz)
% z_hat = center of the gate (dim(z_hat)=nzx1)
% m_FA = number of false alarms to generate in the gate

% Output: Zfa = [z (1),... z(mFA)] set of FA generated by new algorithm
Dotttk ook ok ook sk ook sk ks sk sk koo sk sk ok sk ks sk ko ko sk sk ok ko
nZ:length(S);

X_Cnz=randn(nz,m_FA);

X_Cnz=X_Cnz./kron(ones(nz,1),sqrt(sum(X_Cnz."2))); % Points uniformly distributed on hypersphere
R=ones(nz,1)*(rand(1,m_FA)."(1/nz)); % Points with pdf nz«r”(nz—1); 0<r<1
unif_sph=R.xX_Cnz; % m_FA points in the hypersphere

T=chol(S); % Cholesky factorization of S => S=T'T
unif_ell =T"xunif_sph; % Hypersphere to hyperellipsoid mapping

z_fa=(unif_ell xsqrt (Gamma_Threshold)+(z_hat«ones(1,m_FA))); % Translation around gate center

9.2 Interview of Professor Bar-Shalom

The following interview entitled ”Everything You Always Wanted to Know About Professor Bar-
Shalom” has been was conducted during the Banquet at the Workshop on Estimation, Tracking, and
Fusion - A Tribute to Yaakov Bar-Shalom for his 60th Birthday, Naval Postgraduate School, Monterey,
California, USA, May 17, 2001 [DBC*01] and a conference report written by Professor Peter K. Willett
can be found in [Wil02].

9.2.1 Introduction

Professor Bar-Shalom, for the last 30 years, your name has been inseparably associated with MS-MTT
(Multi-Sensor Multi-Target Tracking) ; no researcher working in the field can ignore your name and your
contributions to the advancement of the tracking field, published in more than 290 papers, 7 books, 19
book chapters, and accorded with many distinctions. Although most researchers in the tracking area know
you quite well professionally, very few people know your personal/human sides. We are very pleased to

contribute here another look at you. We thank you heartily for having accepted this interview, and we
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hope that readers will enjoy it as much as we have.

9.2.2 About Your Name

1. Could you tell us the meaning of your name ?

It means son [Bar (in Aramaic)] (of) peace [Shalom (in Hebrew)]

2. A quick web search of your name reveals that you are number 2982 on the list of
the top 10000 most cited researchers in Computer Science (January 2001). Have you
thought of joining the computer science department ?

I don’t want to give a bad reputation to estimation. ..
What is your favorite programming language ?

The last time I programmed was in Fortran (20 yrs ago...)

3. We learned that your first name has something to do with tracking. What is that
exactly 7 Do you think that has anything to do with the fact that you are a pioneer
and an unquestionable world leader in tracking area ?

Yaakov in modern Hebrew means “he shall track”. The original meaning comes from Jacob (the
3rd patriarch, son of Isaac) who was born “holding the heel” of his brother Esau. The etimological
explanation is “following in the heels of...”, which became tracking. I also happen to believe in the

causality between the given name of a person and this person’s profession.

9.2.3 About Your Childhood and Your Family

1. You were born in Timishoara, Romania on May 11, 1941 during the second World
War period. Could you tell us more about your early childhood ? Do you have pleasant
recollection of good times of this period or was it to your memory only a very bad
period ?

Fortunately we were spared from Nazis’ plans of exterminating all the Jews. The Romanians, even
though they were allied with the Nazis, did not let them take over. Fortunately, the antisemitism
of those in power was exceeded by their corruption. They changed sides towards the end of WWII
when it became clear which side is winning and fought with the same enthusiasm as before. My
only memory from the war time is that once I decided to take a walk out of a bomb shelter where
everybody went when RAF bombers were flying over Timishoara on their way to the Romanian oil

fields. Eventually, my father found me and was not very happy.

2. Could you tell us a few words about your family ? What were your parents doing ? Are

you from a scientist’s or artist’s family 7 How many brothers and sisters do you have ?
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My father was an antiquities merchant and accountant later. He was good with numbers. My mother
raised my sister and me reminding us that success in life requires hard work in school. My sister,
who is a psychologist, sent me a 140,000,000 year old fossil as the LX birthday present — to make
me feel young.

When did you move to Israel and under what conditions? How long did you stay
there ?

After my father realized that there is no future for us under communism, we moved to Israel in

1960. After getting my B.S. in 1963 and M.S. in 1967 from the Technion, I came to Princeton for
the Ph.D.

. Were you a quiet and studious little boy ?

I was very quiet after my first electrical engineering experience at age 6 : I threw some old batteries
behind our house and they ended up breaking the neighbors’ window. Before this, at age 5, I
showed my mechanical engineering capabilities when I hammered very thoroughly the living room
furniture; my parents’ quiet reaction shamed me into channeling my excess energy in a different

direction.

What did your teachers think of you and your future career ?

My high school math teacher said that he will teach me a lot so I will learn a little.

Did you always prefer math and physics, or did your prefer to learn literature and
arts 7

I could never write a decent literary composition, was never good at arts (even though I enjoy both)
so the only thing left was math and science (with the exception of chemistry, which I flunked as a
freshman). I learned to enjoy art from the history of art course I took as a senior at the Technion,
after which I was fortunate to spend the summer in Europe marveling at the masterpieces I just

studied.

What did you dream to become when you were very young ?

At age 5 I wanted to become a chauffeur, at age 7 a pilot. I realized these dreams after 15 and 35
years, respectively. The pilot license I got at the Navy Flying Club in Monterey.

Do you consider yourself as an ex-prodigy, as did Norbert Wiener ?

I am a slow study — by now I am probably at the level to be considered a child prodigy.

Your son, Michael, is eleven now. Are you going to push him to follow your footsteps

to have a distinguished career in engineering? Are you prepared for the teenager

rebellion ?

He is only ten, but recently he intimated to me that he hopes he did not inherit my engineering

genes. I guess he already started his teenage rebellion.
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What else can you tell us about your family ?

My wife is a Ph.D. in linguistics and she keeps correcting my word order in English. My daughters
did not follow in my footsteps — since I flunked chemistry as a freshman, both of them majored in
chemistry. After that, they became so motivated that one of them is a Ph.D. in biochemistry, the
other is a veterinarian.

Do you consider yourself a religious person ?

I like tradition, and religion is a part of it. As far as the strict religious observance, my uncle in NY
does it for the whole family.

You are one of the most humorous persons we know, did you get this from your
parents ?

Humor was (and is) a necessity of life. It is also a tradition : does anybody know why Jews like to
answer a question by another question? Why not ?

What are your favorite readings ?

The biography of Churchill by William Manchester. The Roman Republic series of historic novels
(from Gaius Marius to Caesar) by Colleen McCullough.

What’s your favorite quotation ?

Keep things as simple as possible but not simpler (A. Einstein)

9.2.4 About Your PhD Study

. Your Ph.D. dissertation is curiously never referenced in your very first papers, nor

afterwards. Was this a deliberate or accidental omission ? What was your Ph. D. dis-

sertation about ?

An obscure controller.

To be fair, do you consider that this work was excellent, very good or good enough?

I would not give today a Ph.D. for this work. It was deemed good enough to get a Ph.D. at the

time.

Who was your Major advisor ?

Stuart Schwartz, who taught me to pursue an approach even if not ideal and evaluate it at the end.
Did you have a good relationship with him ?

Yes. He also taught me to shoot for long flat shots in tennis.

Who also was a Ph.D. student there at same time, and had a distinctive career ?

Tony Ephremides, now at UMD, well known in Information Theory (as well as in sailing).
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Do you have funny stories about your Ph.D. time ? Were they the Best Years of Your
Life, as UConn claims to all of its students ?

One snowy day at Princeton I ran into Tony Ephremides stuck with his newly acquired used car
with bald tires in snow. I rescued him from being stuck forever (that’s what he still thinks) by
bumping into his car with mine. The bumpers were already rusty so the additional damage was

undetectable.

You got your B.S.E.E and your M.S.E.E at the Technion (Israel Institute of Techno-
logy) when you were 22 and 26 years old respectively. How did you make the choice
to follow a scientific track/career ?

I always thought electricity should be fun. But then I found out that estimation/tracking is even

more fun.

Was your choice influenced by some other famous scientists in the area? Who were
the eminent Professors who were teaching at the Technion at that time ?

The first teacher who gave me a taste of research was my EM fields teacher Remus Raduletz in
Romania, where I studied at the Polytechnic Institute of Bucharest until they kicked me out because
we wanted to leave the country. He had his Ph.D. from ETH, Zurich, where Einstein studied. He
taught me the rigor of Maxwell’s equations as well as the Greek alphabet (he was named after one of
the founders of Rome and the Romans had a great appreciation for the classical Greek education).
At the Technion, Jack Ziv (who later invented, together with a classmate of mine, Abraham Lempel,
the code used today by practically everybody without even knowing it — fax machines are based on
it) taught me probability theory.

You moved to the USA to pursue your Ph.D. degree. When did you move to USA ?
Why did you choose this country 7 Were you recommended by somebody, or was it
difficult to find financial support by yourself?

My M.S. advisor at the Technion, Raphael Sivan, set the example by getting his Ph.D. at Berkeley.
My predecessors at Princeton (Abe Haddad and Elias Masry) gave a good reputation there to the

Technion graduates, which I could not dispel.

How did you choose Princeton University and why ? Did you consider some other
places at the same time?

I sent several applications to different places indicating that when I will finish my M.S. thesis I
will publish it in a journal, but this was not taken seriously by most places. The paper from my
M.S. thesis eventually appeared in IEEE T-AC while I was still working for my Ph.D. I also tried
to apply to Berkeley but I did not get the forms on time. Two weeks before the deadline, I had a
suspicion that they sent them by surface mail, so requested another set by air mail. Long after the

deadline passed, I got two sets of forms by surface mail. Eventually the only place that offered me
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an assistantship was Princeton.

Richard Bellman was one of your famous predecessors at Princeton. He completed his
Ph.D. in a record time of three months and has published more than 600 papers and
38 textbooks. He had already left Princeton when you got there. Have you been in
some way influenced by his work ? Did you hear any stories about him ?

I did not hear much about him until I got to my first job at Systems Control in CA. One day he was
invited to give a seminar in the morning and he was late — eventually he made it by the afternoon.
Apparently he needed some extra time to finish book number 33 that he started the day before. I
have to confess that I plagiarized one of his footnotes (about the principle of perversity of inanimate

objects) but I referenced him.

Did you already plan to become a Professor 7

No University wanted me until 1976.

Where did you arrive for the first time ? What was your first impression at your arrival

and a few months after your arrival in U.S.? Was it difficult to live and to understand

the new way of American life ?

The taxicab driver who took me from Kennedy airport to my uncle in NY said “You can’t be a

student in the US, you don’t speak no English”.

9.2.5 About Your Industry Years

1.

After completing your Ph.D. study in 1970, you worked as a Research Scientist/En-
gineer for Systems Control, Inc. until 1976 in California and you have been at same
time part-time lecturer at University of Santa Clara. Why did you choose to go to
work for Industry ? Was it too difficult to find an academic position in some American
universities 7 Was your choice guided by a financial and/or family reason ?

Following the landing on the moon in ‘69, the NASA budget crashed, with most of the aerospace
industry and University research following, and there were very few jobs in anything related to
space and control (at the time I thought I was still in control). As an aside, a colleague and friend
(Alex Levis, who is now Chief Scientist of the USAF) said that I would not have made it for tenure
if T went directly into an academic position. I think he is right and I happened to be very lucky to

join Systems Control.

. Systems Control was almost like the Xerox PARC in control and estimation (excellent

people, great ideas but cannot capitalize on the ideas). Can you tell us about what it

was like to be at SCI in those days ?

It was an unusually stimulating environment. I learned there more than in grad school.
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Who were your colleagues at SCI and where are they now ?

The following graduates of SCI should be mentioned :

— Raman Mehra —Harvard, then President of SSCI

— Atif Debs — Georgia Tech

— Edison Tse — Stanford

— Howard Weinert — Johns Hopkins

— John Casti — U. of Portland, then Courant Inst., then U. Arizona

— Dave Kleinman — UConn, now at NPS (claims to be retired)

— Kent Wall — UVA, then NPS

— Alex Levis — MIT, then GMU (now USAF)

— Adrian Segall — MIT, then Technion

— Ben Friedlander — UC Dayvis, then UCSC

— Richard Wishner — President of ADS (originally named AIDS ; bought out by BAH), then DARPA

— Narendra Gupta — President of ISI (of MatrixX fame)

— Robert Larson — VP, then President of SCI, President of IEEE, now Silicon Valley venture
capitalist

How did you get into target tracking ?

A colleague was trying to debias an EKF for reentry vehicle tracking and I noticed that the true

initial range was 100kft, the initial estimate was 80kft and the initial variance given to the filter

was 10°® (that is 20 sigma!). Changing the 10° to 10® immediately eliminated the bias!

Do you have any comments about your bosses at the time? Anybody like Dilbert’s
manager ?

My direct boss wanted to keep PDAF proprietary. However, when he went on vacation, I got the
signature of the VP to publish it. This boss had 2 years until the paper appeared, but never made
any effort to promote it. Another boss told me that whenever they hint at a problem, I go too far
in solving it. ..

Have you ever given thought to returning to Israel, for example to get a position at
the Technion or in some other famous University there ?

Yes, but I never got an offer from the Technion. When I got an offer from Univ. of Tel Aviv I wanted
it at the Associate level but it was for a Senior Lecturer, so I chose to stay at SCI. The following
year I got the offer I was looking for from UConn.

When exactly did you decide to switch to academia, and why ?

When my newly arrived boss asked me in 1975 to solve a problem I already solved years ago

unbeknownst to him, I just gave him the report I wrote on it in 1971 and took it as a sign that it is

time to leave for new pastures. In 1974 Dave Sworder told me that in 2 years I will be in academia
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— he had a perfect prediction algorithm.

When did you apply for position at University of Connecticut ? How did you choose
UConn ? Was it difficult for you to move from the West Coast to New England ?

Dave Kleinman called me one day in 1976 if I am interested in an interview at UConn. The first
offer went to somebody else (with more papers than me at the time), but he preferred to start his

own company, so I ended up in New England.

During the years 1982-1984 you’ve been visiting Professor in Stanford and the Naval
Postgraduate School, Monterey. Can you describe your experiences there ?

Following my divorce in New England I felt like going back to Palo Alto, so I ended up at Stanford. I
met my wife in Los Angeles after a seminar at UCSD during that time, so I quickly decided to spend

another year in CA before I dragged her to CT (she still prefers CA, except for the earthquakes).

Was UConn your first choice ?

The only one.

Among the technical projects that you worked on at Systems Control, are there any
that you’d like to share, or that you are particularly proud of?

My best work in control was the “Dual Effect, Certainty Equivalence and Separation” paper, which
drew a distinction between Certainty Equivalence and Separation in stochastic control and showed
that, for a class of problems, Certainty Equivalence holds iff the control has no dual effect. Otherwise
the PDAF (Probabilistic Data Association Filter) — in addition to several fielded radar tracking

systems it has found applications in image tracking as well as wireless communication.

Did you invent the PDAF at Systems Control ? If so, what was the reaction of your
colleagues and employers 7 Did you know at the time how important it would be ?

My project manager was ready to fire me because I was spending time on senseless things. He asked
a highly paid consultant at the time to evaluate my work and he said that it makes sense. The real
proof of how he valued it was when he later published a similar approach from his consulting work

at another organization.

In its early days, did you think that PDA would achieve its present-day prominence,
with applications not only in target tracking, but also in many other areas ?

I felt there is something to it, but nothing like you are implying.

What do you see as the limits of PDA ?

One limit is the Cramer-Rao Lower Bound. The rest is up to the ingenuity of the many people
working on problems where estimation in the presence of continuous and discrete uncertainties is

needed.
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Did you ever implement any of the algorithms, for example the PDAF, which you

invented ?
If you promise to keep this confidential : never (why ruin a good thing 7).
You made some outstanding contributions in stochastic control area, particularly dual

effect and dual control. In fact, you were a leading expert in that area in 1970s. What

was the driving force for your shift of research focus from that area to tracking area ?
Murray Wonham from Toronto wrote a paper stating (approximately) that “stochastic control can
only change the system performance from very bad to bad”. First I insisted on proving him wrong,
but eventually I succumbed to the obvious. My work in control did not have even 1

Why are you out of control these days ?

For some reason, I got interested in useful things. The rest is a corollary. However, I still enjoy

controlling vertical airfoils and foot supports on crystals.

9.2.6 About Your Students and Your Research

1.

Up to now, you have been Major Advisor to seventeen Ph.D. students with degrees
awarded at the University of Connecticut. Many of your former Ph.D. students are
very active in the tracking research area. Are you very proud of the careers of your

Ph.D. students ?

Absolutely, I could not have accomplished (almost) anything significant without them.

. In general, do you have good relationships with your former Ph.D. students ?

Of course. One of them, in his last email to me, sent me the Melissa virus.

Many people who had the honor to work with you have been impressed with your
deep insight about practical problems and with the keenness by which you search for
solutions. Are the applications the starting point for your research ? If so, are there
any criticisms about that ?

I am sure that some people feel that without measure theory there can be no important work.
However, I have a filter that blocks out such noise. Some people make a living from data mining —

I prefer problem mining.

How many post-doctoral visitors have you hosted in your ESP lab ?

Alain Houles — formerly with the French Navy, now with NATO

— Claude Jauffret — formerly with the French Navy, now Univ. of Toulon
— Jean Dezert — ONERA, France

— Chun Yang — Sigtem Technology

— Eli Oron — Israel Aircraft Industries
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During your career, have you had the opportunity to meet and talk with Professor R.
Kalman ? Did he influence your research ?

I never talked to him. He talks only to God. When he was (still) doing reviews for IEEE T-AC,
according to a former Editor of this journal, he used to classify all papers in three categories :
Trivial, Wrong or “I’ve done it”. My encounter with his March 1960 paper on what became known
as the Kalman Filter was fairly long : I plowed through it on my own in 1966 (during my military
service in Israel) and it took me two weeks just to understand his notation of the norm of a vector
w.r.t. a matrix.

Have you observed a strong modification of the interests in this research field since the
end of cold war, and especially since 1989 after the fall of Berlin wall and ex-USSR ?
If so, is this effect in your opinion more beneficial or detrimental for the research area
(from the scientific point of view) ?

It’s back to the big time for tracking but with one difference : you can’t publish papers on scalar
systems and you have to show relevance to some real problem.

If you were able, like Dr. Frankenstein, to construct an ideal student, how would he
or she be constituted ?

Such a student would write in 3 months 3 seminal papers that I would not need to proofread (neither
for the math, nor for the English). Anybody noticed the wrong word order ?

Thinking back, which period is the most important in your career ?

Curiously, I felt more productive in the last few years than ever before. Did anybody notice that car
manufacturers use LX for their luxury versions ? When you get to be LX there is a lot of experience
you can take advantage of and enjoy it.

You have made so many great contributions, which one do you think had the greatest
impact 7 Which one are you most proud of ?

The IMM (which is really not mine — it was invented by Henk Blom).

In tracking and data fusion area, what topics do you think are most important 7 What
is the future of the area?

Find practical and efficient algorithms that fuse kinematic and feature data from improperly re-
gistered moving sensors (with biases, finite resolution, strange noises) about a large number of
hard-to-describe nonstationary targets in a heterogeneous cluttered environment. Predictions are

hard (especially about the future) but I believe the future is bright (technically) for this area.

Have you instilled upon your students any bad habits 7

(a) To drive fast.

(b) To have high standards in reviewing papers (which, as journal editors, they applied to me. . .)
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(¢) To charge properly when they consult (some companies think this is a bad habit).

12. Do you have some funny stories to tell us?

One day, in the heat of advising a Ph.D. student on an interesting problem, I emptied my pipe
into the trash can behind me and after a couple of minutes I felt an unusual heat in my back — the

papers in the can were on fire. Turning the can upside down solved this problem.

9.2.7 About Your Leisure

Let us talk now about your leisure. Almost all your close friends and colleagues know
you love good wine and very spicy food. Where does this desire come from ? Do you
cook yourself during your leisure time, and if so what is your favorite recipe ?
Oenology was one my sabbatical projects. The desire for spicy food probably comes from growing
up with a rather mild style of cooking. Blackened catfish is a favorite.

We think that your ability to stomach hot food exceeds that of anyone I know. Who
else is in your league when it comes to chili peppers ?

A former student (from a famous spice country) survived Salsa Fuego at Denver International
Airport (with only a major stomach upset) after it floored me.

You like exotic food a lot. What is your favorite cuisine ?

I am on a seefood diet — I eat every food I see.

. Your other passion is sailing, and you are a good sailor according to people who have

already gone for a sail with you (and who are usually not so familiar with sailing). When
did you learn sailing and where ? Have you ever participated in a sailing competition ?
What is your worst memory of sailing ? What kind of sailing boat do you have/prefer
(old ones or high-tech ones) ?

At the 1979 IT Symposium in Italy Judea Pearl (from UCLA) suggested that we go sailing (he said
he’ll show me) and after we found a boat (in what was Yugoslavia at the time) he gave me the 5
minute lesson and jumped in the water to take a closer look at some topless girls. I managed to
circle for a while and pick him up eventually. Two weeks after that I bought my first sailboat. It
took 20 years to get the second one.

The highest tech boat I sailed on is the America’s Cup winner Stars and Stripes — I did not sail in
the Cup, only in the St. Martin 12m regatta where I qualified as a lowly crew.

I have no bad memories of sailing, just difficulty in communicating with a green crew. I am still
learning how to do this more efficiently. The closest I got to a rock was under the Golden Gate

Bridge when my crew were looking backwards and when I said “release right sheet” the port (left)
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sheet was released. Since then I use only sailing terminology, to the dismay of my (sometimes green)
Crew.

You have been sailing all over the world ; where is your favorite place and why ?

San Francisco — they have every afternoon in summer a small craft warning.

During the winter you love skiing. Are you a very reckless skier 7 What kind of skiing
do you prefer ?

I had many days when I took no spills, so I am probably not reckless enough. I prefer downhill
skiing because, as a lazy person, I would rather let nature (gravity in this case) do most of the
work.

What other sports do you take part in ?

Sometimes I let some of my young (quadrigenarian) colleagues beat me at tennis.

How do you spend your leisure time when you aren’t on a boat or skiing ?

Reading National Geographic or a good book and listening to classical music.

How many weeks of vacation do you take on average per year ? During this time, does
your mind succeed fully to leave the tracking area?

Two official weeks. The rest depends on how many weeks I attend conferences in a year. Since I am
out of control, I cannot control my mind either.

How would you characterize your driving : like sailing, adventurous, fast (I mean really
fast) or just normal ?

Very sedate. I always obey the old (pre 1974) Montana speed limit (“reasonable and proper”).

Any tips if one is caught speeding on the highway and is about to get a ticket ?

Say you were rushing to the nearest exit to find a bathroom, then ask the cop if he minds if you go

to the second nearest tree while he writes the ticket.

At one time, you tried to learn how to fly, but some accident happened. What is the
story ?

I learned what the propeller steering torque can do (in a souped-up Cessna 152) in the same way
as the Admiral who was the boss at the Naval Postgraduate School (a former fighter pilot) at the
time. If you do not apply enough left rudder control at take-off, it can take you off the runway
(sideways, not up). Actually this happened before I got my license. After I got the license in 1984,
I flew for two years, then I decided that I am too dangerous to those around me, so I stopped.
Given that you are color-blind, how do you manage the traffic lights ?

Except for one notorious horizontal light in Princeton, NJ, they usually have the red at the top.

However, I heard that during the Cultural Revolution, red was for “go” in China. I like to drive in

some of the European countries where traffic light rules are considered merely an opinion.
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14. You have been in many places of the world, which place do you like best ?
The charming places (can’t offend anyone).

15. Do you like to travel and to visit foreign countries as a simple tourist rather than
bringing with you your professional hat ?

I don’t need my professional hat anymore — a virtual one is glued on all the time.

9.2.8 About Your Retirement

1. How many more years do you plan to teach ?
Until I get tired or run out of good students, whichever comes first. I am not yet ready for maturity
leave. I am not yet started to play golf.

2. Do you accept well the idea of your retirement ? How and where will you spend your
free time 7 Sailing in Florida ?

The Caribbean is more interesting.

9.2.9 More Difficult Questions

1. Have you any regret about the choice of your career 7 Maybe you’d have preferred to

become a great Captain sailing all around the world ?
There is much more satisfaction in getting together with people like you — my colleagues — than
being all the time on the ocean.

2. Have you ever thought to leave and give up this research area for something else ?
When I grow up I'll figure out what I want to be.

3. If you’d have only one paper to keep and you consider as your major contribution,
which paper would it be?
The Maximum Likelihood PDA and CRLB-in-clutter paper, because they are exact.

4. What is your own philosophy of life ?

Enjoy it while you can. As I told a friend who recently became a quadrigenarian, after 40 it’s all

downhill but, like in skiing, with a lot of thrill.
The other one is : Illegitimi non carborundum.

5. Any advice for all future young researchers willing to work in this area ?
Be thorough in your work and honest in presenting the results.

6. Do you have anything that you would do differently if given another chance ?

T’ll let you know next time.
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7. You used to have a beard some 20 year ago. When and why did you decide to change ?
It was gray and I still did not get no respect. ..

8. If you have to do your Ph.D. all over again, what will it be on? What would you do
differently this time ?
I don’t think I could easily do a piece of work worth a Ph.D. these days.

9. Which important questions do we miss ?
1. Do you take yourself seriously ? NO!

2. What is your pet peeve? Pharisaic janiform coprocephalocratic academic administrators (they

don’t understand this anyway).
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