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Copyright c©1998-2003 by Jean Dezert





About the author . . .

Jean Dezert was born in l’Hay les Roses, France in 1962. He received the electrical enginee-

ring degree from the Ecole Française de Radioélectricité Electronique and Informatique

(EFREI), Paris in 1985, the D.E.A. degree in 1986 from University Paris VII (Jussieu)

and his Ph.D. from University Paris XI , Orsay, in 1990, all in Automatic Control and

Signal Processing. During 1986-1990 he was with the Systems Department at the French

National Establishment for Aerospace Research (ONERA), Châtillon, France and did

research in tracking. During 1991-1992, he visited the Department of Electrical and Sys-

tems Engineering, University of Connecticut, Storrs, as an European Space Agency (ESA)

Postdoctoral Research Fellow. During 1992-1993 he was a teaching assistant in Electrical
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Introduction

Ce cours a pour objectif de présenter les principaux algorithmes de pistage développés

depuis une vingtaine d’années et les techniques de base de fusion multi-senseurs. On

suppose ici le lecteur déjà familiarisé avec la théorie des probabilités [Kol50, Pap84],

l’algèbre matricielle [Bel60, Ste71] et les bases de la théorie des systèmes et de l’estimation

[Bro69, FH77, Lue79, Fav82]. Les ouvrages de base sur lesquels est fondé ce cours sont

les suivants :

– C.A. Bozzo,”Le Filtrage Optimal et ses Applications aux Problèmes de

Poursuite”, (3 volumes),Diffusion Librairies Lavoisier, 11 Rue Lavoisier, Paris, 1983.

– Y. Bar-Shalom and T. Fortmann, ”Tracking and Data Association”, Academic

Press, 1988.

– Y. Bar-Shalom and X.R. Li,”Estimation and Tracking : Principles,Techniques,

and Software”, Artech House,1993

– Y. Bar-Shalom and X.R. Li,”Multitarget-Multisensor Tracking : Principles

and Techniques”, YBS Publishing, Storrs, CT, 1995.

Tous les acronymes utilisés dans ce cours correspondent aux termes anglo-saxons pour

familiariser le lecteur à la terminologie américaine du domaine.





Chapitre 1

Estimation d’un système dynamique

Ce chapitre présente brièvement le principe du filtrage de Kalman (KF - Kalman Filter) pour estimer

l’état d’un système linéaire stochastique et le filtre de Kalman étendu (EKF Extended Kalman Filter)

pour le cas des systèmes (faiblement) non linéaires. Nous ne détaillons pas ici les démonstrations qui

aboutissent aux équations des filtres car ceci a déjà été présenté en [Dez93] et fait l’objet du complément

de ce cours. De nombreux ouvrages existent sur le filtrage de Kalman, ses extensions et ses applications.

On citera par exemple les ouvrages de base [Med69, Jaz70, SM71, Bie77, BDA79, BH92, BSL93].

1.1 Représentation d’état d’un système dynamique

Le filtrage de Kalman est un algorithme permettant d’estimer l’état x(k) d’un système à temps discret

(ici supposé linaire) stochastique modélisé par les équations de dynamique et d’observation suivantes :

x(k + 1) = F(k)x(k) + v(k) (1.1)

z(k) = H(k)x(k) + w(k) (1.2)

x(k) est l’état du système. C’est un vecteur de dimension minimale permettant de décrire le compor-

tement du système. F(k) est la matrice de transition d’état caractérisant l’évolution du système. v(k)

est un vecteur de bruit d’état dont les propriétés statistiques (moyenne, covariance) caractérisent notre

méconnaissance sur le système réel physique auquel on s’intéresse. z(k) est l’observation du système ob-

tenue au travers d’un senseur d’observation. L’ensemble de toutes les observations depuis l’instant initial

jusqu’à l’instant k est noté Zk. H(k) est la matrice d’observation de l’état du système. w(k) est un bruit

d’observation lié à la qualité du senseur utilisé. Les vecteurs et matrices ont bien entendu des dimensions

compatibles.

1
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Pour simplifier, on suppose ici que les bruits v(k) et w(k) sont des bruits blancs gaussiens et centrés

(E[v(k)] = 0 et E[w(k)] = 0) de covariances respectives Q(k) et R(k) connues. Les matrices F(k) et

H(k) sont également connues (pas de problème d’identification du modèle). On suppose que les bruits v

et w sont non corrélés avec l’état initial x(0) du système. On peut alors montrer que le système précédent

est un système linéaire gaussien-markovien.

Le problème à résoudre consiste à estimer x(k) à partir des mesures Zk et de préférence d’une manière

récursive pour éviter le stockage croissant de Zk. Le filtre de Kalman permet de construire la solution à

ce problème, c.à.d. calculer récursivement

x̂(k|k) = E[x(k)|Zk ] (1.3)

P(k|k) = E[(x(k) − x̂(k|k))(x(k) − x̂(k|k))′|Zk] (1.4)

1.2 Filtre de Kalman

Plusieurs voies sont possibles pour établir les équations du filtre ; on peut chercher

1. l’estimateur à variance minimale

2. l’estimateur qui maximise la probabilité a posteriori de x(k) sachant Zk

3. l’estimateur qui maximise la vraisemblance de x(k)

4. la solution linéaire récursive au problème des moindres carrés pondérés [Fav82]

Sous les hypothèses gaussiennes et pour un système linéaire, on peut montrer que toutes ces approches

conduisent aux même équations. Ce sont les équations du filtrage optimal de Kalman [KB61]. Ce filtre

est le meilleur filtre récursif (à variance minimale et non biaisé) dans la classe des filtres linéaires. Il n’est

cependant pas optimal dans le cas des modèles non linéaires. En pratique cependant, on utilise souvent

une variante du filtre appelée Filtre de Kalman étendu. Ce filtre a révolutionné le domaine de la théorie

de l’estimation dans les années soixante et est à la base de nombreux systèmes de guidage et de poursuite

en aéronautique. Il reste la base de la plupart des algorithmes de poursuite ici présentés.
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1.2.1 Equations du filtre de Kalman

Les équations du filtre de Kalman sont données par :

ẑ(k|k−1) = H(k)x̂(k|k−1) (1.5)

z̃(k|k−1) = z(k) − ẑ(k|k−1) (1.6)

S(k) = H(k)P(k|k−1)H(k)′ + R(k) (1.7)

K(k) = P(k|k−1)H(k)′S(k)
−1

(1.8)

Partie correction du filtre

x̂(k|k) = x̂(k|k−1) + K(k)z̃(k|k−1) (1.9)

P(k|k) = [I−K(k)H(k)]P(k|k−1) (1.10)

Partie prédiction du filtre

x̂(k + 1|k) = Fx̂(k|k) (1.11)

P(k + 1|k) = F(k)P(k|k)F(k)′ + Q(k) (1.12)

La matrice K(k) est appelée gain de Kalman et z̃(k|k−1) l’innovation du filtre. Cette innovation est

un bruit blanc centré de covariance S(k). L’initialisation peut se faire en choisissant x̂(0|0), P(0|0),

en supposant p(x(0)) ∼ N (x̂(0|0),P(0|0)) et entrant directement à l’étape de prédiction du filtre. En

simulations, on pourra utiliser la technique de Birmiwal présentée dans le dernier chapitre de ce cours

pour obtenir x̂(0|0) et P(0|0)).

1.2.2 Equations du filtre de Kalman étendu d’ordre 1

Le filtrage de Kalman étendu permet d’estimer (pas toujours . . . ) l’état des systèmes stochastiques

non linéaires du type

x(k + 1) = f [x(k), k] + v(k) (1.13)

z(k) = h[x(k), k] + w(k) (1.14)

Les équations du filtre de Kalman étendu (EKF) sont alors obtenues en linéarisant (au premier ordre)

les équations du système autour de l’état prédit et estimé. On obtient

ẑ(k|k−1) = h[x̂(k|k−1), k] (1.15)

z̃(k|k−1) = z(k) − ẑ(k|k−1) (1.16)

S(k) = H(k)P(k|k−1)H(k)′ + R(k) (1.17)

K(k) = P(k|k−1)H(k)′S(k)
−1

(1.18)
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Partie correction du filtre

x̂(k|k) = x̂(k|k−1) + K(k)z̃(k|k−1) (1.19)

P(k|k) = [I−K(k)H(k)]P(k|k−1) (1.20)

Partie prédiction du filtre

x̂(k + 1|k) = f [x̂(k|k), k] (1.21)

P(k + 1|k) = F(k)P(k|k)F(k)′ + Q(k) (1.22)

avec

R(k) = E[w(k)w(k)′] (1.23)

F(k) =
[
∇f ′[x(k), k]

]′
x=x̂(k|k)

(1.24)

H(k) =
[
∇h′[x(k), k]

]′
x=x̂(k|k−1)

(1.25)

F(k) et H(k) sont les matrices jacobiennes de f [.] et h[.] évaluées en l’état prédit par le filtre à l’étape

antérieure. Les performances du filtre dépendent de la qualité de l’adéquation entre le modèle non-

linéaire choisi et l’évolution réelle du système physique ; mais aussi du point de linéarisation choisi.

L’EKF est sensible à la qualité de son initialisation. Pour avoir des performances meilleures, on peut

utiliser une linéarisation au second ordre, ou mieux encore, un filtrage purement non-linéaire basé sur

d’autres techniques (filtrage particulaire par exemple) qui reste souvent plus délicat à mettre en œuvre.

z̃ est appelée innovation du filtre et ∇ est l’opérateur classique de gradient.



1.2. FILTRE DE KALMAN 5

1.2.3 Un cycle du filtre de Kalman standard

Mise à jour

x̂(k + 1|k + 1) = x̂(k + 1|k) + K(k + 1)z̃(k + 1)

P(k + 1|k + 1) = [I − K(k + 1)H(k + 1)]S−1(k + 1)

Mesure faite en k + 1

z(k + 1)

Innovation

z̃(k + 1) = z(k + 1) − ẑ(k + 1|k)

Estimée de l’état

x̂(k|k),P(k|k)

Prédiction de l’état

x̂(k + 1|k) = F(k)x̂(k|k) + G(k)u(k)

P(k + 1|k) = F(k)P(k|k)F(k)′ + Q(k)

ẑ(k + 1|k) = H(k)x̂(k + 1|k)

S(k + 1) = H(k + 1)P(k + 1|k)H(k + 1)′ + R(k + 1)

K(k + 1) = P(k + 1|k)H(k + 1)′S−1(k + 1)

Evolution de l’état réel

x(k + 1) = F(k)x(k) + G(k)u(k) + v(k)

Etat réel

x(k)

Commande

u(k)

-

-

? ?

?

?

?

?

Fig. 1.1 – Cycle complet du filtre de Kalman
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1.2.4 Un cycle du filtre de Kalman étendu

Fig. 1.2 – Cycle complet du filtre de Kalman étendu



Chapitre 2

Modèles cinématiques des cibles

Nous présentons dans ce chapitre quelques modèles simples d’évolution cinématique de cibles

[BSF88, BSL93]. Ces modèles peuvent être facilement utilisés dans les simulations pour tester les différents

algorithmes de pistage qui vont être présentés. Des modèles plus sophistiqués peuvent être par exemple

trouvés en [Sin70, Bar90b, BHvD92, Nab97].

Les filtres de poursuite sont des méthodes numériques qui nécessitent l’emploi de calculateurs. Les

modèles de dynamique des cibles doivent donc être formulés par des équations discrètes pour permettre

leur simulation sur calculateur. En pratique, on peut soit partir des équations (différentielles) continues

d’évolution de la cible que l’on discrétisera ; ou bien modéliser directement sous forme discrète l’évolution

des cibles. La première approche est bien sûre plus satisfaisante puisqu’elle repose sur la nature physique

du phénomène à observer et à pister. La seconde approche est généralement adoptée en simulations.

2.1 Modèles continus discrétisés

2.1.1 Modèle à vitesse quasi-constante

Un objet en mouvement rectiligne uniforme (MRU) (à vitesse constante), est caractérisé par

une accélération nulle sur chacune de ses coordonnées x, y ou z. Pour synthétiser cette présentation,

on notera ξ la coordonnée générique qui peut soit désigner x, y ou z. On a donc

ξ̈(t) = 0 (2.1)

En l’absence de bruits perturbateurs sur l’accélération, la position ξ(t) est une fonction polynomiale

(d’ordre 2) du temps t. En pratique, la vitesse de l’objet n’est jamais parfaitement constante. En première

approximation pour simplifier, on modélise généralement ces changements de vitesse par un bruit

continu d’accélération ṽ(t) que l’on suppose centré et de variance q̃(t). Ainsi un modèle réaliste de

7
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cible évoluant à vitesse quasi-constante est décrit par

ξ̈(t) = ṽ(t) (2.2)

avec E[ṽ(t)] = 0 et E[ṽ(τ)ṽ(t)] = q̃(t)δ(t− τ).

Le vecteur d’état x(t) relatif à la composante générique ξ(t) s’écrit

x(t) =




ξ(t)

ξ̇(t)



 (2.3)

L’évolution de l’état de la cible est alors représentée par l’équation différentielle suivante

ẋ(t) = Ax(t) + Bṽ(t) =




0 1

0 0



x(t) +




0

1



 ṽ(t) (2.4)

La vitesse ξ̇(t) est donc l’intégrale d’un bruit blanc. C’est par définition un processus de Wiener.

La discrétisation [Dez93] de cette équation pour une période T donnée conduit à

x(k + 1) = Fx(k) + v(k) (2.5)

avec

F = eAT =




1 T

0 1



 (2.6)

et le bruit discrétisé s’exprimant

v(k) =

∫ T

0

eAT Bṽ(kT + τ)dτ (2.7)

En supposant q̃ constant durant la période déchantillonnage T , la matrice de covariance Q(k)

du bruit d’état discrétisé vaudra

Q(k) = E[v(k)v′(k)] =

∫ T

0




T − τ

1



 [(T − τ) 1]q̃dτ = q̃





1
3T

3 1
2T

2

1
2T

2 T



 (2.8)

Pour assurer une trajectoire à vitesse quasi-constante, il faudra avoir un niveau de bruit q̃ relativement

faible (i.e. les variations de la vitesse doivent être petite par rapport à la valeur de la vitesse).

2.1.2 Modèle à accélération quasi-constante

Un objet en accélération constante est caractérisé par un jerk nul. Le jerk étant par définition la

dérivée de l’accélération. On a donc maintenant

...
ξ (t) = 0 (2.9)
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En l’absence de bruit perturbateur sur l’accélération, la position ξ(t) est une fonction polynomiale (d’ordre

3) du temps t. En pratique, l’accélération de l’objet n’est jamais parfaitement constante mais présente des

fluctuations. En première approximation pour simplifier, on modélise ces fluctuations par un bruit

continu de jerk ṽ(t) que l’on suppose centré et de variance q̃(t). Ainsi un modèle réaliste de cible

évoluant à accélération quasi-constante est décrit par

...
ξ (t) = ṽ(t) (2.10)

avec E[ṽ(t)] = 0 et E[ṽ(τ)ṽ(t)] = q̃(t)δ(t− τ).

Le vecteur d’état x(t) relatif à la composante générique ξ(t) s’écrit maintenant

x(t) =








ξ(t)

ξ̇(t)

ξ̈(t)








(2.11)

L’évolution de l’état de la cible est alors représentée par l’équation différentielle suivante

ẋ(t) = Ax(t) + Bṽ(t) =








0 1 0

0 0 1

0 0 0








x(t) +








0

0

1







ṽ(t) (2.12)

L’accélération ξ̈(t) est alors un processus de Wiener.

D’autres modélisations plus sophistiquées sont possibles. On peut par exemple prendre un bruit de

jerk coloré ayant une fonction d’autocorrélation à décroissance exponentielle (modèle de Singer).

La discrétisation [Dez93] de la relation (2.12) pour une période T donnée conduit à

x(k + 1) = Fx(k) + v(k) (2.13)

avec

F = eAT =








1 T 1
2T

2

0 1 T

0 0 1








(2.14)

où l’expression de v(k) reste la même que la précédente (cf (2.7)). En supposant q̃ constant durant

la période déchantillonnage T , la matrice de covariance Q(k) du bruit d’état discrétisé vaudra
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maintenant

Q(k) = E[v(k)v′(k)] = q̃








1
20T

5 1
8T

4 1
6T

3

1
8T

4 1
3T

3 1
2T

2

1
6T

3 1
2T

2 T








(2.15)

Pour assurer une trajectoire à accélération quasi-constante, il faudra avoir un niveau de bruit q̃

relativement faible (i.e. les variations de l’accélération doivent être petites par rapport à la valeur de

l’accélération).

2.2 Modèles discrets

Nous explicitons ici directement les équations discrètes des mouvements à vitesse et/ou accélération

quasi-constante. Dans ce cas, le bruit d’état v(k) est modélisé comme un bruit blanc centré discret

de variance donnée

E[vkvj ] = σ2
vδkj (2.16)

L’équation discrète d’évolution de l’état pour les mouvements à vitesse et/ou accélération quasi-

constante (pour une coordonnée générique x, y ou z) est de la forme générale (on suppose ici qu’il n’y a

pas de commande déterministe supplémentaire u(k) = 0)

x(k + 1) = Fx(k) + Γv(k) (2.17)

où Γ est une matrice de gain agissant sur le bruit discret.

2.2.1 Modèle cinématique discret à vitesse quasi-constante

Quand le bruit discret d’accélération v(k) est constant durant la période de discrétisation allant

de kT à (k + 1)T , l’incrément de la vitesse sur ξ̇(k) vaut v(k)T , et l’incrément sur la position ξ(k) vaut

1
2v(k)T

2. Par conséquent, l’équation aux différences du vecteur d’état

x(k) =




ξ(t)

ξ̇(k)



 (2.18)

s’écrit

x(k + 1) = Fx(k) + Γv(k) (2.19)

avec

F =




1 T

0 1



 Γ =





1
2T

2

T



 (2.20)
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La matrice de covariance de Γv(k) vaudra

Q = E[Γv(k)v(k)Γ′] = Γσ2
vΓ

′ = σ2
v





1
4T

4 1
2T

3

1
2T

3 T 2



 (2.21)

Pour un mouvement en dimension 2 avec bruits de composantes découplés, on aura donc

x(k + 1) =











x(k + 1)

ẋ(k + 1)

y(k + 1)

ẏ(k + 1)











=











1 T 0 0

0 1 0 0

0 0 1 T

0 0 0 1











︸ ︷︷ ︸

F

x(k) +











1
2T

2 0

T 0

0 1
2T

2

0 T











︸ ︷︷ ︸

Γ

v(k) (2.22)

avec v(k) = [vx(k) vx(k)]′.

La covariance Q(k) s’écrira alors

Q = E[Γv(k)v′(k)Γ′] = ΓqvΓ
′ = Γ




σ2

vx
0

0 σ2
vy



Γ′ (2.23)

Quand la variance σ2
vx

≡ σ2
vy

du bruit de dynamique est faible, on obtient une trajectoire rectiligne quasi-

uniforme (mouvement rectiligne uniforme - MRU ou Constant Velocity model (CV)). L’extension au

cas 3D est immédiate.

En choisissant ce modèle discret avec un niveau du bruit d’état élevé, on peut arriver à pister des cibles

faiblement manœuvrantes. Il faut souligner que les résultats obtenus varieront avec la période de

discrétisation T utilisée.

2.2.2 Modèle cinématique discret à accélération quasi-constante

Quand le bruit discret v(k) polluant l’accélération est constant durant la période de discrétisation

allant de kT à (k + 1)T , l’équation aux différences du vecteur d’état s’exprime alors

x(k) =








ξ(t)

ξ̇(k)

ξ̈(k)








(2.24)

s’écrit

x(k + 1) = Fx(k) + Γv(k) (2.25)
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avec

F =








1 T 1
2T

2

0 1 T

0 0 1








Γ =








1
2T

2

T

1








(2.26)

La matrice de covariance de Γv(k) vaudra

Q = E[Γv(k)v(k)Γ′ ] = Γσ2
vΓ

′ = σ2
v








1
4T

4 1
2T

3 1
2T

2

1
2T

3 T 2 T

1
2T

2 T 1








(2.27)

Pour un mouvement en dimension 2 avec bruits de composantes découplés, on aura donc

x(k + 1) =


















x(k + 1)

ẋ(k + 1)

ẍ(k + 1)

y(k + 1)

ẏ(k + 1)

ÿ(k + 1)


















=


















1 T 1
2T

2 0 0 0

0 1 T 0 0 0

0 0 1 0 0 0

0 0 0 1 T 1
2T

2

0 0 0 0 1 T

0 0 0 0 0 1


















︸ ︷︷ ︸

F

x(k) +


















1
2T

2 0

T 0

1 0

0 1
2T

2

0 T

0 1


















︸ ︷︷ ︸

Γ

v(k) (2.28)

avec v(k) = [vx(k) vx(k)]′. Quand la variance σ2
vx

≡ σ2
vy

du bruit (discret) de dynamique est faible, on

obtient un mouvement à accélération quasi-constante. Ce modèle est adapté à la poursuite des cibles dans

les phases de manœuvre.

2.2.3 Modèle du virage coordonné

Le mouvement d’une cible exécutant un virage coordonné (i.e. à vitesse angulaire constante ω)

dans le plan (O, x, y) est caractérisé par les équations de mouvement suivantes

ẍ(t) = −ωẏ(t) ÿ(t) = ωẋ(t) (2.29)

Un virage dans le sens horaire (à droite) est obtenu lorsque ω < 0. Si ω > 0 alors le virage a lieu dans

le sens trigonométrique (à gauche).

• Quand ω est connu (cas des avions civils par exemple), on prend pour vecteur d’état

x(t) , [x(t) ẋ(t) y(t) ẏ(t)]′ (2.30)
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L’équation différentielle (non bruitée) du vecteur d’état s’écrit :

ẋ(t) =











0 1 0 0

0 0 0 −ω
0 0 0 1

0 ω 0 0











x(t) = Ax(t) (2.31)

La discrétisation de cette équation [Dez93] à la période d’échantillonnage T , conduit à l’équation

d’évolution non bruitée suivante

x(k + 1) = eAT x(k) =











1 sin ωT
ω 0 − 1−cos ωT

ω

0 cosωT 0 − sinωT

0 1−cos ωT
ω 1 sin ωT

ω

0 sinωT 0 cosωT











x(k) = F(k)x(k) (2.32)

En tenant compte des bruits d’états (supposés blancs, gaussiens et indépendants) sur les compo-

santes de vitesse, il vient finalement

x(k + 1) = Fx(k) + Γv(k) (2.33)

avec

Γ =











1
2T

2 0

T 0

0 1
2T

2

0 T











(2.34)

avec Q(k) = E[v(k)v(k)′] = σ2
v




1 0

0 1



.

• Quand ω est inconnu, on prend pour vecteur d’état

x(t) , [x(t) ẋ(t) y(t) ẏ(t) ω]′ (2.35)

L’équation différentielle (non bruitée) du vecteur d’état s’écrit :

ẋ(t) =















0 1 0 0 0

0 0 0 −ω 0

0 0 0 1 0

0 ω 0 0 0

0 0 0 0 0















x(t) = Ax(t) (2.36)

La discrétisation de cette équation [Dez93] à la période d’échantillonnage T , conduit maintenant à
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l’équation d’évolution non bruitée suivante

x(k + 1) = eAT x(k) =















1 sin ωT
ω 0 − 1−cosωT

ω 0

0 cosωT 0 − sinωT 0

0 1−cos ωT
ω 1 sin ωT

ω 0

0 sinωT 0 cosωT 0

0 0 0 0 1















x(k) = F(k)x(k) (2.37)

En tenant compte d’un bruit d’état v(k) sur les composantes de vitesses, on aura

x(k + 1) = F(k)x(k) + Γv(k) (2.38)

avec

Γ =















1
2T

2 0

T 0

0 1
2T

2

0 T

0 0















(2.39)

avec Q(k) = σ2
v




1 0

0 1



.

Dans ce cas la matrice F sera évaluée à chaque pas en utilisant la valeur estimée ω̂ à l’étape

antérieure du filtre.

2.3 Modèle de cible absente

Dans certains cas (pour la poursuite multi-modèle par exemple), il est parfois utile d’avoir un modèle

fictif décrivant l’absence de cible. Le plus simple est d’utiliser le modèle à vitesse constante mais en forçant

par ailleurs la probabilité de détection de la cible à zéro (Pd = 0).



Chapitre 3

Pistage mono-cible mono-senseur

3.1 Validation des mesures

Dans un environnement dégradé, à chaque instant k on dispose généralement d’un ensemble de mesures

délivrées par le senseur d’observation. Nous supposons ici que les cibles apparaissent ponctuelles au

niveau du senseur (la taille des cibles est inférieure à la cellule de résolution du senseur). Lorsqu’une cible

apparâıt simultanément dans plusieurs cellules du senseur, on dit que la cible est étendue. Le pistage de

cibles étendues non abordé ici, a déjà fait l’objet d’investigations en [Dez98].

Certaines de ces mesures (ponctuelles) proviennent des cibles (lorsqu’elles sont détectées) et d’autres

proviennent de bruits liés au récepteur (réglage des seuils), à l’environnement (trajets multiples, clut-

ter, etc) et/ou à des phénomènes intentionnels comme par exemple le leurrage ou les contre-mesures

électroniques (ECM - Electronic Counter Measures). Toutes les mesures ne provenant pas des cibles sont

considérées ici comme des fausses alarmes (FA).

Pour limiter le nombre de mesures à traiter, on utilise généralement une technique de sélection des

mesures appelée fenêtrage statistique ou test de validation T (z) (gating) [Sit64]. Pour chaque cible,

Le fenêtrage consiste à délimiter, à partir de la mesure prédite ẑ(k|k− 1) et de la covariance prédite S(k)

de l’erreur prédiction de mesure, un certain volume Vk de l’espace d’observation où la mesure de la cible

à une forte probabilité Pg de se trouver. Les mesures statistiquement trop éloignées de la mesure prédite

par le système de poursuite sont ainsi éliminées pour réduire le nombre de mesures à traiter au niveau

des algorithmes de pistage. Les mesures non rejetées par T (z) sont dites validées.

Pour construire le test de validation T (z(k)), on suppose que la mesure à tester z(k) provient de la

cible considérée et que la densité de probabilité de l’état x(k) de cette cible connaissant l’ensemble des

15
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mesures validées antérieures Zk−1 vérifie

p(x(k)|Zk−1) = N (x(k); x̂(k|k − 1),P(k|k − 1)) (3.1)

où N (x(k); x̂(k|k − 1),P(k|k − 1)) désigne la densité gaussienne de moyenne x̂(k|k − 1) et de covariance

P(k|k − 1). Les statistiques prédites x̂(k|k − 1) et P(k|k − 1) sont disponibles à l’instant k. Avec cette

hypothèse et si le modèle d’observation est linéaire du type

z(k) = H(k)x(k) + w(k) (3.2)

avec p(w(k)) = N (w(k); 0,R(k)), alors la densité de probabilité conditionnelle de la mesure de la cible

p(z(k)|Zk−1) s’écrit

p(z(k)|Zk−1) = N (z(k); ẑ(k|k − 1),S(k)) (3.3)

ou de manière équivalente

p(z̃(k)|Zk−1) = N (z̃(k); 0,S(k)) =
1

(2π)
nz/2√|S(k)|

e−
1
2 z̃(k)′S−1(k)z̃(k) (3.4)

avec

ẑ(k|k − 1) = H(k)x̂(k|k − 1) (3.5)

z̃(k) = z(k) − ẑ(k|k − 1) (3.6)

S(k) = H(k)P(k|k − 1)H(k)′ + R(k) (3.7)

3.1.1 Test de validation

Le test de validation s’obtient en imposant un seuil minimal à la densité de la mesure p(z(k)|Zk−1) ; d’où

le résultat

T (z(k)) =







1 si z̃(k)′S−1(k)z̃(k) ≤ γ z validée

0 si z̃(k)′S−1(k)z̃(k) > γ z rejetée

(3.8)

Le seuil de validation γ est fixé en choisissant la taille de la fenêtre de validation de telle sorte que la

probabilité de trouver la mesure correcte à l’intérieur de celle-ci soit égale à une valeur choisie Pg.

L’inégalité z̃(k)′S−1(k)z̃(k) ≤ γ définit un ellipsöıde dans l’espace d’observation. La distance au

carré εz(k) , z̃(k)′S−1(k)z̃(k) est aussi appelée distance de Mahalanobis ou carré de l’innovation

normalisée (NIS - Normalized Innovation Squared).

L’innovation z̃(k) étant une variable aléatoire gaussienne centrée de dimension nz, εz(k) est une

variable aléatoire qui suit une loi du χ2
nz

à nz degrés de libertés (cf théorème 1.4.1 de [Mui82]). La
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densité de probabilité de εz(k) s’exprime (cf [Pap84] p.187)

p(εz(k)) =







0 pour εz(k) < 0

1
2nz/2Γ(nz/2)

εz(k)
1
2 nz−1e−

1
2 εz(k) pour εz(k) ≥ 0

(3.9)

3.1.2 Probabilité de fenêtrage

La probabilité de validation Pg et le seuil de fenêtrage γ sont liés par la relation suivante

Pg = P{z(k) ∈ Vk} = P{χ2
nz

≤ γ} =

∫ γ

0

p(εz(k))dεz(k) =
1

2nz/2Γ(nz/2)

∫ γ

0

εnz/2−1
z eεz/2dεz (3.10)

Sous MatLab, le seuil γ peut être calculé par la commande Gamma_Threshold=chi2inv(Pg,nz);. L’el-

lipsöıde de validation Vk(γ) est mathématiquement défini comme

Vk(γ) , {z(k) tel que [z(k) − ẑ(k|k − 1)]′S−1(k)[z(k) − ẑ(k|k − 1)] ≤ γ} (3.11)

Les demi-axes de l’ellipsöıde (9.5) sont les racines carrées des termes diagonaux de la matrice γS(k). La

racine carrée g ,
√
γ est appelée nombre de sigma (d’écarts types) de la fenêtre de validation.

Souvent en pratique, on fixe Pg = 0.99. Voici quelques valeurs de seuil de fenêtrage :

Pg 0.995 0.990 0.975 0.950 0.900 0.750 0.500 0.250

nz = 1 7.88 6.63 5.02 3.84 2.71 1.32 0.455 0.102

nz = 2 10.6 9.21 7.38 5.99 4.61 2.77 1.39 0.575

nz = 3 12.8 11.3 9.35 7.81 6.25 4.11 2.37 1.21

nz = 4 14.9 13.3 11.1 9.49 7.78 5.39 3.36 1.92

Tab. 3.1 – Valeur du seuil γ en fonction de Pg et nz

3.1.3 Volume de la fenêtre de validation

Le volume Vk de l’ellipsöıde de validation des mesures est donné par

Vk = Cnz

√

|S(k)|γnz/2 (3.12)

où le coefficient Cnz vaut

Cnz =
πnz/2

Γ(nz

2 + 1)
=







πnz/2

(nz/2)! pour nz pair

2nz+1(nz+1/2)!
(nz+1)! π(nz−1)/2 pour nz impair

(3.13)
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Cette constante peut être obtenue sous MatLab par la commande Cnz=pi^(nz/2)/gamma(1+nz/2);Nous

donnons la valeur de Cnz pour nz = 1, . . . , 8

C1 = 2 C2 = π C3 = 4
3π C4 = 1

2π
2

C5 = 8
3π

2 C6 = 1
6π

3 C7 = 16
105π

3 C8 = 1
24π

4

3.1.4 Types de mesures utilisées

– Pour un radar : la distance r (range), le gisement a (azimuth ou bearing) et le site e (elevation).

Plus éventuellement la vitesse radiale ṙ et/ou les cosinus directeurs u et v de la direction de visée

du radar [Gué94].

– Pour un sonar passif : le gisement a et la fréquence f (quand le signal est à bande étroite) ou bien

la différence des temps de réception et d’émission (TDOA - Time Difference Of Arrival) et les

variations des fréquences.

– Pour les senseurs optiques : les angles entre deux lignes de visée ou cosinus directeurs

3.2 Filtre NNSF (<1970)

Le filtre NNSF (Nearest Neighbor Standard Filter) consiste à utiliser uniquement à chaque ins-

tant k la mesure validée z(k) la plus proche de la mesure prédite de la cible ẑ(k|k−1) pour mettre à

jour l’état de la piste. Le filtre de poursuite consiste généralement en un filtre de Kalman standard (KF)

ou étendu (EKF) selon le type de modèle utilisé.

La notion de proximité à la prédiction est basée sur la valeur de l’innovation normalisée (NIS) définie

par

εz(k) , [z(k) − ẑ(k|k − 1)]′S(k)−1[z(k) − ẑ(k|k − 1)] (3.14)

On choisit donc la mesure z(k) ∈ Z(k) telle que εz(k) soit minimale. Dans cette méthode, on suppose

que le choix de la mesure la plus proche correspond toujours au bon choix d’association mesure↔cible.

Le doute sur la validité d’un tel choix n’est pas pris en compte. Bien qu’extrêmement simple à mettre en

œuvre, cette méthode conduit à des performances très médiocres de pistage quand la densité des fausses

alarmes est importante. Elle est donc fortement déconseillée.

3.3 Filtre SNSF (<1970)

Le filtre SNSF (Strongest Neighbor Standard Filter) est une variante du filtre NNSF. L’idée

consiste non plus à utiliser à chaque instant k la mesure validée z(k) la plus proche de la mesure prédite

de la cible ẑ(k|k − 1) pour mettre à jour l’état de la piste, mais uniquement la mesure de plus forte
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intensité. Le filtre de poursuite consiste généralement en un filtre de Kalman standard (KF) ou étendu

(EKF) selon le type de modèle utilisé. Pour cela, on doit évidemment disposer de l’intensité des signaux

associés aux mesures validées. Ce type de filtre est encore souvent utilisé dans les systèmes Sonar.

Comme pour le NNSF, le SNSF utilise une heuristique d’association mesure↔cible. Le doute sur la

validité d’un tel choix n’est pas pris en compte et conduit là aussi à des performances très médiocres de

pistage quand la densité des fausses alarmes est importante.

Une version améliorée du SNSF appelée PSNF (Probabilistic Strongest Neighbor Filter) qui prend

en compte la probabilité d’association correcte de la mesure la plus forte a récemment été proposée en

[LZ96, LZ99].

3.4 Filtre PNNF (1971,1993)

Le filtre PNNF (Probabilistic Nearest Neighbor Filter) consiste à utiliser uniquement à chaque

instant k la mesure validée la plus proche (notée z?(k)) de la mesure prédite de la cible ẑ(k|k − 1) pour

mettre à jour l’état de la piste. La mesure choisie est cependant pondérée par sa probabilité

d’être correcte.

Cette idée fut initialement proposée en [SS71b, SS73] en utilisant la probabilité a priori de validité

de la mesure la plus proche.

L’introduction de la probabilité a posteriori de validité de la mesure la plus proche dans les

équations de mise à jour du filtre fut proposée d’abord en [JBS72] puis reprise récemment en [Li93,

LBS96b].

L’idée consiste à introduire les évènements suivants :

M0 : aucune mesure est validée (3.15)

MT : la mesure la plus proche de ẑ(k|k − 1) provient de la cible (3.16)

MF : la mesure la plus proche de ẑ(k|k − 1) provient d’une fausse alarme (3.17)

On montre [LBS96b] (sous les hypothèses d’indépendance des FA et de la mesure cible et d’un clutter

poissonien de densité λ) que la probabilité P{M0|Zk−1} de n’avoir aucune mesure validée est donnée par

P{M0|Zk−1} = (1 − PdPg)e
−λVk(γ) (3.18)
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La densité de probabilité de la mesure la plus proche quand elle provient de la cible est donnée par

pz?(z|MT ,Z
k−1) =

Pd

P{MT |Zk−1}e
−λVεzN (z; ẑ(k|k − 1),S(k))U(z;Vk(γ)) (3.19)

où Vk(γ) est la fenêtre de validation de seuil γ et U(z;Vk(γ)) est la fonction échelon unitaire définie

comme

U(z;Vk(γ)) =







1 si z ∈ Vk(γ)

0 sinon

(3.20)

Vεz est le volume de validation de seuil
√
εz. La probabilité d’association correcte P{MT |Zk−1} est donnée

par

P{MT |Zk−1} =
Pd

2nz/2Γ(nz/2)

∫ γ

0

εnz/2−1e−λVε−ε/2dε ≤ PdPg (3.21)

La densité pz?(z|MT ,Z
k−1) n’est pas gaussienne mais seulement elliptiquement symétrique [FKN90].

C’est à dire,

pz?(z|MT ,Z
k−1) = p(εz|MT ,Z

k−1) (3.22)

Elle est gaussienne uniquement dans le cas particulier où nz = 2. Son expression est donnée en [LBS96b].

On montre que l’on a

pεz?
(ε|MT ,Z

k−1) =
Pd

P{MT |Zk−1}
nzVε

2ε

e−ε/2

√

|2πS(k)|
e−λVεU(ε; (0; γ]) (3.23)

La densité de probabilité de la mesure la plus proche quand c’est une fausse alarme est donnée par

pz?(z|MF ,Z
k−1) =

λe−λVε

P{MF |Zk−1} [1 − PdP{χ2
nz

≤ ε}]U(ε; (0; γ]) (3.24)

avec

P{χ2
nz

≤ ε} =

∫ ε

0

unz/2−1e−u/2

2nz/2Γ(nz/2)
du (3.25)

La densité pεz?
(ε|MF ,Z

k−1) de la NIS εz? la plus proche s’exprime alors comme

pεz?
(ε|MF ,Z

k−1) =
nzVε

2ε

λe−λVε

P{MF |Zk−1} [1 − PdP{χ2
nz

≤ ε}]U(ε; (0; γ]) (3.26)

La probabilité d’association incorrecte P{MF } est donnée par

P{MF |Zk−1} =
nzλ

2

∫ γ

0

Vεe
−λVε

ε
[1 − PdP{χ2

nz
≤ ε}]dε = 1 − (1 − PdPg)e

−λVk(γ) − P{MT |Zk−1}

où Pg est la probabilité du fenêtrage définie en (9.6).
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Le calcul des probabilités P{MT |Zk−1} et P{MF |Zk−1} nécessite l’utilisation de méthodes numériques

d’intégration. Dans le cas particulier où nz = 2 et en utilisant le fait que Pg = 1− eγ/2, on dispose d’une

expression analytique de ces probabilités.

P{MF |Zk−1} = (1 − Pd)(1 − e−bγ) + Pd
b

a
(1 − e−aγ) (3.27)

P{MT |Zk−1} = Pd
1

2a
(1 − e−aγ) (3.28)

avec b , λCnz

√

|S(k)| et a , b+ 1
2 .

Quand la densité λ du clutter tend vers 0 (environnement clair), on a

lim
λ→0

P{M0|Zk−1} = 1 − PdPg (3.29)

lim
λ→0

P{MT |Zk−1} = PdPg (3.30)

lim
λ→0

P{MF |Zk−1} = 0 (3.31)

L’estimateur PNNF est alors donné par la règle des probabilités totales conditionnellement aux évènements

M0, M1 ≡MF et M2 ≡MT . Autrement dit,

x̂(k|k) =
2∑

i=0

P{Mi(k)|Zk}E[x(k)|Zk ,Mi(k)] =
2∑

i=0

βi(k)x̂
i(k|k) (3.32)

Pour i = 0, x̂0(k|k) est donné par x̂0(k|k) = x̂(k|k− 1). Pour i = 1, 2, on utilise l’équation de mise à jour

de Kalman

x̂i(k|k) = x̂(k|k−1) + K(k)z̃i(k) (3.33)

avec z̃1(k) ≡ z̃2(k) , z?(k) − ẑ(k|k − 1). Le calcul des βi(k) , P{Mi(k)|Zk} est obtenu de la manière

suivante

βi(k) , P{Mi(k)|Zk} = P{Mi(k)|z? = z(k),Zk−1} =
1

c
pz?(z(k)|Mi(k),Z

k−1)P{Mi(k)|Zk−1} (3.34)

où c est une constante de normalisation assurant
∑2

i=0 βi(k) = 1. L’expression des probabilités a priori

P{Mi(k)|Zk−1} et a posteriori pz?(z(k)|Mi(k),Z
k−1) ≡ pεz?

(ε|Mi(k),Z
k−1) vient d’être présentée (en

prenant dans le cas M0(k), la densité dégénérée pz?(∅|M0(k),Z
k−1) ≡ 1).

La forme globale de l’estimateur x̂(k|k) et de sa covariance associée P(k|k) est la même que celle

du PDAF classique et ne sera pas répétée ici. La prédiction des performances de ce type de filtre par

la méthode CMC-HYCA (Current-Mode-Conditional HYbrid Conditional Averaging) est présentée en

détail en [LBS96b].
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3.5 Filtre bayésien optimal (1974)

Nous décrivons ici le principe du filtre de bayésien optimal (FBO) pour la poursuite d’une cible unique

dans un environnement dégradé par des fausses alarmes. Ce filtre a été présenté en 1974 par Singer, Sea

et Housewright [SSH74]. L’idée de base est d’utiliser toutes les mesures disponibles Zk depuis l’instant

initial jusqu’à l’instant courant k.

On définit une séquence particulière possible (indexée par l) comme un ensemble consécutif de mesures

prises depuis l’instant initial jusqu’à l’instant k. Mathématiquement, on la désignera par

Zk,l , {zil
(1), . . . , zil

(k)} ∈ Zk (3.35)

Cette séquence est en fait constituée d’une séquence particulière antérieure notée Zk−1,s et de la

mesure zil
(k). Ce qui peut s’écrire

Zk,l = {Zk−1,s, zil
(k)} (3.36)

Le nombre total possible de séquences de mesures que l’on peut ainsi construire au temps k est Nk avec

Nk =
k∏

j=1

(mj + 1) (3.37)

où mj est le nombre de mesures validées à l’instant j. Le rajout de la constante 1 permet de prendre

en compte l’hypothèse selon laquelle aucune des mesures validées à un instant j donné ne provient de

la cible pistée. On désigne par mk le vecteur dont les composantes représentent le nombre de mesures

validées à chaque instant, i.e.

mk , [m1 . . .mk]
′

(3.38)

Pour construire l’estimateur bayésien optimal, il nous faut pouvoir évaluer la probabilité conditionnelle

(c.à.d sachant les mesures disponibles Zk et mk) de réalisation de chaque séquence possible Zk,l que l’on

note θl(k). En d’autres termes, on doit évaluer les probabilités

βl(k) , P{θl(k)|Zk,mk} pour l = 1, . . . , Nk (3.39)

3.5.1 Forme de l’estimateur optimal

En supposant ces probabilités disponibles, l’estimateur bayésien optimal s’écrit

x̂(k|k) = E[x(k)|Zk ,mk] =

Nk∑

l=1

βl(k)x̂l(k|k) (3.40)

où x̂l(k|k) = E[x(k)|Zk,l,mk] est l’estimée conditionnée par la réalisation possible de Zk,l et de mk.

Compte tenu de la décomposition (3.36), on aura

x̂l(k|k) = x̂s(k|k − 1) + Kl(k)[zil
(k) − ẑs(k|k − 1)] (3.41)
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ẑs(k|k − 1) est la mesure prédite à partir de la séquence Zk−1,s ayant pour covariance Ss(k). Le gain

Kl(k) vaut

Kl(k) = Ps(k|k − 1)H(k)[Ss(k)]
−1

(3.42)

La covariance conditionnelle Pl(k|k) associée à x̂l(k|k) s’écrit

Pl(k|k) = E[(x(k) − x̂l(k|k))(x(k) − x̂l(k|k))′|θl(k),Zk ,mk] = [I −Kl(k)H(k)]Ps(k|k − 1) (3.43)

La covariance associée à x̂(k|k) s’écrit

P(k|k) =

Nk∑

l=1

βl(k)Pl(k|k) +

Nk∑

l=1

βl(k)x̂l(k|k)x̂l′ (k|k) − x̂(k|k)x̂′(k|k) (3.44)

3.5.2 Expression des probabilités

On veut calculer pour l = 1, . . . , Nk

βl(k) , P{θl(k)|Zk,mk} = P{θil
(k), θs(k − 1)|Z(k),mk ,Z

k−1,mk−1} (3.45)

On utilisant la règle de Bayes, on a

βl(k) =
1

c
p[Z(k)|θil

(k),mk, θ
s(k − 1),Zk−1,mk−1]P{θil

(k)|mk , θ
s(k − 1),Zk−1,mk−1}βs(k − 1) (3.46)

où c est une constante de normalisation. Les probabilités intervenant dans le calcul de β l(k) s’expriment

p[Z(k)|θil
(k),mk, θ

s(k − 1),Zk−1,mk−1] =







V −mk+1
k Pg

−1N (zil
(k); ẑs(k|k − 1),Ss(k)), il 6= 0

V −mk

k , il = 0

P{θil
(k)|mk, θ

s(k − 1),Zk−1,mk−1} = P{θil
(k)|mk} =







1
mk
PgPd × C, il 6= 0

(1 − PgPd) µF (mk)
µF (mk−1) × C, il = 0

avec

C =
[

PgPd + (1 − PgPd)
µF (mk)

µF (mk − 1)

]−1

3.5.3 Inconvénient du FBO

Bien qu’optimal du point de vue théorique, ce filtre reste inexploitable en pratique car le nombre de

séquences à gérer crôıt exponentiellement au cours du temps. La mémoire nécessaire à la mise en œuvre

du FBO augmente donc de manière exponentielle au cours du temps.

3.5.4 Algorithmes sous-optimaux

D’un point de vue pratique, on est donc amené à envisager des algorithmes sous-optimaux afin de

limiter le nombre de séquences à gérer pour avoir une capacité mémoire constante au cours du temps.
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Plusieurs méthodes sous-optimales existent. Leur présentation fait l’objet des paragraphes suivants. L’idée

consiste soit à éliminer les séquences les moins vraisemblables (approche du Track Split Filter), soit à

recombiner les pistes partageant la même séquence durant les N coups (scans) précédents. Dans ce cas,

le nombre moyen de séquences utilisées est de l’ordre de

N̄h =

k∏

i=k−N

(1 +E[mi])

L’algorithme du PDAF de Bar-Shalom correspond au cas le plus simple où N = 0.

3.6 Approche bayésienne du PDAF (1975)

On désigne par Z(k) l’ensemble des mesures validées à l’instant k selon le test de validation présenté

en 3.1

Z(k) , {z(k) tel que z̃′(k)S(k)−1z̃(k) 6 γ} (3.47)

Soit mk le nombre total d’échos validés à l’instant k. En supposant la cible perceptible par le senseur, il

existe alors mk + 1 hypothèses d’association possibles concernant l’origine des mesures. Ces hypothèses

sont caractérisées par les évènements

θ0(k) : Aucun écho ne provient de la cible à l’instant k

θi(k) : Le ième écho provient de la cible à l’instant k

3.6.1 Forme de l’estimateur

L’estimateur PDAF classique [BST73, BST75, BSF88] est donné par la moyenne conditionnelle basée sur

l’ensemble des mesures validées depuis l’instant initial jusqu’à l’instant k que l’on note Zk. L’estimateur

optimal x̂(k|k) , E[x(k)|Zk ] (au sens de la minimisation de la variance d’erreur d’estimation) s’écrit

donc, compte tenu du caractère exclusif et exhaustif des hypothèses :

x̂(k|k) =

mk∑

i=0

P{θi(k)|Zk}E[x(k)|Zk , θi(k)] =

mk∑

i=0

βi(k)x̂i(k|k) (3.48)

avec βi(k) , P{θi(k)|Zk} et x̂i(k|k) pour i 6= 0 et x̂0(k|k) donnés par

x̂i(k|k) = x̂(k|k−1) + K(k)z̃i(k) (3.49)

x̂0(k|k) = x̂(k|k−1) (3.50)

En utilisant (3.49) et (3.50) dans (3.48), il vient l’équation de mise à jour de l’état et de sa covariance

associée [BSF88]

x̂(k|k) = x̂(k|k−1) + K(k)

mk∑

i=1

βi(k)z̃i(k) (3.51)

P(k|k) = β0(k)P(k|k−1) +
(
1 − β0(k)

)
Pc(k) + P̃(k) (3.52)
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avec

Pc(k) = [I −K(k)H(k)]P(k|k − 1) (3.53)

P̃(k) = K(k)
[ mk∑

i=1

βi(k)z̃i(k)z̃
′
i(k) − z̃(k)z̃′(k)

]

K′(k) (3.54)

et

K(k) , P(k|k−1)H′(k)S(k)
−1

(3.55)

z̃i(k) , zi(k) − ẑ(k|k−1) (3.56)

z̃(k) ,

mk∑

i=1

βi(k)z̃i(k) (3.57)

On montre en [BSF88] que la matrice stochastique P̃(k) est toujours définie semi-positive.

3.6.2 Expression des probabilités d’association

Le calcul des probabilités a posteriori d’association βi(k) , P{θi(k)|Zk} (i = 0, . . . ,mk) s’obtient en

utilisant la règle de Bayes comme suit :

βi(k) =
1

c
p(Z(k)|θi(k),mk,Z

k−1)P{θi(k)|mk,Z
k−1}

où c est une constante de normalisation assurant
∑mk

i=0 βi(k) = 1.

En supposant la densité de probabilité de la mesure correcte (provenant de la cible) normale centrée

sur la mesure prédite ẑ(k|k − 1) et de covariance S(k) et les fausses alarmes indépendantes de la cible et

uniformément réparties dans la fenêtre de validation Vk, on a

p(Z(k)|θi(k),mk,Z
k−1) =







V −mk+1
k P−1

g N [z̃i(k); 0;S(k)] i = 1, . . . ,mk

V −mk

k i = 0

(3.58)

Les probabilités a priori d’association P{θi(k)|mk,Z
k−1} sont données par

P{θi(k)|mk,Z
k−1} =







1
c1

PdPg

mk
i = 1, . . . ,mk

1
c1

µF (mk)
µF (mk−1) (1 − PdPg) i = 0

(3.59)

avec c1 , PdPg + (1 − PdPg)
µF (mk)

µF (mk−1) et où µF (.) est la masse de probabilité du nombre de fausses

mesures validées. Pd est la probabilité de détection de la cible et Pg la probabilité de fenêtrage choisie

pour le test de validation des mesures.

En pratique deux versions du PDAF ont été proposées par les auteurs selon le modèle choisi pour µF (.).
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– Version paramétrique du PDAF : Si on suppose que µF est une loi de Poisson de paramètre

λVk (λ étant la densité spatiale des fausses alarmes) qui s’exprime

µF (m) =
(λVk)

m

m!
e−λVk m = 0, 1, 2, . . . (3.60)

alors les probabilités d’associations a priori s’écrivent

P{θi(k)|mk,Z
k−1} =







PdPg

PdPgmk+(1−PdPg)λVk
i = 1, . . . ,mk

(1−PdPg)λVk

PdPgmk+(1−PdPg)λVk
i = 0

(3.61)

– Version non paramétrique du PDAF : Si on choisit une loi diffuse pour µF , (c.à.d. telle que

µF (m) = µF (m− 1) = ε) les probabilités d’associations a priori s’écrivent

P{θi(k)|mk,Z
k−1} =







PdPg

mk
i = 1, . . . ,mk

1 − PdPg i = 0

(3.62)

En remplaçant les expressions de p(Z(k)|θi(k),mk,Z
k−1) et de P{θi(k)|mk,Z

k−1} dans (3.6.2), on

obtient finalement

β0(k) =
b

b+
∑mk

j=1 ej
(3.63)

βi(k) =
ei

b+
∑mk

j=1 ej
si i 6= 0 (3.64)

avec

ei = e−
1
2 z̃′

i(k)S(k)−1 z̃i(k) (3.65)

b =







(2π/γ)
nz/2 1

Cnz
λVk

(1−PdPg)
Pd

version paramétrique

(2π/γ)nz/2 1
Cnz

mk
(1−PdPg)

Pd
version non paramétrique

(3.66)

Pd représente la probabilité de détection de la cible et λ la densité spatiale des fausses alarmes dans

l’espace des mesures.

La forme équivalente suivante des probabilités peut également être utilisée

β0(k) =
b

b+
∑mk

j=1 αj
(3.67)

βi(k) =
ei

b+
∑mk

j=1 αj
si i 6= 0 (3.68)

avec maintenant

αi , P−1
g N [z̃i(k); 0;S(k)] (3.69)



3.6. APPROCHE BAYÉSIENNE DU PDAF (1975) 27

b =







λ
(1−PdPg)

Pd
version paramétrique

mk

Vk

(1−PdPg)
Pd

version non paramétrique

(3.70)

Une version factorisée du PDAF peut être trouvée en [Pat77, Ken90, RPBS93].

3.6.3 Equations de prédiction

Les équations de prédiction du PDAF sont identiques à celles d’un filtre de Kalman standard [SM71,

BH92, BSL93] (ou étendu selon le modèle choisi) à savoir

x̂(k+1|k) = F(k)x̂(k|k) (3.71)

P(k+1|k) = F(k)P(k|k)F′(k) + Q(k) (3.72)

avec éventuellement (si EKF)

F(k) =
[
∇f ′[k,x(k)]

]′
x=x̂(k|k)

La mise en évidence de la consistance du PDAF peut être trouvée en [BSB83].

3.6.4 Filtre PDAF enrichi par la reconnaissance

L’information supplémentaire de reconnaissance des signaux reçus peut (et devrait) être utilisée pour

améliorer la qualité de la poursuite. Nous présentons la prise en compte d’une telle information dans le

formalisme classique du PDAF.

Filtre AIPDAF (1990)

Ce filtre appelé AIPDAF (Amplitude Information PDAF) proposé en [LBS90a, LBS93a] utilise l’am-

plitude du signal, notée a(k), ou la surface équivalente rayonnée par un radar - SER - (RCS - Radar Cross

Section) associée aux mesures validées. Ces informations supplémentaires sont des informations de re-

connaissance qui aident à discriminer la mesure correcte des fausses alarmes.

Les mesures élémentaires z(k) sont maintenant constituées des mesures traditionnelles augmentées

des informations de reconnaissance a(k) associées, i.e.

z(k) =




z(k)

a(k)



 (3.73)

On suppose alors disponibles les densités de probabilité de la mesure de reconnaissance a(k) condition-

nellement à l’identité Id de son origine (T pour la cible et FA pour les fausses alarmes)

p(a(k)|Id) =







pFA si Id = FA

pT si Id = T

(3.74)
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Dans [LBS90a, LL97], les auteurs supposent que l’amplitude a(k) de la vraie mesure à l’instant k est

une variable aléatoire de Rayleigh dont la densité vaut

p(a(k)|Id = T ) =
1

Pd

a(k)

1 + d
e−

a2(k)
2(1+d) 1(a(k) − t) (3.75)

où t est le seuil du détecteur, d est le SNR moyen (Signa-to-Noise Ratio) et 1(.) est la fonction échelon

unitaire. L’amplitude a(k) des faux échos suit une autre loi de Rayleigh de type

p(a(k)|Id = F ) =
1

Pfa
a(k)e−

a2(k)
2 1(a(k) − t) (3.76)

où Pfa est la probabilité d’avoir une fausse alarme dans une cellule de résolution du senseur d’observation.

Les équations de l’AIPDAF sont les mêmes que celles du PDAF standard excepté l’expression des

probabilités d’association βi(k) qui compte tenu du fait

p(zi(k)|θi(k),mk,Z
k−1) = p(ai(k)|Id = T )P−1

g N [z̃i(k); 0;S(k)] (3.77)

p(zi(k)|θ0(k),mk,Z
k−1) =

1

Vk
p(ai(k)|Id = FA) (3.78)

s’écrivent dorénavant

β0(k) =
b

b+
∑mk

j=1 ejLj
(3.79)

βi(k) =
eiLi

b+
∑mk

j=1 ejLj
si i 6= 0 (3.80)

avec ei et b donnés en (3.65) et (3.66) et

Li ,
p(ai(k)|Id = T )

p(ai(k)|Id = FA)
(3.81)

Plus la discrimation sera forte (i.e. plus les densités p(.|Id = T ) et p(.|Id = FA) seront différentes),

meilleures seront les performances de l’AIPDAF.

Filtre PDAF avec classifieur d’échos (1990)

En pratique, l’information de reconnaissance peut soit apparâıtre sous une information de nature

continue (cas de l’amplitude des signaux) comme on vient de le présenter, ou bien plus généralement

sous la forme d’une décision issue d’un système de reconnaissance auxiliaire que l’on appelle classifieur.

Dans ce cas, on suppose que l’on dispose d’une mesure de la qualité du classifieur. Cette approche a

été développée initialement en [Dez90, Dez92] pour la navigation autome d’engin. La prise en compte

de données de reconnaissance de nature incertaine (i.e. non décrites en terme statistique) basée sur la

théorie de l’évidence [Sha76] a également été proposée au sein du PDAF en [Dez90]. L’application

de cette approche au recalage de centrale inertielle d’un missile en vol basse altitude est présentée en

[Dez99a]. La prise en compte d’informations floues sur les attributs de reconnaissance a été développée
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ne [SS98].

Nous présentons ici une application particulière [MD95] de cette approche où l’on cherche à pister une

cible particulière (par exemple un bombardier/AWACS) dans un ensemble de cibles de nature différente

(escadrille d’avions de chasse) en présence de fausses alarmes.

Les décisions sur la reconnaissance des échos validés sont notées D(k)={di(k)}mk

j=1. La reconnaissance

notée di(k) du ième écho validé peut prendre trois valeurs possibles : di(k)=d0 si l’écho est déclaré du

type fausse alarme (hypothèse h0), di(k)=d1 si l’écho est déclaré de type objet interférant (hypothèse

h1) ou di(k)=d2 si l’écho est déclaré de type cible (hypothèse h2).

La qualité globale du classifieur utilisé est caractérisée par une matrice de confusion C=[cij ] sup-

posée connue dont les éléments sont donnés par cij =P (d(k)=di|hj) i, j=0, 1, 2. Les décisions di(k) sont

supposées indépendantes sachant l’origine de toutes les mesures.

En utilisant la même démarche de développement que celle du PDAF standard, l’estimateur est alors

donné par

x̂(k|k) , E[x(k)|Zk ,Dk] =

mk∑

i=0

βix̂i(k|k) (3.82)

avec Dk ,(D(k),Dk−1) et x̂i(k|k) donné par (3.49) et (3.50).

Les probabilités βi(k),P (θi|Zk,Dk) sont obtenues par la règle de Bayes

βi(k) =
1

c
P (Z(k)|θi(k),Z

k−1,Dk,mk)P (D(k)|θi(k),Z
k−1,Dk−1,mk)P (θi(k)|Zk−1,Dk−1,mk) (3.83)

où c est une constante de normalisation. Dans le cas où i=0 (la cible est non détectée ou non validée),

on a [MD95]

P (θ0(k)|Zk−1,Dk−1,mk) =
P [Nofa =mk](1 − PdPg)

(1 − PdPg)P [Nofa =mk] + PdPgP [Nofa =mk−1]
(3.84)

où Nofa , No+Nfa, est la somme du nombre d’objets No et de fausses alarmes Nfa validées. No et Nfa

étant supposés suivre une loi de Poisson de paramètres respectifs λoV (k) et λfaV (k), Nofa suivra une

loi de Poisson de paramètre (λo + λfa)V (k). La Pfa (probabilité de fausse alarme) étant donnée, λfa est

connue ; il nous reste à estimer λo. Si l’on admet l’hypothèse que les mesures Z(k) sont statistiquement

indépendantes des décisions Dk et que les objets interférants et fausses alarmes sont uniformément répartis

dans V (k), on a alors

P (Z(k)|θ0(k),Zk−1,Dk,mk) = V (k)−mk (3.85)
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P (D(k)|θ0(k),Zk−1,Dk−1,mk)=P (D(k)|θ0(k),mk) est calculé en considérant toutes les affectations des

échos

P (D(k)|θ0(k),mk) =

mk∑

n=0

P1(n)P2(n) (3.86)

avec

P1(n) = P [No = n|θ0,mk] = Cn
mk

(
λo

λfa

)n(
λfa

λfa + λo

)mk

En parcourant tous les sous-ensembles Φ à n éléments parmi mk, il vient

P2(n) = P (D(k)|No = n, θ0,mk) =
1

Cn
mk

∑

Φ

[
∏

i∈Φ

P (di(k)|hi
1)

∏

i∈Φc

P (di(k)|hi
0)

]

(3.87)

où Φc est le complémentaire de Φ. En remplaçant P1(n) et P2(n) par leur expression dans (3.86), il vient

P (D(k)|θ0,mk) =

mk∏

i=1

[
λfa

λo + λfa
P (di(k)|hi

0) +
λo

λo + λfa
P (di(k)|hi

1)

]

(3.88)

P (di(k)|hi
j) est l’élément cij de la matrice de qualité C connue a priori. D’autre part, en notant θ̄i le

complémentaire de θi et en tenant compte du fait que

P (hi
0|mk, θ̄i) =

1

mk
E[Nfa|mk] =

λfa

λl + λfa

P (hi
1|mk, θ̄i) =

1

mk
E[No|mk] =

λl

λl + λfa

il vient finalement

P (D(k)|θ0,mk) =

mk∏

i=1

P (di(k)|θ̄i,mk)

Dans le cas i 6= 0, le calcul des βi(k) se déroule de façon similaire en introduisant la densité gaussienne

tronquée dans V (k). L’expression finale des βi(k) est alors donnée par (3.67) et (3.68) avec ei(k) et b

maintenant donnés par

ei = Λi(k)e
− 1

2 z̃′
i(k)S(k)−1z̃i(k) (3.89)

b =

(
2π

γ

)nz/2

(λo + λfa)V (k)
(1 − PdPg)

Pd
(3.90)

où

Λi(k) ,
P (di(k)|θi)

P (di(k)|θ̄i)
=

[λo + λfa]P (di|hi
2)

λfaP (di|hi
0) + λoP (di|hi

1)
(3.91)

Il reste à estimer la densité spatiale λo des objets interférants. Le nombre M d’échos validés s’écrit

Nofa+1I (cible∈ V (k)) (1I désignant la fonction indicatrice qui vaut 0 ou 1) et a pour densité de probabilité

P (M=mk) =
1

mk!
[PdPgmk + (1 − PdPg)(λfa + λo)V (k)]

(
(λfa + λo)V (k)

)mk−1
e−(λfa+λo)V (k) (3.92)
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La maximisation de (3.92) par rapport à λo conduit à l’estimateur du maximum de vraisemblance suivant

λ̂o = sup
{
0,
mkV (k)(1 − 2PdPg) +

√
∆

2V (k)2(1 − PdPg)
− λfa

}
(3.93)

avec

∆ , mk
2V (k)2(1 − 2PdPg)

2 + 4mk(mk − 1)PdPg(1 − PdPg)V (k)2 (3.94)

A partir des informations de reconnaissance disponibles, un test de confirmation de piste basé sur le

SPRT (Sequential Probability Ratio Test) de Wald [Wal47] été proposé en [MD95].

3.6.5 Filtre PDAF modifié (1994)

Les travaux récents [Gué94, Gué96, Li98b] ont mis en évidence une légère erreur dans l’évaluation de

la matrice de covariance P(k|k) lorsque l’évènement mk = 0 est réalisé. En fait, l’équation de mise à jour

du PDAF standard (3.52) doit être modifiée afin de prendre en compte le fait que si mk = 0 est vrai, il

est tout aussi probable que cela soit dû à une erreur sur l’estimation de la position de la cible plutôt qu’à

une mesure cible réellement mauvaise. L’équation du PDAF modifié s’écrit quand mk 6= 0

P(k|k) = β0(k)[I + q0K(k)H(k)]P(k|k − 1) +
(
1 − β0(k)

)
Pc(k) + P̃(k) (3.95)

et quand mk = 0

P(k|k) = [I + q0K(k)H(k)]P(k|k − 1) (3.96)

q0 est un facteur de pondération donné par [Gué96, LL97]

q0 ,
Pd(Pg − Pgg)

1 − PdPg
≡ PdPg(1 − cT )

1 − PdPg
(3.97)

où Pg , Pgg et cT valent

Pg , P{χ2
nz

≤ γ} (3.98)

Pgg , P{χ2
nz+2 ≤ γ} (3.99)

cT ,
Γγ/2(1 + nz/2)

(nz/2)Γ(nz/2)
(3.100)

cT est le rapport de fonction Gamma incomplète

Γα(x) ,

∫ α

0

ux−1e−udu (3.101)

Note : Pgg ou cT sont facilement calculable en MatLab en utilisant les fonctions chi2cdf(.), gammainc(.)

et gamma(.). De plus, on a toujours q0 ≥ 0 puisque pour Pg < 1 on a [AS68, Gué96]

Pg − Pgg =
(γ/2)

nz/2
e−γ/2

Γ(1 + nz/2)
> 0 (3.102)

L’utilisation de cette équation est encore malheureusement trop méconnue.
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3.6.6 Avantages/inconvénients du PDAF

L’avantage essentiel du PDAF est sa facilité de mise en œuvre et sa faible charge en calculs (à peine

supérieure à la charge d’un filtre de Kalman classique), sa prise en compte des fausses alarmes et de la

détection non unitaire de la cible.

Ses inconvénients restent la nécessité d’avoir un module spécifique d’initialisation de piste, et une

plage limitée de fonctionnement. Il a été montré qu’en général les performances du PDAF se dégradent

vite lorsque le nombre moyen d’échos validé est supérieur à 3 (ceci correspond en général à des environ-

nements fortement dégradés). Le développement du PDAF de Bar-Shalom suppose implicitement la

perception de la cible ; c’est à dire l’existence réelle de la cible dans le champ d’observation du senseur.

Cette hypothèse peut être supprimée et l’évaluation de la probabilité de perception de la cible peut être

en fait intégrée directement au formalisme du PDAF. Ceci conduit à l’IPDAF (Integrated PDAF) qui

va être présenté dans la section suivante. Les applications du PDAF sont multiples et sont discutées en

[BSL95]. L’évaluation des performances de PDAF a priori (sans simulations Monte-Carlo) est discutée en

[LBS91c, KE96]. La prise en compte d’une période de mise à jour non constante du PDAF est proposée

en [Mar79, BSM80, AHW96]. Une version de filtre PDAF avec lissage a été proposée en [MPG86]. Une

extension du PDAF à la prise en compte de scans multiples est discutée en [Dru93a, Dru93b].
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3.6.7 Un cycle du PDAF

Fig. 3.1 – Schéma de principe d’un cycle complet du PDAF
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3.7 Approche bayésienne de l’IPDAF (1985-1998)

Le développement de l’IPDAF (Integrated PDAF) a d’abord été donné par Colegrove en [CA85,

CDA86, CA87], puis repris par Musicki en [ME92, MES92a, MES94] et Li en [LL97, Li97a]. La présentation

ici faite de l’IPDAF est basée sur [JD99b].

3.7.1 Perception de la cible et évènements d’association

A tout instant k, la perception de la cible et sa non-perception peuvent être représentées par les deux

évènements exclusifs et exhaustifs suivants :

Ok , {la cible est perceptible au temps k}

Ōk , {la cible est imperceptible au temps k}

Pour simplifier, Ok désignera dans la suite aussi bien le fait que la cible soit perceptible que l’évènement

aléatoire lui-même. Lorsque l’on a des mesures validées à l’instant k, l’intersection de ces évènements de

perception avec les évènements d’association classiquement introduits dans le formalisme du PDAF

θi(k) , {zi(k) provient de la cible au temps k}, i = 1, . . . ,mk

θ0(k) , {Aucune des mesures ne provient de la cible au temps k}

permet de définir le nouvel ensemble d’évènements suivant :

E−i(k) , Ōk ∩ θi(k) i = 1, . . . ,mk (3.103)

E0̄(k) , Ōk ∩ θ0(k) (3.104)

E0(k) , Ok ∩ θ0(k) (3.105)

Ei(k) , Ok ∩ θi(k) i = 1, . . . ,mk (3.106)

Puisque la mesure de la cible ne peut pas avoir lieu sans la perception de celle-ci par le senseur, on

peut d’ores et déjà affirmer que les évènements E−i(k), i = 1, . . . ,mk sont non réalisables. Par conséquent,

on a d’emblée E−i(k) ≡ ∅ et P{E−i(k)|Zk} = P{E−i(k)|Zk−1} = P{E−i(k)} = 0 pour i = 1, . . . ,mk. Seuls

les évènements E0̄(k), E0(k) et Ei(k) (i = 1, . . . ,mk) peuvent avoir une probabilité non nulle d’occurence.
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3.7.2 Forme de l’estimateur

Cas 1 : mk 6= 0

En utilisant le théorème des probabilités totales, l’estimée de l’état de la cible, minimisant l’erreur

quadratique moyenne, s’écrit :

x̂(k|k) = E[x(k)|Zk ] = β0̄(k)x̂0̄(k|k) +

mk∑

i=0

βi(k)x̂i(k|k) (3.107)

où x̂i(k|k) , E[x(k)|Ei(k),Z
k] est l’état mis à jour de la cible conditionné par l’évènement Ei(k) =

Ok ∩ θi(k) correspondant au fait que la cible soit à la fois perceptible et que la ième mesure va-

lidée soit correcte. x̂0̄(k|k) est l’estimée de l’état de la cible conditionné par la réalisation de l’évènement

E0̄(k) = Ōk ∩ θ0(k) qui a lieu lorsque la cible est imperceptible et que toutes les mesures proviennent du

bruit. βi(k) , P{Ei(k)|Zk} représentent les probabilités a posteriori d’association intégrées. La termino-

logie intégrée nous permet de spécifier que la perception de la cible par le senseur de poursuite est prise

en compte dans le processus même d’association des données du filtre. Le calcul des nouvelles probabilités

βi(k) pour i = 0̄, 0, 1 . . .mk va être brièvement explicité au prochain paragraphe.

L’estimée conditionnelle de l’état de la cible pour chacune des hypothèses d’association suit le forma-

lisme classique du filtre PDAF, à savoir (3.49). Le gain K(k) est identique à celui calculé par le filtre de

Kalman standard car le conditionnement par Ei(k) élimine de fait l’incertitude sur l’origine de la mesure.

Pour i = 0̄ et i = 0, si aucune des mesures n’est correcte (peu importe la perception ou non de la

cible), les estimées conditionnelles de l’état s’écrivent :

x̂0̄(k|k) = x̂0(k|k) = x̂(k|k − 1) (3.108)

En combinant toutes ces estimées conditionnelles par pondération bayésienne, on obtient finalement

l’estimée globale de ce nouveau filtre IPDAF.

x̂(k|k) = x̂(k|k − 1) + K(k)z̃(k)

où l’innovation combinée z̃(k) est donnée par

z̃(k) ,

mk∑

i=1

βiz̃i(k)
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La matrice de covariance P(k|k) associée à l’estimée précédente est donnée par

P(k|k) , E
[
[x(k) − x̂(k|k)][x(k) − x̂(k|k)]′|Zk

]

=

mk∑

i=0̄,0,...

βi(k)E
[
[x(k) − x̂(k|k)][x(k) − x̂(k|k)]′|Zk, Ei(k)

]

= P1 + P2 +
(
P2

)′
+ P3 (3.109)

avec

P1 =

mk∑

i=0̄,0,...

βi(k)[x̂i(k|k)x̂′
i(k|k) + Pi(k|k)]

P2 = −x̂(k|k)
mk∑

i=0̄,0,...

βi(k)E
[
x(k)′|Zk, Ei(k)

]
= −x̂(k|k)x̂′(k|k) =

(
P2

)′

P3 = x̂(k|k)x̂′(k|k)
mk∑

i=0̄,0,...

βi(k) = x̂(k|k)x̂′(k|k)

Les covariances conditionnelles Pi(k|k) pour i = 1, . . . ,mk sont données par

Pi(k|k) = Pc(k|k) , [I −K(k)H(k)]P(k|k − 1) (3.110)

Sous les hypothèses E0(k) et E0̄(k), les matrices P0(k|k) et P0̄(k|k) valent respectivement

P0̄(k|k) = P(k|k − 1) (3.111)

P0(k|k) = [I + q0K(k)H(k)]P(k|k − 1) (3.112)

où q0 est le facteur de pondération donné en (3.97).

La relation (3.112) du PDAF modifié confère plus de robustesse au filtre de poursuite devant fonc-

tionner dans des environnements très défavorables (i.e. ayant un taux élevé de fausses alarmes et/ou avec

une faible probabilité de détection des cibles).

A partir de l’équation (3.109) et des équations précédentes, on obtient finalement

P(k|k) = β0̄(k)P(k|k − 1) + β0(k)[I + q0K(k)H(k)]P(k|k − 1)

+(1 − β0̄,0(k))P
c(k|k) + P̃(k) (3.113)

où la notation β0̄,0(k) , beta0̄(k)+β0(k) a été utilisée par souci de simplification. La matrice stochastique

définie semi-positive P̃(k) est donnée en (3.54).
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Cas 2 : mk = 0

Lorsque l’on a aucune mesure validée dans la fenêtre du filtre, c’est à dire Zk = {Z(k) = ∅,mk =

0,Zk−1} , on a théoriquement, de par le théorème des probabilités totales

x̂(k|k) = E[x(k)|Zk ] = E[x(k)|mk = 0,Zk−1] = PO
k|k−1,0x̂

O(k|k) + (1 − PO
k|k−1,0)x̂

Ō(k|k) (3.114)

avec

PO
k|k−1,0 =

(1 − PdPg)P
O
k|k−1

1 − PdPgPO
k|k−1

(3.115)

et

x̂O(k|k) , E[x(k)|Ok ,mk = 0,Zk−1] (3.116)

x̂Ō(k|k) , E[x(k)|Ōk ,mk = 0,Zk−1] (3.117)

En fait, quand on ne dispose d’aucune mesure (peu importe la perception ou non de la cible), on doit

avoir

x̂Ō(k|k) = x̂O(k|k) = x̂(k|k − 1) (3.118)

Par conséquent,

x̂(k|k) = x̂(k|k − 1) (3.119)

La covariance P(k|k) associée à l’erreur d’estimation du filtre est donnée par

P(k|k) = PO
k|k−1,0P

O(k|k) + (1 − PO
k|k−1,0)P

Ō(k|k) (3.120)

avec

PO(k|k) = [I + q0K(k)H(k)]P(k|k − 1) (3.121)

PŌ(k|k) = P(k|k − 1) (3.122)

Finalement, on obtient la matrice de covariance cherchée

P(k|k) = [I + q0P
O
k|k−1,0K(k)H(k)]P(k|k − 1)

= [I +
PdPg(1 − cT )PO

k|k−1

1 − PdPgPO
k|k−1

K(k)H(k)]P(k|k − 1) (3.123)
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3.7.3 Equations de prédiction

La prédiction de l’état de la cible et de sa mesure au temps k + 1 sont obtenues comme à l’étape de

prédiction du filtre de Kalman classique. La covariance de l’erreur de prédiction associée est donnée par

P(k + 1|k) = F(k)P(k|k)F′(k) + Q(k)

P(k|k) est donnée par l’équation (3.113) ou (3.123) selon le nombre de mesures validées mk à l’instant

k. La covariance de l’innovation S(k) est identique à celle du filtre de Kalman standard.

3.7.4 Calcul des probabilités d’association intégrées

Nous donnons d’abord l’expression des probabilités d’association intégrées quand mk 6= 0. On veut

donc évaluer ici

βi(k) , P{Ei(k)|Z(k),mk,Z
k−1}, i = 0̄, 0, 1 . . .mk (3.124)

En utilisant la règle de Bayes, on a

βi(k) =
1

c
p[Z(k)|Ei(k),mk,Z

k−1]P{θi(k)|Ok ,mk,Z
k−1}P{Ok|mk,Z

k−1}

β0(k) =
1

c
p[Z(k)|E0(k),mk,Z

k−1]P{θ0(k)|Ok,mk,Z
k−1}P{Ok|mk,Z

k−1}

β0̄(k) =
1

c
p[Z(k)|E0̄(k),mk,Z

k−1]P{θ0(k)|Ōk,mk,Z
k−1}P{Ōk|mk,Z

k−1}

où c est une constante de normalisation.

– pour i = 1 . . .mk, en supposant la distribution de la mesure cible normale autour de la mesure

prédite et les fausses mesures indépendantes et uniformément réparties dans Vk, on a







p[Z(k)|Ei(k),mk,Z
k−1] = V −mk+1

k P−1
g N [z̃i(k); 0;S(k)]

P{θi(k)|Ok,mk,Z
k−1} = 1

c1

PdPg

mk

P{Ok|mk,Z
k−1} , PO

k|k−1,mk

(3.125)

où c1 vaut

c1 , PdPg + (1 − PdPg)
µF (mk)

µF (mk − 1)
(3.126)

– pour i = 0, on a







p[Z(k)|E0(k),mk,Z
k−1] = V −mk

k

P{θ0(k)|Ok ,mk,Z
k−1} = 1

c1

µF (mk)
µF (mk−1) (1 − PdPg)

P{Ok|mk,Z
k−1} , PO

k|k−1,mk

(3.127)
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– pour i = 0̄, on a







p[Z(k)|E0̄(k),mk,Z
k−1] = V −mk

k

P{θ0(k)|Ōk,mk,Z
k−1} = 1

P{Ōk|mk,Z
k−1} = 1 − PO

k|k−1,mk

(3.128)

La probabilité prédite de la perception de la cible PO
k|k−1,mk

conditionnellement à mk est donnée au

paragraphe suivant. En combinant les équations précédentes, il vient finalement l’expression finale des

probabilités d’association intégrées cherchée

βi(k) =
1

c
αi(k)P

0
k|k−1,mk

(3.129)

β0(k) =
1

c
b0(k)P

0
k|k−1,mk

(3.130)

β0̄(k) =
1

c
b0̄(k)(1 − P 0

k|k−1,mk
) (3.131)

La constante de normalisation c est donnée par

c = b0̄(k)(1 − P 0
k|k−1,mk

) + b0(k)P
0
k|k−1,mk

+ P 0
k|k−1,mk

mk∑

j=1

αj(k) (3.132)

avec







αi(k) , P−1
g N [z̃i(k); 0;S(k)]

b0(k) , mk

Vk

1−PdPg

PdPg

µF (mk)
µF (mk−1)

b0̄(k) , mk

Vk

1
PdPg

[
PdPg + (1 − PdPg)

µF (mk)
µF (mk−1)

]

3.7.5 Remarques

– On peut facilement vérifier que ces nouvelles expressions restent parfaitement cohérentes avec celles

du PDAF de Bar-Shalom qui supposait implicitement la totale perception de la cible. En effet, si

l’on fixe P 0
k|k−1,mk

= 1 dans les expressions précédentes on retrouve bien l’expression originelle des

βi(k) pour i = 0, . . . ,mk (β0̄(k) étant nulle dès lors que P 0
k|k−1,mk

= 1)

– En adoptant la même démarche que dans les travaux antérieurs [LBS90a, Dez92, LL97] la prise en

compte d’une information de reconnaissance/classification et/ou d’amplitude peut être facilement

intégrée à ce nouveau filtre IPDAF. Il suffit, pour cela, de remplacer les terms ei(k) par les termes

αi(k)Li(k) dans les expressions des probabilités d’association intégrées. Li(k) désigne le rapport de

la densité de probabilité de l’amplitude du signal cible (ou tout autre type d’information statistique

lié à la reconnaissance de la cible) au signal des fausses alarmes. Nous renvoyons le lecteur aux

références précitées pour de plus amples détails.
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– Les probabilités β0(k) et β0̄(k) peuvent être additionnées par souci de simplification de notation.

On aura

β0,0̄(k) , P{E0(k)|Zk} + P{E0̄(k)|Zk} ≡ P{θ0(k)|Zk} =
1

c
b0,0̄(k)

avec

c = b0,0̄(k) + P 0
k|k−1,mk

mk∑

j=1

αj(k)

et

b0,0̄(k) , b0̄(k)(1 − P 0
k|k−1,mk

) + b0(k)P
0
k|k−1,mk

=
mk

Vk

1

PdPg

[
(1 − P 0

k|k−1,mk
)PdPg + (1 − PdPg)

µF (mk)

µF (mk − 1)

]

– Si on suppose une loi a priori diffuse pour la distribution du nombre de fausses mesures µF (i.e.

µF (mk) = µF (mk − 1), on obtient

b0,0̄(k) =
mk

Vk

1

PdPg

[
1 − P 0

k|k−1,mk
PdPg

]

– Si on suppose une distribution de Poisson pour µF avec comme paramètre λVk, on obtient

b0,0̄(k) =
1

Vk

1

PdPg

[
mkPdPg(1 − P 0

k|k−1,mk
) + (1 − PdPg)λVk

]

– Comme en général la vraie densité λ du clutter reste inconnue, on doit l’estimer en ligne à chaque

pas du filtre. Souvent l’estimateur λ̂k = mk/Vk est utilisé. Mais l’estimateur suivant

λ̂ =







0 mk = 0

mk

Vk
− 1

Vk
PdPgP

0
k|k−1,mk

mk 6= 0

(3.133)

semble beaucoup plus judicieux du point de vue théorique. Cependant puisque P 0
k|k−1,mk

est elle-

même une fonction de la densité inconnue λ comme nous le montrerons, cet estimateur ne peut pas

être utilisé directement sous la forme précédente. En fait, on devra prendre pour estimation de λ

la solution positive de l’équation du second degré suivante :

λ̂k − 1

Vk
[mk − PdPgP

0
k|k−1,mk

(λ̂k)] = 0 (3.134)

D’autres estimateurs plus sophistiqués [LL98c] basés sur le maximum de vraisemblance, les moindres

carrés ou la méthode des moments peuvent aussi être choisis.
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3.7.6 Calcul de P O
k|k−1,mk

Le calcul complet des probabilités d’association intégrées nécessite l’évaluation de la probabilité de

perception conditionnelle prédite de la cible PO
k|k−1,mk

. Son calcul s’obtient simplement en utilisant la

règle de Bayes. En effet, on a

PO
k|k−1,mk

= P{Ok|mk,Z
k−1}

=
P{mk|Ok,Z

k−1}PO
k|k−1

P{mk|Ok,Zk−1}PO
k|k−1 + P{mk|Ōk,Zk−1}(1 − PO

k|k−1)
(3.135)

avec 





PO
k|k−1 , P{Ok|Zk−1}

P Ō
k|k−1 , P{Ōk|Zk−1} = 1 − PO

k|k−1

(3.136)

et où P{mk|Ok,Z
k−1} et P{mk|Ōk,Z

k−1} sont données par

P{mk|Ok,Z
k−1} =







(1 − PdPg)µF (0) mk = 0

PdPgµF (mk) + (1 − PdPg)µF (mk − 1) mk 6= 0

P{mk|Ōk,Z
k−1} =







µF (0) mk = 0

µF (mk) mk 6= 0

En remplaçant ces expressions dans (3.135), on obtient

– pour mk = 0,

PO
k|k−1,mk

=
(1 − PdPg)P

O
k|k−1

1 − PdPgPO
k|k−1

– pour mk 6= 0 et avec une loi diffuse pour µF , on a

PO
k|k−1,mk

= PO
k|k−1

– pour mk 6= 0 et avec une loi de Poisson pour µF , on a

PO
k|k−1,mk

=
[1 − PdPg(1 − mk

λVk
)]PO

k|k−1

1 − PdPg(1 − mk

λVk
)PO

k|k−1

On obtient finalement la forme concise suivante [LL98c],

PO
k|k−1,mk

=
(1 − εk)PO

k|k−1

1 − εkPO
k|k−1

(3.137)

avec

εk ,







PdPg mk = 0

PdPg(1 − mk

λVk
) mk 6= 0

(3.138)

La probabilité de perception prédite non conditionnelle PO
k|k−1 doit donc maintenant être évaluée pour

achever le calcul de PO
k|k−1,mk

.
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Calcul de la probabilité de perception prédite

En utilisant la règle de Bayes, on a

PO
k|k−1 , P{Ok|Zk−1}

= P{Ok|Ok−1,Z
k−1}

︸ ︷︷ ︸

π11

P{Ok−1|Zk−1} + P{Ok|Ōk−1,Z
k−1}

︸ ︷︷ ︸

π21

P{Ōk−1|Zk−1}

Avec la notation PO
k−1|k−1 , P{Ok−1|Zk−1} et P Ō

k−1|k−1 , P{Ōk−1|Zk−1} = 1 − PO
k−1|k−1, on écrit

PO
k|k−1 = π11P

O
k−1|k−1 + π21(1 − PO

k−1|k−1) (3.139)

Au temps k, la probabilité (inconditionnelle) de perception mise à jour PO
k|k , P{Ok|Zk} est donnée par

PO
k|k =

P1(1 − εk)PO
k|k−1

P1(1 − εk)PO
k|k−1 + P2(1 − PO

k|k−1)
(3.140)

avec

P1 , P{Z(k)|Ok,mk,Z
k−1}

P2 , P{Z(k)|Ōk,mk,Z
k−1}

On peut facilement montrer qu’avec une loi de Poisson pour µF , on obtient

P1 =







P{Z(k) = ∅|Ok,mk = 0,Zk−1} = 1 mk = 0

∑mk

i=0 P{θi,Z(k)|Ok ,mk,Z
k−1} =

V
−mk+1

k

c2

[
(1 − PdPg)λ+ PdPg

∑mk

i=1 αi

]
mk 6= 0

P2 =







P{Z(k) = ∅|Ōk,mk = 0,Zk−1} = 1 mk = 0

V −mk

k mk 6= 0

où la constante c2 est définie comme

c2 , PdPgmk + (1 − PdPg)λVk = (1 − εk)λVk (3.141)

Après substitution de P1 et P2 dans (3.140), on obtient

PO
k|k =

(1 − φk)PO
k|k−1

1 − φkPO
k|k−1

(3.142)

avec

φk ,







PdPg mk = 0

PdPg(1 − 1
λ

∑mk

i=1 αi) mk 6= 0

(3.143)
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On voit donc que les probabilités de perception de la cible PO
k|k−1 et PO

k|k peuvent être évaluées en

ligne récursivement grâce aux relations (3.139) et (3.142) dès lors que les paramètres de réglages π11, π21

et PO
1|0 sont fixés.

Les premières investigations théoriques sur l’optimisation de ces paramètres de réglage pour l’amélioration

de la perception des cibles peuvent être trouvées en [LL98b]. Dans leurs travaux, les auteurs supposent

que la perception {Ok} d’une cible à chaque instant suit un processus de Markov homogène d’ordre

1 ; c’est à dire

π11 , P{Ok|Ok−1,Z
k−1} ≈ P{Ok|Ok−1} (3.144)

π21 , P{Ok|Ōk−1,Z
k−1} ≈ P{Ok|Ōk−1} (3.145)

3.7.7 Commentaires sur le calcul des βi

D’après le théorème des probabilités totales, on a

P{Ōk|Zk} + P{Ok|Zk} = 1 (3.146)

En introduisant tous les évènements d’association θi(k), i = 0, . . . ,mk, il vient

mk∑

i=0

P{Ōk, θi(k)|Zk} +

mk∑

i=0

P{Ok, θi(k)|Zk} = 1

soit encore

mk∑

i=0

P{E−i(k)|Zk} +

mk∑

i=0

P{Ei(k)|Zk} = 1

Comme les évènements E−i(k) ont une probabilité nulle d’occurence, il nous reste donc

P{E0̄(k)|Zk} + P{E0(k)|Zk} +

mk∑

i=1

P{Ei(k)|Zk} = 1

ou de façon équivalente

β0̄(k) + β0(k) +

mk∑

i=1

βi(k) = 1

Nous prouvons ici que les expressions des βi(k) précédentes restent cohérentes avec l’équation (3.146).

En d’autres termes, on montre que l’on a bien

P{Ōk|Zk} = β0̄(k) = P{Ōk, θ0(k)|Zk} (3.147)

P{Ōk|Zk} = β0(k) +

mk∑

i=1

βi(k) (3.148)
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La 1ère relation (3.147) est immédiate. En effet, puisque P{θ0(k)|Ōk,Z
k} ≡ 1 et d’après la règle de

Bayes, il vient

β0̄(k) = P{Ōk, θ0(k)|Zk} = P{θ0(k)|Ōk ,Z
k}P{Ōk|Zk} ≡ P{Ōk|Zk} (3.149)

La seconde relation (3.148) nécessite un peu d’algèbre. A partir des relations (3.137), (3.125),(3.127)

et (3.128), on obtient pour β0̄(k),β0(k) et βi(k) (avec µF de type Poisson)

βi(k) =
1

(1 − εkP 0
k|k−1)c/V

−mk

k

× 1

c1

PdPg

mk
Vk(1 − εk)P 0

k|k−1αi(k) (3.150)

β0(k) =
1

(1 − εkP 0
k|k−1)c/V

−mk

k

× 1

c1

λVk

mk
(1 − PdPg)(1 − εk)P 0

k|k−1 (3.151)

β0̄(k) =
1

(1 − εkP 0
k|k−1)c/V

−mk

k

× 1 − P 0
k|k−1 (3.152)

En utilisant le fait que,

(1 − φk)P 0
k|k−1 =

1

c1

λVk

mk
(1 − PdPg)(1 − εk)P 0

k|k−1

+
1

c1

PdPg

mk
Vk(1 − εk)P 0

k|k−1

mk∑

i=1

αi(k) (3.153)

on peut facilement vérifier que la constante de normalisation c peut en fait s’exprimer comme

c = V −mk
1 − φkP

0
k|k−1

1 − εkP 0
k|k−1

(3.154)

Le terme intervenant au dénominateur des relations (3.150),(3.151) et (3.152) s’exprime donc comme

c×
1 − εkP

0
k|k−1

V −mk

k

= 1 − φkP
0
k|k−1 (3.155)

Par conséquent, en utilisant (3.153) et (3.155) nous obtenons

β0(k) +

mk∑

i=1

βi(k) =
(1 − φk)P 0

k|k−1

1 − φkP 0
k|k−1

≡ P{Ok|Zk} = P 0
k|k (3.156)

Ce qui démontre la validité de la relation (3.148).

De plus, on peut facilement vérifier à partir des relations (3.150) et (3.154), que l’on a

β0̄(k) =
1 − P 0

k|k−1

1 − φkP 0
k|k−1

= 1 − P 0
k|k = P 0̄

k|k = P{Ōk|Zk} (3.157)
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3.8 Filtre non-bayésien TSF (1975)

Cette approche [SB75a] peut être utilisée juste après la phase d’initialisation d’une piste. L’idée

consiste à séparer la piste (Track Split Filter - TSF) à l’instant k = 1 en autant de branches qu’il y

a de mesures validées à k = 1 dans la fenêtre centrée autour de la mesure prédite ẑ(1|0). Pour chaque

branche, on met en œuvre un filtre de Kalman classique, puis on prédit l’état de la cible à l’instant

k = 2 et on réitére cette procédure aux instants suivants. Pour limiter le nombre exponentiellement

croissant de branches, on évalue la vraisemblance de chaque branche et on élimine les branches les moins

vraisemblables. On considère que la branche (la séquence de mesures) la plus vraisemblable correspond à

la piste de la cible. Dans cette approche on suppose que la probabilité de détection de la cible est

unitaire (Pd = 1).

3.8.1 Vraisemblance d’une séquence

Une séquence (branche) possible est notée (comme pour le FBO) Zk,l. On note θl(k) l’évènement

suivant :

θl(k) , {Zk,l est la piste correcte} (3.158)

La fonction de vraisemblance de θl(k) s’écrit :

Λ(θl(k)) = p[Zk,l|θl(k)] =

k∏

j=1

p[zil
(j)|Zj−1, θl(k)] (3.159)

où Zj−1 représente l’ensemble de toutes les mesures disponibles jusqu’à l’instant j−1. Sous les hypothèses

de modèle linaire/gaussien, c.à.d.

p[zil
(j)|Zj−1, θl(k)] = N (zil

(k); ẑil
(j|j − 1),Sil

(j)) = N (z̃il
(j); 0,Sil

(j)) (3.160)

la vraisemblance Λ(θl(k)) s’écrit

Λ(θl(k)) =
[ k∏

j=1

1
√

|2πSil
(j)|

]

e−
1
2

∑k
j=1 z̃′

il
(j)Sil

(j)z̃il
(j) (3.161)

Généralement, on préfère utiliser le logarithme de la vraisemblance modifiée défini comme

λl(k) , −2 log
[

Λ(θl(k))

k∏

j=1

√

|2πSil
(j)|

]

=

k∑

j=1

z̃′il
(j)Sil

(j)z̃il
(j) =

k∑

j=1

εzil
(j) (3.162)

λl(k) peut alors s’exprimer récursivement sous la forme

λl(k) = λl(k − 1) + z̃′il
(k)Sil

(k)z̃il
(k) (3.163)

Puisque sous les hypothèses de modèle linaire/gaussien, εzil
est une variable du χ2

nz
(cf 3.1), la quantité

λl(k) est une variable aléatoire qui doit suivre un χ2
knz

lorsque θl(k) est vraie.
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3.8.2 Test de confirmation/élimination de branches

L’élimination ou l’acceptation d’une branche Zk,l est basée sur le test statistique suivant [Leh83] :







λl(k) ≤ a accepter la séquence Zk,l

λl(k) > a rejeter la séquence Zk,l

(3.164)

où a est le seuil d’acceptation du test que l’on calcule à partir des tables de la loi du χ2
knz

[AS68, Spi81]

en se fixant la probabilité d’erreur de décision α suivante

P{χ2
knz

> a} = α (3.165)

Généralement, on prend α = 0.01.

3.8.3 Avantages et inconvénients du TSF

Le seul avantage du TSF est sa simplicité au niveau de la mise à jour de chaque branche puisqu’elle

nécessite uniquement un filtre de Kalman classique. Ses principaux inconvénients sont les suivants :

– il ne prend pas en compte les cas où Pd < 1. On peut cependant l’étendre en prenant des séquences

incomplètes et en utilisant des heuristiques de décision du type ”conserver la séquence si l’on a au

moins m détections pendant n scans” et si la vraisemblance λl(k) est encore acceptable.

– il ne fournit pas la probabilité pour que la séquence soit correcte (on a à faire à une méthode non

bayésienne),

– en pratique, il faut soit utiliser des séquences de mesures de taille limitée ou bien utiliser un facteur

d’oubli pour pondérer les mesures les plus anciennes de la séquence afin d’avoir une bonne sensibilité

(temps de réponse) du test (3.164),

– il ne peut être implanté sur calculateur qu’avec des heuristiques de gestion des branches difficiles à

mettre au point. La capacité mémoire nécessaire au TSF est souvent prohibitive,

– il ne prend pas en compte le fait qu’une mesure peut provenir d’autres cibles (la vraisemblance est

évaluée de manière margignale dans le TSF contrairement au MHT).

– il peut théoriquement être utilisé en environnement multi-cibles où le nombre de cibles est inconnu ;

cependant les performances du TSF restent relativement médiocres.



Chapitre 4

Pistage multi-cibles mono-senseur

par approches bayésiennes

Dans les problèmes de pistage de cibles multiples, la solution la plus simple envisageable consisterait

à utiliser en parallèle les filtres de poursuite mono-cible décrits au chapitre précédent. Cette solution

s’avère en fait satisfaisante uniquement lorsque les cibles sont très éloignées les unes des autres et donc

bien séparables dans l’espace d’observation du senseur. De telles conditions, exceptionnellement favo-

rables pour le pistage, sont rarement rencontrées en pratique. Ainsi tous les problèmes de surveillance et

contrôle du traffic aérien (Air Traffic Control (ATC) problem) ou de surveillance de champ de bataille par

exemple, ne peuvent ils malheureusement pas être résolus efficacement par ce type d’approche simpliste.

La difficulté essentielle du pistage multi-cibles provient à la fois de l’incertitude sur l’origine des me-

sures (et donc de la combinatoire inhérente au problème) et de la capacité de manœuvre des cibles à pister.

Dans le cas de cibles multiples proches, les mesures non issues d’une cible pistée ne se comportent pas

toutes comme de simples fausses alarmes car certaines peuvent provenir de cibles proches interférentes.

On doit donc au sein même du processus de filtrage de chaque cible chercher à prendre théoriquement

en compte à la fois les hypothèses possibles d’associations conjointes des mesures avec les cibles environ-

nantes et la perception ou non des cibles par le senseur d’observation.

Ce chapitre et le suivant sont consacrés au cas du pistage mono-senseur de cibles non manœu-

vrantes. La poursuite des cibles manœuvrantes fera l’objet d’un chapitre particulier. Nous présentons ici

les principaux algorithmes développés pour résoudre le problème ainsi que leurs avantages, inconvénients

et limitations. Nous décrivons d’abord l’étape dite de regroupement (clustering) des cibles interférentes

indispensable avant la mise en œuvre des méthodes de poursuite multi-cibles.

47
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Ce chapitre décrit les 3 principales approches bayésiennes développées pour la poursuite multi-cibles :

le JPDAF, le MHT et le PMHT. Dans ces méthodes, aucune décision ferme d’assignation mesure↔cible

n’est prise. L’idée de ces méthodes consiste essentiellement à évaluer d’abord les probabilités d’association

mesure↔cible et à effectuer l’estimation des états des cibles par une pondération probabiliste des

hypothèses d’associations possibles. On parle parfois de méthodes de décision douce soft decision logic

à l’opposé des méthodes de décision dure (hard decision logic) présentées au chapitre suivant.

4.1 Séparation et regroupement des cibles

Afin de diminuer la combinatoire du problème d’association mesures↔cibles, il est indispensable à

chaque instant k d’effectuer avant toute chose un prétraitement de séparation et/ou de regroupement

des cibles (appelé clustering dans la littérature anglo-saxonne) qui a pour but de discriminer l’espace

de toutes les mesures validées Z(k) pour toutes les cibles en sous-ensembles disjoints qui pourront être

traités en parallèle par des algorithmes de pistage appropriés.

Une cible t est dite isolée, lorsqu’aucune des mesures validées associées (contenues dans la fenêtre de

validation de la cible) Zt(k) ∈ Z(k) n’appartient à une fenêtre de validation d’une autre cible. Chaque

cible isolée doit alors être pistée par un algorithme classique de pistage mono-cible.

En général, dans les environnements denses en cibles et FA, certaines mesures peuvent appartenir à

l’intersection de plusieurs fenêtres de validation prédites. Les cibles associées à ces fenêtres sont alors

interférentes et doivent être traitées conjointement par la méthode de pistage. On ne peut alors utiliser

en parallèle les techniques classiques de pistage mono-cible. Lorsque M cibles partagent au moins une

mesure, on dira que ces M cibles constituent un groupe ou cluster de taille M .

L’étape de clustering (regroupement) consiste donc à examiner le contenu de chacune des fenêtres

de validation afin de détecter ou non la présence de mesures communes à plusieurs fenêtres. On constitue

ainsi une liste de fenêtres (cibles) isolées et une liste de clusters de tailles différentes. Les cibles isolées

seront ensuite pistées par des algorithmes de pistage mono-cible tandis que chaque cluster sera traité par

une des méthodes de pistage multi-cibles que l’on va présenter dans ce chapitre.

4.1.1 Exemple

Considérons le cas d’une poursuite de 7 cibles évoluant dans le plan. A l’instant k on dispose de

mk = 10 mesures. La validation des 10 mesures Z(k) = {z1(k), . . . , z10(k)} correspond à la figure sui-

vante. Les centres des fenêtres (ellipses) de validation {ẑt1 , . . . , ẑt7} correspondent aux positions prédites
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des 7 cibles.

Dans cet exemple, les mesures z5(k) et z7(k) ne sont pas validées ; les cibles no 3 et 7 sont isolées ; les

cibles no 1 et no 6 forment un cluster de taille 2 ; les cibles no 2, no 4 et no 5 forment un cluster de taille 3.

×
ẑt7

×
ẑt3

×
ẑt6

×
ẑt1

×
ẑt5

×
ẑt2

×
ẑt4

��
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��

z5

��

z2

��

z9

�	

z3


�

z10

�


z4

��

z1

��

z6

��

z8

4.1.2 Matrice de validation utile

Pour effectuer automatiquement la séparation et le clustering des cibles, nous devons d’abord

construire la matrice de validation initiale du pistage, puis la matrice de validation utile. Une routine de

séparation et de clustering est donnée au paragraphe suivant.

La matrice de validation initiale, notée ΩI est une matrice de taille mk × T dont les éléments

binaires ωij décrivent la validation ou non de la mesure i avec la cible j. ωij vaut 1 si zi appartient à la

fenêtre de la cible no j ou 0 sinon. Pour l’exemple précédent, nous avons
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ΩI(k) =































0 0 0 1 1 0 0

0 0 0 0 0 0 1

1 0 0 0 0 1 0

0 0 0 0 1 0 0

0 0 0 0 0 0 0

0 1 0 1 1 0 0

0 0 0 0 0 0 0

0 1 0 1 0 0 0

0 0 0 0 0 1 0

1 0 0 0 0 0 0































z1

z2

z3

z4

z5

z6

z7

z8

z9

z10

Puisque les mesures z5(k) et z7(k) ne sont pas validées, elles ne serviront pas à mettre à jour les pistes.

On peut donc les supprimer de la liste des mesures utiles. D’autre part, la fenêtre de la cible no 3 est

vide. Cette cible ne pourra donc pas être mise à jour par l’utilisation de mesures, mais uniquement par

une propagation de sa dynamique. La colonne de ΩI correspondant à cette cible peut donc être supprimée.

Plus généralement, la matrice de validation utile, notée Ω, est donc obtenue à partir de la matrice

de validation initiale ΩI en supprimant à la fois les lignes correspondant aux mesures non validées et les

colonnes correspondant aux fenêtres vides. Pour l’exemple considéré, nous aurons

Ω(k) =
























0 0 1 1 0 0

0 0 0 0 0 1

1 0 0 0 1 0

0 0 0 1 0 0

0 1 1 1 0 0

0 1 1 0 0 0

0 0 0 0 1 0

1 0 0 0 0 0
























z1

z2

z3

z4

z6

z8

z9

z10

Dans un tel processus, nous devons bien évidemment mémoriser dans deux piles les index des cibles

et des mesures intervenant dans cette matrice de validation utile.

4.1.3 Routine de clustering

Pour aider le lecteur souhaitant réaliser rapidement des simulations de pistage multi-cibles, nous don-

nons ici une routine MatLab de clustering développée par l’auteur. Une routine Fortran peut également

être trouvée en [DBS93].
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La fonction Compress permet de compresser la matrice de validation initiale ΩI =Omega_Matrix en

matrice de validation utile Ω =Omega_Compress. Les piles Target_Indices et Measurement_Indices

contiennent la liste des index des cibles et des mesures relatives à Ω.

%∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

function [Omega Compress,Target Indices,Measurement Indices]=Compress(Omega Matrix);

%∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

% Purpose : This function returns the useful validation matrix computed from the

% initial validation matrix. This function must be called just before clustering .

% Author : Jean Dezert

%∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

if (isempty(Omega Matrix)==1)

Omega Compress=Omega Matrix;

Target Indices=[];

Measurement Indices=[];

disp(’ Warning in Compress .m routine ===> Omega_Matrix is empty ’)

return

end

Target Indices=find(sum(Omega Matrix,1)˜=0); % Index of non empty gates

Measurement Indices=find(sum(Omega Matrix,2)˜=0);% Index of validate measurements

% Compression of initial validation matrix

Omega Compress=Omega Matrix;

Omega Compress(find(sum(Omega Compress,2)==0),:)=[];

Omega Compress(:,find(sum(Omega Compress,1)’==0))=[];

return

La fonction Clustering permet d’effectuer automatiquement la séparation et le regroupement des

cibles à partir de la matrice de validation utile Ω =Omega_Compress. Le résultat est stocké dans la

matrice de clustering Cluster_Matrix. Chaque ligne de cette matrice correspond à un cluster de cibles.

%∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

function [Cluster Matrix]=Clustering(Omega Compress);

%∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

% Purpose : Decomposition of a validation matrix into

% a set of independant clusters in order to reduce the

% combinatorics involving with MTT problems.

% Author : Jean Dezert

%∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

% Note : Each row gives the set of target involved in a cluster .

% Omega Compress is the useful validation matrix obtained from Compression function.
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[Nz,Ntarget]=size(Omega Compress);

% Input checking

if (isempty(Omega Compress)==1)

Cluster Matrix=[];

return

end

% All targets are independant

if (sum(sum(Omega Compress))==size(Omega Compress,1))

Cluster Matrix=eye(Ntarget,Ntarget);

return

end

% Cluster separation

Null Row=zeros(1,size(Omega Compress,2));

Cluster Matrix=Omega Compress;

for j=1:size(Omega Compress,2)

L=(sum([Cluster Matrix(find(Cluster Matrix(:,j)˜=0),:);Null Row])˜=0);

Cluster Matrix(find(Cluster Matrix(:, j )˜=0),:)=[];

Cluster Matrix=[Cluster Matrix;L];

end

return

4.2 Pistage multi-cibles par JPDAF (1980)

Le JPDAF (Joint Probabilistic Data Association Filter) [FBSS80, FBSS80, FBSS83, BSF88] est une

extension du filtre PDAF au cas de la poursuite multi-cibles. C’est donc une approche bayésienne.

4.2.1 Hypothèses du JPDAF

– le nombre T de cibles à pister est supposé connu

– pour chaque cible t, toute l’information disponible obtenue à partir de la séquence de mesures Zk

est résumée par l’état estimé à l’instant courant x̂t(k|k) (qui approxime la moyenne conditionnelle)

et sa covariance Pt(k|k)
– à chaque instant k, l’état réel xt(k) d’une cible t est supposée gaussien avecN (xt(k); x̂t(k|k),Pt(k|k))
– chaque cible t possède une dynamique propre observable au travers du senseur

– la probabilité de détection P t
d de chaque cible t est supposée connue

– les T cibles sont supposées perceptibles par le senseur
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4.2.2 Principe géneral de la méthode

Considérons un groupe de T cibles représentées par les indices t = 1, . . . , T à un instant donné k

regroupées en un seul cluster (cf paragraphe précédent). L’ensemble des mk mesures de ce cluster est

noté

Z(k) = {Z1(k) ∪ . . .ZT (k)} (4.1)

Chaque mesure zi(k) du cluster provient soit d’une cible parmi les cibles t = 1, . . . , T ou bien provient

d’une fausse alarme que l’on caractérise par l’indice t = 0.

On note ẑt(k|k − 1) la mesure prédite de la cible t et l’innovation associée à la mesure i est notée

z̃t
i(k) , zi(k) − ẑt(k|k − 1) i = 1, . . . ,mk (4.2)

L’innovation pondérée s’écrit

z̃t(k) =

mk∑

i=1

βt
i (k)z̃

t
i(k) (4.3)

où βt
i (k) est la probabilité pour que la mesure i corresponde à celle de la cible t. βt

0(k) est la probabilité

pour qu’aucune des mesures ne provienne de la cible t. Cette innovation pondérée interviendra alors dans

la mise à jour x̂t(k|k) de l’état de la cible t. Ceci sera fait de la même façon pour n’importe quelle cible.

L’algorithme JPDAF évalue les βt
i (k) conjointement avec l’ensemble des T cibles et des fausses

alarmes présentes dans le cluster. La mise à jour de l’état d’une cible prendra alors en compte à la fois

les fausses alarmes et les mesures des cibles proches interférentes.

La clé du JPDAF [FBSS83, BSF88] réside dans l’évaluation des probabilités conditionnelles de tous

les évènements d’association suivants

Θ(k) =

mk⋂

i=1

Θti

i (k) (4.4)

où Θti

i (k) représente l’évènement pour que la mesure i provienne de la source associée ti, 0 ≤ ti ≤ T .

ti > 0 désignant la source ayant généré la mesure i au temps k. L’indice ti = 0 signifie par convention que

la mesure i est une fausse alarme. Les évènements d’association faisables sont les évènements conjoints

pour lesquels une mesure est associée à une cible au plus.

Les probabilités βt
i (k) pour que la mesure i provienne de la source t s’obtiennent en ajoutant la

probabilité de tous les évènements d’association conjoints faisables Θ(k) pour lesquels cette condition est
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vraie ; c’est à dire

βt
i (k) =

∑

Θ(k)

P{Θ(k)|Zk}ω̂it(Θ(k)) i = 1, . . . ,mk (4.5)

βt
0(k) = 1 −

mk∑

i=1

βt
i (k) (4.6)

ω̂it(Θ(k)) représente la composante correspondante de la matrice d’association caractérisant l’événement

Θ(k).

4.2.3 Matrices d’associations faisables

On désigne par Ω = [ωit] la matrice d’hypothèses construite à partir de la matrice de validation utile

du cluster considéré et augmentée d’une colonne unitaire en t = 0 correspondant à l’origine FA.

Cette matrice d’hypothèses est généralement appelée matrice de validation par abus de langage dans la

littérature.

Ω , [ωit] i = 1, . . . ,mk t = 0, . . . , T (4.7)

On rappelle que la colonne t = 0 caractérise le fait que l’origine des mesures peut être une fausse

alarme. A partir de cette matrice d’hypothèses, on peut construire un ensemble {Θ(k)} exclusif et ex-

haustif d’hypothèses d’association conjointes mesures↔origines possibles (faisables). Chaque évènement

(hypothèse d’association conjointe possible) est caractérisé par une matrice d’associations faisables

Ω̂(Θ(k)) = [ω̂it(Θ(k))] (4.8)

Chaque matrice Ω̂(Θ(k)) représente un évènement faisable Θ(k) si et seulement si les conditions suivantes

sont satisfaites

– n’importe quelle matrice Ω̂(Θ(k)) doit rester compatible avec la matrice initiale d’hypothèses Ω(k)

ω̂it(Θ(k)) =







1 if Θt
i(k) ∈ Θ(k)

0 sinon

(4.9)

– chaque mesure provient d’une seule source à la fois

T∑

t=0

ω̂it(Θ(k)) = 1 ∀i (4.10)

– une cible ne peut générer qu’une seule mesure au plus

mk∑

i=1

ω̂it(Θ(k)) ≤ 1 t = 1, . . . , T (4.11)
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4.2.4 Indicateurs de détection, d’association et de FA

Pour les besoins des calculs, on définit les indicateurs δt(Θ), τi(Θ) et φ(Θ) suivants :

1. Indicateur de détection d’une cible δt(Θ)

δt(Θ) ,

mk∑

i=1

ω̂it(Θ) ≤ 1 t = 1, . . . , T (4.12)

2. Indicateur d’association des mesures τi(Θ)

τi(Θ) ,

T∑

t=1

ω̂it(Θ) (4.13)

3. Indicateur du nombre de FA φ(Θ)

φ(Θ) ,

mk∑

i=1

[1 − τi(Θ)] (4.14)

La génération automatique des matrices d’associations faisables est donnée après l’exemple qui suit.

4.2.5 Exemple

Considérons un cas très simple où seulement deux cibles interfèrent et où la matrice initiale de validation

[FBSS83, BSF88] est la suivante

Ω =

t 0 1 2

j

1 1 1 0

2 1 1 1

(4.15)

Ceci correspond par exemple à la situation suivante en 2D,

×
ẑt1

×
ẑt2

��

z1
��

z2

Dans ce cas, l’ensemble des matrices d’associations faisables est

Ω̂1 =




1 0 0

1 0 0



 Ω̂2 =




1 0 0

0 1 0




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Ω̂3 =




1 0 0

0 0 1



 Ω̂4 =




0 1 0

1 0 0





Ω̂5 =




0 1 0

0 0 1





4.2.6 Génération des matrices d’associations

La génération automatique des matrices d’associations possibles Ω̂(Θ(k)) à partir de la matrice d’hy-

pothèses Ω est délicate et rebute souvent les utilisateurs potentiellement intéressés par l’évaluation du

JPDAF. Pour ne pas les décourager, nous donnons ici, sans entrer dans le détail, le code MatLab per-

mettant de générer automatiquement les matrices Ω̂(Θ(k)).

Il faut savoir cependant que le nombre de matrices à générer augmente exponentiellement avec

les dimensions du problème d’association. Ceci reste l’inconvénient majeur du JPDAF. Compte tenu

de la nécessité d’une énumération exhaustive des matrices d’association, le JPDAF ne peut être utilisé

que dans des configurations telles que les dimensions des clusters et des mesures associées ne soient pas

trop importantes. Certains algorithmes JPDAF sous-optimaux ont été développés dans la littérature afin

d’éviter une recherche exhaustive des matrices Ω̂(Θ(k)) et/ou faciliter un traitement rapide (et en pa-

rallèle) des calculs [FC89, DN93, ZB93, CM95]. L’algorithme présenté ici est l’algorithme DFS (Depth

First Search) utilisé en [Zho92, ZB93] (initialement codé en Fortran en [Dez88]).

%∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

%∗ Purpose : This code implements the DFS algorithm for generating

%∗ exhaustive list of feasible joint association events from a given

%∗ initial validation matrix.

%∗

%∗ Author : Jean Dezert

%∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

% mk= nbr of measurement

% nt = nbr of true targets (without FA)

% You can modify Omega Matrix here as you want to see other DFS results

clear all

close all

Omega Matrix=[1 1 0 ;1 1 1];

[mk nt]=size(Omega Matrix);

nt=nt−1;

disp ([ ’ number of measurements --> mk=’ num2str(mk)])
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disp ([ ’ number of true targets --> nt=’ num2str(nt)])

disp(’ ’)

ZZ=zeros(mk,nt+1);

for j=1:mk

disp ([ ’ Origin for measurement no =’ num2str(j)])

Zj=find(Omega Matrix(j,:)˜=0)−1;

ZZ(j,1: size (Zj,2))=Zj;

end

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

% DFS algorithm for feasible joint association events

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Eps Sol=zeros(mk,1);

NS=1;

disp ([ ’ Feasible matrix number NS=’ ,num2str(NS)])

Omega hat=[ones(mk,1) zeros(mk,nt)] % Trivial solution

L=0;j=1;jL=0;Ej=0;In Loop1=1;XjL=0;X=zeros(1,2);

while(In Loop1==1)

if ( j<=mk)

In Loop2=1;

while(In Loop2==1)

if ((L<min(nt,mk))&(j<=mk))

Xj=[];index=find(ZZ(j,:)>XjL);

if (isempty(index)==0),Xj=ZZ(j,index(1));end

if (isempty(Xj)==1) % Xj is empty

XjL=0;j=j+1;

else % Xj is non empty

XjL=Xj;

if (isempty(find(Xj==X(:,2)))) % Xj is compatible

NS=NS+1;L=L+1;X(L,:)=[j Xj];j=j+1;XjL=0;

disp ([ ’ Feasible matrix number NS=’ ,num2str(NS)])

% Construction of a feasible association matrix (optional)

Omega hat=[ones(mk,1) zeros(mk,nt)];

for ll =1:size(X,1)

Omega hat(X(ll,1),1)=0;

Omega hat(X(ll,1),X(ll,2)+1)=1;

end

Omega hat=Omega hat

% Derivation of joint association probability
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% must be implemented here)

end % if(Xj Compatible==1)

end % if(isempty(find(Xj==X(:,2))))

else

In Loop2=0;

if (L>=1) % Backtracking

j=X(L,1);XjL=X(L,2);X(L,:)=[];L=L−1;

end % if(L>=1)

end % if((L<min(nt,mk))&(j<=mk))

end % while(In Loop2==1)

else ,

In Loop1=0; % Exit flag

end

end % while(In Loop1==1)

disp(’ ’)

disp ([ ’ --> All ’ ,num2str(NS),’ solutions have been generated by DFS’ ])
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Exemple de génération par algorithme DFS

Considérons le cas très simple à 3 mesures où seulement 2 cibles interfèrent avec la matrice initiale

de validation est suivante :

Ω =

t 0 1 2

j

1 1 1 0

2 1 1 1

3 1 0 1

(4.16)

La génération des matrices par l’algorithme DFS consiste à parcourir successivement les branches de

l’arborescence suivante :

Fig. 4.1 – Exemple de génération des matrices par algorithme DFS

4.2.7 Expression des probabilités d’associations conjointes

Pour mettre en œuvre le JPDAF, il nous faut d’abord évaluer les probabilités d’associations conjointes

P{Θ(k)|Zk}, puis pour chaque cible t, les probabilités marginales d’associations βt
i (k) en utilisant les re-

lations (4.5) et (4.6).
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En utilisant la règle de Bayes, on écrit

P{Θ(k)|Zk} =
1

c
p[Z(k)|Θ(k),mk,Z

k−1]P{Θ(k)|mk,Z
k−1} (4.17)

où c est une constante de normalisation.

Pour simplifier le développement des calculs, on suppose

– que l’on a un seul volume de surveillance V englobant toutes les fenêtres de validation du cluster à

analyser,

– que les états des cibles sont mutuellement indépendants sachant l’ensemble des mesures

disponibles [BSL95],

– que les mesures ne provenant pas des cibles sont uniformément réparties dans le volume de sur-

veillance V du senseur.

Fonction de vraisemblance des mesures

La (fonction de) vraisemblance des mesures conditionnellement à Θ(k) s’écrit

p[Z(k)|Θ(k),mk,Z
k−1] =

mk∏

i=1

p[zi(k)|Θti

i (k),mk,Z
k−1] (4.18)

mk étant le nombre total de mesures validées présentes dans le cluster de cibles considéré. La densité de

probabilité d’une mesure zi sachant son origine s’écrit

p[zi(k)|Θti

i (k),mk,Z
k−1] =







V −1 si τi(Θ(k)) = 0

eti(zi(k)) , N [zi(k); ẑ
ti(k|k − 1),Sti(k)] si τi(Θ(k)) = 1

(4.19)

ẑti(k|k − 1) est la mesure prédite de la cible ti avec pour covariance de l’innovation associée Sti(k). En

tenant compte de ces expressions, on obtient la vraisemblance suivante

p[Z(k)|Θ(k),mk,Z
k−1] = V −φ(Θ(k))

mk∏

i=1

[
eti(zi(k))

]τi(Θ(k))
(4.20)

On rappelle que φ(Θ(k)) indique le nombre de mesures considérées comme FA dans l’évènement Θ(k).

Probabilité a priori d’un évènement Θ(k)

La probabilité a priori d’un évènement Θ(k) peut être décomposée [BSL95] selon

P{Θ(k)|mk,Z
k−1} ≡ P{Θ(k)|mk} = P{Θ(k), δ(Θ(k)), φ(Θ(k))|mk} (4.21)

Ce qui peut encore être décomposé avec la règle de Bayes sous la forme

P{Θ(k), δ(Θ(k)), φ(Θ(k))|mk} = P{Θ(k)|δ(Θ(k)), φ(Θ(k)),mk}P{δ(Θ(k)), φ(Θ(k))|mk} (4.22)
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La première probabilité P{Θ(k)|δ(Θ(k)), φ(Θ(k)),mk} est égale à l’inverse du nombre de permutations

de mk − φ(Θ(k)) mesures (associées aux cibles dans Θ(k)) prises parmi les mk disponibles. On suppose

ici que toutes ces permutations sont équiprobables. Ainsi, on a

P{Θ(k)|δ(Θ(k)), φ(Θ(k)),mk} =
1

Pmk

mk−φ(Θ(k))

=
φ(Θ(k))!

mk!
(4.23)

La probabilité P{δ(Θ(k)), φ(Θ(k))|mk} est obtenue en supposant δ et φ indépendants. On a alors

P{δ(Θ(k)), φ(Θ(k))|mk} = µF (φ(Θ(k)))

T∏

t=1

(P t
d)

δt(Θ(k))
(1 − P t

d)
1−δt(Θ(k))

(4.24)

En remplaçant les expressions précédentes dans (4.21), on obtient finalement

P{Θ(k)|mk,Z
k−1} =

φ(Θ(k))!

mk!
µF (φ(Θ(k)))

T∏

t=1

(P t
d)

δt(Θ(k))
(1 − P t

d)
1−δt(Θ(k))

(4.25)

Expression finale de P{Θ(k)|Zk}

En remplaçant (4.20) et (4.25) dans (4.17), on aboutit à l’expression finale cherchée

P{Θ(k)|Zk} =
1

c
× φ(Θ(k))!

mk!
µF (φ(Θ(k)))V −φ(Θ(k))

mk∏

i=1

[
eti(zi(k))

]τi(Θ(k))
T∏

t=1

(P t
d)

δt(Θ(k))
(1 − P t

d)
1−δt(Θ(k))

(4.26)

où c est une constante de normalisation.

En pratique deux versions du JPDAF sont utilisées selon le modèle choisi pour µF (Φ) [FBSS83, BSF88].

4.2.8 Version paramétrique du JPDAF

Dans ce cas, on suppose que le nombre φ de fausses alarmes suit une loi de Poisson de paramètre λ.

λ représente la densité spatiale du clutter dans l’espace d’observation. Ainsi, on suppose donc

µF (φ) =
(λV )

φ

φ!
e−λV (4.27)

Sous cette hypothèse, les probabilités a posteriori des évènements d’associations s’expriment alors comme

P{Θ|Zk} =
1

c

mk∏

i=1

[λ−1eti(zi(k))]
τi(Θ)

T∏

t=1

[P t
d]

δt(Θ)
[1 − P t

d]
1−δt(Θ)

(4.28)

où c est une nouvelle constante de normalisation.
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4.2.9 Version non paramétrique du JPDAF

Dans ce cas, on suppose n’avoir aucune information sur la masse de probabilités de φ et l’on adopte

l’hypothèse de loi diffuse pour µF (φ) à savoir,

µF (φ) = ε (4.29)

Les probabilités a posteriori des évènements conjoints d’association s’expriment maintenant comme

P{Θ|Zk} =
φ!

c

mk∏

i=1

[V eti(zi(k))]
τi(Θ)

T∏

t=1

[P t
d]

δt(Θ)
[1 − P t

d]
1−δt(Θ)

(4.30)

où c est une autre constante de normalisation.

Dans l’expression de P{Θ|Zk} obtenue avec la version non paramétrique du JPDAF intervient le

terme φ!/V φ que l’on appelle pseudo-densité spatiale des FA. Ce terme est analogue au terme λφ

intervenant dans la version paramétrique du calcul de P{Θ|Zk}.

4.2.10 Equations de mise à jour et de prédiction

Une fois l’énumération exhaustive des évènements conjoints d’associations faisables effectuée, on évalue

les probabilités P{Θ|Zk}. Puis pour chaque cible t, les probabilités marginales d’associations βt
i (k) sont

calculées en utilisant les relations (4.5) et (4.6).

La mise à jour de chaque cible (i.e. le calcul de x̂t(k|k) et de Pt(k|k)) est réalisée simplement par les

équations de mise à jour du filtre PDAF standard, ou mieux encore par les équations du filtre PDAF

modifié.

La prédictions x̂t(k + 1|k) et Pt(k + 1|k) sont obtenues par les équations de prédiction classiques du

filtre de Kalman (ou de Kalman étendu selon la linéarité du modèle de dynamique choisi).

4.2.11 Version couplée du JPDAF

Les équations de mise à jour précédentes ne sont valables que si l’on admet l’indépendance des cibles

entre elles conditionnellement aux mesures passées. C’est bien sûr une approximation.

En fait, dès l’instant où les cibles ont interféré, elles ne peuvent plus être théoriquement considérées

comme indépendantes. On doit alors considérer des termes de couplage entre les différentes estimées. Ces

termes de couplages sont caractérisés par des matrices (non nulles) de covariance croisée. Pour prendre

en compte la correlation des cibles, on utilise donc un super-vecteur d’état qui est tout simplement l’em-

pilement des vecteurs d’état de chaque cible du cluster. Ce super-vecteur d’état est estimé globalement
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ainsi que sa matrice de covariance (globale) associée. Ceci consitue le principe de la version couplée du

JPDAF - appelée JPDAFC (JPDAF Coupled).

Les probabilités d’associations conjointes sont alors données par

P{Θ|Zk} =
1

c
[λ−1eti1 ,ti2

, . . .(zi(k), i : τi(Θ(k)) = 1)

T∏

t=1

[P t
d]

δt(Θ(k))
[1 − P t

d]
1−δt(Θ(k))

(4.31)

où eti1 ,ti2
, . . . est la densité de probabilité conjointe des mesures associées aux cibles sous Θ. Dans la

version couplée du JPDAF, on utilise directement ces probabilités P{Θ|Zk} dans la mise à jour de l’état

global et non plus les probabilités marginales comme on le faisait dans la mise en œuvre découplée.

Il faut savoir que le JPDAFC, bien que théoriquement plus satisfaisant, est rarement employé en

pratique.

Exemple simple du JPDAFC

Soit 2 cibles t1 et t2 appartenant au même cluster (c.à.d. ayant des mesures appartenant à l’intersection

des fenêtres de validation des cibles), l’état global prédit et la matrice de covariance globale prédite

s’écrivent

x̂(k|k − 1) =




x̂t1(k|k − 1)

x̂t2(k|k − 1)



 (4.32)

P(k|k − 1) =




Pt1,t1(k|k − 1) Pt1,t2(k|k − 1)

Pt2,t1(k|k − 1) Pt2,t2(k|k − 1)



 (4.33)

Pt1,t2 = Pt2,t1 sont les matrices de cross-covariance entre les estimées des états des deux cibles. La mise

à jour de l’état global est obtenue par l’équation suivante

x̂(k|k) = x̂(k|k − 1) + K(k)
∑

Θ(k)

P{Θ|Zk}[z(k,Θ) − ẑ(k|k − 1)] (4.34)

avec

z(k,Θ) =




zj1 (k,Θ)

zj2 (k,Θ)



 (4.35)

H(k) =




Ht1(k) 0

0 Ht2(k)



 (4.36)

R(k) =




R1(k) 0

0 R2(k)



 (4.37)
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K(k) = P(k|k − 1)H(k)′[H(k)P(k|k − 1)H(k)′ + R(k)]
−1

(4.38)

ẑ(k|k − 1) =




ẑt1(k|k − 1)

ẑt2(k|k − 1)



 = H(k)x̂(k|k − 1) (4.39)

La mise à jour de la covariance globale est donnée par par l’équation (3.52) du PDAF avec ici β0(k)

définie comme

β0(k) = P{Θ0|Zk} = 1 −
∑

Θ(k)6=Θ0

P{Θ|Zk} (4.40)

où l’évènement particulier Θ0 correspond à l’hypothèse selon laquelle toutes les mesures sont des fausses

alarmes.

Extension au cas des mesures multi-sources

Dans la présentation précédente, on a supposé que chaque mesure provenait d’une seule origine et que

les cibles étaient résolues (inférieure à la case de résolution du senseur). En fait, selon la taille des cibles

et la résolution du senseur, il est possible que plusieurs cibles soient dans la même case de résolution du

senseur. Dans ce cas, le senseur ne voit qu’une seule mesure. On parle alors de mesure multi-sources.

Une extension du JPDAF et du JPDAFC a conduit au développement des filtres JPDAM (JPDA Merged

measurement) et JPDAMCF en [Cha83, CB83, CB84b, Cha86]. Nous ne détaillerons pas ici le principe

de ces filtres qui sont basés sur une modélisation spécifique de la mesure multi-sources.

4.2.12 En résumé

Les hypothèses du JPDAF

• Il y a plusieurs cibles à pister dans du clutter

• Le nombre T de cibles est connu

• Les T pistes des cibles sont déjà initialisées

• La probabilité de détection de chaque cible est connue et ne dépend pas de l’état des cibles

• Les cibles sont supposées perceptibles

• Les modèles de dynamique des cibles peuvent être différents

• Il existe des mesures communes aux fenêtres de validation des cibles

• Chaque cible génère au plus une mesure (pas de réflexions multiples, pas de cibles étendues)

• Chaque mesure provient d’une seule source (pas de mesure multi-source)

• la densité de probabilité de l’état de chaque cible conditionnée par les mesures passées est supposée

gaussienne et indépendante des autres cibles. Toute l’information passée est résumée dans l’état

prédit et la covariance prédite au dernier instant.
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Principe de mise en œuvre du JPDAF

• Prédire l’état et la mesure de chaque cible

• Valider les mesures reçues dans chaque fenêtre de validation

• Isoler et regrouper les cibles en clusters

• Pour chaque cible appartenant à un cluster de taille > 2 :

– Générer la liste des matrices d’associations conjointes faisables

– Calculer la probabilité des évènements d’associations conjointes

– Evaluer les probabilités marginales d’associations βi(k)

– Mettre à jour l’état de la cible avec les équations du PDAF

– Prédire l’état de la cible avec les équations du modèle

Avantages du JPDAF

• Relative simplicité de mise en œuvre

• N’exige pas de stockage en mémoire (0-scan back)

• Donne de bons résultats lorsque la densité du clutter n’est pas trop importante

Limitations du JPDAF

• Le nombre T de cibles pistées doit être connu

• Les pistes doivent être initialisées

• Les cibles doivent être perceptibles

• Le nombre de matrices d’association crôıt exponentiellement avec la dimension du problème

Extensions du JPDAF[BS74, FBSS80, FBSS83, SOG89]

• Des versions sous-optimales existent [Fit86, BS90, RP93, Roe93, Roe94]

• Version couplée possible (JPDACF) [BW87]

• Version avec mesures multi-sources (JPDAMF) [TW81, Cha83, CB83, CB84b, Cha86]

• Version couplée avec mesures multi-sources (JPDAMCF)

• Prise en compte possible de la perception des cibles (IJPDAF) [DLL98]

• Prise en compte possible de mesures de reconnaissance [LBS90a, Dez90, Dez92]

4.3 Pistage multi-cibles par IJPDAF (1998)

Nous présentons ici l’extension du filtrage IPDAF au cas multi-cibles. L’idée de base consiste à re-

prendre le formalisme du JPDAF standard en y incluant la notion de perception des cibles. Dans le

JPDAF standard, les auteurs ont implicitement supposé que les T cibles présentes dans un cluster étaient

toujours perceptibles par le senseur. En pratique, ce n’est bien évidemment pas toujours le cas et on

doit donc intégrer la probabilité de perception des cibles au sein même de l’algorithme de pistage tout

comme pour l’algorithme IPDAF développé pour le pistage mono-cible. Ce filtre sera dorénavant désigné

sous l’acronyme IJPDAF (Integrated Joint Probabilistic Data Association Filter) [DLL98]. Dans son
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essence, l’IJPDAF suit l’idée du JPDAF standard mais l’évaluation des probabilités (intégrées) d’asso-

ciations conjointes diffère.

Très récemment, certains auteurs [SP98] ont proposé un algorithme de pistage multi-cibles intégrant

aussi la perception des cibles. Cet algorithme est basé sur la méthode de Viterbi pour réaliser l’association

des données. Le point faible reste toutefois la non-prise en compte du croisement possible des cibles. Ceci

renforce le choix de l’IJPDAF pour le pistage multi-cibles robuste.

4.3.1 Hypothèses de l’IJPDAF

Les hypothèses de l’IJPDAF sont exactement les mêmes que celles du JPDAF (voir section 4.2.1)

excepté que l’on ne suppose pas ici la perception totale des cibles présentes dans le cluster.

4.3.2 Principe général de la méthode

Considérons un cluster de cibles représentées par les indices t = 1, . . . , T à un instant donné k.

L’ensemble des mk mesures associées à ce cluster est noté

Z(k) = {Z1(k) ∪ . . .ZT (k)} (4.41)

Chaque mesure zi(k) du cluster provient soit d’une cible perceptible parmi les cibles t = 1, . . . , T ou bien

provient d’une fausse alarme que l’on caractérise par l’indice t = 0.

On note ẑt(k|k − 1) la mesure prédite de la cible t et l’innovation associée à la mesure i est notée

z̃t
i(k) , zi(k) − ẑt(k|k − 1) i = 1, . . . ,mk (4.42)

L’innovation pondérée s’écrit

z̃t(k) =

mk∑

i=1

βt
i (k)z̃

t
i(k) (4.43)

Cette innovation pondérée interviendra alors dans la mise à jour x̂t(k|k) de l’état de la cible t. Ceci sera

fait de la même façon pour n’importe quelle cible. Comme pour l’IPDAF, on définit βt
i (k) comme étant

la probabilité marginale d’association intégrée pour que la mesure i corresponde à celle de la cible

perceptible t, βt
0(k) la probabilité pour qu’aucune des mesures ne provienne de la cible perceptible t et

βt
0̄(k) la probabilité pour que la cible t soit imperceptible au temps k. La terminologie slintégrée indique

le fait que l’on prend en compte (i.e. on intègre) la probabilité de perception de la cible dans le calcul des

probabilités d’associations.
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Les approches IJPDA et IPDA utilisent les mêmes équations de filtrage pour l’estimation récursive

de l’état des cibles. La seule différence entre ces deux approches concerne la façon dont les probabilités

marginales d’associations βt
i (k) sont calculées.

Pour l’algorithme IPDA, les βt
i (k), i = 0̄, 0, . . . ,mk sont évaluées séparément pour chacune des

cibles en supposant explicitement que toutes les mesures n’émanant pas de la cible d’intérêt sont

nécessairement des fausses alarmes et en prenant en compte de surcrôıt la probabilité de perception

de celle-ci.

Pour l’IJPDA, on évalue les βt
i (k) conjointement avec l’ensemble des T cibles et des fausses alarmes.

La mise à jour de l’état d’une cible prend alors en compte à la fois les fausses alarmes et les mesures des

cibles proches et interférentes.

4.3.3 Exemple

Le calcul des probabilités d’associations conjointes intégrées repose sur l’évaluation des probabilités

conditionnelles de tous les évènements intégrés faisables qui prennent en compte l’état de perception

des cibles. Pour clarifier les choses, reprenons l’exemple précédent en introduisant la notion de perception

des cibles. Reprenons le cas simple de deux cibles interférentes et correspondant à la matrice initiale de

validation suivante

Ω =

t 0 1 2

j

1 1 1 0

2 1 1 1

(4.44)

Les matrices d’associations faisables Ω̂(Θ) doivent maintenant être modifiées afin de prendre en compte

la possibilité ou non de perception des cibles par le senseur. Ceci peut être réalisé simplement en ajoutant

une ligne supplémentaire (indexée par l’indice j = 0) correspondant à une mesure fictive z0. Chaque

élément ω̂0t de cette ligne décrira l’état de perception d’une cible t par le senseur. On dira que la cible t

(t > 0) est perceptible lorsque ω̂0t = 1. Sinon on aura ω̂0t = 0. L’élément ω̂00 qui n’entre jamais dans les

calculs peut être pris à n’importe quelle valeur. Par convention, on prendra dans la suite ω̂00 ≡ 0. Par une

telle modification des matrices d’associations faisables Ω̂ du JPDAF standard, nous sommes maintenant

en mesure de générer l’ensemble des matrices Ω̂I caractérisant les évènements conjoints intégrés faisables.

On obtient pour notre exemple
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Ω̂1 =




1 0 0

1 0 0



 → Ω̂I
1 =








0 0 0

1 0 0

1 0 0








Ω̂I
2 =








0 1 0

1 0 0

1 0 0








Ω̂I
3 =








0 1 1

1 0 0

1 0 0








Ω̂I
4 =








0 0 1

1 0 0

1 0 0








Ω̂2 =




1 0 0

0 1 0



 → Ω̂I
5 =








0 1 1

1 0 0

0 1 0








Ω̂I
6 =








0 1 0

1 0 0

0 1 0








Ω̂3 =




1 0 0

0 0 1



 → Ω̂I
7 =








0 1 1

1 0 0

0 0 1








Ω̂I
8 =








0 0 1

1 0 0

0 0 1








Ω̂4 =




0 1 0

1 0 0



 → Ω̂I
9 =








0 1 1

0 1 0

1 0 0








Ω̂I
10 =








0 1 0

0 1 0

1 0 0








Ω̂5 =




0 1 0

0 0 1



 → Ω̂I
11 =








0 1 1

0 1 0

0 0 1








Il est clair que la génération des matrices Ω̂I à partir des matrices Ω̂ tient bien sûr compte de la contrainte

de faisabilité supplémentaire suivante :

(C1) : Toute cible détectée est nécessairement perceptible.

Chaque matrice d’associations Ω̂I
j , j = 1 . . . , 11 caractérise un évènement intégré d’associations conjointes

que l’on désigne par Ej . On note par P (Ej |Zk) la probabilité a posteriori de chaque évènement Ej . Comme

les évènements Ej sont mutuellement exclusifs et qu’ils forment un ensemble exhaustif d’hypothèses

d’associations intégrées, on a toujours

∑

j

P (Ej |Zk) = 1 (4.45)

Quand les probabilités P (Ej |Zk) sont évaluées (cf section suivante), les probabilités intégrées marginales

d’associations βt
i (k), i = 0̄, 0, . . . ,mk sont obtenues en ajoutant les probabilités P (Ej |Zk) des évènements
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conjoints Ej dans lesquels l’évènement marginal a lieu.

Dans notre exemple, les probabilités intégrées marginales relatives aux cibles t = 1 and t = 2 s’expriment

comme

1. pour les probabilités marginales d’associations de la cible t1

β1
0̄(k) = P{Ō1

k ∩ θ10(k)|Zk} = P (E1|Zk) + P (E4|Zk) + P (E8|Zk)

β1
0(k) = P{O1

k ∩ θ10(k)|Zk} = P (E2|Zk) + P (E3|Zk) + P (E7|Zk)

β1
1(k) = P{O1

k ∩ θ11(k)|Zk} = P (E9|Zk) + P (E10|Zk) + P (E11|Zk)

β1
2(k) = P{O1

k ∩ θ12(k)|Zk} = P (E5|Zk) + P (E6|Zk)

2. pour les probabilités marginales d’associations de la cible t2

β2
0̄(k) = P{Ō2

k ∩ θ20(k)|Zk} = P (E1|Zk) + P (E2|Zk) + P (E6|Zk) + P (E10|Zk)

β2
0(k) = P{O2

k ∩ θ20(k)|Zk} = P (E3|Zk) + P (E4|Zk) + P (E5|Zk) + P (E9|Zk)

β2
1(k) = P{O2

k ∩ θ21(k)|Zk} = 0

β2
2(k) = P{O2

k ∩ θ22(k)|Zk} = P (E7|Zk) + P (E8|Zk) + P (E11|Zk)

On peut en outre facilement vérifier que

∑

i=0̄,0,1,...,mk

βt
i (k) = 1 ∀t = 1, 2 (4.46)

La mise à jour (puis la prédiction) de l’état de chaque cible est ensuite réalisée par les équations de

filtrage de l’IPDAF présentées précédemment.

4.3.4 Expression théorique des probabilités P{E|Zk}

Un évènement intégré d’associations conjointes E au temps k peut être mathématiquement défini par

E(k) =
[mk⋂

i=1

Oi(k)
] ⋂[ T⋂

t=1

Pt(k)
]

(4.47)

où Oi(k) représente l’origine de la mesure i (soit du clutter, soit la cible 1, . . . , soit la cible T ).

Pt(k)représente l’état de perception de la cible t par le senseur. Pt(k) vaudra Ot
k lorsque la cible t est

perceptible ou bien Ōt
k dans le cas contraire). L’évènement E intègre à la fois les hypothèses sur l’origine

des mesures et les hypothèses sur les perceptions de cibles. Ceci justifie la terminologie intégrée utilisée.

Matrices d’associations intégrées

Chaque évènement E(k) est caractérisé par une matrice d’associations intégrée de taille (mk +1)×(T +1)

Ω̂I(E) = [ω̂it(E)] (4.48)
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dont les éléments valent soit 0 ou 1. Les éléments valant 1 doivent être compatibles avec ceux de la matrice

de validation initiale Ω et correspondre à la description de l’évènement E considéré. En d’autres termes,

on devra avoir pour t = 0, 1, . . . , T et i = 1, . . . ,mk

ω̂it(E) =







1 si (Oi(k) = t) ∈ E

0 sinon

(4.49)

et pour t = 1, . . . , T

ω̂0t(E) =







1 si (Pt(k) = Ot
k) ∈ E

0 sinon

(4.50)

Un évènement d’association E sera dit faisable s’il satisfait les contraintes suivantes

(1) chaque mesure provient d’une seule origine, i.e.,

T∑

t=0

ω̂it(E) = 1 ∀i > 0 (4.51)

(2) chaque cible perceptible génère au plus une mesure

δt(E) ,

mk∑

i=1

ω̂it(E) ≤ 1 t = 1, . . . , T (4.52)

(3) toute cible détectée est nécessairement perceptible

ω̂0t(E) − δt(E) ≥ 0 t = 1, . . . , T (4.53)

La variable binaire δt(E) est appelée indicateur de détection de la cible t. Les indicateurs d’associations

des mesures τi(E) et de fausses mesures φ(E) ont été définis dans le JPDAF standard. La variable binaire

πt(E) , ω̂0t(E) est appelée indicateur de perception de la cible car elle décrit l’état de perception de

celle-ci dans l’évènement E .

La génération des matrices Ω̂I(E) peut être obtenue à partir des matrices d’associations intervenant dans

le JPDAF classique. Pour cela on doit ajouter, comme on l’a montré dans l’exemple précédent, une

ligne supplémentaire d’indice 0 qui décrit les hypothèses concernant l’état de perception des cibles.

Ainsi à partir de chaque matrice Ω̂(Θ) du JPDAF classique, on doit générer NΘ matrices d’associations

intégrées Ω̂I(E) avec

NΘ =
T∏

t=1

21−δt(Θ) (4.54)

Remarque

Contrairement à ce qu’on pourrait croire, la mise en œuvre de l’IJPDAF ne nécessite pas en fait

la génération exhaustive des matrices Ω̂I(E) mais uniquement celle des matrices Ω̂(Θ). Ceci provient
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d’une simplification possible dans le calcul théorique des probabilités marginales d’associations intégrées.

Compte tenu de cette remarque importante, on peut donc affirmer que l’IJPDAF ne sera pas beau-

coup plus coûteux en calculs que le JPDAF standard. Seule, une faible charge supplémentaire

en calculs provient de lévaluation des probabilités de perception des cibles. Ceci confère à l’IJPDAF une

caractéristique appréciable pour les applications de pistage multi-cibles en temps réel.

Expression des probabilités

L’évaluation des probabilités intégrées d’associations conjointes est obtenue par la règle de décomposition

de Bayes suivante

P{E|Zk} = P{E|Z(k),mk,Z
k−1} =

1

c
p[Z(k)|E ,mk,Z

k−1]P{E|mk,Z
k−1} (4.55)

où c est une constante de normalisation.

Si on suppose que les états des cibles, étant données les observations disponibles, sont mutuellement

indépendants, alors la fonction de vraisemblance des mesures p[Z(k)|E ,mk,Z
k−1] reste identique à

celle obtenue dans le développement du JPDAF, à savoir

p[Z(k)|E ,mk ,Z
k−1] = V −φ(E)

mk∏

i=1

[eti(zi(k))]
τi(E) (4.56)

où eti(zi(k)) , N [zi(k); Ẑ
ti(k|k − 1),Sti(k)] est la vraisemblance de la mesure zi(k) associée à la cible

ti = Oi(E). ẑti(k|k− 1) est la mesure prédite de la cible ti dont la covariance de l’innovation associée est

Sti(k). V est le volume d’observation du senseur de poursuite.

La probabilité a priori de chaque évènement E s’exprime comme

P{E|mk,Z
k−1} ≡ P{E|mk} =

φ(E)!

mk!
µF (Φ(E))

T∏

t=1

[P t
d]

δt(E)
[1 − P t

d]
1−δt(E)

×
T∏

t=1

[POt

k|k−1,mk
]
πt(E)

[1 − POt

k|k−1,mk
]
1−πt(E)

(4.57)

où µF (φ) représente la masse de probabilités du nombre de fausses mesures φ dans l’évènement E .

POt

k|k−1,mk
est la probabilité de perception prédite de la cible. Le calcul de cette probabilité a été présenté

dans le développement de l’IPDAF.

A partir des expressions précédentes, on voit que la probabilité a posteriori P{E|Zk} de chaque évènement

intégré d’associations conjointes E est finalement donnée par
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P{E|Zk} =
1

c

φ(E)!

mk!

µF (φ(E))

V φ(E)

mk∏

i=1

[eti(zi(k))]
τi(E)

×
T∏

t=1

[P t
d]

δt(E)
[1 − P t

d]
1−δt(E)

×
T∏

t=1

[POt

k|k−1,mk
]
πt(E)

[1 − POt

k|k−1,mk
]
1−πt(E)

(4.58)

4.3.5 Version paramétrique de l’IJPDAF

Si on suppose que µF (φ) est une loi de Poisson, les probabilités intégrées d’associations conjointes

s’expriment

P{E|Zk} =
1

c

mk∏

i=1

[λ−1eti(zi(k))]
τi(E)

×
T∏

t=1

[P t
d]

δt(E)
[1 − P t

d]
1−δt(E)

×
T∏

t=1

[POt

k|k−1,mk
]
πt(E)

[1 − POt

k|k−1,mk
]
1−πt(E)

(4.59)

où c est une nouvelle constante de normalisation.

4.3.6 Version non paramétrique de l’IJPDAF

Avec une loi diffuse pour µF (φ), les probabilités intégrées d’associations conjointes s’expriment alors

P{E|Zk} =
Φ(E)!

c

mk∏

i=1

[V eti(zi(k))]
τi(E)

×
T∏

t=1

[P t
d]

δt(E)
[1 − P t

d]
1−δt(E)

×
T∏

t=1

[POt

k|k−1,mk
]
πt(E)

[1 − POt

k|k−1,mk
]
1−πt(E)

(4.60)

où c est une autre constante de normalisation.

4.3.7 Probabilités marginales d’associations intégrées

En supposant les états des cibles mutuellement indépendants sachant les mesures disponibles, les proba-

bilités marginales d’associations s’obtiennent en sommant les probabilités conjointes des évènements E
pour lesquels l’évènement marginal a lieu (cf exemple précédent). Nous aurons donc pour t = 1, . . . , T
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βt
i (k) , P{Ot

k ∩ θt
i(k)} =

∑

E
P{E|Zk}ω̂it(E) (4.61)

βt
0(k) , P{Ot

k ∩ θt
0(k)} =

∑

E
P{E|Zk}[1 − δt(E)]πt(E) (4.62)

βt
0̄(k) , P{Ōt

k ∩ θt
0(k)} =

∑

E
P{E|Zk}[1 − δt(E)][1 − πt(E)] (4.63)

Lorsque les probabilités marginales βt
i (k) (i = 0̄, 0, . . . ,mk) sont évaluées, les équations de mise à jour et

de prédiction de l’état des cibles correspondent à celles du filtre IPDAF. Ceci constitue le schéma global

de l’IJPDAF. La confirmation/terminaison des pistes peut être gérée par la procédure de décision basée

sur le SPRT [DLL98] ou par d’autres méthodes à caractère plus heuristique [Li97a, LL97, LL98a, LL98b].

4.3.8 Formulation concise des probabilités marginales d’associations

A première vue, l’évaluation des probabilités intégrées d’associations conjointes P{E|Zk} exige de

générer un ensemble très important de matrices d’associations. Cet ensemble contient nettement plus de

matrices que celui auquel on a à faire dans la mise en œuvre d’un JPDAF classique. De ce point de vue,

l’utilisation de l’IJPDAF parâıt d’emblée très limitée du fait de son coût prohibitif en calculs surtout

pour les applications denses en clutter et/ou en cibles. Bien que cette remarque soit parfaitement valable

au premier abord, on doit garder en mémoire que seules les probabilités intégrées marginales βt
i (k) inter-

viennent en fait dans le processus de filtrage.

Comme nous le verrons l’expression théorique de ces probabilités peut heureusement se ramener à une

formulation concise qui n’exige plus l’énumération exhaustive de tous les évènements intégrés E (et donc

celle des matrices Ω̂I(E)) mais uniquement celle des évènements d’associations (non intégrés) Θ. En effet,

avec quelques manipulations algébriques sur les expressions (4.61)-(4.63), on aboutit à la formulation

suivante concise des probabilités marginales βt
i (k) (i = 0̄, 0, 1, . . . ,mk)

βt
i (k) =

∑

Θ

P{Θ|Zk}POt

k|k−1,mk

∏

j 6=t

[POj

k|k−1,mk
]δj(Θ)ω̂it(Θ) (4.64)

βt
0(k) =

∑

Θ

P{Θ|Zk}POt

k|k−1,mk

∏

j 6=t

[POj

k|k−1,mk
]δj(Θ)[1 − δt(Θ)] (4.65)

βt
0̄(k) =

∑

Θ

P{Θ|Zk}[1− POt

k|k−1,mk
]
∏

j 6=t

[POj

k|k−1,mk
]δj(Θ)[1 − δt(Θ)] (4.66)

Sous cette forme concise, on voit que le coût en calcul de l’IJPDAF est pratiquement équivalent à

celui d’un JPDAF classique. Seul un faible surcoût sera dû à l’évaluation de la prédiction de la probabilité

de perception des cibles. Ce surcoût est en fait dérisoire aussi bien en mémoire nécessaire qu’en temps

de calcul. Notons aussi que les expressions théoriques finales (4.64)-(4.66) auxquelles on aboutit sont
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parfaitement cohérentes avec celle du filtre JPDAF classique lorsque la probabilité de perception prédite

des cibles POj

k|k−1,mk
tend vers 1.

4.3.9 Variantes possibles de l’IJPDAF

Dans le calcul précédent, nous avons toujours émis l’hypothèse que les états des cibles étaient mu-

tuellement indépendants sachant les mesures disponibles. Cette hypothèse bien que souvent admise en

pratique peut être supprimée et une formulation couplée de l’IJPDAF peut aisément être obtenue en

adoptant la même démarche que celle de Bar-Shalom concernant le JPDACF (Joint Probabilistic Data

Association Coupled Filter). Nous n’entrerons pas dans les détails de calculs de l’IJPDACF puisque cela

n’apporte aucune innovation particulière à l’algorithme qui vient d’être présenté. Par ailleurs, il faut sa-

voir que la prise en compte d’une information de reconnaissance de type amplitude par exemple peut aussi

être introduite sans difficulté dans l’IJPDAF comme il a déjà été proposé en [LBS90a, Dez92, LL97]. Une

version IJPDAMCF exploitant la modélisation de mesures multi-sources proposées dans le JPDAFMCF

peut également être utilisée.

4.4 Pistage multi-cibles par MHT (1977)

L’approche MHT (Multiple Hypothesis Tracking) proposée par Donald B. Reid en 1977 [Rei77,

Rei79a] est dans son principe une extension de l’approche FBO au cas multi-cibles. Le MHT est donc

une méthode bayésienne. Elle est souvent considérée comme une version bayésienne récursive de la

méthode de Morefield [Mor77] proposée à la même époque. Contrairement à l’approche JPDAF qui est

une méthode bayésienne orientée sur les cibles (on essaie d’associer des mesures aux cibles existantes), le

MHT est une approche orientée sur les mesures. Dans le MHT, on essaie d’associer aux mesures des

cibles déjà existantes ou nouvelles. L’intérêt de cette approche réside essentiellement dans sa possibilité

d’initialisation de nouvelles pistes. Comme nous le verrons, la mise en œuvre du MHT reste en théorie

impossible sans certaines astuces d’implémentations qui lui enlève malheureusement son caractère optimal

[PDBSW92].

4.4.1 Principe général du MHT

Dans le MHT, on évalue la probabilité a posteriori pour que chaque mesure disponible provienne

soit d’une fausse alarme, d’une cible existante ou éventuellement d’une nouvelle cible. Le nombre de

source n’est pas connu a priori. Le principe du MHT consiste à générer un ensemble d’hypothèses

(représenté par une structure arborescente) sur l’origine de chaque mesure disponible. La probabilité

a posteriori de chaque hypothèse est calculée récursivement en tenant compte des détections manquantes,

des fausses alarmes et de l’apparition possible de nouvelles cibles. La mise à jour de chaque cible est faite
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par pondération probabiliste des hypothèses pour lesquelles la cible considérée intervient.

4.4.2 Exemple

Considérons au scan k, 2 cibles interférentes et 3 mesures validées correspondant à la configuration

suivante :

×
ẑt1

×
ẑt2

��

z1

��

z2

��

z3

Les hypothèses sur l’origine des mesures sont représentées par la structure arborescente suivante :

Chaque nœud de l’arbre correspond à une origine possible de la mesure. L’index 0 correspond à l’origine

FA. Cet arbre devra ensuite être étendu au scan k+1 en générant de nouvelles hypothèses conjointes d’as-

sociation et ainsi de suite. La taille de l’arbre (nombre de branches à générer) crôıt donc exponentiellement

au cours du temps.
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A l’instant k et pour cet arbre d’hypothèses, on peut faire correspondre la matrice suivante :

M =

z1 z2 z3 No d’hypothèse

0 0 0 h1

1 0 0 h2

2 0 0 h3

3 0 0 h4

0 2 0 h5

1 2 0 h6

3 2 0 h7

0 4 0 h8

1 4 0 h9

2 4 0 h10

3 4 0 h11

0 0 2 h12

1 0 2 h13

3 0 2 h14

0 4 2 h15

1 4 2 h16

3 4 2 h17

0 0 5 h18

1 0 5 h19

2 0 5 h20

3 0 5 h21

0 2 5 h22

1 2 5 h23

3 2 5 h24

0 4 5 h25

1 4 5 h26

2 4 5 h27

3 4 5 h28

Une valeur mij de cette matrice indique la nature de l’origine de la mesure zj sous l’hypothèse conjointe

d’association hi. Dans cet exemple très simple, on voit qu’il faut générer 28 hypothèses possibles d’as-

sociations conjointes qui décrivent les origines simultanées des 3 mesures validées. Bien que ce nombre

d’hypothèses croisse exponentiellement avec les dimensions du problème, on voit que pour une cible

particulière t, il existe un nombre restreint N t
θ de possibilités. Ainsi, on a :
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– pour la mise à jour de t1 intervient les hypothèses suivantes :

• θt1
0 : t1 n’est pas détectée

• θt1
1 : t1 est associée à z1 (au travers de h2, h6, h9, h16, h19, h23, h26)

– pour la mise à jour de t2 intervient les hypothèses suivantes :

• θt2
0 : t2 n’est pas détectée

• θt2
1 : t2 est associée à z1 (au travers de h3, h10, h20, h27)

• θt2
2 : t2 est associée à z2 (au travers de h5, h6, h7, h22, h23, h24)

• θt2
3 : t2 est associée à z3 (au travers de h12, h13, h14, h15, h16, h17)

– pour la mise à jour de t3 intervient les hypothèses suivantes :

• θt3
0 : t3 n’est pas détectée

• θt3
1 : t3 est associée à z1 (au travers de h4, h7, h11, h14, h17, h21, h24, h28)

– etc . . .

Supposons maintenant que l’on sache évaluer (ce calcul sera présenté dans la suite) les probabilités

a posteriori conjointes d’associations P{hi|Zk} (i = 1, . . . , 28). Les probabilités marginales d’associa-

tions seront données par :

P{θt
j |Zk} =

∑

hi⊂θt
j

P{hi|Zk} (4.67)

Pour la cible t2 de notre exemple, on aura donc

P{θt2
1 |Zk} = P{h3|Zk} + P{h10|Zk} + P{h20|Zk}+ P{h27|Zk}

P{θt2
2 |Zk} = P{h5|Zk} + P{h6|Zk} + P{h7|Zk} + P{h22|Zk} + P{h23|Zk} + P{h24|Zk}

P{θt2
3 |Zk} = P{h12|Zk} + P{h13|Zk} + P{h14|Zk} + P{h15|Zk} + P{h16|Zk} + P{h17|Zk}

P{θt2
0 |Zk} = 1 − P{θt2

1 |Zk} − P{θt2
2 |Zk} − P{θt2

3 |Zk}

La mise à jour d’une cible t sera faite par pondération probabiliste ; c.à.d. par les équations

x̂t(k|k) = P{θt
0|Zk}x̂t(k|k − 1) +

Nt
θ∑

j=1

P{θt
j |Zk}x̂t

j(k|k) (4.68)

où l’égalité x̂t
0(k|k) ≡ x̂t(k|k − 1) a été utilisée et où x̂t

j(k|k) est l’estimée de la cible t obtenue par le

filtre de Kalman et basée sur l’utilisation de la mesure relative à θt
j .

La matrice de covariance associée s’écrira

Pt(k|k) =

Nt
θ∑

j=0

P{θt
j |Zk}E[(xt(k) − x̂t

j(k|k))(xt(k) − x̂t
j(k|k))′|Zk ] (4.69)

En utilisant la même démarche que pour le PDAF, on obtient

Pt(k|k) = P{θt
0|Zk}Pt(k|k − 1) + (1 − P{θt

0|Zk})P t
c (k|k) + P̃t(k) (4.70)
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avec

Pt(k) =
[

Nt
θ∑

j=0

P{θt
j |Zk}x̂t

j(k|k)x̂t
j(k|k)′

]
− x̂t(k|k)x̂t(k|k) (4.71)

Pt
c(k|k) = [I −Kt(k)Ht(k)]Pt(k|k − 1) (4.72)

4.4.3 Construction de l’arbre des associations

Notons Ωk l’ensemble des hypothèses d’associations conjointes, appelé arbre des associations.

Chaque branche de l’arbre Ωk décrit une séquence d’associations possibles de toutes les mesures dis-

ponibles jusqu’à l’instant courant k. On note

Ωk = {Ωk
j } (4.73)

Ωk
j représente une branche particulière de l’arbre d’associations. En théorie, Ωk est construit à partir de

l’arbre antérieur Ωk−1 et des mk mesures courantes validées

Z(k) = {zi(k)}mk

i=1 (4.74)

Pour cela, on étend l’arbre Ωk−1 en prolongeant ses branches avec les hypothèses d’origine possible pour

z1(k) ; puis les branches de cet arbre sont à leur tour étendues avec les hypothèses d’origine possible

pour z2(k) ; etc ; jusqu’à la croissance complète qui se termine avec les hypothèses d’origine possible

pour zmk
(k). On dispose alors en théorie de l’arbre courant Ωk. Le MHT exige une énumération

exhaustive de toutes les branches de l’arbre d’associations. Chaque branche est prolongée en supposant

que chaque nouvelle mesure validée provient :

• soit d’une fausse alarme

• soit d’une cible existante

• soit d’une nouvelle cible

En pratique, un tel arbre ne peut être construit à cause du nombre exponentiellement croissant de ses

branches. Une gestion des branches est donc nécessaire pour éviter l’explosion combinatoire du MHT. De

ce fait, tout MHT mis en œuvre perd inévitablement la propriété d’optimalité du MHT théorique.

4.4.4 Hypothèse d’associations conjointes courante

On désigne par Θ(k) l’évènement associé à une hypothèse d’associations conjointes courante. Chaque

évènement Θ(k) décrit la réalisation d’une combinaison possible des mesures avec des sources possibles

au temps courant. C’est en fait la réalisation du bout d’une branche particulière de Ωk. Chaque bout de

branche Θ(k) est constitué de

– τ mesures provenant des cibles existantes antérieurement
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– φ mesures associées au clutter

– ν mesures émanant de nouvelles cibles

Pour chaque hypothèse courante Θ(k), on definit alors les indicateurs suivants :

τi = τi[Θ(k)] =







1 si zi(k) est associé à une cible existante

0 sinon

(4.75)

νi = νi[Θ(k)] =







1 si zi(k) est associé à une nouvelle cible

0 sinon

(4.76)

δt = δt[Θ(k)] =







1 si la cible t présente en Ωk−1 est détectée au scan k

0 sinon

(4.77)

Avec ces indicateurs, on definit alors

• Le nombre de pistes prolongées dans Θ(k)

τ [Θ(k)] =

mk∑

i=1

τi[Θ(k)] (4.78)

• Le nombre de nouvelle pistes dans Θ(k)

ν[Θ(k)] =

mk∑

i=1

νi[Θ(k)] (4.79)

• Le nombre de fausses mesures dans Θ(k)

φ[Θ(k)] = mk − τ [Θ(k)] − ν[Θ(k)] (4.80)

L’évènement d’association courant Θ(k) est donc constitué des évènements :

Θ(k)] = {ΘT (k),ΘN(k),ΘF (k)} (4.81)

avec

• ΘT (k) qui représente les associations avec les cibles existantes

ΘT (k) ,
⋂

i:τi=1

θti

i (k) (4.82)

où ti désigne l’index de la cible existante associée à la mesure zi(k)

• ΘN(k) qui représente les associations avec les cibles nouvelles

ΘN (k) ,
⋂

i:νi=1

θni

i (k) (4.83)

où ni désigne l’index de la nouvelle cible associée à la mesure zi(k)
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• ΘF (k) qui représente les associations avec les fausses alarmes

ΘF (k) ,
⋂

i:τi+νi=0

θ0i (k) (4.84)

où t = 0 désigne l’index de la source fausses alarmes.

4.4.5 Hypothèse d’associations conjointes cumulées

On désigne maintenant par Θk,l l’évènement lié à la réalisation d’une hypothèse d’associations conjointes

cumulées ; c’est à dire à la réalisation d’une branche complète de l’arbre Ωk. Cet évènement peut

être décomposé sous la forme

Θk,l = {Θk−1,s,Θ(k)} (4.85)

4.4.6 Probabilité a posteriori d’associations conjointes cumulées

La probabilité a posteriori d’une branche complète de l’arbre Ωk, c’est à dire de l’évènement

d’associations conjointes cumulées Θk,l est obtenue par la règle de Bayes

βk,l ,P{Θk,l|Zk} = P{Θk−1,s,Θ(k)|Z(k),Zk−1}

=
1

c
p[Z(k)|Θ(k),Θk−1,s,Zk−1]P{Θ(k)|Θk−1,s,Zk−1}P{Θk−1,s|Zk−1}

• La vraisemblance de l’évènement courant s’exprime

p[Z(k)|Θ(k),Θk−1,s,Zk−1] =

mk∏

i=1

{eti [zi(k)]}τi[Θ(k)]
V −(1−τi[Θ(k)])

=
1

V φ[Θ(k)]+ν[Θ(k)]

mk∏

i=1

{eti [zi(k)]}τi[Θ(k)]

• La probabilité a priori de l’évènement courant Θ(k) se décompose selon

P{Θ(k)|Θk−1,s,Zk−1} ≡ P{Θ(k), δ[Θ], φ[Θ], ν[Θ]|Θk−1,s,Zk−1}

= P{Θ(k)|δ[Θ], φ[Θ], ν[Θ],Θk−1,s,Zk−1}P{δ[Θ], φ[Θ], ν[Θ]|Θk−1,s,Zk−1}

= P{Θ(k)|δ[Θ], φ[Θ], ν[Θ]}P{δ[Θ], φ[Θ], ν[Θ]}

où δ[Θ] est le vecteur des indicateurs de détection des cibles existantes dans Θ(k).

• Le nombre d’évènements ayant le même nombre de détections de cibles existantes τ et de cibles

nouvelles ν est donné par

– le nombre de permutations possibles de τ = mk − φ− ν mesures prises parmi les mk disponibles

et multiplié par

– le nombre de choix possibles de ν mesures prises parmi φ+ ν
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En supposant toutes ces combinaisons équiprobables, on obtient

P{Θ(k)|δ[Θ], φ[Θ], ν[Θ]} =
[ mk!

(mk − τ [Θ])!
× (φ[Θ] + ν[Θ])!

φ[Θ]!ν[Θ]!

]
−1

=
φ[Θ]!ν[Θ]!

mk!
(4.86)

• La probabilité P{δ[Θ], φ[Θ], ν[Θ]} vaut

P{δ[Θ], φ[Θ], ν[Θ]} = µF (φ[Θ])µN (ν[Θ])
∏

t

[P t
d ]

δt[Θ]
[1 − P t

d]
1−δt[Θ]

(4.87)

où µF et µN sont les masses de probabilités du nombre de fausses mesures et du nombre de nouvelles

cibles respectivement. On suppose généralement que ces masses suivent des lois de Poisson de densité

λF et λN .

En combinant ces expressions, on obtient donc la probabilité a priori suivante

P{Θ(k)|Θk−1,s,Zk−1} =
φ[Θ]!ν[Θ]!

mk!
µF (φ[Θ])µN (ν[Θ])

∏

t

[P t
d]

δt[Θ]
[1 − P t

d]
1−δt[Θ]

(4.88)

La probabilité a posteriori d’une branche d’associations possible est donc finalement obtenue récursivement

par la formule

βk,l , P{Θk,l|Zk}

=
1

c

φ[Θ]!ν[Θ]!

mk!

µF (φ[Θ])µN (ν[Θ])

V φ[Θ(k)]+ν[Θ(k)]

mk∏

i=1

{eti [zi(k)]}τi[Θ(k)]
∏

t

[P t
d]

δt[Θ]
[1 − P t

d]
1−δt[Θ] × P{Θk−1,s|Zk−1}

où c est une constante de normalisation.

La branche la plus probable est celle dont la probabilité P{Θk,l|Zk} est maximale. Pour la connaitre

il nous faut donc générer la liste exhaustive de toutes les branches possibles de l’arbre d’associations.

4.4.7 Forme de l’estimateur

La mise à jour de l’état de chaque cible est donnée en théorie par la pondération probabiliste des

estimées conditionnées par les branches possibles d’associations. Ceci a été présenté dans l’exemple

précédent.

En pratique cependant, pour limiter la combinatoire du MHT, on peut utiliser uniquement que la

branche la plus probable pour mettre à jour les pistes, ou bien effectuer une pondération probabiliste

tronquée (et renormalisée) des estimées conditionnelles. Cette étape délicate est souvent basée sur un

savoir faire du développeur. Les règles de fusion de branches et d’éliminations des branches improbables

sont propres à chaque système de poursuite MHT.



4.4. PISTAGE MULTI-CIBLES PAR MHT (1977) 83

4.4.8 En résumé

En théorie, les étapes d’un cycle du MHT sont les suivantes :

• On dispose d’un arbre d’hypothèses au temps k− 1 et des prédictions des états de cibles existantes

• Au temps k, on reçoit mk mesures validées

• On étend l’arbre des hypothèses d’associations en prolongeant les branches avec les hypothèses

possibles sur l’origine des mesures validées

• On évalue la probabilité a posteriori de réalisation de chaque branche (enumération exhaustive

coûteuse)

• On calcule les probabilités marginales d’associations relativement à chaque cible

• On met à jour les états des cibles par pondération probabiliste

• On prédit l’état des cibles à l’instant k + 1

En pratique, pour limiter la combinatoire du MHT, on sépare d’abord les cibles en clusters indépendants ;

puis on utilise un MHT pour chaque cluster. Cette technique ne suffit pas à limiter la combinatoire. On

est donc amené à [Rei79a, PS83]

• éliminer (pruning) les branches ayant une probabilité d’occurence négligeable

• combiner (merging) les branches ayant conduit au même nombre de cibles pistées avec des estimées

comparables

Généralement le résultat présenté concerne celui obtenu avec l’hypothèse d’associations la plus pro-

bable. Ce résultat n’est pas forcément hélas celui correspondant à la réalité . . . On peut aussi adopter la

présentation décrite en [BB89]. Dans les environnements très denses, seul le pistage par MHT des clusters

de cibles reste possible. Cette approche est présentée en [DBP90].

4.4.9 Avantages du MHT

• prise en compte de cibles multiples en nombre inconnu

• prise en compte des fausses alarmes

– initialisation des nouvelles cibles détectées

– calcul récursif des probabilités d’associations conjointes cumulées

4.4.10 Inconvénients du MHT

• le nombre d’hypothèses à gérer crôıt exponentiellement au cours du temps

• le MHT théorique n’est pas exploitable

• on doit utiliser des heuristiques de gestion d’hypothèses pour limiter la combinatoire

• le MHT mis en œuvre en pratique perd donc son caractère d’optimalité

• la mise en œuvre d’un MHT opérationnel est très difficile et délicate [Bla86]
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4.5 Pistage multi-cibles par PMHT (1995)

Les algorithmes proposés précédemment (JPDAF, MHT) utilisent une énumération exhaustive de

toutes les associations possibles des mesures aux pistes. On est alors confronté à un problème d’explosion

combinatoire qui se résout par élimination des séquences les moins probables (principe d’élagage des

branches pour le MHT et/ou de la recombinaison O-scan back du JPDAF). La méthode PMHT (Proba-

bilistic Multi-Hypothesis Tracking) proposée en 1995 par R. Streit et T. Luginbuhl [SL93, SL94a, SL95]

permet d’éviter l’énumération exhaustive des hypothèses d’associations conjointes possibles.

L’idée principale du PMHT consiste à modéliser les associations (assignations) comme des va-

riables aléatoires. Les mesures ne sont plus associées à des pistes précises, mais simultanément à toutes

les sources avec des probabilités estimées au moyen de l’algorithme EM (Expectation Maximization) de

Dempster [DLR77].

Contrairement au JPDAF et au MHT, le PMHT est une méthode de poursuite de type batch

et non temps réel. On doit en effet stocker les mesures obtenues pendant plusieurs scans avant de pouvoir

mettre en œuvre le PMHT. La présentation du PMHT faite ici est basée principalement sur [Gau97].

4.5.1 Formulation du problème

On fixe à K la durée du batch (le nombre de scans à mémoriser) et on suppose qu’il existe

M sources présentes. Ce nombre M n’est pas restrictif et un modèle particulier de source pourra cor-

respondre aux fausses alarmes comme on le verra. L’évolution de chaque cible t est modélisée par un

processus de Markov qui est exprimé en temps discret sous la forme classique

xt(k + 1) = f t[xt(k),vt(k)] k = 1, . . . ,K (4.89)

où vt(k) est un bruit blanc gaussien centré de covariance Qt(k). La mesure associée à la cible t s’écrit

zt(k) = ht[xt(k),wt(k)] k = 1, . . . ,K (4.90)

où wt(k) est un bruit blanc gaussien centré de covariance Rt(k). En pratique, à chaque scan, on dispose

d’un ensemble de mk mesures validées Z(k) = {z1(k), . . . , zmk
(k)}. La mesure zt(k) de la cible t peut

appartenir à Z(k) si la cible est détectée au scan k. La taille mk de Z(k) varie d’un scan à l’autre. On

note ZK l’ensemble des mesures cumulées et validées depuis k = 1 à K,

ZK = (Z(1), . . . ,Z(K)) (4.91)

Le vecteur cumulé des états des M sources est noté

XK = (X(1), . . . ,X(K)) (4.92)
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où X(k) = (x1(k), . . . ,xM (k)) désigne l’ensemble des états des sources au scan k.

Afin de pouvoir prendre en compte l’incertitude sur l’origine des mesures, on définit le vecteur cumulé

ΘK d’une combinaison des associations conjointes possibles sur la longueur du batch,

ΘK = (Θ(1), . . . ,Θ(K)) (4.93)

où Θ(k) = (θ1(k), . . . , θmk
(k)) désigne une hypothèse d’associations conjointes possible sur l’origine des

mesures disponibles pour le scan k. θj(k) = i caractérise l’association du type : la jième mesure au scan

k est associée à la source no i.

Une piste notée τK
i , définie jusqu’à l’instant K, est une séquence de mesures associées à une même

source i ; c’est à dire

τK
i = {zj(k)|θj(k) = i, 1 ≤ k ≤ K 1 < i ≤M} (4.94)

Une telle définition de piste prend en compte les détections manquantes possibles d’une source. Comme

un modèle de source correspond aux fausses alarmes, on a une piste particulière de type fausse alarme.

Une partition P des mesures en pistes est définie comme un ensemble possible de pistes non vides,

i.e.

PK , {τK
i |τK

i 6= ∅} (4.95)

Chaque partition correspond en fait à une certaine hypothèse d’associations conjointes cumulées de ZK .

Le problème général de l’association consiste à trouver la partition possible la plus probable. Dans

les algorithmes précédents, on utilisait une énumération exhaustive des partitions possibles soit avec une

mémoire minimale 0-scan back (JPDAF) ou maximale (MHT) et l’évaluation récursive des probabilités

des partitions générées. La méthode PMHT de Streit et Luginbuhl évite l’énumération exhaustive des

partitions en assignant toutes les mesures à toutes les sources avec une pondération probabiliste em-

pirique. Le vecteur d’assignation inconnu ΘK est considéré dans le PMHT comme un vecteur aléatoire

que l’on cherchera à estimer.

Le problème de base à résoudre est donc le suivant :

Comment estimer XK à partir de ZK quant on ne connait pas ΘK ?

L’idée originale proposée en [SL95] consiste à estimer simultanément le vecteur des états cumulés

XK et les probabilités d’assignation ΠK des mesures aux sources. On note ΦK le vecteur des
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paramètres XK et ΠK à estimer. ΦK constitue les données complètes du problème de l’extraction multi-

pistes (EMP).

ΦK , (XK ,ΠK) = (Φ(1), . . . ,Φ(K)) (4.96)

où Φ(k) , (X(k),Π(k)) représente les paramètres à estimer au scan k avec

Π(k) , (π1(k), . . . , πM (k)) (4.97)

La notation πi(k) désigne la probabilité a priori d’associer une mesure au modèle de source i.

Le problème fondamental à résoudre consiste donc à estimer ΦK à partir des mesures disponibles

cumulées ZK . Nous verrons comment le PMHT apporte une solution à ce problème.

4.5.2 Hypothèses du PMHT

On précise ici les hypothèses et les contraintes liées à la méthode. On rappelle d’abord que dans les

approches probabilistes traditionnelles (JPDAF et MHT), on utilisait les contraintes suivantes pour la

génération des hypothèses d’associations :

• (C1) : chaque mesure provient soit d’une piste soit d’une fausse alarme (pas de mesure

multi-sources [MCTW86]). Ceci implique que les associations doivent être exclusives et exhaustives,

c.à.d
p

⋃

i=1

τK
i = ZK (4.98)

avec la contrainte pour ∀i 6= j et i, j = 1, . . . , p

τK
i

⋂

τK
j = ∅ (4.99)

où p ≤M est le nombre de pistes d’une partition quelconque PK . Cette contrainte implique d’avoir

pour les probabilités des variables d’affectations

M∑

i=1

P{θj(k) = i} ≡
M∑

i=1

πi(k) = 1 (4.100)

Les probabilités πi(k) sont inconnues et font partie du vecteur Φ(k) à estimer.

• (C2) : chaque source (cible et/ou FA) génère au plus une mesure (pas de source étendue

ou de trajets multiples). Cette contrainte implique d’avoir pour k = 1, . . . ,K et j, j ′ = 1, . . . ,mk

avec j 6= j′,

θj(k) = i⇒ θj′(k) 6= i i ∈ {1, . . . ,M} (4.101)

Pour le PMHT, le fait d’introduire l’association des données dans le problème même d’estimation

revient en fait à relâcher la deuxième contrainte (C2). On suppose que certaines mesures peuvent
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provenir de la même source (en particulier du clutter). A la limite, toutes les mesures peuvent très bien

être associées à une source unique. Cette possibilité du PMHT est originale et tout à fait réaliste car

une source peut en pratique être à l’origine de plusieurs mesures (cas des cibles étendues, des trajets

multiples, etc). On prend de ce fait en compte beaucoup plus d’hypothèses d’associations que dans les

approches bayésiennes classiques du JPDAF et du MHT.

Pour le développement du PMHT, les auteurs supposent cependant que les probabilités πi(k) sont

• (H 1) : indépendantes de la valeur des mesures, c.à.d.

πi(k) , P{θj(k) = i} ∀j = 1, . . . ,mk (4.102)

• (H 2) : indépendantes entre elles, c.à.d.

P{Θ(k)} =

mk∏

j=1

P{θj(k)} (4.103)

Remarque importante

Ces hypothèses (discutables), se justifient uniquement par leur nécessité à la mise en œuvre de l’al-

gorithme EM qui servira à l’estimation des données complètes ΦK = (XK ,ΠK) à partir des données

incomplètes ZK . C’est là qu’intervient l’empirisme de la méthode du PMHT.

On suppose aussi que

• (H 3) : les affectations des mesures Θ(k) et les vecteurs d’état des sources X(k) sont indépendants

• (H 4) : les états des différentes sources sont indépendants entre eux

Analogie avec l’estimation des paramètres de mélange de densités

Avec ces hypthèses, la fonction de vraisemblance du paramètre ΦK basée sur les données incomplètes

s’écrit

p(ZK |ΦK) =

K∏

k=1

p(Z(k)|Φ(k)) =

K∏

k=1

p(Z(k)|X(k),Π(k)) (4.104)

=

K∏

k=1

∑

Θ(k)

p(Z(k)|X(k),Π(k),Θ(k))P{Θ(k)|X(k),Π(k)} (4.105)

=

K∏

k=1

∑

Θ(k)

mk∏

j=1

p(zj(k)|X(k),Π(k))P{θj(k)} (4.106)

=

K∏

k=1

mk∏

j=1

M∑

θj=1

p(zj(k)|X(k), θj(k))P{θj(k)} (4.107)

=
K∏

k=1

mk∏

j=1

M∑

i=1

p(zj(k)|xi(k))πi(k)} (4.108)



88 CHAPITRE 4. PISTAGE MULTI-CIBLES MONO-SENSEUR PAR APPROCHES BAYÉSIENNES

Les relations (4.104) et (4.105) proviennent du théorème des probabilités totales et de la règle de Bayes.

La relation (4.106) provient de l’hypothèse d’indépendance des variables θj(k). Cette relation traduit le

fait que toute mesure peut être affectée à l’une des sources sans tenir compte des mesures préalablement

affectées. La relation (4.107) provient d’une simple factorisation et du fait que chaque θj(k) décrit le

même ensemble.

Avec cette décomposition, on voit clairement que la densité de probabilité de chaque mesure

s’exprime comme un mélange des M densités associées à chaque modèle de source. Le

problème à résoudre (estimer ΦK à partir de ZK) est donc strictement équivalent au problème de l’es-

timation de paramètres d’une loi de mélange de densités où de nombreuses méthodes de résolution

sont disponibles [TSM85]. L’algorithme EM (Expectation-Maximization) que nous allons présenter est la

méthode adoptée par Streit et Luginbuhl pour résoudre ce problème et développer le PMHT. Le choix

de la méthode EM est justifié car cet algorithme est bien adapté à l’estimation de paramètres lorsque la

fonction de vraisemblance est délicate à évaluer et/ou lorsque son optimisation est difficile.

4.5.3 Présentation de l’algorithme EM

L’algorithme EM (Expectation-Maximization) proposé par Dempster, Laird et Rubin en [DLR77,

Lai93, FH93] peut être considéré comme un cas particulier de la méthode ICE (Iterative Conditional

Estimation) proposée récemment par Pieczynski en [Pie92, Pie95] dans le cas particulier où les densités

de probabilité appartiennent à la famille des exponentielles [Del97]. Nous rappelons ici brièvement le prin-

cipe de cette méthode et donnons un exemple de son application au cas de l’estimation de paramètres de

mélange (mixture) de densités [Sun76, RW84]. L’étude de la convergence de l’algorithme EM est présentée

en [Wu83].

Considérons deux espaces X et Z et une application de X dans Z . On note

X (z) = {x ∈ X | z(x) = z} (4.109)

On note p(z|Φ) la densité de probabilité conditionnelle de z sachant Φ et p(x|Φ) la densité de probabilité

conditionnelle de x sachant Φ. Le problème consiste à estimer le paramètre inconnu Φ au sens du maximum

de vraisemblance à partir des observations z avec Φ de la forme

Φ = (φ1, . . . , φM ) ∈ Ω ⊂ IRM (4.110)

On suppose que l’on ne peut pas accéder directement à x. Ceci correspond à de nombreux problèmes

physiques où des données sont manquantes. On qualifie x de données complètes et z de données
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incomplètes. Ces données sont réliées par la relation

p(z|Φ) =

∫

X (z)

p(x|Φ)dx (4.111)

D’autre part, puisque z est une fonction de x, on a

p(x, z|Φ) ≡ p(x|Φ) (4.112)

Compte tenu de cette remarque, la densité de probabilité conditionnelle de x sachant z et Φ qui représente

la densité de probabilité des données manquantes s’écrit

p(x|z,Φ) =
p(x, z|Φ)

p(z|Φ)
≡ p(x|Φ)

p(z|Φ)
(4.113)

En théorie l’estimée Φ̂ au sens du maximum de vraisemblance est obtenue en maximisant la valeur de

la densité des données complètes p(x|Φ). Mais ici, on de dispose pas de cette densité mais uniquement

de p(z|Φ). L’idée de l’algorithme EM consiste à approcher le maximum de vraisemblance

• en estimant itérativement l’espérance conditionnelle de p(x|Φ) à partir des données incomplètes z

et d’une estimée antérieure Φ̂r

• en maximisant la valeur de cette espérance par rapport aux paramètres de Φ pour obtenir une

meilleure estimée Φ̂r+1.

Ce processus itératif est mené jusqu’à la convergence de l’estimée cherchée Φ̂. Nous détaillons maintenant

les 2 étapes de l’algorithme.

• Etape E : Expectation

A partir des paramètres estimés Φ̂r à l’itération précédente, on calcule l’espérance de la log-

vraisemblance conditionnée par la mesure z qui s’exprime

Q(Φ|Φ̂r) , E
[
log[p(x|Φ)]|z, Φ̂r

]
= L(Φ) +H(Φ|Φ̂r) (4.114)

avec

L(Φ) = log[p(z|Φ)]

H(Φ|Φ̂r) = E
[
log[p(x|z,Φ)]|z, Φ̂r

]

• Etape M : Maximization

On maximise Q(Φ|Φ̂r) afin d’affiner notre estimation du vecteur de paramètres Φ pour l’itération

suivante

Φ̂r+1 = arg max
Φ

Q(Φ|Φ̂r) (4.115)
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4.5.4 Interprétation de l’algorithme EM

Ne connaissant pas la fonction de vraisemblance p(x|Φ) des données complètes, on l’estime (en fait

sa log-vraisemblance) à partir des observations z et des paramètres estimés Φ̂r disponibles à l’itération

r. On peut montrer qu’en combinant ces deux étapes et avec l’inégalité de Jansen que la fonction log-

vraisemblance L(Φ) = log(p(z|Φ)) est croissante [DLR77] ; ce qui assure la convergence vers des points

stationnaires.

4.5.5 Application de l’algorithme EM aux lois de mélange

On présente succintement l’utilisation de l’algorithme EM pour l’estimation des paramètres de mix-

tures de densités [RW84]. Cette utilisation de l’algorithme sert de base à la méthode PMHT qui sera

présentée plus loin.

On désigne par X les données complètes et par Z les données incomplètes du problème. On dispose

de mk mesures indépendantes Z = {z1, . . . , zmk
}. Chacune de ces mesures appartient à une famille

paramétrée de densité de probabilité de la forme générale

p(zj |Φ) =

M∑

i=1

πipi(zj |φi) (4.116)

où chaque πi est un coefficient de pondération positif ou nul vérifiant la contrainte

M∑

i=1

πi = 1 (4.117)

Chaque densité pi(.) est une densité de probabilité paramétrée par φi. En d’autres termes, chaque mesure

zj peut provenir d’une des M densités pi avec une probabilité πi, i = 1, . . . ,M . Le vecteur Φ des

paramètres à estimer ici correspond à

Φ , (π1, . . . , πM , φi, . . . , φM ) (4.118)

En supposant les mesures indépendantes entre elles, la vraisemblance et la log-vraisemblance de

Φ sachant les données incomplètes Z s’écrivent

p(Z|Φ) =

mk∏

j=1

p(zj |Φ) =

mk∏

j=1

M∑

i=1

πipi(zj |φi) (4.119)

L(Φ) = log[p(Z|Φ)] = log
[

mk∏

j=1

p(zj |Φ)
]

=

mk∑

j=1

log
[

M∑

i=1

πipi(zj |φi)
]

(4.120)

Pour mettre en œuvre les itérations E et M de l’algorithme, on doit introduire la densité p(X|Z,Φ)

où X , (Z,Θ) = (x1, . . . ,xmk
). Chaque donnée complète xj est définie par le couple (zj , θj). les θj sont
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les données manquantes du problème qui prennent leur valeur dans {1, . . . ,M}. Chaque θj indique

le type de la densité d’où provient la mesure zj . Dans cet exemple, le vecteur des données complètes X

est un vecteur hybride dont les composantes prennent à la fois des valeurs continues et discrètes. La

probabilité des données manquantes, en supposant les θj indépendants entre eux s’exprime

P{Θ|Φ} = P{θ1, . . . , θmk
|Φ} =

mk∏

j=1

P{θj |Φ} =

mk∏

j=1

πθj (4.121)

En utilisant la règle de Bayes, on peut écrire

p[X|Φ] = p[Z,Θ|Φ] = P{Θ|Z,Φ}p(Z|Φ) ≡ p(Z|Θ,Φ)P{Θ|Φ} =

mk∏

j=1

pθj (zj |φθj )πθj (4.122)

La densité p[X|Z,Φ] intervenant dans l’étape E s’écrit alors d’après (4.113) et avec (4.122)

p[X|Z,Φ] =
p[X|Φ]

p(Z|Φ)
=
P{Θ|Z,Φ}P (Z|Φ)

p(Z|Φ)
= P{Θ|Z,Φ} =

∏mk

j=1 pθj (zj |φθj )πθj
∏mk

j=1 p(zj |Φ)
=

mk∏

j=1

pθj (zj |φθj )πθj

p(zj |Φ)

(4.123)

• Etape E : Expectation

Supposons disposer de Φ̂r à l’itération antérieure r, et calculons maintenant l’expression de Q(Φ|Φ̂r)

pour l’itération courante r + 1

Q(Φ|Φ̂r) = E
[
log[p[X|Φ]]|Z, Φ̂r

]
=

∑

Θ

P{Θ|Z, Φ̂r} log
[
p[X|Φ]

]
(4.124)

=
M∑

θ1=1

. . .
M∑

θmk
=1

[ mk∏

j′=1

π̂r
θj′
pθj′

(zj′ |φ̂r
θj′

)

p(zj′ |Φ̂r)

][ mk∑

j=1

log[πθjpθj (zj |φθj )]
]

(4.125)

En considérant les mk sommations sur un des éléments de l’expression entre crochets et en regrou-

pant les termes, on obtient finalement [GJC95, GCJ97]

Q(Φ|Φ̂r) =

M∑

i=1

[ mk∑

j=1

π̂r
i pi(zj |φ̂r

i )

p(zj |Φ̂r)

]

log(πi) +

M∑

i=1

mk∑

j=1

log[pi(zj |φi)]
π̂r

i pi(zj |φ̂r
i )

p(zj |Φ̂r)
(4.126)

ou plus simplement en posant

wr+1
j,i ,

π̂r
i pi(zj |φ̂r

i )

p(zj |Φ̂r)
(4.127)

Q(Φ|Φ̂r) =
M∑

i=1

[ mk∑

j=1

wr+1
j,i

]

log(πi) +
M∑

i=1

mk∑

j=1

log[pi(zj |φi)]w
r+1
j,i (4.128)

On va chercher à maximiser cette fonction par rapport aux paramètres πi et φi pour i =

1, . . . ,M dans l’étape M de l’algorithme. On remarque déjà que
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1. Q(Φ|Φ̂r) est la somme de 2 termes. Le premier terme
∑M

i=1

[
∑mk

j=1 w
r+1
j,i

]

log(πi) est une fonc-

tion linéaire des paramètres log[πi] que l’on peut explicitement maximiser. Le deuxième

terme
∑M

i=1

∑mk

j=1 log[pi(zj |φi)]w
r+1
j,i est uniquement fonction des φi.

2. Si on suppose les paramètres φi indépendants entre eux, alors la maximisation du second

terme reviendra à M maximisations individuelles

• Etape M : Maximization

1. Maximisation du premier terme de Q(Φ|Φ̂r) en les paramètres πi sous la contrainte
∑M

i=1 πi = 1

Pour cela, on écrit le lagrangien de la fonction à maximiser

L(π, λ) =

M∑

i=1

[ mk∑

j=1

π̂r
i pi(zj |φ̂r

i )

p(zj |Φ̂r)

]

log(πi) + λ(1 −
M∑

i=1

πi) (4.129)

La maximisation est obtenue en annulant le gradient du lagrangien,

∇πL(π, λ) = 0 (4.130)

On aboutit à l’expression suivante pour les valeurs πi

π̂r+1
i =

1

λ

mk∑

j=1

π̂r
i pi(zj |φ̂r

i )

p(zj |Φ̂r)
=

1

λ

mk∑

j=1

wr+1
j,i (4.131)

En utilisant le fait que p(zj |Φ̂r) =
∑M

i=1 π̂
r
i pi(zj |φ̂r

i ) et la contrainte
∑M

i=1 πi = 1, on montre

que le multiplicateur de Lagrange vaut λ = mk. Par conséquent, on obtient finalement la mise

à jour des paramètres estimés par

π̂r+1
i =

1

mk

mk∑

j=1

wr+1
j,i (4.132)

2. Maximisation du deuxième terme de Q(Φ|Φ̂r) en les paramètres (φ1, . . . , φM ).

On cherche maintenant à maximiser

g(Φ) =

M∑

i=1

mk∑

j=1

log[pi(zj |φi]
π̂r

i pi(zj |φ̂r
i )

p(zj |Φ̂r)
=

M∑

i=1

mk∑

j=1

log[pi(zj |φi]w
r+1
j,i (4.133)

Puisque l’on suppose les paramètres φi indépendants entre eux, les composantes φi (pour

i = 1, . . . ,M) du vecteur Φ seront estimées (mises à jour) en prenant

φ̂r+1
i ∈ arg max

φi

{ mk∑

j=1

log[pi(zj |φi)]
π̂r

i pi(zj |φ̂r
i )

pi(zj |Φ̂r)

}

(4.134)
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Cette maximisation n’est en général pas triviale à faire et l’on doit souvent utiliser des al-

gorithmes spécifiques d’optimisation [DS83]. La maximisation est cependant donnée explici-

tement dans le cas des densités de la famille exponentielle et donc lorsque les densités sont

gaussiennes [RW84] (voir cas particulier plus loin).

Chaque poids wr+1
j,i ,

π̂r
i pi(zj |φ̂r

i )

pi(zj |Φ̂r)
correspond à la probabilité a posteriori pour que la mesure zj

provienne de la ième hypothèse sachant l’estimation courante Φ̂r à l’itération r.

Résumé de l’algorithme EM

L’algorithme EM appliqué à l’estimation des paramètres d’une loi de mélange consiste à itérer les

étapes suivantes jusqu’à la stabilité des valeurs obtenues.

1. Mise à jour des paramètres πi par

π̂r+1
i =

1

mk

mk∑

j=1

wr+1
j,i (4.135)

avec

wr+1
j,i ,

π̂r
i pi(zj |φ̂r

i )

p(zj |Φ̂r)
(4.136)

2. Mise à jour des paramètres φi par

φ̂r+1
i ∈ argmax

φi

{ mk∑

j=1

log[pi(zj |φi)]w
r+1
j,i

}

(4.137)

4.5.6 Cas particulier du mélange de gaussiennes

Dans le cas où les densités pi(z|φi) sont des gaussiennes de moyenne z̄i et de covariance Ri inconnues,

on a

pi(z|φi) =
1

(2π)
nz/2√|Ri|

e−
1
2 (z−z̄i)

′R
−1
i (z−z̄i) (4.138)

La mise à jour des paramètre πi est obtenue comme précédemment. La maximisation de g(Φ) quant à

elle, peut être obtenue explicitement et la mise à jour des paramètres φi = (z̄i,Ri) à l’itération r + 1

sera donnée par

• Pour l’estimation des moyennes z̄i

ˆ̄zr+1
i =

∑mk

j=1 zj
π̂r

i pi(zj |φ̂r
i )

p(zj |Φ̂r)

∑mk

j=1
π̂r

i pi(zj |φ̂r
i )

p(zj |Φ̂r)

=

∑mk

j=1 zjw
r+1
j,i

∑mk

j=1 w
r+1
j,i

(4.139)
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• Pour la mise à jour des covariances Ri

R̂r+1
i =

∑mk

j=1(zj − ˆ̄zr+1
i )(zj − ˆ̄zr+1

i )′ π̂r
i pi(zj |φ̂r

i )

p(zj |Φ̂r)

∑mk

j=1
π̂r

i pi(zj |φ̂r
i )

p(zj |Φ̂r)

=

∑mk

j=1(zj − ˆ̄zr+1
i )(zj − ˆ̄zr+1

i )′wr+1
j,i

∑mk

j=1 w
r+1
j,i

(4.140)

4.5.7 Application de l’algorithme EM à l’EMP

Le problème d’estimation des paramètres de mélange que l’on vient de présenter peut être vu comme

un problème d’estimation à un instant k donné. Le problème de l’extraction multi-pistes (EMP)

est en fait une généralisation du problème précédent qui prend en compte l’aspect temporel. La

généralisation de la méthode est quasi-immédiate.

Pseudo-modèle alloué aux fausses alarmes

Dans la présentation antérieure, nous n’avons volontairement pas fait de distinction particulière entre

les modèles de sources. En fait, dans le problème de l’EMP, nous devons distinguer le cas particulier de

la source allouée aux fausses alarmes. Si l’on veut tenir compte des fausses alarmes en plus des M cibles

supposées présentes dans le batch de mesures, on devra donc rajouter un pseudo-modèle de source

que l’on indexera par i = O. La vraisemblance, notée p(zj(k)|x0(k)), d’une mesure zj(k) allouée à ce

pseudo-modèle de source correspondra à la densité (supposée uniforme) d’une fausse alarme car aucun

paramètre cinématique ne caratérise une fausse alarme (x0 = ∅). Ceci justifie la notation
∑M

i=0 utilisée

dorénavant dans les formules.

Expressions des densités utiles

On a un batch de mesures, noté ZK , obtenu à partir de K scans successifs du senseur. Le vecteur

cumulé des associations conjointes ΘK est inconnu. ZK constitue les données incomplètes du problème

et (ZK ,ΘK) les données complètes. ΘK sont les données manquantes. En généralisant la présentation

précédente au cas temporel, on peut exprimer les différentes probabilités intervenant dans l’algorithme

EM. Ainsi,

• la probabilité des données (cumulées) manquantes s’écrit

P{ΘK |ΦK} =

K∏

k=1

mk∏

j=1

πθj (k) (4.141)

où ΦK est le vecteur des paramètres (cumulés) à estimer défini en (4.96) et qui vaut

ΦK , (XK ,ΠK) = (Φ(1), . . . ,Φ(K)) (4.142)

avec

Φ(k) =
(
(x0(k) ≡ ∅, π0(k)), (x1(k), π1(k)), . . . , (xM (k), πM (k))

)
(4.143)
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• la vraisemblance du paramètre basée sur les données complètes s’écrit (en supposant

l’indépendance des variables)

P{ZK ,ΘK |ΦK} =

K∏

k=1

p[Z(k),Θ(k)|Φ(k)] =

K∏

k=1

mk∏

j=1

p[zj(k)|xθj (k)]πθj (k) (4.144)

• la vraisemblance du paramètre basée sur les données incomplètes s’écrit d’après (4.108)

p(ZK |ΦK) =

K∏

k=1

mk∏

j=1

M∑

i=0

p(zj(k)|xi(k))πi(k) (4.145)

• la probabilité a posteriori du vecteur d’associations s’écrit

P{ΘK |ZK ,ΦK} =
p[ΘK ,ZK |ΦK ]

p(ZK |ΦK)
=

K∏

k=1

mk∏

j=1

P{θj(k)|zj(k),Φ(k)}πi(k) (4.146)

avec

P{θj(k)|zj(k),Φ(k)} =
p(zj(k)|xθj (k))πθj (k)

∑M
i=0 p(zj(k)|xi(k))πi(k)

(4.147)

On rappelle que les probabilités πi(k) sont soumises à chaque instant k à la contrainte

M∑

i=0

πi(k) = 1 (4.148)

Nous sommes maintenant en mesure de décrire les étapes de l’algorithme EM qui découle de la généralisation

du cas précédent.

• Etape E : Expectation

Supposons disposer de Φ̂K,r à l’itération antérieure r, l’expression de Q(ΦK |Φ̂K,r) pour l’itération

courante r + 1 est obtenue en généralisant la relation (4.124) ; soit

Q(ΦK |Φ̂K,r) = E
[
log

[
p[ZK ,ΘK |ΦK ]

]
|ZK , Φ̂K,r

]
=

∑

ΘK

log
[
p[ZK ,ΘK |ΦK ]

]
P{ΘK |ZK , Φ̂K,r}

(4.149)

En tenant compte des expressions de p[ZK ,ΘK |ΦK ] et P{ΘK |ZK ,ΦK}, il vient

Q(ΦK |Φ̂K,r) =
∑

ΘK

{ K∑

k=1

mk∑

j=1

log
[
p(zj(k)|xθj (k))

]
π̂r

θj
(k)

}{ K∏

k=1

mk∏

j=1

P{θj(k)|zj(k), Φ̂
K,r}

}

(4.150)

Après décomposition et simplification des sommations [Gau97], il vient

Q(ΦK |Φ̂K,r) =

K∑

k=1

mk∑

j=1

M∑

θj(k)=0

log
[
πθj (k)

]
wr+1

j,θj
(k) +

K∑

k=1

mk∑

j=1

M∑

θj(k)=0

log
[
p(zj(k)|xθj (k))

]
wr+1

j,θj
(k)

(4.151)
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avec

wr+1
j,θj

(k) ,
πr

i (k)p(zj(k)|x̂r
i (k))

p(zj(k)|Φ̂r(k))
(4.152)

Puisque ∀k = 1, . . . ,K et ∀j = 1, . . . ,mk, θj(k) prend ses valeurs dans {0, 1, . . . ,M}, on peut

intervertir les sommations pour obtenir finalement

Q(ΦK |Φ̂K,r) =
M∑

i=0

K∑

k=1

[ mk∑

j=1

wr+1
j,i (k)

]

log[πi(k)] +
M∑

i=0

K∑

k=1

mk∑

j=1

log[p(zj(k)|xi(k))]w
r+1
j,i (k) (4.153)

On va chercher à maximiser cette fonction par rapport aux paramètres πi(k) et xi(k) pour

i = 0, 1, . . . ,M dans l’étape M de l’algorithme. Comme dans la remarque précédente, on voit que

1. Q(ΦK |Φ̂K,r) est la somme de 2 termes. Le premier terme est une fonction linéaire des pa-

ramètres log[πi] que l’on peut explicitement maximiser. Le deuxième terme est uniquement

fonction des xi(k).

2. Si on suppose les états des cibles xi indépendants entre eux, alors la maximisation du second

terme reviendra à M maximisations individuelles (le pseudo-état x0 de la source des fausses

alarmes étant toujours égal ∅).

• Etape M : Maximization

La maximisation de Q(ΦK |Φ̂K,r) se décompose en 2 maximisation : l’une suivant les paramètres

de mélange πi(k), et l’autre suivant les paramètres cinématique des sources. En fait cette seconde

maximisation se traduit par l’estimation des paramètres cinématiques à l’instant initial k = 0 que

l’on note X(0) = (x1(0), . . . ,xM (0)).

1. La maximisation du premier terme de Q(ΦK |Φ̂K,r) en les paramètres de mélange πi(k)

sous la contrainte
∑M

i=0 πi(k) = 1 ∀k nous conduit à la relation de mise à jour suivante

π̂r+1
i (k) =

1

mk

mk∑

j=1

wr+1
j,i (k) (4.154)

2. La maximisation du deuxième terme de Q(ΦK |Φ̂K,r) en les paramètres cinématiques

à l’instant initial x(0) ; On cherche à estimer les composantes xi(0) (pour i = 1, . . . ,M) du

vecteur X(0). Ces quantités seront obtenues à l’itération r + 1 par

x̂r+1
i (0) ∈ argmax

xi(0)

K∑

k=1

mk∑

j=1

log[p(zj |xi(0))]wr+1
j,i (k) (4.155)
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4.5.8 Application de l’algorithme EM pour le MAP : Algorithme PMHT

Jusqu’à présent, on a utilisé l’algorithme EM pour l’EMP en cherchant à maximiser la fonction

de vraisemblance du paramètre. Les auteurs du PMHT, Streit et Luginbuhl utilisent l’algorithme EM

pour maximiser le critère du maximum a posteriori (MAP) en introduisant une information

supplémentaire sur la distribution a priori P{ΦK} = p[XK ,ΠK ] des paramètres à estimer. Le

calcul du MAP par l’algorithme EM donne exactement la formulation du PMHT proposée par Streit et

Luginbuhl qui aboutissent à un filtrage de Kalman dans le cas d’une équation d’observation linéaire.

Il est montré en [DLR77] que l’estimée au sens du MAP du vecteur des paramètres peut être obtenue par

l’algorithme EM en prenant non plus la fonction Q(ΦK |Φ̂K,r), mais la fonction suivante

M(ΦK |Φ̂K,r) = Q(ΦK |Φ̂K,r) + log[P{ΦK}] (4.156)

L’expression de log[P{ΦK}] s’écrit en supposant que les vecteurs d’états suivent un processus

markovien (équation de dynamique) d’ordre 1

log[P{ΦK}] = log
[

p[XK ,ΠK ]
]

= log
[

p(X(0))
K∏

k=1

p(X(k)|X(k − 1))
]

= log
[ M∏

i=1

p(xi(0))

M∏

i=1

K∏

k=1

p(xi(k)|xi(k − 1))
]

=

M∑

i=1

log[p(xi(0))] +

M∑

i=1

K∑

k=1

p(xi(k)|xi(k − 1))

On a volontairement omis les paramètres Π du mélange car on a aucune information a priori sur ces quan-

tités. Par ailleurs le pseudo-modèle i = 0 est aussi omis car il ne représente pas de paramètre cinématique.

Compte tenu de cette expression, on a maintenant la fonction suivante à maximiser

M(ΦK |Φ̂K,r) =
M∑

i=0

K∑

k=1

[ mk∑

j=1

wr+1
j,i (k)

]

log[πi(k)] +
M∑

i=0

K∑

k=1

mk∑

j=1

log[p(zj(k)|xi(k))]w
r+1
j,i (k)

+

M∑

i=1

log[p(xi(0))] +

M∑

i=1

K∑

k=1

p(xi(k)|xi(k − 1))

Cette maximisation est toujours séparable en deux maximisations indépendantes. Les paramètres du

mélange sont toujours estimés à l’itération r + 1 par la relation

π̂r+1
i (k) =

1

mk

mk∑

j=1

wr+1
j,i (k) (4.157)
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Les paramètres cinématiques estimés pour i = 1, . . . ,M sont maintenant mis à jour à l’itération r+ 1 en

prenant

(x̂r+1
i (0), . . . , x̂r+1

i (K)) ∈ arg max
Xi

{ K∑

k=1

mk∑

j=1

log[p(zj(k)|xi(k))]w
r+1
j,i (k) + log[p(xi(0))] +

K∑

k=1

p(xi(k)|xi(k − 1))
}

(4.158)

4.5.9 Cas particulier des processus linéaires markoviens gaussiens

Dans ce cas particulier intéressant, au lieu de maximiser l’expression précédente, on va chercher plutôt

à maximiser l’exponentielle de celle-ci ; c’est à dire

(x̂r+1
i (0), . . . , x̂r+1

i (K)) ∈ argmax
Xi

{

p(xi(0))

K∏

k=1

[

p(xi(k)|xi(k − 1))

mk∏

j=1

p(zj(k)|xi(k))
wr+1

j,i (k)
]}

(4.159)

Puisque les densités p(zj(k)|xi(k)) sont des gaussiennes de la forme

p(zj(k)|xi(k)) = N (zj(k);Hixi(k),Ri(k)) (4.160)

Le produit

mk∏

j=1

p(zj(k)|xi(k))
wr+1

j,i (k)
s’écrit

mk∏

j=1

p(zj(k)|xi(k))
wr+1

j,i (k)
=

mk∏

j=1

N (zj (k);Hixi(k),Ri(k))
wr+1

j,i (k)

=

mk∏

j=1

N (zj (k);Hixi(k), (w
r+1
j,i (k))

−1
Ri(k))

≡ N (žr+1
i (k);Hixi(k), Ři(k))

avec par définition

žr+1
i (k) ,

1

mkπ̂
r+1
i (k)

mk∑

j=1

wr+1
j,i (k)zj(k) (4.161)

et

Ři(k) ,
Ri(k)

mkπ̂
r+1
i (k)

(4.162)

Cette maximisation se ramène donc à un filtrage de Kalman où la mesure est remplacée par le

centröıde žr+1
i (k) des mesures à l’étape courante r+1 de matrice de covariance Ři(k). ž

r+1
i (k) est appelée

mesure synthétique du modèle i à l’itération r + 1. Ři(k) est la covariance synthétique associée.

4.5.10 Résumé du principe général de la méthode EM pour l’EMP

• on choisit une longueur K du batch
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• on suppose connu le nombre M de sources présentes

• la probabilité détection (inconnue) des sources peut être < 1

• mettre le compteur d’itération à r = 0

• on doit initialiser le vecteur de paramètres Φ̂K,0 = (X̂K,0, Π̂K,0)

• on affine l’estimation de Φ à l’itération courante r+1 à partir de l’estimation à l’itération précédente

Φ̂K,r à partir des 2 étapes suivantes :

1. Mise à jour de Π̂K : ∀k = 1, . . . ,K et ∀i = 0, . . . ,M

π̂r+1
i (k) =

1

mk

mk∑

j=1

wr+1
j,i (k)

avec

wr+1
j,θj

(k) ,
πr

i (k)p(zj(k)|x̂r
i (k))

p(zj(k)|Φ̂r(k))

2. Mise à jour de X̂K : ∀i = 1, . . . ,M

• Pour le ML (maximum de vraisemblance)

x̂r+1
i (0) ∈ arg max

xi(0)

K∑

k=1

mk∑

j=1

log[p(zj |xi(0))]wr+1
j,i (k)

• Pour le MAP (maximum a posteriori)

(x̂r+1
i (0), . . . , x̂r+1

i (K)) ∈ arg max
Xi

{

p(xi(0))

K∏

k=1

[

p(xi(k)|xi(k−1))

mk∏

j=1

p(zj(k)|xi(k))
wr+1

j,i (k)
]}

Les maximisations pour mettre à jour X̂K nécessitent des algorithmes d’optimisation spécifiques de type

newtonien (pour le ML) ou filtrage de Kalman (pour le MAP).

4.5.11 Résumé du PMHT

Le PMHT est en fait l’application de la méthode précédente dans le cas particulier où les sources

suivent un processus gaussiens markovien avec des équations de dynamique et d’observation

linéaires. L’algorithme est le suivant :

• on choisit une longueur K du batch

• on suppose connu le nombre M de sources présentes

• la détection des sources peut être < 1

• mettre le compteur d’itération à r = 0

• on doit initialiser le vecteur de paramètres Φ̂K,0 = (X̂K,0, Π̂K,0)

• on affine l’estimation de Φ à l’itération courante r+1 à partir de l’estimation à l’itération précédente

Φ̂K,r à partir des étapes suivantes :

1. Mise à jour de Π̂K : ∀k = 1, . . . ,K et ∀i = 0, . . . ,M
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(a) Calculer les probabilités d’associations a posteriori

wr+1
j,θj

(k) ,
πr

i (k)p(zj(k)|x̂r
i (k))

p(zj(k)|Φ̂r(k))

(b) Mettre à jour les probabilités estimées π̂r
i par

π̂r+1
i (k) =

1

mk

mk∑

j=1

wr+1
j,i (k)

2. Calculer les mesures synthétiques des sources i = 1, . . . ,M et leur covariance par

žr+1
i (k) ,

1

mkπ̂
r+1
i (k)

mk∑

j=1

wr+1
j,i (k)zj(k)

Ři(k) ,
Ri(k)

mkπ̂
r+1
i (k)

3. Pour chaque source i = 1, . . . ,M , utiliser un filtrage de Kalman avec lissage pour obtenir les

nouveaux états estimés X̂K,r+1 = (X̂K,r+1
1 , . . . , X̂K,r+1

M ) en utilisant les mesures synthétiques

žr+1
i (k) et le covariances Ři(k).

4. incrémenter r et retourner à l’étape no 1 jusqu’à ce que le critère d’arrêt soit satisfait.

L’expérience montre que généralement 3 à 5 itérations suffisent à obtenir une estimation précise des

paramètres. La stabilité est atteinte en moyenne entre 10 et 20 itérations selon le problème.

Des exemples d’application du PMHT à la poursuite angulaire dans le contexte du sonar peuvent être

trouvés en [GJC95, Gau97, GCJ97] et des résultats plus récents en [Wor98]. Une extension du PMHT au

cas multi-senseurs est également proposée en [Gau97].

4.5.12 Mise en garde

Des modifications complémentaires sont nécessaires à l’implémentation du PMHT pour lui conférer

des performances acceptables (c.à.d comparables à celles que l’on obtiendrait avec le PDAF et le JPDAF

pour un même scénario). Nous n’entrerons pas dans ces détails techniques dans ce cours. Pour plus d’in-

formations, nous renvoyons le lecteur à [RWS94, Gau97] et [WRS98] pour une discussion des variantes

du PMHT.

Outre les problèmes de mise en œuvre numérique, un des problèmes essentiels du PMHT reste

son initialisation. Actuellement, on ne sait pas initialiser le PMHT de manière robuste afin qu’il génère

la solution globale au problème. Selon l’initialisation choisie, le PMHT peut générer des solutions locales

qui peuvent être éloignées de la vraie solution cherchée. . .



4.5. PISTAGE MULTI-CIBLES PAR PMHT (1995) 101

En conclusion, le PMHT bien que théoriquement séduisant n’est pas encore arrivé à une maturité

opérationnelle et reste une méthode délicate à mettre en œuvre. Des recherches sont en cours pour

améliorer l’efficacité de l’algorithme [Wor98].
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Chapitre 5

Pistage multi-cibles mono-senseur

par approches non bayésiennes

A l’opposé des méthodes bayésiennes présentées au chapitre précédent, on présente ici les principales

approches non bayésiennes permettant d’effectuer le pistage multi-cibles. Dans ces méthodes, on cherche

à trouver l’assignation optimale du problème par des méthodes d’optimisation combinatoire. On

n’effectue pas de pondération probabiliste des états par les probabilités des hypothèses d’associations

possibles. On cherche directement l’affectation (la partition) optimale des mesures aux pistes et c’est

cette partition qui servira à la mise à jour des pistes. La recherche de la partition optimale peut être

élaborée en utilisant soit

• l’ensemble cumulé des mesures disponibles Zk

• l’ensemble cumulé des mesures disponibles durant un certain nombre de scans (fenêtre glissante)

• uniquement les mesures du scan courant z(k)

Le problème général consiste donc à associer les mesures délivrées lors d’une suite de k scans afin de

former des séquences de mesures relatives aux différentes cibles à pister. C’est un problème d’assignation k-

D (k-dimensional) qui est NP-difficile dès que k > 2. Autrement dit, la complexité numérique du problème

n’est pas une fonction polynomiale de la dimension k mais une fonction à croissance exponentielle.

5.1 Pistage multi-cibles par programmation entière 0-1 (1977)

5.1.1 Formulation du problème

On suppose qu’il existe un certain nombre T de cibles dans l’espace d’observation du senseur ayant

chacune une probabilité de détection unitaire (P t
d = 1∀t). Le nombre T n’est pas nécessairement

connu. Cette présentation suit la démarche de C. Morefield en [Mor77]. Chaque cible t est supposée suivre

103
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un processus gaussien/markovien classique du type

xt(k + 1) = Ft(k)xt(k) + vt(k)

zt(k) = Ht(k)xt(k) + wt(k)

où les quantités x, z,w,v,F et H ont leur sens habituel. L’état initial des cibles est supposé gaussien

avec

xt(0) ∼ N (x̂t(0| − 1),Pt(0| − 1)) (5.1)

Les mk mesures courantes au temps k et les mesures antérieures cumulées jusqu’à l’instant k sont notées

Z(k) et Zk. Le nombre total cumulé de mesures disponibles à l’instant k vaut

M =

k∑

k′=1

mk′ (5.2)

Comme pour le FBO, TSF et MHT, une séquence particulière de mesures cumulées est notée Zk,l

Zk,l , {zil
(1), . . . , zil

(k)} = {Zk−1,s, zil
(k)} ∈ Zk (5.3)

Soit N le nombre de séquences possibles et pour l = 1, . . . , N on note θl(k) l’évènement suivant :

θl(k) , {Zk,l correspond à piste correcte} (5.4)

Afin de réduire la dimension du problème, on considère uniquement les séquences Zk,l dont la log-

vraisemblance négative λl(k) de θl(k) définie par

λl(k) = − log p[Zk,l|θl(k)] (5.5)

est en dessous d’un certain seuil fixé a priori (voir la section sur le TSF). Après ce seuillage, on dispose

de L ≤ N séquences Zk,l potentiellement acceptables. L’ensemble des séquences de mesures acceptables

est noté

S , {Zk,l}L

l=1 (5.6)

Le problème général à résoudre est le suivant :

Parmi l’ensemble des séquences acceptables possibles, trouver la partition faisable de Zk

la plus vraisemblable.

5.1.2 Notion de partition faisable des mesures

Une partition possible P des mesures de Zk est un ensemble fini de séquences Zk,l acceptables appar-

tenant à S vérifiant les contraintes suivantes :
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• l’ensemble de toutes les mesures des séquences de la partition vaut Zk, i.e.

Zk =
I⋂

i=0

Zk,li (5.7)

• Chaque mesure appartient à une séquence et une seule

Zk,li
⋂

Zk,lj = ∅ ∀li 6= lj (5.8)

Une partition faisable est donc de la forme

P =
{
Zk,li

}I

i=0
(5.9)

Par convention, l’ensemble Zk,0 ≡ Zk,0
P contiendra toutes les mesures associées à aucune piste dans

la partition P considérée. Ces mesures seront considérées comme des fausses alarmes uniformément

réparties dans le volume V de surveillance du senseur.

5.1.3 Critère pour la recherche de la meilleure partition

Soit P une partition faisable des mesures au sens indiqué précédemment. A toute partition P on peut

faire correspondre l’évènement suivant :

θ(P) , {la partition P est correcte} (5.10)

On note P l’ensemble de toutes les partitions P faisables possible. La partition optimale P∗(au sens du

maximum de vraisemblance) est celle qui maximise la fonction de vraisemblance p(Zk |θ(P)), c’est à dire

P∗ = arg max
P∈P

p(Zk |θ(P)) (5.11)

Comme nous le verrons, ce problème de maximisation est strictement équivalent à un problème en pro-

grammation entière 0-1 de minimisation sous contrainte.

5.1.4 Expression de la vraisemblance d’une séquence

On rappelle ici (cf la section sur le TSF) que la log-vraisemblance négative d’une séquence vaut

λl(k) = − log p(Zk,l|θl(k)) (5.12)

On note θ0(k) l’évènement particulier suivant

θ0(k) , {toutes les mesures sont des fausses alarmes} (5.13)

En supposant les fausses alarmes uniformément réparties dans le volume V à chaque instant et indépendantes

d’un scan à l’autre, on a

p(Zk,l|θ0(k)) =
[ 1

V

]Nl

(5.14)
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où Nl = Card(Zk,l) est le nombre d’éléments de Zk,l. Le rapport de vraisemblance d’une séquence va

donc s’écrire

Λl(k) =
p(Zk,l|θl(k))

p(Zk,l|θ0(k)) (5.15)

et l’opposé de son logarithme va s’écrire

λ̃l(k) = − log[Λl(k)] = − log
[ p(Zk,l|θl(k))

p(Zk,l|θ0(k))
]

= − log[p(Zk,l|θl(k))] + log[p(Zk,l|θ0(k))] (5.16)

soit finalement

λ̃l(k) = λl(k) +Nl log[V −1] (5.17)

Pour chaque séquence acceptable Zk,l, on devra calculer λ̃l(k) et construire le vecteur λ̃ des rapports

de vraisemblance défini par

λ̃ ,









λ̃1(k)

...

λ̃L(k)









(5.18)

Ceci exige donc une énumération exhaustive de toutes les séquences possibles. La méthode

devient vite coûteuse en calculs et mémoire lorsque les dimensions du problème augmentent.

5.1.5 Equivalence du problème avec la programmation entière 0-1

Indicateur d’appartenance d’une séquence à une partition

Pour chaque partition faisable P , on peut construire un vecteur binaire ρ(P) de dimension L× 1 qui

décrit l’appartenance ou non de toutes les séquences de mesures acceptables à la partition P considérée.

Autrement dit, pour chaque P =
{
Zk,li

}I

i=0
on construit

ρ(P) ,









ρ1(P)

...

ρL(P)









(5.19)

avec

ρli(P) =







1 si Zk,li ∈ P i = 0, . . . , I

0 si Zk,li 6∈ P
(5.20)

Indicateur d’appartenance des mesures à une séquence

On construit pour chaque séquence acceptable Zk,l, un vecteur ψl de dimension N = Card(Zk) à

composantes binaires décrivant l’appartenance ou non des mesures de Zk à la séquence Zk,l considérée.

Autrement, dit

ψl ,









ψl
1

...

ψl
N









(5.21)
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avec

ψl
i =







1 si zi ∈ Zk et zi ∈ Zk,l

0 si zi ∈ Zk et zi 6∈ Zk,l

(5.22)

A partir de ces L indicateurs, on peut construire la matrice binaire suivante de dimension N × L

A , [ψ1 . . . ψL] (5.23)

Les conditions de faisabilité d’une partition P de Zk sont alors équivalentes à la contrainte suivante

Aρ(P) ≤ 1 (5.24)

où 1 est un vecteur de dimension N × 1 dont les composantes valent 1.

5.1.6 Résolution du problème par programmation entière 0-1

La recherche de la partition optimale s’obtient par la maximisation de p(Zk|θ(P)) suivant P . Ceci

est équivalent au problème de la minimisation de − log[p(Zk |θ(P))] ; autrement dit

max
P∈P

p(Zk|θ(P))] ⇔ min
P∈P

− log[p(Zk|θ(P))] (5.25)

En supposant les séquences (constituant chaque partition) indépendantes entre elles, on a la décomposition

suivante

− log[p(Zk|θ(P))] = − log p(Zk,0
P ,Zk,1, . . . ,Zk,lI |θ(P))

= − log
[ I∏

i=0

p(Zk,i|θ(P))
]

= − log[p(Zk,0
P |θ(P))] −

I∑

i=1

log[p(Zk,i|θ(P))]

= λ0
P(k) +

L∑

l=1

ρlλ
l(k)

= −N0 log[V −1] +

L∑

l=1

ρl(P)λl(k)

avec

N0 = N −
L∑

l=1

ρl(P)Nl (5.26)

En remplaçant N0 par son expression, il vient
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− log[p(Zk |θ(P))] = −N0 log[V −1] +
L∑

l=1

ρl(P)λl(k)

= −N log[V −1] +

L∑

l=1

ρl(P)Nl log[V −1] +

L∑

l=1

ρl(P)λl(k)

= −N log[V −1] +

L∑

l=1

ρl(P)
[
λl(k) +Nl log[V −1]

]

= −N log[V −1] +

L∑

l=1

ρl(P)λ̃l(k)

= ρ(P)′λ̃−N log[V −1]

Puisque −N log[V −1] est une constante, la minimisation de − log[p(Zk |θ(P))] est donc rigoureusement

équivalente à la minimisation de ρ(P)′λ̃ suivant ρ sous la contrainte Aρ(P) ≤ 1.

En résumé, on vient de montrer que

max
P∈P

p(Zk |θ(P))] ⇔ min
P∈P

− log[p(Zk |θ(P))] ⇔







min
ρ

ρ′λ̃

sous la contrainte inégalité

Aρ ≤ 1

(5.27)

Ce type de problème d’optimisation est fréquemment rencontré en recherche opérationnelle et de nom-

breux algorithmes permettent de le résoudre. Morefield, à l’époque, utilisa l’algorithme de Pierce et

Lasky [Pie68, PL75]. Depuis d’autres algorithmes d’optimisation plus performants ont été développés

[GMW81, PS82, Ber82, Ber91].

Remarque

Dans le cas où il n’y a pas de fausses alarmes mais uniquement les T cibles détectées à chaque scan

la contrainte (inégalité) de faisabilité des partitions devient alors une contrainte égalité, et le problème à

résoudre s’exprime

max
P∈P

p(Zk|θ(P))] ⇔ min
P∈P

− log[p(Zk|θ(P))] ⇔







min
ρ

ρ′λ̃

sous la contrainte égalité

Aρ = 1

(5.28)
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5.1.7 En résumé

La méthode de pistage multi-cibles proposée par Morefield possède les caractéristiques suivantes :

• c’est une méthode de type batch - on doit mémoriser un certain nombre de scans

• c’est une méthode non bayésienne - on recherche la partition optimale au sens du maximum de

vraisemblance

• le nombre des cibles présentes est inconnu

• la probabilité de détection des cibles est unitaire

• la complexité du problème est NP-hard

• elle permet l’initialisation de pistes [DPBS92b]

• elle peut être étendue au cas où la Pd < 1 - cf section suivante

• elle peut être étendue au cas multi-senseurs puisque le problème d’assignation de mesures d’un

senseur au cours du temps est analogue au problème d’associations entre mesures issues de plusieurs

senseurs délivrées au même instant [PDBSW92, PDBSW90].

• le problème d’assignation 3-D - (multi-scans multi-mesures et multi-senseurs) par l’extension de ce

type d’approche est aussi possible [DPBSY94]

5.1.8 Extension de la méthode au cas des détections manquantes

Pour tenir compte des détections manquantes dans une piste lorsque la probabilité de détection des

cibles est non unitaire, on construit un vecteur binaire indicateur des mesures manquantes dans chaque

séquence acceptable Zk,l associée à une piste possible notée θl(k). Autrement dit pour chaque séquence

envisagée l, on construit

δk,l ,









δl(1)

...

δl(k)









(5.29)

avec

δl(j) =







1 si la piste θl(k) a été détectée au temps j

0 si la piste n’a pas été détectée au temps j

(5.30)

La fonction de vraisemblance d’une piste incomplète (ayant des détections manquantes) θl(k) est la

PDF (Probability Density Function) conjointe de la séquence Zk,l et des détections δk,l sachant θl(k),

c.à.d

P [Zk,l, δk,l|θl(k)] = p(Zl(k)|θl(k))

k∏

j=1

P
δl(j)
d (1 − Pd)

1−δl(j) (5.31)
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Le rapport de vraisemblance λ̃l(k) d’une piste incomplète θl(k) va alors s’écrire

λ̃l(k) = − log
P [Zk,l, δk,l|θl(k)]

p(Zl(k)|θ0(k)) (5.32)

Ce rapport n’a pas de dimension ; ce qui permet de pouvoir comparer des séquences de mesures de

longueurs différentes et la résolution du problème de recherche de la partition optimale suit alors la

méthode décrite précédemment. Des extensions pour prendre en compte l’apparition de cibles nouvelles

et la durée des pistes ont été proposées en [Bla86].



Chapitre 6

Pistage multi-senseurs

Dans ce chapitre, nous abordons successivement les points suivants :

• Le pistage multi-senseurs mono et multi-cibles

On traite ici le problème de l’association des mesures relevées par plusieurs senseurs pour estimer

l’état de chaque cible présente dans l’environnement. Deux types d’architectures de fusion sont

présentés.

1. La fusion centralisée

Senseur s1 Fenêtrage- -Plots
?

Senseur s2 Fenêtrage- -Plots

6

-
Processeur

Central Piste

Cette architecture consiste à estimer l’état des cibles à partir de toutes les mesures fournies

par les senseurs. Dans le cas général, il faut résoudre l’association plot à plot avant de pouvoir

mettre à jour les pistes.

111
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2. La fusion distribuée

Senseur s1 Fenêtrage
Filtre
Local

Piste

Locale

- - -
?

Senseur s2 Fenêtrage
Filtre
Local

Piste

Locale

- - -

6
6

r

?

-
Processeur

Central

Piste

Cette architecture permet d’obtenir le même résultat en ne transférant à un filtre central

que les états estimés et leurs covariances d’erreur obtenues par des filtres locaux traitant les

mesures de chaque senseur. Le résultat de la fusion étant ensuite renvoyé vers les filtres

locaux.

L’architecture distribuée est très intéressante car elle permet de réduire le flux d’informations vers

le filtre central. Elle sera donc préférée à l’architecture centralisée si les modules de pistage locaux

permettent de prendre en compte les informations retournées par le filtre central. Les traitements

développés ici gèrent les fausses alarmes et permettent également d’intégrer des informations issues

de la reconnaissance, ceci étant d’une aide précieuse pour gérer les problème d’association.

• Le pistage multi-senseurs par fusion de pistes

Senseur s1 Fenêtrage
Filtre
Local

Piste

Locale

- - -
?

Senseur s2 Fenêtrage
Filtre
Local

Piste

Locale

- - -

6

-
Processeur

Central

Piste

Dans ce cas, chaque senseur et processeur associé effectue un pistage. Le résultat obtenu étant

transmis au niveau du processeur central chargé de fusionner ces informations. Il n’y a pas de

retour de boucle de retour d’information vers les filtres de pistage locaux. Cette architecture est

sous-optimale par rapport aux architectures précédente. Cependant, elle est très souple car elle
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permet d’une part, de limiter les flux d’informations, et d’autre part, d’exploiter des senseurs qui

ne permettent pas d’accéder à la mesure ou d’intervenir sur la fonction pistage (senseurs rustiques,

anciens . . . ). Le principe de la fusion ainsi que le problème de l’appariement des pistes sont traités

dans ce paragraphe.

• Le pistage multi-senseurs par fusion pistes/plots

Senseur s1 Fenêtrage
Filtre
Local

Piste

Locale

- - -
?

Senseur s2 Fenêtrage- -Plots

6

r

?

-
Processeur

Central Piste

Dans certains systèmes multi-senseurs hétérogènes, les pistes sont initialisées et maintenues à partir

de senseurs infra-rouge (IR). Les mesures (plots) radars servent d’informations complémentaires

pour à confirmer ou infirmer les pistes IR. Ce type d’approche peut être rattaché aux techniques

classiques de la trajectographie mono-senseur par pistage PDAF.

• Association optimale de données multi-senseurs

Nous présenterons un algorithme récent d’association optimale des données multi-senseurs visant à

sélectionner les cibles vues par les différents senseurs. La méthode est une méthode d’optimisation

combinatoire issue de la recherche opérationnelle.

• Méthodes de gestion de piste

Les algorithmes, que l’on vient succintement de présenter, permettent de créer des pistes intégrant

les informations issues de différents senseurs. Il est clair que toutes ces méthodes de fusion de pistes

ou de fusion de plots n’ont de sens que si les informations que l’on cherche à fusionner représentent

effectivement bien la même cible. En parallèle du problème de la fusion, se pose, donc, le problème

de la qualification des pistes locales et/ou globales obtenues : s’agit-il de pistes correspondant à

de vraies cibles, de fausses pistes, ou de pistes fantôme (dans le cas d’un système multi-senseurs

infrarouge) ? Nous présenterons ici un certain nombre d’outils permettant de traiter le problème de

la gestion des pistes.
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En complément de ce chapitre, nous conseillons les références [WL90, Hal92, BSL95, Bel98]. Une

terminologie pour le pistage multi-senseurs est donnée en [Dru93b].

6.1 Modélisation des cibles au niveau des senseurs

La modélisation de la dynamique des cibles et de leurs observations par un système de surveillance

multi-senseurs, quel qu’il soit, dépend intimement de la nature des cibles, des senseurs et aussi de l’archi-

tecture de traitement choisi. On suppose dans la suite, que la modélisation (dynamique et observations)

d’une cible correspond à un des deux types suivants :

1. Modélisation avec Modèles Locaux Identiques (MLI)

2. Modélisation avec Modèles Locaux Réduits (MLR)

6.1.1 Cas de la modélisation avec modèles locaux identiques

Dans cette modélisation, on suppose que l’état d’une cible t est modélisé selon un processus de Gauss-

Markov du type :

xt(k + 1) = F(k)xt(k) + vt(k) (6.1)

où xt(k) est l’état global de la cible t à l’instant k, F(k) représente la matrice de transition de l’état de

la cible et vt(k) est un processus aléatoire blanc et gaussien centré et de covariance connue

E[vt(k)vt(j)′] = Qt(k)δkj (6.2)

δkj est la fonction delta de Kronecker qui vaut 1 si k = j ou 0 sinon .

Cette modélisation est adoptée aussi bien au niveau global qu’au niveau de chaque or-

gane de traitement local (dans le cas des architectures distribuées) et on la désigne sous l’acronyme

de modélisation MLI (modélisation à Modèles Locaux Identiques).

Les mesures issues d’un senseur i relativement à une cible t sont modélisées par l’équation de mesure

suivante :

zi,t(k) = Hi,txt(k) + wi(k) k = 1, 2, . . . (6.3)

où Hi,t(k) représente la matrice d’observation de la cible t liée au senseur i et wi(k) représente le bruit de

mesure du senseur i. Ce bruit est supposé gaussien centré indépendant de vt(k) et de covariance connue

E[wi(k)wi(j)′] = Ri(k)δkj (6.4)
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6.1.2 Cas de la modélisation avec modèles locaux réduits

Dans cette modélisation, appelée modélisation MLR (modélisation à Modèles Locaux Réduits), on

suppose que la dynamique d’une cible t au niveau central et que son observation par un senseur i est

modélisée par

xt(k + 1) = Ft(k)xt(k) + vt(k) (6.5)

zi,t(k) = Hi,t(k)xt(k) + wi(k) k = 1, 2, . . . (6.6)

xt(k) est l’état de la cible t au niveau global à l’instant k, Ft(k) représente la matrice de transition de

l’état global de la cible t et vt(k) est un processus aléatoire blanc, gaussien, centré de covariance connue

Qt(k), Qt(k) ≥ 0. wi(k) représente le bruit de mesure du senseur i. Ce bruit est supposé gaussien centré

indépendant de vt(k) et de covariance connue Ri(k).

Dans le cas des systèmes distribués, la dynamique et l’observation d’une cible t sont modélisées, au niveau

local (pour chaque organe de traitement local associé à chaque senseur i), par un modèle local réduit du

type

xi,t(k + 1) = Fi,t(k)xi,t(k) + vi,t(k) (6.7)

zi,t(k) = Hi,t
L (k)xi,t(k) + wi(k) k = 1, 2, . . . (6.8)

xi,t(k) est l’état réduit (ou état local) de la cible t au niveau local (du ième senseur) à l’instant k,

Fi,t(k) représente la matrice de transition de l’état local de la cible t et vi,t(k) est un processus aléatoire

blanc et gaussien centré et de covariance connue Qi,t(k), Qi,t(k) ≥ 0. Hi,t
L est la matrice d’observation

locale de la cible t par le senseur i.

On suppose en outre que le bruit de mesure est correctement modélisé au niveau des nœuds. Par

conséquent wi(k) apparaissant dans (6.8) est supposé identique au bruit de mesure wi(k) de la modélisation

globale dans (6.6).

6.1.3 Remarques

Les deux modélisations précédentes ont ici été supposées linéaires afin de simplifier la présentation des

méthodes qui va suivre. Il est bien entendu que ces modèles peuvent aisément être généralisés au cas des

modèles à dynamique et observations non linéaires. Les matrices F(k) et H(k) seront alors remplacées

par les fonctions non linéaires judieusement choisies f [., k] et h[., k]. Les équations des méthodes de pistage

proposées seront toujours utilisables en mettant en œuvre les techniques de linéarisation au 1er ou 2ème

ordre des modèles selon une approche identique à celle du filtrage de Kalman étendu (EKF). Par

ailleurs, il faut souligner d’ores et déjà que la modélisation MLI apparâıt en fait comme un cas particulier
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de la modélisation MLR. Les équations de pistage proposées avec la modélisation MLR couvrent donc

potentiellement un champ d’application beaucoup plus large que les équations basées sur la modélisation

MLI généralement adoptée dans la littérature.

6.1.4 Notations

Dans un cadre plus général, on supposera que l’on dispose, à chaque instant k, non pas d’une mesure

unique zi,tn(k) représentative de chaque cible d’intérêt tn (n = 1 à T ), mais d’un ensemble de mi
k

mesures disponibles zi
j(k) représentatives de l’univers observé par chaque senseur i. L’origine des mesures

est diverse : cibles, fausses alarmes, clutter, etc ... On supposera cependant, pour simplifier l’analyse,

qu’au plus une mesure est associée à chaque cible d’intérêt tn. L’ensemble des mesures délivrées

à l’instant k par le senseur i (toutes origines confondues) est noté :

Zi(k) = {zi
j(k)}

mi
k

j=1
(6.9)

L’ensemble des mesures délivrées par le senseur i depuis l’instant 1 jusqu’à l’instant k est noté

Zi,k = {Zi(l)}k

l=1 (6.10)

Pour alléger les notations, l’indice de cible t sera volontairement omis dans la suite si aucune ambigüıté

de notation n’apparâıt et en particulier pour le cas des méthodes traitant de la poursuite mono-cible.

6.2 Pistage par architectures centralisées et distribuées

Pour simplifier, on supposera d’abord que les mesures issues des différents senseurs sont disponibles

aux mêmes instants (synchronisme des capteurs) et que l’origine des mesures n’est pas mise en

doute. On suppose donc a priori que l’association des mesures délivrées par les différents senseurs avec

les différentes cibles à pister est déjà réalisée. On examine alors les différentes architectures possibles de

traitement des informations.

L’hypothèse d’association parfaite des données est bien sûr très restrictive en pratique et des traite-

ments aptes à s’en affranchir seront proposés au paragraphe suivant. L’hypothèse de synchronisme des

mesures est une hypothèse moins forte car elle peut toujours être théoriquement satisfaite en extrapolant

les mesures à une référence de temps commune aux différents senseurs. On étend les architectures au cas

du pistage en environnement dégradé.
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6.2.1 Filtre de Kalman avec fusion centralisée des mesures

Cette architecture de traitement consiste à prendre en compte à chaque instant et de façon simul-

tanée les mesures issues des différents senseurs s1, s2, . . . ,sNs (Ns désignant le nombre total de

senseurs du système). Ceci revient à construire un filtre de Kalman dont le vecteur de mesure z(k)

n’est rien d’autre que le vecteur empilé des différents vecteurs de mesures zi(k) i = 1, . . . , Ns.

Le schéma de principe de ce traitement est le suivant :

Senseur s1 Fenêtrage- -zs1(k)
?

Senseur s2 Fenêtrage- -zs2(k)

6

-
Filtre de

Kalman

x̂(k|k)
P(k|k)

Les équations du filtre de Kalman (étendu) centralisé, appelé encore filtre à structure parallèle, sont

alors données par :

ẑ(k|k−1) = h[x̂(k|k−1), k] (6.11)

z̃(k|k−1) = z(k) − ẑ(k|k−1) (6.12)

S(k) = H(k)P(k|k−1)H(k)′ + R(k) (6.13)

K(k) = P(k|k−1)H(k)′S(k)−1 (6.14)

Partie correction du filtre centralisé

x̂(k|k) = x̂(k|k−1) + K(k)z̃(k|k−1) (6.15)

P(k|k) = [I−K(k)H(k)]P(k|k−1) (6.16)

Partie prédiction du filtre centralisé

x̂(k + 1|k) = f [x̂(k|k), k] (6.17)

P(k + 1|k) = F(k)P(k|k)F(k)′ + Q(k) (6.18)
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avec

z(k) =









z1(k)

...

zNs(k)









=









h1[x(k), k]

...

hNs [x(k), k]









+









w1(k)

...

wNs(k)









= h[x(k), k] + w(k) (6.19)

et

R(k) = E[w(k)w(k)′] (6.20)

F(k) =
[
∇f ′[x(k), k]

]′
x=x̂(k|k)

(6.21)

H(k) =
[
∇h′[x(k), k]

]′
x=x̂(k|k−1)

(6.22)

Autre formulation intéressante possible

En utilisant la forme information du filtre de Kalman, les équations de mise à jour s’écrivent :

x̂(k|k) = x̂(k|k−1) + K(k)z̃(k|k−1) (6.23)

P(k|k)−1
= P(k|k−1)

−1
+ H(k)′R(k)

−1
H(k) (6.24)

avec

K(k) = P(k|k)H(k)′R(k)
−1

(6.25)

Les équations précédentes sont celles du filtre basé sur une modélisation générale non linéaire de la dy-

namique et de l’observation de la cible d’intérêt.

Cas particulier des senseurs à bruits non corrélés

Dans le cas particulier où les senseurs ont des bruits de mesures non corrélés la matrice R(k) est

diagonale par bloc

R(k) = diag [R1(k), . . . ,RNs(k)] (6.26)

Par conséquent R(k)
−1

est aussi diagonale par bloc avec

R(k)
−1

= diag [R1(k)
−1
, . . . ,RNs(k)

−1
] (6.27)

Les équations de mise à jour du filtre peuvent alors s’écrire

x̂(k|k) = x̂(k|k−1) +

Ns∑

i=1

Ki(k)
[
zi(k) − hi[x̂(k|k−1), k]

]
(6.28)

P(k|k)−1
= P(k|k−1)

−1
+

Ns∑

i=1

Hi(k)′Ri(k)
−1

Hi(k) (6.29)
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avec pour i = 1, . . . , Ns

Ri(k) = E[wi(k)wi(k)′] (6.30)

Hi(k) =
[
∇hi′[x(k), k]

]′
x=x̂(k|k−1)

(6.31)

Ki(k) = P(k|k)Hi(k)′Ri(k)
−1

(6.32)

On notera que la forme particulière des équations (6.28) et (6.29) suggère un traitement pseudo-

séquentiel des données (cf section suivante).

6.2.2 Filtre de Kalman avec fusion pseudo-séquentielle des mesures

Dans l’architecture centralisée du filtrage de Kalman, la mise à jour de l’état est obtenue à partir de

l’ensemble des mesures z(k). C’est un traitement central par bloc de mesures. Ce traitement peut être

également réalisé de manière pseudo-séquentielle si les bruits de mesure des différents senseurs

sont non corrélés. Ceci impose, dans le cas de bruits gaussiens, d’avoir une matrice R(k) diagonale

par bloc

R(k) = E[w(k)w(j)′] = diag[R1(k), . . . ,RNs(k)] (6.33)

Sous cette condition, la mise à jour peut être réalisée de manière pseudo-séquentielle ; c’est à dire en

utilisant successivement les mesures des différents senseurs conformément au schéma de principe de la

figure ci-dessous.

Filtre de

Kalman

Senseur s1

zs1(k)

Filtre de

Kalman

Senseur s2

zs2(k)

-x̂(k|k − 1)

P(k|k − 1)
- -

?

x̂s1 (k|k)
Ps1(k|k)

?

x̂(k|k)
P(k|k)

La mise à jour de l’état d’une cible est alors donnée par la séquence de traitement suivante. On part de

l’état prédit x̂(k|k−1) et de sa covariance prédite P(k|k−1) à l’étape antérieure et on pose

x̂0(k|k) , x̂(k|k−1) (6.34)

P0(k|k) , P(k|k−1) (6.35)
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Puis on effectue la séquence d’opérations suivante pour i = 1, . . . , Ns

Si(k) = Hi(k)Pi−1(k|k)Hi(k)′ + Ri(k) (6.36)

Ki(k) = Pi−1(k|k)Hi(k)′Si(k)
−1

(6.37)

x̂i(k|k) = x̂i−1(k|k) + Ki(k)
[
zi(k) − hi[x̂i−1(k|k), k]

]
(6.38)

Pi(k|k) = [I−Ki(k)Hi(k)]Pi−1(k|k) (6.39)

L’estimée x̂(k|k) et sa covariance associée P(k|k) incorporant toutes les mesures sont alors données par

x̂(k|k) = x̂Ns(k|k) (6.40)

P(k|k) = PNs(k|k) (6.41)

Le calcul pseudo-séquentiel de l’état estimé (6.40) qui vient d’être décrit est rigoureusement équivalent

dans le cas des modèles linéaires à l’équation de mise à jour

x̂(k|k) = x̂(k|k−1) +

Ns∑

i=1

Ki(k)
[
zi(k) − hi[x̂i−1(k|k)]

]
(6.42)

Ce type de traitement est bien adapté aux cas des systèmes multi-senseurs spatialement

distribués où les bruits de mesures peuvent généralement être considérés indépendants d’un senseur à

l’autre.

Cas des senseurs à bruits corrélés

Dans le cas où les bruits de mesures sont corrélés (R(k) non diagonale par bloc), on peut toujours

appliquer une transformation linéaire sur les mesures afin de diagonaliser R(k) et pouvoir appli-

quer le traitement pseudo-séquentiel. Une méthode efficace de diagonalisation de R(k) est la méthode de

factorisation de Cholesky qui permet d’écrire R(k) sous la forme

R(k) = L(k)D(k)L(k)′ (6.43)

où L(k) est une matrice triangulaire inférieure et D(k) est une matrice diagonale ayant des éléments

positifs ou nuls. Le vecteur de mesure en bloc z(k) est alors modifié en vecteur ž(k) par la transformation

linéaire

ž(k) = L(k)
−1

z(k) (6.44)

et la matrice H(k) en

Ȟ(k) = L(k)
−1

H(k) (6.45)

Le traitement pseudo-séquentiel peut ensuite être appliqué avec ces mesures modifiées.
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6.2.3 Présentation du filtre de Kalman avec architecture distribuée

Dans cette approche, l’architecture du système multi-senseurs (MS pour simplifié) est supposée de

type distribuée. On parle alors d’architecture DSN (Distributed Sensor Networks). Le principe de

fonctionnement le plus simple d’un DSN consiste à associer à chaque senseur un organe de traitement

local, appelé processeur local, dont la fonction est d’estimer l’état des cibles uniquement à partir des

mesures délivrées par le senseur auquel il est associé. L’ensemble senseur/processeur local constitue un

nœud du système distribué. Chaque nœud du système communique périodiquement son estimée

locale à un processeur unique, appelé processeur de fusion global ou coordinateur, au travers d’un

réseau de communication. Le coordinateur est chargé de combiner (fusionner) les estimées locales des

différents nœuds en une estimée globale de l’état associée à chaque cible d’intérêt. Les estimées globales

sont ensuite retransmises à chaque nœud du DSN conformément au schéma de principe de la figure

suivante pour le cas d’une architecture à 3 senseurs

Piste

Senseur s1

Senseur s2 Senseur s3

?

6

?

Coordinateur

?

Filtre de

Kalman

Filtre de

Kalman

6

�

-

Filtre de

Kalman

6

�

-

Cette architecture de DSN n’est bien évidemment pas unique et d’autres architectures sont possibles

selon le type de réseau de communication utilisé et la robustesse du système que l’on souhaite. En effet,

on peut, par exemple, aussi envisager une structure de DSN plus complexe et sans coordinateur (voir

figure suivante) dans laquelle chaque nœud est directement connecté aux autres et où chaque processeur

local joue alors le rôle de coordinateur. Cette architecture présente alors l’avantage de rendre le DSN plus

fiable face aux pannes ou à une destruction partielle du système mais au prix d’un coût élevé en calculs

et moyens de communication à mettre en œuvre.
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Senseur s1

Senseur s2 Senseur s3

?

Filtre de

Kalman

Filtre de

Kalman

6

-

�
?

�

?

-

Filtre de

Kalman

6

?
- �Piste

Un grand nombre de combinaisons intermédiaires d’architectures de DSN sont bien sûr possibles entre celle

présentée sur la figure ?? de la section 6.2.1 et la figure précédente. Abstraction faite de l’architecture

envisagée du DSN, nous rappelons ici le principe général de la fusion distribuée que doit réaliser le

processeur de fusion. On s’intéresse d’abord au cas particulier où l’on suppose disposer d’une même

représentation d’état (même dynamique) au niveau du processeur global qu’au niveau des processeurs

locaux (i.e. modélisation MLI). Les équations optimales de la fusion distribuée sont ensuite explicitées

au cas plus général de la modélisation MLR.

6.2.4 Filtre de Kalman distribué avec modélisation MLI

Le cas le plus simple de représentation du système physique dynamique observé correspond à celui

où la dynamique de la cible est représentée de manière unique au niveau des nœuds et au niveau du

processeur de fusion. Ceci correspond, par définition, à une modélisation à Modèles Locaux Identiques

(modélisation MLI) du système décrite en 6.1. L’équation d’évolution de la dynamique d’une cible est

donnée par (6.1) et les observations délivrées par chaque senseur i concernant la cible vérifient (6.3).
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Equations optimales de la fusion distribuée (Chong 1979)

L’estimée locale à variance minimale au niveau d’un nœud i de l’état d’une cible (l’indice t

de la cible est volontairement omis ici) est donnée par l’espérance conditionnelle

x̂i(k|k) = E[x(k)|Zi,k ,Yi,k ] =

∫

x(k)p(x(k)|Zi,k ,Yi,k)dx(k) (6.46)

où Yi,k = {Yi(l)}k

l=1 et Yi(l) désigne l’information reçue (statistique suffisante) par le nœud i durant

la période d’échantillonnage de l − 1 à l. Yi(l) représente l’information transmise par le processeur de

fusion et disponible au nœud i à l’instant l. En fait, Yi(l) résume toutes les informations issues des autres

nœuds jusqu’au temps l − 1 car cette information est envoyée au processeur de fusion entre les instants

l − 1 et l.

En supposant un réseau de communication sans perte, la statistique suffisante Yi,k est théoriquement

équivalente à toutes les mesures délivrées par les senseurs jusqu’au temps k − 1 et l’on a

x̂i(k|k) =

∫

x(k)p(x(k)|Zi,k ,Zī,k−1)dx(k) (6.47)

où ī désigne les senseurs autres que i.

Au niveau du processeur de fusion, l’estimée globale à variance minimale de l’état d’une cible est

donnée par

x̂(k|k) =

∫

x(k)p(x(k)|Z1,k , . . . ,ZNs,k)dx(k) (6.48)

Le problème de la fusion distribuée consiste alors à reconstruire l’estimée globale x̂(k|k) à partir

de la connaissance des estimées locales x̂i(k|k) i = 1, . . . , Ns.

En supposant l’association parfaite des données (c.a.d. une connaissance parfaite de l’origine

des mesures délivrées par chaque senseur) et en utilisant la forme information du filtrage de Kalman,

l’estimée locale d’une cible au niveau d’un nœud i est donnée par (l’indice de cible t est ici omis

pour alléger les notations) :

Pi(k|k)−1
= Pi(k|k−1)

−1
+ Hi(k)′Ri(k)

−1
Hi(k) (6.49)

Pi(k|k)−1
x̂i(k|k) = Pi(k|k−1)

−1
x̂i(k|k−1) + Hi(k)′Ri(k)

−1
zi(k) (6.50)

Ce qui permet d’écrire directement

Hi(k)′Ri(k)
−1

Hi(k) = Pi(k|k)−1 −Pi(k|k−1)
−1

(6.51)

Hi(k)′Ri(k)
−1

zi(k) = Pi(k|k)−1
x̂i(k|k) −Pi(k|k−1)

−1
x̂i(k|k−1) (6.52)
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Par ailleurs, l’estimée centralisée optimale est donnée par

P(k|k)−1
= P(k|k−1)

−1
+

Ns∑

i=1

Hi(k)′Ri(k)
−1

Hi(k) (6.53)

P(k|k)−1
x̂(k|k) = P(k|k−1)

−1
x̂(k|k−1) +

Ns∑

i=1

Hi(k)′Ri(k)
−1

zi(k) (6.54)

En remplaçant directement Hi(k)′Ri(k)
−1

Hi(k) et Hi(k)′Ri(k)
−1

zi(k) par (6.51) et (6.52) dans (6.53)

et (6.54), il vient les équations optimales de la fusion distribuée [Cho79]

P(k|k)−1 = P(k|k−1)−1 +

Ns∑

i=1

[Pi(k|k)−1 −Pi(k|k−1)
−1

] (6.55)

P(k|k)−1
x̂(k|k) = P(k|k−1)

−1
x̂(k|k−1) +

Ns∑

i=1

[Pi(k|k)−1
x̂i(k|k) −Pi(k|k−1)

−1
x̂i(k|k−1)] (6.56)

Ces équations peuvent aussi être obtenues directement à partir de l’expression de la densité a

posteriori globale de l’état, en supposant :

1. identiques les densités conditionnelles a priori (p(x(k)|Zi,k−1) = p(x(k)|Zk−1)) au niveau des nœuds

et du processeur de fusion

2. connues les densités conditionnelles a posteriori au niveau des nœuds p(x(k)|zi(k),Zk−1)

3. indépendantes les mesures d’un senseur à l’autre conditionnellement à l’état vrai x(k) de la cible

La densité a posteriori globale de l’état peut se décomposer par la règle d’inférence bayésienne classique

sous la forme

p(x(k)|Zk) =
1

c
p(Z(k)|x(k),Zk−1)p(x(k)|Zk−1)

=
1

c

Ns∏

i=1

[

p(zi(k)|x(k),Zk−1)p(x(k)|Zk−1)

]

[p(x(k)|Zk−1)]Ns−1

=
1

c

Ns∏

i=1

p(x(k)|zi(k),Zk−1)

[p(x(k)|Zk−1)]Ns−1
(6.57)

où la constante de normalisation c vaut

c =

∫

Ns∏

i=1

p(x(k)|zi(k),Zk−1)

[p(x(k)|zk−1)]Ns−1
dx(k) (6.58)

On peut remarquer alors que la densité globale a posteriori (6.57) est obtenue par la combinaison

(multiplication) des densités locales et l’extraction (division) de la densité globale (commune) a priori.

On peut vérifier facilement, que dans le cas de densités gaussiennes l’équation (6.57) se réduit aux rela-

tions (6.61) et (6.62) précédentes.
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En résumé, on voit qu’il est fondamental de soustraire l’information redondante pour effectuer correc-

tement la fusion des données. Dans le cas contraire, un biais apparâıtra inévitablement dans le résultat

du processus de fusion.

Dans le cas non linéaire (filtrage PDAF, JPDAF etc), les équations optimales de fusion ne peuvent

malheureusement plus être exprimées par une simple combinaison linéaire des estimées locales comme

nous le verrons.

1ère forme particulière des équations de fusion distribuée

Quand tous les nœuds possèdent les mêmes estimées a priori pour i = 1, . . . , Ns, c.à.d.

x̂i(k|k−1) = x̂(k|k−1) (6.59)

Pi(k|k−1) = P(k|k−1) (6.60)

Les équations (6.55) et (6.56) de la fusion distribuée optimale se réduisent à

P(k|k)−1
=

Ns∑

i=1

Pi(k|k)−1 − (Ns − 1)P(k|k−1)
−1

(6.61)

P(k|k)−1
x̂(k|k) =

Ns∑

i=1

Pi(k|k)−1
x̂i(k|k) − (Ns − 1)P(k|k−1)

−1
x̂(k|k−1) (6.62)

La relation (6.61) met clairement en évidence le fait que l’information redondante commune P(k|k−1)

est retirée automatiquement dans l’opération (linéaire) de la fusion distribuée.

2ème forme possible des équations de fusion distribuée

On suppose que tous les nœuds possèdent les mêmes estimées a priori, mais n’ont pas les mêmes

covariances ; Le traitement local au niveau d’un nœud i est donné par (6.49) et (6.50) mais avec

x̂i(k|k−1) = x̂(k|k−1) (6.63)

Pi(k|k−1)
−1

= αiP(k|k−1)−1 (6.64)

Ns∑

i=1

αi = 1 αi > 0 (6.65)

Les coefficients αi intervenant dans chaque nœud peuvent être choisis arbitrairement. Généralement, on

prend αi = 1/Ns. Il faut cependant savoir que l’introduction des coefficients αi au niveau de l’équation

(6.64) introduit nécessairement une inconsistance entre l’estimée a priori x̂i(k|k−1) et la

matrice de covariance Pi(k|k−1). Au niveau du processeur de fusion, les équations sont toujours
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données par

P(k|k)−1 =

Ns∑

i=1

Pi(k|k)−1
(6.66)

P(k|k)−1
x̂(k|k) =

Ns∑

i=1

Pi(k|k)−1
x̂i(k|k) (6.67)

6.2.5 Filtre de Kalman distribué avec modélisation MLR

On se place ici dans le cadre plus général où l’état complet de la cible n’est pas connu au ni-

veau de chaque nœud mais uniquement au niveau du coordinateur. Cette modélisation, appelée

modélisation à Modèles Locaux Réduits (MLR) est décrite en 6.1.

Au niveau global, la dynamique de la cible modélisée par (6.5) et son observation par un senseur i

par (6.6). Ce modèle est connu au niveau du processeur de fusion.

Au niveau de chaque nœud i (i = 1, . . . , s), la dynamique de la cible et son observation sont modélisées

par un modèle local réduit décrit par (6.7) et (6.8).

Si l’on cherche les équations optimales de la fusion distribuée dans le cas d’une modélisation MLR des

cibles, alors le choix des modèles locaux ne peut être arbitraire [AB85, Alo86, AB86, Alo87b].

Chaque modèle local doit impérativement satisfaire une certaine contrainte algébrique [AB88, Alo90] pour

permettre la reconstruction de l’estimée optimale de l’état global x(k) à partir des estimées locales. Cette

contrainte est en fait une condition d’existence, pour chaque modèle local, d’une transformation

linéaire Li(k) : IRnx → IRnxi telle que [WBC+82],[Alo86]

Hi(k) = Hi
L(k)Li(k) k = 1, 2, . . . (6.68)

Equations optimales générales de la fusion distribuée (Alouani 1986)

En supposant l’association parfaite des données (c.a.d. une connaissance parfaite de l’origine des

mesures délivrées par chaque senseur) et en utilisant la forme information du filtrage de Kalman, l’estimée

locale d’une cible au niveau d’un nœud i est donnée par :

Pi(k|k)−1
= Pi(k|k−1)

−1
+ Hi

L(k)′Ri(k)
−1

Hi
L(k) (6.69)

Pi(k|k)−1
x̂i(k|k) = Pi(k|k−1)

−1
x̂i(k|k−1) + Hi

L(k)′Ri(k)
−1

Hi
L(k) (6.70)

Ce qui permet d’écrire directement

Hi
L(k)′Ri(k)

−1
Hi

L(k) = Pi(k|k)−1 −Pi(k|k−1)
−1

(6.71)

Hi
L(k)′Ri(k)

−1
zi(k) = Pi(k|k)−1

x̂i(k|k) −Pi(k|k−1)
−1

x̂i(k|k−1) (6.72)
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Par ailleurs, l’estimée globale (centralisée) optimale est donnée par

P(k|k)−1
= P(k|k−1)

−1
+

Ns∑

i=1

Hi(k)′Ri(k)
−1

Hi(k) (6.73)

P(k|k)−1x̂(k|k) = P(k|k−1)−1x̂(k|k−1) +

Ns∑

i=1

Hi(k)′Ri(k)
−1

zi(k) (6.74)

En tenant compte de la contrainte (6.68) dans (6.73) et (6.74), on a

P(k|k)−1 = P(k|k−1)−1 +

Ns∑

i=1

Li(k)′Hi
L(k)′Ri(k)

−1
Hi

L(k)Li(k) (6.75)

P(k|k)−1
x̂(k|k) = P(k|k−1)

−1
x̂(k|k−1) +

Ns∑

i=1

Li(k)′Hi
L(k)′Ri(k)

−1
zi(k) (6.76)

En utilisant (6.71) et (6.72) dans (6.75) et (6.76), il vient finalement les équations générales optimales

de la fusion distribuée

P(k|k)−1
= P(k|k−1)

−1
+

Ns∑

i=1

Li(k)′[Pi(k|k)−1 −Pi(k|k−1)
−1

]Li(k) (6.77)

P(k|k)−1
x̂(k|k) = P(k|k−1)

−1
x̂(k|k−1) +

Ns∑

i=1

Li(k)′[Pi(k|k)−1
x̂i(k|k) −Pi(k|k−1)

−1
x̂i(k|k−1)]

(6.78)

Ces équations optimales de la fusion distribuée découlent directement de l’expression de la densité

conditionnelle de l’état p(x(k)|Z(k)) qui est obtenue par la règle d’inférence bayésienne classique par

p(x(k)|Zk) =
1

c
p(Z(k)|x(k),Zk−1)p(x(k)|Zk−1)

=
1

c
p(x(k)|Zk−1)

Ns∏

i=1

[

p(zi(k)|x(k),Zk−1)

]

=
1

c
p(x(k)|Zk−1)

Ns∏

i=1

[

p(zi(k)|Li(x(k), k),Zk−1)

]

=
1

c
p(x(k)|Zk−1)

Ns∏

i=1

[
p(zi(k),Li(x(k), k),Zk−1)

p(Li(x(k), k),Zk−1)

]

=
1

c
p(x(k)|Zk−1)

Ns∏

i=1

p(Li(x(k), k)|zi(k),Zk−1)

Ns∏

i=1

p(Li(x(k), k)|Zk−1)

(6.79)

où la constante de normalisation c vaut

c =

∫

Ns∏

i=1

p(Li(x(k), k)|zi(k),Zk−1)

Ns∏

i=1

p(Li(x(k), k)|Zk−1)

dx(k) (6.80)
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et où Li(x(k), k) est un opérateur linéaire connu

xi(k) , Li(x(k), k) = Lix(k) (6.81)

Il est facile de vérifier que les équations de fusion (6.77) et (6.78) cöıncident exactement avec les

équations de fusion précédentes (6.55) et (6.56) quand l’opérateur Li cöıncide avec l’opérateur (matrice)

identité Ii. La densité (6.79) est alors identique à (6.57). Ces équations de fusion constituent donc les

équations optimales générales de la fusion distribuée.

6.2.6 Filtre sous-optimal PDAF multi-senseurs

Dans le cas du pistage mono-cible multi-senseurs en environnement dégradé, la fusion directe des

mesures (PDAF multi-senseurs à architecture centralisée) est pratiquement impossible à réaliser à cause de

la combinatoire très élevée du problème d’association des mesures délivrées par les senseurs. Ce problème

pourra être résolu théoriquement par des méthodes d’optimisation combinatoire sophistiquées (cf plus

loin). L’idée la plus simple [HBS89] consiste à utiliser une mise à jour de l’état de la cible avec des

filtres PDAF exploitant séquentiellement les mesures de chaque senseur. Comme on ne prend pas

simultanément en compte toute l’information disponible pour la mise à jour de la piste, l’approche n’est

pas optimale. Elle est cependant simple à mettre en œuvre et peut donner des résultats intéressants dans

des environnements pas trop dégradés. Le principe général de cet algorithme appelé MSPDAF consiste

pour le cas de 2 senseurs en les étapes suivantes :

1. A partir de l’estimation x̂(k − 1|k − 1) et de P(k − 1|k − 1) obtenue à l’instant k − 1, on prédit

l’état x̂(k|k − 1), P(k|k − 1) et la mesure attendue ẑs1(k|k − 1) pour le 1er senseur s1.

2. Avec ẑs1(k|k − 1) et Ss1(k) et les mesures Zs1 (k) validées par le 1er senseur, on met en œuvre un

premier filtre PDAF. On obtient une première mise à jour de l’état x̂s1(k|k) et de Ps1(k|k).

3. A partir de x̂s1(k|k) et de Ps1(k|k), on calcule la mesure attendue par le 2ième senseur ẑs2 (k|k) et

Ss2(k). Avec les mesures validées par le 2ième senseur on met en œuvre un 2ième filtre PDAF pour

obtenir la mise à jour finale x̂(k|k) ≡ x̂s2(k|k) et P(k|k) ≡ Ps2(k|k). On continue la poursuite en

retournat à l’étape no 1.

Dans le cas où les senseurs ne sont pas synchronisés, on doit les synchroniser artificiellement en itérant

les équations de prédiction.

6.2.7 Filtre PDAF distribué avec modélisation MLR

Nous généralisons maintenant les équations optimales de la fusion distribuée au cas où les mesures

délivrées par chaque senseur sont d’origine incertaine.
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Nous considérons d’abord le cas du pistage mono-cible par un algorithme PDAF distribué avec une

modélisation MLR, puis expliciterons les équations du filtrage au cas de la modélisation MLI de la cible.

Nous décrirons ensuite le principe des algorithmes de pistage multi-cibles du type JPDAF distribué

avec modélisation MLR et/ou modélisation MLI des cibles.

Hypothèses

On suppose d’emblée la modélisation de la dynamique et des observations de la cible de type MLR

c’est à dire gouvernée par les équations (6.5) -(6.8). On suppose aussi vérifiée la contrainte algébrique

(6.68) permettant l’obtention des équations optimales de la fusion distribuée à partir des modélisations

locales réduites quand il n’existe pas d’incertitude sur l’origine des mesures.

Forme générale des estimateurs PDAF locaux

Si à l’instant k, chaque senseur i délivre mi
k mesures notées Zi(k) = {zi

ji
(k)}mi

k

ji=1
pouvant potentielle-

ment être associées à la cible, alors au niveau du traitement local, l’estimée locale optimale ”0-scan back”

x̂i(k|k) = E[xi(k)|Zi,k ] et sa covariance associée Pi(k|k) sont données par le filtre PDAF de Bar-Shalom

[BSF88] associé au senseur no i.

On rappelle d’abord les équations du PDAF construit au niveau local i (i.e. associé à un senseur i).

L’estimée locale s’écrit (cf section du PDAF) [BSF88]

x̂i(k|k) = E[xi(k)|Zi,k ] =

mi
k∑

ji=0

βi
ji

(k)x̂i
ji

(k|k) (6.82)

avec x̂i
ji

(k|k) , E[xi(k)|Zi,k , θi
ji

(k)] pour ji 6= 0 et ji = 0 donnés par

x̂i
ji

(k|k) = x̂i(k|k−1) + Ki(k)z̃i
ji

(k) (6.83)

x̂i
0(k|k) = x̂i(k|k−1) (6.84)

et les probabilités a posteriori d’associations βi
ji

(k) , P (θi
ji

(k)|Zi,k) données par

βi
0(k) =

bi

bi +

mi
k∑

li=1

ei
li

(6.85)

βi
ji

(k) =
ei

ji

bi +

mi
k∑

li=1

ei
li

si ji 6= 0 (6.86)
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avec

ei
ji

= exp{− 1
2 z̃

i
ji

(k)′Si(k)
−1

z̃i
ji

(k)} (6.87)

bi = (2π/γ)nzi/2λiV i(k)
(1 − P i

dP
i
g)

P i
d

(6.88)

où

Zi,k , {Zi(l)}k

l=1 (6.89)

z̃i
ji

(k) , zi
ji

(k) − ẑi(k|k−1) (6.90)

ẑi(k|k−1) = Hi
L(k)x̂i(k|k−1) (6.91)

Si(k) = Hi
L(k)Pi(k|k)Hi

L(k)′ + Ri(k) (6.92)

Ki(k) , Pi(k|k−1)Hi
L(k)′Si(k)

−1
(6.93)

et P i
d représente la probabilité de détection de la cible , P i

g la probabilité de validation de la mesure

correcte et λi la densite spatiale des fausses alarmes au niveau du senseur i.

La covariance de l’erreur d’estimation du PDAF classique est donnée au niveau de chaque nœud par

Pi(k|k) , E
[
[xi(k) − x̂i(k|k)][xi(k) − x̂i(k|k)]′|Zi,k

]

=

mi
k∑

ji=0

βi
ji

(k)E
[
[xi(k) − x̂i(k|k)][xi(k) − x̂i(k|k)]′|Zi,k, θi

ji
(k)

]

= βi
0(k)P

i(k|k−1) +

mi
k∑

ji=1

βi
ji

(k)Pi
ji

(k|k) +

mi
k∑

ji=0

x̂i
ji

(k|k)x̂i
ji

(k|k)′ − x̂i(k|k)x̂i(k|k)′ (6.94)

avec

Pi
ji

(k|k) , E
[
[xi(k) − x̂i

ji
(k|k)][xi(k) − x̂i

ji
(k|k)]′|Zi,k , θi

ji
(k)

]

Pi
ji

(k|k) =







Pi(k|k−1) pour ji = 0,

[Ii −Ki(k)Hi
L(k)]Pi(k|k−1) pour ji 6= 0.

(6.95)

Forme générale de l’estimateur global

Connaissant l’ensemble des estimées locales x̂i(k|k), Pi(k|k) on cherche alors à construire l’estimée

optimale globale x̂(k|k), P(k|k) donnée par

x̂(k|k) = E[x(k)|Z1,k , . . . ,Zs,k] =

m1
k∑

j1=0

. . .

ms
k∑

js=0

βj1,...,js(k)x̂j1 ,...,js(k|k) (6.96)

avec

βj1,...,js(k) , P (θ1j1(k), . . . , θ
s
js

(k)|Z1,k, . . . ,Zs,k) (6.97)
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x̂j1 ,...,js(k|k) , E[x(k)|Z1,k , θ1j1(k), . . . ,Z
s,k, θs

js
(k)] (6.98)

θi
ji

(k) représente la réalisation de l’hypothèse d’association : “la ji ème mesure du senseur i correspond à

la cible”. βj1,...,js(k) représente la probabilité a posteriori pour que les mesures zi
j1
, . . . , zs

js
correspondent

à la cible. x̂j1,...,js(k|k) représente l’estimée (conditionnelle) optimale globale de l’état quand zi
j1
, . . . , zs

js

correspondent à la cible.

Forme des estimateurs conditionné par les hypothèses d’associations

En supposant les erreurs de mesure indépendantes entre les différents senseurs, l’estimée

globale peut alors être reconstruite à partir des équations générales de la fusion distribuée (6.77) et (6.78).

On obtient :

x̂j1 ,...,js(k|k) = Pj1,...,js(k|k)
[

P(k|k−1)−1x̂(k|k−1)

+

s∑

i=1

Li(k)′[Pi
ji

(k|k)−1
x̂i

ji
(k|k) −Pi(k|k−1)

−1
x̂i(k|k−1)]

] (6.99)

avec

Pj1,...,js(k|k)−1
= P(k|k−1)

−1
+

s∑

i=1

Li(k)′[Pi
ji

(k|k)−1 −Pi(k|k−1)
−1

]Li(k) (6.100)

Pour le cas particulier où j1 = . . . = js = 0, on a

P0,...,0(k|k) = P(k|k−1) (6.101)

x̂0,...,0(k|k) = x̂(k|k−1) (6.102)

Expression des probabilités βj1,...,js(k)

Il nous reste à évaluer les probabilités a posteriori βj1,...,js(k) à partir des probabilités βj1(k),. . . ,βjs(k)

fournies par les filtres PDAF locaux. Pour calculer ces βj1,...,js(k), on suppose indépendantes les me-

sures entre les senseurs. Cette hypothèse permet de considérer indépendantes les probabilités a priori

des évènements d’associations θ1
j1(k),. . . , θ

s
js

(k). Sous cette hypothèse, on peut calculer βj1,...,js(k) en

utilisant la règle de décomposition bayésienne et il vient :

βj1,...,js(k) =
1

cs
γ(θ1j1(k), . . . , θ

s
js

(k))

s∏

i=1

βi
ji

(k) (6.103)

cs étant une constante de normalisation telle que

m1
k∑

j1=0

. . .

ms
k∑

js=0

βj1,...,js(k) = 1 (6.104)
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Le facteur de corrélation γ(θ1
j1

(k), . . . , θs
js

(k)) s’écrit

γ(θ1j1(k), . . . , θ
s
js

(k)) ,

∫

p(x(k)|Z1,k−1, . . . ,Zs,k−1)

s∏

i=1

[
p(xi(k)|θi

ji
(k),Zi,k,Zī,k−1)

]

s∏

i=1

p(xi(k)|Zi,k−1)

dx(k) (6.105)

En supposant les distributions gaussiennes, il vient alors

γ(θ1j1(k), . . . , θ
s
js

(k)) =

|2πPj1,...,js(k|k)|1/2
s∏

i=1

|2πPi(k|k−1)|1/2

|2πP(k|k−1)|1/2
s∏

i=1

|2πPi
ji

(k|k)|1/2

exp(− 1
2d

2
j1,...,js

) (6.106)

avec

d2
j1,...,js

,
[

s∑

i=1

x̂i
ji

(k|k)′Pi
ji

(k|k)−1
x̂i

ji
(k|k) − x̂i(k|k−1)′Pi(k|k−1)

−1
x̂i(k|k−1)

]

+ x̂(k|k−1)′P(k|k−1)
−1

x̂(k|k−1)

− x̂j1,...,js(k|k)′Pj1,...,js(k|k)−1
x̂j1,...,js(k|k)

(6.107)

Covariance de l’estimateur PDAF distribué

La matrice de covariance P(k|k) associée à l’estimée globale distribuée est alors donnée par

P(k|k) = β0,...,0(k)P(k|k−1) +

m1
k∑

j1=0

. . .

ms
k∑

js=0
︸ ︷︷ ︸

j1+...+js 6=0

βj1,...,js(k)Pj1 ,...,js(k|k)

+

m1
k∑

j1=0

. . .

ms
k∑

js=0

[βj1,...,js(k)x̂j1 ,...,js(k|k)x̂j1 ,...,js(k|k)′ − x̂(k|k)x̂(k|k)′]

(6.108)

Extension à la prise en compte d’informations de reconnaissance

Jusqu’à présent les mesures délivrées par les différents senseurs étaient implicitement supposées de

type cinématique (position, vitesse . . . ). Nous pouvons également chercher à améliorer la qualité du pis-

tage distribué en utilisant des informations de reconnaissance des échos (basées sur les mesures de SER

ou SIR par exemple ou des décisions délivrées par un classifieur auxiliaire). Ceci a déjà fait l’objet d’une

présentation dans la section consacrée au PDAF.

Ces informations de reconnaissance qualifient la nature même des échos reçus qui sont supposées pro-

venir soit d’une fausse alarme (FA), soit d’un objet interférant (O) ou d’une cible (T). A chaque instant k,

chaque senseur i dispose donc en plus des mi
k mesures cinématiques Zi(k) = {zi

ji
(k)}mi

k

ji=1
d’un ensemble
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de mesures de reconnaissance Di(k) = {di
ji

(k)}mi
k

ji=1
sur la nature des échos validés. La reconnaissance

décrétée di
ji

(k) concernant le ji ème écho validé peut prendre trois valeurs possibles di
ji

(k)=d0 si l’écho

est déclaré du type bruit thermique ou fausse alarme (hypothèse h0), d
i
ji

(k)=d1 si l’écho est déclaré de

type objet interférant (hypothèse h1) ou di
ji

(k)=d2 si l’écho est déclaré de type cible (hypothèse h2).

La qualité du processus de reconnaissance mis localement en œuvre est caractérisée par une matrice

de confusion locale Ci =[cijh] supposée connue dont les éléments sont donnés par ci
jh =P (di(k)=di

ji
|hj)

j=0, 1, 2. En utilisant la même démarche de développement que celle précédemment exposée, l’estimée

locale s’écrit

x̂i(k|k) = E[xi(k)|Zi,k ,Di,k] =

mi
k∑

ji=0

βi
ji

(k)x̂i
ji

(k|k) (6.109)

avec x̂i
ji

(k|k) , E[xi(k)|Zi,k ,Di,k, θi
ji

(k)] pour ji 6= 0 et ji = 0 donnés par (6.83) et (6.84) et les

probabilités a posteriori d’associations βi
ji

(k) , P (θi
ji

(k)|Zi,k ,Di,k) données par (6.85) et (6.87) avec

ei
ji

= Λi
ji

(k) exp{− 1
2 z̃

i
ji

(k)′Si(k)
−1

z̃i
ji

(k)} (6.110)

bi = (2π/γ)
nzi/2

λi
fa + λi

oV
i(k)

(1 − P i
dP

i
g)

P i
d

(6.111)

où

Λi
ji

(k) =
[λi

o + λi
fa]P (di

ji
|hi

2)

λfaP (di
ji
|hi

0) + λoP (di
ji
|hi

1)
(6.112)

Les densités spatiales λi
o des objets interférants étant inconnues seront remplacées par leur estimée au

sens du maximum de vraisemblance à savoir

λ̂i
o = sup

{
0,
mi

kV
i(k)(1 − 2P i

dP
i
g) +

√
∆i

2V i(k)2(1 − P i
dP

i
g)

− λi
fa

}
(6.113)

avec

∆i , mi
k

2
V i(k)2(1 − 2P i

dP
i
g)2 + 4mi

k(mi
k − 1)P i

dP
i
g(1 − P i

dP
i
g)V

i(k)2 (6.114)

P i
d représente la probabilité de détection de la cible ; P i

g la probabilité de validation de la mesure correcte ;

λi
fa et λi

o les densités spatiales des fausses alarmes et des objets interférant au niveau du senseur i.

La covariance Pi(k|k) , E
[
[xi(k) − x̂i(k|k)][xi(k) − x̂i(k|k)]′|Zi,k ,Di,k

]
de l’erreur d’estimation du

PDAF est donnée au niveau de chaque nœud par (6.94) et (6.95).

Connaissant l’ensemble des estimées optimales locales x̂i(k|k), Pi(k|k) on cherche à construire l’es-

timée optimale globale x̂(k|k), P(k|k) donnée par

x̂(k|k) = E[x(k)|Z1,k ,D1,k . . . ,Zs,k,Ds,k] =

m1
k∑

j1=0

. . .

ms
k∑

js=0

βj1,...,js(k)x̂j1,...,js(k|k) (6.115)
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avec

βj1,...,js(k) , P (θ1j1(k), . . . , θ
s
js

(k)|Z1,k,D1,k, . . . ,Zs,k,Ds,k) (6.116)

x̂j1 ,...,js(k|k) , E[x(k)|Z1,k ,D1,k, θ1j1(k), . . . ,Z
s,k,Ds,k, θs

js
(k)] (6.117)

En supposant les erreurs de mesure indépendantes entre les différents senseurs et les densités gaus-

siennes, l’estimée globale x̂j1,...,js(k|k) peut alors être reconstruite à partir des équations générales de la

fusion distribuée (6.77) et (6.78). On obtient alors les mêmes équations d’estimation (6.99) à (6.107). La

matrice de covariance P(k|k) associée à l’estimée globale est alors donnée par (6.108).

6.2.8 Filtre PDAF distribué avec modélisation MLI

Si l’on suppose maintenant les modèles locaux d’évolution et d’observation de la cible iden-

tiques au modèle du processeur central, on adopte alors la modélisation MLI décrite en 6.1 par

(6.1) et (6.3). On a pour i = 1, . . . , s

xi(k) ≡ x(k), vi(k) ≡ v(k), wi(k) ≡ w(k) (6.118)

Fi(k) ≡ F(k), Qi(k) ≡ Q(k), Ri(k) ≡ R(k) (6.119)

Hi(k) ≡ Hi
L(k), Li(k) ≡ Inx (6.120)

Les équations du PDAF distribué avec modélisation MLI sont identiques aux équations de

fusion précédentes (6.96) et (6.107). Seule l’expression des quantités x̂j1 ,...,js(k|k) et Pj1 ,...,js(k|k) est

modifiée en

x̂j1,...,js(k|k) = Pj1,...,js(k|k)
[

P(k|k−1)
−1

x̂(k|k−1)

+

s∑

i=1

[Pi
ji

(k|k)−1
x̂i

ji
(k|k) −Pi(k|k−1)

−1
x̂i(k|k−1)]

] (6.121)

Pj1,...,js(k|k)−1
= P(k|k−1)

−1
+

s∑

i=1

[Pi
ji

(k|k)−1 −Pi(k|k−1)
−1

] (6.122)

Cas d’un bouclage à chaque période

Si les prédictions globales x̂(k|k−1) et P(k|k−1) sont retransmises à chaque période à chaque nœud

du système, on a pour i = 1, . . . , s

x̂i(k|k−1) ≡ x̂(k|k−1) (6.123)

Pi(k|k−1) ≡ P(k|k−1) (6.124)
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Par conséquent les quantités x̂j1 ,...,js(k|k) et Pj1,...,js(k|k) se réduisent à

x̂j1,...,js(k|k) = Pj1,...,js(k|k)
[

[

s∑

i=1

[Pi
ji

(k|k)−1
x̂i

ji
(k|k)]

− (s− 1)P(k|k−1)
−1

x̂(k|k−1)]
]

(6.125)

Pj1,...,js(k|k)−1 =
[

s∑

i=1

Pi
ji

(k|k)−1] − (s− 1)P(k|k−1)−1 (6.126)

Le facteur de corrélation γ(θ1
j1(k), . . . , θ

s
js

(k)) intervenant dans les probabilités a posteriori d’association

βj1,...,js(k) se réduit à

γ(θ1j1(k), . . . , θ
s
js

(k)) =
|2πPj1,...,js(k|k)|1/2|2πP(k|k−1)|(s−1)/2

s∏

i=1

|2πPi
ji

(k|k)|1/2

exp(− 1
2d

2
j1,...,js

) (6.127)

avec

d2
j1,...,js

,
[

s∑

i=1

x̂i
ji

(k|k)′Pi
ji

(k|k)−1
x̂i

ji
(k|k)

]

− (s− 1)x̂(k|k−1)′P(k|k−1)
−1

x̂(k|k−1)

− x̂j1,...,js(k|k)′Pj1,...,js(k|k)−1
x̂j1,...,js(k|k)

(6.128)

Cas particulier : MLI/PDAF distribué à 2 senseurs

Il est facile de voir que pour un système distribué comportant uniquement 2 senseurs, les équations

optimales (6.96) et (6.108) du PDAF distribué se réduisent à :

x̂(k|k) =

m1
k∑

j1=0

m2
k∑

j2=0

βj1,j2(k)x̂j1 ,j2(k|k) (6.129)

et

P(k|k) = β0,0(k)P(k|k−1) +

m1
k∑

j1=0

m2
k∑

j2=0
︸ ︷︷ ︸

j1+j2 6=0

βj1,j2(k)Pj1 ,j2(k|k)

+

m1
k∑

j1=0

m2
k∑

j2=0

[βj1,j2(k)x̂j1 ,j2(k|k)x̂j1,j2(k|k)′ − x̂(k|k)x̂(k|k)′]

(6.130)

avec

x̂j1,j2(k|k) = Pj1,j2(k|k)
[

P1
j1(k|k)

−1
x̂1

j1 (k|k) + P2
j2 (k|k)

−1
x̂2

j2 (k|k)

−P(k|k−1)
−1

x̂(k|k−1)]
] (6.131)
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Pj1,j2(k|k)−1 = P1
j1 (k|k)

−1
+ P2

j2(k|k)
−1 −P(k|k−1)−1 (6.132)

βj1,j2(k) =
1

c2
γ(θ1j1(k), θ

2
j2(k))β

1
j1 (k)β

2
j2 (k) (6.133)

γ(θ1j1(k), θ
2
j2(k)) =

|2πPj1,j2(k|k)|1/2|2πP(k|k−1)|1/2

|2πP1
j1(k|k)|

1/2|2πP2
j2(k|k)|

1/2
exp(− 1

2d
2
j1,j2) (6.134)

d2
j1,j2 , x̂1

j1 (k|k)′P1
j1 (k|k)

−1
x̂1

j1 (k|k) + x̂2
j2 (k)

′P2
j2(k|k)

−1
x̂2

j2 (k)

− x̂(k|k−1)′P(k|k−1)
−1

x̂(k|k−1)

− x̂j1 ,j2(k|k)′Pj1,j2(k|k)−1
x̂j1 ,j2(k|k)

(6.135)

c2 étant une constante de normalisation telle que

m1
k∑

j1=0

m2
k∑

j2=0

βj1,j2(k) = 1 (6.136)

Remarque

L’extension du filtrage MLI/PDAF distribué à la prise en compte des informations de reconnaissance

est directe compte tenu de la formulation du MLR/PDAF distribué enrichi décrite précédemment.

6.2.9 Filtre JPDAF distribué avec modélisation MLR

On se place maintenant dans le cas plus général du pistage multi-cibles en environnement riche en

fausses alarmes par un système distribué constitué de s senseurs. On suppose qu’il existe T cibles à pister

par le DSN. Chaque cible est indicée par tn, n = 1, . . . , T .

La modélisation globale et locale des cibles à pister tn, (n = 1, . . . , T ) est identique à la modélisation

MLR décrite en 6.1 à savoir :

Au niveau du processeur de fusion

xtn(k + 1) = Ftn(k)xtn(k) + vtn(k) (6.137)

zi,tn(k) = Hi,tn(k)xtn(k) + wi(k) k = 1, 2, . . . (6.138)

Au niveau de chaque nœud i du système distribué, la dynamique et l’observation d’une cible tn sont

modélisées par un modèle local réduit du type

xi,tn(k + 1) = Fi,tn(k)xi,tn(k) + vi,tn(k) (6.139)

zi,tn(k) = Hi,tn

L (k)xi,tn(k) + wi(k) k = 1, 2, . . . (6.140)
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Calcul des estimées locales par JPDAF local

Si à l’instant k, chaque senseur i délivre mi
k mesures notées Zi(k) = {zi

ji
(k)}mi

k

ji=1
pouvant potentiel-

lement être associées aux cibles, alors au niveau du traitement local, l’estimée optimale ”0-scan back”

d’une cible tn est donnée par le filtre JPDAF [FBSS80]. Cette estimée locale s’écrit

x̂i,tn(k|k) = E[xi,tn(k)|Zi,k ] = E[Li,tn(k)xtn(k)|Zi,k ]

=

mi
k∑

ji=0

P (χi,tn

ji
(k)|Zi,k)E[xi,tn(k)|Zi,k , χi,tn

ji
(k)]

=

mi
k∑

ji=0

βi,tn

ji
(k)x̂i,tn

ji
(k|k) (6.141)

où χi,tn

ji
(k) correspond à l’évènement d’association : “zi

ji
(k) (la ji ème mesure du senseur i) provient de la

cible tn” et où χi,tn

0 (k) correspond à l’évènement : “Aucune des mesures issues du senseur i ne correspond

à la cible tn”. La probabilité de chacun de ces évènements marginaux d’associations est donnée par :

βi,tn

ji
(k) , P (χi,tn

ji
(k)|Zi,k) =

∑

χi(k)

P (χi(k)|Zi,k)ω̂i
ji,tn

(χi(k)) (6.142)

où χi(k) est un des évènements d’associations conjointes possibles au niveau du ième senseur à l’instant

k. Cet évènement est défini comme

χi(k) ,

mi
k⋂

ji=1

χi,tn

ji
(k) (6.143)

ω̂i
ji,tn

(χi(k)) est l’indicateur binaire d’association de la cible tn avec la mesure zi
ji

(k). Les estimées locales

conditionnelles x̂i,tn

ji
(k|k) , E[xi,tn(k)|Zi,k , χi,tn

ji
(k)] pour ji 6= 0 et ji = 0 sont données par

x̂i,tn

ji
(k|k) = x̂i,tn(k|k−1) + Ki,tn(k)z̃i,tn

ji
(k) (6.144)

x̂i,tn

0 (k|k) = x̂i,tn(k|k−1) (6.145)

où

z̃i,tn

ji
(k) , zi,tn

ji
(k) − ẑi,tn(k|k−1) (6.146)

ẑi,tn(k|k−1) = Hi,tn

L (k)x̂i,tn(k|k−1) (6.147)

Si,tn(k) = Hi,tn

L (k)Pi,tn(k|k)Hi,tn

L (k)′ + Ri(k) (6.148)

Ki,tn(k) , Pi,tn(k|k−1)Hi,tn

L (k)′Si,tn(k)
−1

(6.149)

La covariance Pi,tn

ji
(k|k) associée à x̂i,tn

ji
(k|k) est donnée par le filtre de Kalman standard

Pi,tn

ji
(k|k) = [ Inxi,tn

−Ki,tn(k)Hi,tn

L (k) ] Pi,tn(k|k−1) (6.150)
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Au niveau de chaque nœud i, et pour chaque cible tn, la covariance de l’erreur d’estimation xi,tn(k) −
x̂i,tn(k) du JPDAF est donnée par

Pi,tn(k|k) , E
[
[xi,tn(k) − x̂i,tn(k|k)][xi,tn(k) − x̂i,tn(k|k)]′|Zi,k

]

= βi,tn

0 (k)Pi,tn(k|k−1) +

mi
k∑

ji=1

βi,tn

ji
(k)Pi,tn

ji
(k|k)

+

mi
k∑

ji=0

x̂i,tn

ji
(k|k)x̂i,tn

ji
(k|k)′ − x̂i,tn(k|k)x̂i,tn(k|k)′ (6.151)

On observera que l’on a pour ji = 0,

x̂i,tn

0 (k|k) = x̂i,tn(k|k−1) (6.152)

Pi,tn

0 (k|k) = Pi,tn(k|k−1) (6.153)

Calcul des probabilités P (χi(k)|Zi,k) au niveau local

On rappelle que ces probabilités conjointes P (χi(k)|Zi,k) interviennent dans le calcul des probabilités

marginales βi,tn

ji
(k). En reprenant les équations du JPDAF standard (cf section sur le JPDAF), on peut

montrer que l’on a

P (χi(k)|Zi,k) =
λi

φ(χi(k))

ci

∏

ji:τji
(χi)=1

1

|2πSi,tn(k)|1/2
exp{− 1

2 z̃
i,tn

ji
(k)′Si,tn(k)

−1
z̃i,tn

ji
(k)}

∏

tn: δtn (χi)=1

P i,tn

d

∏

tn: δtn (χi)=0

(1 − P i,tn

d )

(6.154)

et P i,tn

d représente la probabilité de détection de la cible tn et λi la densité spatiale des fausses alarmes

au niveau du senseur i. ci est une constante de normalisation assurant

∑

χi

P (χi(k)|Zi,k) = 1 (6.155)

τji(χ
i) et δtn(χi) sont respectivement l’indicateur d’association de la mesure zi

ji
(k) et l’indicateur de

détection de la cible tn dans l’évènement d’association χi considéré. On note tji la cible associée à la

mesure zi
ji

dans l’évènement χi considéré. Ces deux indicateurs sont définis comme :

τji(χ
i) ,







1, si tji > 0

0, si tji = 0

(6.156)

δtn(χi) ,







1, si tji = tn pour une mesure zi
ji

0, si tji 6= tn pour tous les indices ji

(6.157)
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En utilisant la représentation matricielle Ω̂(χi) = [ω̂jitji
(χi)], les indicateurs τji(χ

i) et δtn(χi) peuvent

alors être facilement calculés par

τji(χ
i) =

T∑

n=1

ω̂jitn(χi) (6.158)

δtn(χi) =

mi
k∑

ji=1

ω̂jitn(χi) (6.159)

φ(χi(k)) représente le nombre total de fausses mesures dans l’évènement conjoint d’association χi considéré.

φ(χi(k)) est donné par

φ(χi(k)) =

mi
k∑

ji=1

[1 − τji (χ
i(k))] (6.160)

Calcul de l’estimée globale distribuée de chaque cible

Connaissant, pour chaque cible tn, l’ensemble des estimées optimales locales x̂i,tn(k|k), Pi,tn(k|k) on

cherche à reconstruire son estimée optimale globale x̂tn(k|k), Ptn(k|k) donnée par

x̂tn(k|k) = E[xtn(k)|Zk ] = E[xtn(k)|Z1,k , . . . ,Zs,k]

=

m1
k∑

j1=0

. . .

ms
k∑

js=0

P (χ1,tn

j1
(k), . . . , χs,tn

js
(k)|Z1,k , . . . ,Zs,k)

E[xtn(k)|Z1,k, χ1,tn

j1
(k), . . . ,Zs,k, χs,tn

js
(k)]

Soit finalement

x̂tn(k|k) =

m1
k∑

j1=0

. . .

ms
k∑

js=0

βtn

j1,...,js
(k)x̂tn

j1 ,...,js
(k|k) (6.161)

avec

βtn

j1,...,js
(k) , P (χ1,tn

j1
(k), . . . , χs,tn

js
(k)|Z1,k, . . . ,Zs,k) (6.162)

x̂tn

j1 ,...,js
(k|k) , E[xtn(k)|Z1,k , χ1,tn

j1
(k), . . . ,Zs,k, χs,tn

js
(k)]

=

∫

xtn(k)p(xtn(k)|Z1,k, χ1,tn

j1
(k), . . . ,Zs,k, χs,tn

js
(k) dxtn(k)

(6.163)

βtn

j1,...,js
(k) représente la probabilité a posteriori pour que les mesures zi

j1
, . . . , zs

js
correspondent à la

cible tn. x̂tn

j1,...,js
(k|k) représente l’estimée conditionnelle optimale globale de l’état quand zi

j1 , . . . , z
s
js

correspondent à la cible tn.
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Calcul des probabilités βtn

j1,...,js
(k)

Pour calculer les βtn

j1,...,js
(k), on suppose indépendantes les mesures entre les senseurs condition-

nellement à l’état vrai des cibles et aussi indépendants les évènements d’associations χ1(k) à χs(k)

conditionnellement à l’état des cibles. Ces hypothèses permettent alors d’écrire en utilisant la règle de

décomposition bayésienne et le théorème des probabilités totales

βtn

j1,...,js
(k) =

∑

χ1(k)

. . .
∑

χs(k)

P (χ1(k), . . . , χs(k)|Z1,k, . . . ,Zs,k)ω̂1
j1,tn

(χ1(k)) . . . ω̂s
js,tn

(χs(k))

=
∑

χ1(k)

. . .
∑

χs(k)

1

cs
γ(χ1(k), . . . , χs(k))

[
s∏

i=1

P (χi(k)|Zi,k,Zī,k−1)
]
ω̂1

j1,tn
(χ1(k)) . . . ω̂s

js,tn
(χs(k))

(6.164)

cs étant une constante de normalisation.

Le facteur de corrélation γ(χ1,tn(k), . . . , χs,tn(k)) s’écrit

γ(χ1(k), . . . , χs(k)) ,

∫

. . .

∫

p(xt1(k), . . . ,xtT (k)|Z1,k−1, . . . ,Zs,k−1)

×

T∏

n=1

s∏

i=1

[
p(xi,tn(k)|χi(k),Zi,k ,Zī,k−1)

]

T∏

n=1

s∏

i=1

p(xi,tn(k)|Zi,k−1)

dxt1(k) . . . dxtT (k)

(6.165)

En supposant les distributions gaussiennes on peut montrer que l’expression analytique de γ(χ1
j1

(k), . . . , χs
js

(k))

est donnée par

γ(χ1(k), . . . , χs(k)) =

T∏

n=1

[ |2πPtn

jtn(χ1),...,jtn(χs)
(k|k)|1/2

s∏

i=1

|2πPi,tn(k|k−1)|1/2

|2πPtn(k|k−1)|1/2
s∏

i=1

|2πPi,tn

jtn(χi)
(k|k)|1/2

× exp(− 1
2d

2
jtn(χ1),...,jtn(χs)

)

]

(6.166)
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avec

d2
jtn(χ1),...,jtn(χs)

,

s∑

i=1

[
x̂i,tn

jtn(χi)
(k|k)′Pi,tn

jtn(χi)
(k|k)−1

x̂i,tn

jtn(χi)
(k|k)

− x̂i,tn(k|k−1)′Pi,tn(k|k−1)
−1

x̂i,tn(k|k−1)
]

+ x̂tn(k|k−1)′Ptn(k|k−1)
−1

x̂tn(k|k−1)

− x̂tn

jtn(χ1),...,jtn(χs)
(k|k)′Ptn

jtn(χ1),...,jtn(χs)
(k|k)−1

x̂tn

jtn(χ1),...,jtn(χs)
(k|k)

(6.167)

x̂i,tn

jtn(χi)
(k|k) =







x̂i,tn(k|k−1) + Ki,tn(k)z̃i,tn
jtn(χi)

(k), si ω̂i
jtn(χi),tn

(χi(k)) = 1

x̂i,tn(k|k−1), sinon

(6.168)

Pi,tn

jtn(χi)
(k|k) =







[ In
xi,tn

−Ki,tn(k) Hi,tn

L (k) ] Pi,tn(k|k−1), si ω̂i
jtn(χi),tn

(χi(k)) = 1

Pi,tn(k|k−1), sinon

(6.169)

x̂tn

jtn(χ1),...,jtn(χs)
(k|k) et Ptn

jtn(χ1),...,jtn(χs)
(k|k) sont donnés par les relations (6.171) ou (6.173) et (6.172)

ou (6.174) en ayant préalablement effectué la substitution des indices ji par jtn(χi) pour i = 1, . . . , s.

Expression de x̂tn

j1 ,...,js
(k|k)

x̂tn

j1 ,...,js
(k|k) , E[xtn(k)|Z1,k , χ1,tn

j1
(k), . . . ,Zs,k, χs,tn

js
(k)]

=

∫

xtn(k)p(xtn(k)|Z1,k, χ1,tn

j1
(k), . . . ,Zs,k, χs,tn

js
(k) dxtn(k)

(6.170)

x̂tn

j1,...,js
(k|k) représente l’estimée conditionnelle optimale globale de l’état quand zi

j1 , . . . , z
s
js

corres-

pondent à la cible tn. En supposant les erreurs de mesure indépendantes entre les différents senseurs,

les estimées (conditionnelles à l’association des mesures) x̂tn

j1,...,js
(k|k) sont obtenues à partir des des

équations générales de la fusion distribuée (6.77) et (6.78) et l’on a

x̂tn

j1,...,js
(k|k) , E[xtn(k)|Z1,k, χ1,tn

j1
(k), . . . ,Zs,k, χs,tn

js
(k)]

= Ptn

j1 ,...,js
(k|k)

[

Ptn(k|k−1)
−1

x̂tn(k|k−1)

+

s∑

i=1

Li,tn(k)′[Pi,tn

ji
(k|k)−1

x̂i,tn

ji
(k|k) −Pi,tn(k|k−1)

−1
x̂i,tn(k|k−1)]

]

(6.171)

Expression de Ptn

j1,...,js
(k|k)−1

Ptn

j1,...,js
(k|k)−1

= Ptn(k|k−1)
−1

+

s∑

i=1

Li,tn(k)′[Pi,tn

ji
(k|k)−1 −Pi,tn(k|k−1)

−1
]Li,tn(k) (6.172)
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Pour le cas particulier j1 = . . . = js = 0, on prend

Ptn
0,...,0(k|k) = Ptn(k|k−1) (6.173)

x̂tn
0,...,0(k|k) = x̂tn(k|k−1) (6.174)

Matrice de covariance de l’estimée par JPDAF distribué

La matrice de covariance Ptn(k|k) associée à l’estimée globale (6.161) d’une cible tn est donnée par

Ptn(k|k) = βtn
0,...,0(k)P

tn(k|k−1) +

m1
k∑

j1=0

. . .

ms
k∑

js=0
︸ ︷︷ ︸

j1+...+js 6=0

βtn

j1,...,js
(k)Ptn

j1 ,...,js
(k|k)

+

m1
k∑

j1=0

. . .

ms
k∑

js=0

[βtn

j1,...,js
(k)x̂tn

j1 ,...,js
(k|k)x̂tn

j1 ,...,js
(k|k)′ − x̂tn(k|k)x̂tn(k|k)′]

(6.175)

JPDAF distribué avec modélisation MLR et reconnaissance

Si l’on dispose au niveau de chaque senseur d’informations de reconnaissance alors on peut enrichir

le filtrage MLR/JPDAF distribué pour améliorer la qualité du pistage. Les informations cinématiques

Zi(k) = {zi
ji

(k)}mi
k

ji=1
et de reconnaissance Di(k) = {di

ji
(k)}mi

k

ji=1
disponibles sont les mêmes que celles

décrites dans le MLR/PDAF distribué enrichi. Le développement du filtre JPDAF enrichi étant quasi-

similaire au développement du MLR/JPDAF précédent, on explicitera ici uniquement les points de calculs

où apparâıtra une différence entre les deux types de filtres.

Au niveau local, l’estimée optimale “0-scan back” d’une cible tn est donnée par

x̂i,tn(k|k) = E[xi,tn(k)|Zi,k ,Di,k]

=

mi
k∑

ji=0

P (χi,tn

ji
(k)|Zi,k ,Di,k)E[xi,tn(k)|Zi,k ,Di,k , χi,tn

ji
(k)]

=

mi
k∑

ji=0

βi,tn

ji
(k)x̂i,tn

ji
(k|k) (6.176)

où χi,tn

ji
(k) correspond à l’évènement d’association : “(zi

ji
(k),di

ji
(k)) (la ji ème mesure du senseur i)

provient de la cible tn” et où χi,tn

0 (k) correspond à l’évènement : “Aucune des mesures issues du senseur

i ne correspond à la cible tn”. La probabilité de chacun de ces évènements marginaux d’associations est

donnée par

βi,tn

ji
(k) , P (χi,tn

ji
(k)|Zi,k ,Di,k) =

∑

χi(k)

P (χi(k)|Zi,k ,Di,k)ω̂i
ji,tn

(χi(k)) (6.177)
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où χi(k) est un des évènements d’associations conjointes possibles au niveau du ième senseur à l’instant

k et ω̂i
ji,tn

(χi(k)) est l’indicateur binaire d’association de la cible tn avec la mesure (zi
ji

(k), di
ji

(k)). Les

estimées locales conditionnelles x̂i,tn

ji
(k|k) , E[xi,tn(k)|Zi,k ,Di,k, χi,tn

ji
(k)] et Pi,tn

ji
(k|k) sont données par

les équations (6.144) à (6.150). Le calcul des probabilités qui intègre les informations de reconnaissance

s’écrit alors

P (χi(k)|Zi,k ,Di,k) =
(λi

fa + λi
o)

φ(χi(k))

ci
∏

ji:τji
(χi)=1

Λi
ji

(k)
1

|2πSi,tn(k)|1/2
exp{− 1

2 z̃
i,tn

ji
(k)′Si,tn(k)

−1
z̃i,tn

ji
(k)}

∏

tn: δtn (χi)=1

P i,tn

d

∏

tn: δtn (χi)=0

(1 − P i,tn

d )

(6.178)

P i,tn

d représente la probabilité de détection de la cible tn ; λi
fa et λi

o sont les densités spatiales des

fausses alarmes et des objets interférant au niveau du senseur i.Λi
ji

(k) représente la vraisemblance pour

que l’écho ji soit associé à une cible. Cette vraisemblance est calculée selon (6.112). En pratique les

densités inconnues λi
o seront replacées par leurs estimées λ̂i

o données en (6.113). ci est une constante de

normalisation assurant
∑

χi

P (χi(k)|Zi,k ,Di,k) = 1 (6.179)

Au niveau de chaque nœud i, et pour chaque cible tn, la covariance de l’erreur d’estimation xi,tn(k) −
x̂i,tn(k) du JPDAF local enrichi est donnée par (6.151). Connaissant, pour chaque cible tn, l’ensemble des

estimées optimales locales x̂i,tn(k|k), Pi,tn(k|k), l’estimée optimale globale x̂tn(k|k) = E[xtn(k)|Zk ,Dk]

et sa covariance associée Ptn(k|k) seront données par les équations de fusion classiques du MLR/JPDAF

(6.171) à (6.175).

6.2.10 Filtre JPDAF distribué avec modélisation MLI

Si l’on suppose les modèles locaux d’évolution et d’observation de chaque cible (6.137)-(6.138) iden-

tiques au modèle du processeur central (6.139)-(6.140), on a pour i = 1, . . . , s et n = 1, . . . , T

xi,tn(k) ≡ xtn(k), vi,tn(k) ≡ vtn(k), wi(k) ≡ w(k) (6.180)

Fi,tn(k) ≡ Ftn(k), Qi,tn(k) ≡ Qtn(k), Ri(k) ≡ R(k) (6.181)

Hi,tn(k) ≡ hi,tn(k), Li,tn(k) ≡ Inxtn
(6.182)

Les équations du JPDAF distribué avec modélisation MLI des cibles sont identiques aux équations de

fusion précédentes [CCB86]. Seule l’expression des quantités x̂tn

j1 ,...,js
(k|k) et Ptn

j1,...,js
(k|k) est modifiée en

x̂tn

j1,...,js
(k|k) = Ptn

j1,...,js
(k|k)

[

Ptn(k|k−1)
−1

x̂tn(k|k−1)

+

s∑

i=1

[Pi,tn

ji
(k|k)−1

x̂i,tn

ji
(k|k) −Pi,tn(k|k−1)

−1
x̂i,tn(k|k−1)]

] (6.183)
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Ptn

j1,...,js
(k|k)−1

= Ptn(k|k−1)
−1

+

s∑

i=1

[Pi,tn

ji
(k|k)−1 −Pi,tn(k|k−1)

−1
] (6.184)

Cas particulier

Si les prédictions globales x̂tn(k|k−1) et Ptn(k|k−1) sont retransmises à chaque période à chaque

nœud du système, on a pour i = 1, . . . , s

x̂i,tn(k|k−1) ≡ x̂tn(k|k−1) (6.185)

Pi,tn(k|k−1) ≡ Ptn(k|k−1) (6.186)

Par conséquent les quantités x̂tn

j1 ,...,js
(k|k) et Ptn

j1,...,js
(k|k) se réduisent à

x̂tn

j1,...,js
(k|k) = Ptn

j1,...,js
(k|k)

[

[

s∑

i=1

[Pi,tn

ji
(k|k)−1

x̂i,tn

ji
(k|k)]

− (s− 1)Ptn(k|k−1)
−1

x̂tn(k|k−1)]
]

(6.187)

Ptn

j1 ,...,js
(k|k)−1

=
[

s∑

i=1

Pi,tn

ji
(k|k)−1] − (s− 1)Ptn(k|k−1)

−1
(6.188)

Le facteur de corrélation γ(χ1(k), . . . , χs(k)) intervenant dans les probabilités a posteriori d’associations

βtn

j1,...,js
(k) se réduit à

γ(χ1(k), . . . , χs(k)) =

T∏

n=1

[ |2πPtn

jtn(χ1),...,jtn(χs)
(k|k)|1/2|2πPi,tn(k|k−1)|(s−1)/2

s∏

i=1

|2πPi,tn

jtn(χi)
(k|k)|1/2

× exp(− 1
2d

2
jtn(χ1),...,jtn(χs)

)

]

(6.189)

avec

d2
jtn(χ1),...,jtn(χs)

,
s∑

i=1

[
x̂i,tn

jtn(χi)
(k|k)′Pi,tn

jtn(χi)
(k|k)−1

x̂i,tn

jtn(χi)
(k|k)

]

− (s− 1) x̂tn(k|k−1)′Ptn(k|k−1)
−1

x̂tn(k|k−1)

− x̂tn

jtn(χ1),...,jtn(χs)
(k|k)′Ptn

jtn(χ1),...,jtn(χs)
(k|k)−1

x̂tn

jtn(χ1),...,jtn(χs)
(k|k)

(6.190)

Cas particulier du JPDAF distribué à 2 senseurs

Il est facile de voir que pour un système distribué comportant uniquement 2 senseurs, les équations

optimales (6.161) et (6.175) du JPDAF distribué avec modèles locaux non réduits sont :

x̂tn(k|k) =

m1
k∑

j1=0

m2
k∑

j2=0

βtn

j1,j2
(k)x̂tn

j1 ,j2
(k|k) (6.191)
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et

Ptn(k|k) = βtn
0,0(k)P

tn(k|k−1) +

m1
k∑

j1=0

m2
k∑

j2=0
︸ ︷︷ ︸

j1+j2 6=0

βtn

j1,j2
(k)Ptn

j1 ,j2
(k|k)

+

m1
k∑

j1=0

m2
k∑

j2=0

[βtn

j1,j2
(k)x̂tn

j1 ,j2
(k|k)x̂tn

j1,j2
(k|k)′ − x̂tn(k|k)x̂tn(k|k)′]

(6.192)

avec

x̂tn

j1,j2
(k|k) = Ptn

j1,j2
(k|k)

[
P1,tn

j1
(k|k)−1

x̂1,tn

j1
(k|k) + P2,tn

j2
(k|k)−1

x̂2,tn

j2
(k|k)

−Ptn(k|k−1)
−1

x̂tn(k|k−1)]
]

(6.193)

Ptn

j1,j2
(k|k)−1

= P1,tn

j1
(k|k)−1

+ P2,tn

j2
(k|k)−1 −Ptn(k|k−1)

−1
(6.194)

βtn

j1,j2
(k) , P (χ1,tn

j1
(k), χ2,tn

js
(k)|Z1,k,Z2,k)

=
∑

χ1

∑

χ2

[ 1

c2
γ(χ1(k), χ2(k))P (χ1(k)|Z1,k ,Z1̄,k−1)P (χ2(k)|Z2,k ,Z2̄,k−1)

ω̂1
j1,tn

(χ1(k))ω̂2
j2,tn

(χ2(k))
]

(6.195)

c2 étant une constante de normalisation et γ(χ1(k), χ2(k)) et d2
jtn(χ1),jtn(χ2)

sont donnés par

γ(χ1(k), χ2(k)) =

T∏

n=1

|2πPtn

jtn(χ1),jtn(χ2)
(k|k)|1/2|2πPtn(k|k−1)|1/2

|2πP1,tn

jtn(χ1)
(k|k)|1/2|2πP2,tn

jtn(χ2)
(k|k)|1/2

exp(− 1
2d

2
jtn(χ1),jtn(χ2)

) (6.196)

et

d2
jtn(χ1),jtn(χ2)

, x̂1
jtn(χ1)

(k|k)′P1
jtn(χ1)

(k|k)−1
x̂1

jtn(χ1)
(k|k) + x̂2

jtn(χ2)
(k|k)′P2

jtn(χ2)
(k|k)−1

x̂2
jtn(χ2)

(k|k)

− x̂tn(k|k−1)′Ptn(k|k−1)
−1

x̂tn(k|k−1)

− x̂tn

jtn(χ1),jtn(χ2)
(k|k)′Ptn

jtn(χ1),jtn(χ2)
(k|k)−1

x̂tn

jtn(χ1),jtn(χ2)
(k|k)

(6.197)

6.3 Pistage multi-senseurs par fusion de pistes

6.3.1 Présentation de la fusion de pistes

Nous présentons dans cette partie, la technique sous-optimale de pistage multi-senseurs souvent

utilisée dans les systèmes de pistage actuels. Cette méthode est communément désignée par méthode de
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pistage par fusion de piste. Son principe consiste, dans une première étape, à évaluer par un filtre de

poursuite local associé à chaque senseur, un ensemble de pistes locales ; puis, dans une seconde étape, à

fusionner judicieusement les estimées locales qui correspondent à une même cible afin d’obtenir une piste

globale de meilleure qualité.

On voit que cette méthode engendre d’emblée certaines limitations. La première limitation concerne

la possibilité ou non de construire un filtre de poursuite associé au senseur. En effet, on sait par exemple

que la poursuite par un senseur IR ne permet de restituer qu’une partie de l’état d’une cible, de plus,

l’observabilité de la cible dépend étroitement de la géométrie du problème. Autrement dit, la nature des

senseurs est un facteur important pour la mise en œuvre des algorithmes de pistage locaux. La seconde

limitation est la nécessité d’avoir au niveau de chaque filtre local la restitution complète de l’état du

système indispensable aux équations de fusion. Là encore, cette reconstitution pourra ou ne pourra pas

être possible selon la nature des senseurs utilisés.

En pratique, les systèmes sont souvent de nature hybride pour pouvoir s’accommoder de ces deux

limitations majeures. L’idée de l’hybridation consiste à utiliser des senseurs de manière groupée (2 ou 3

senseurs IR par exemple) et à effectuer le pistage au niveau d’un groupe par les techniques de pistage

distribuées précédentes. La fusion des estimées locales (complète) issues de chaque groupe est ensuite

fusionnée par la méthode de fusion de piste que l’on va maintenant rappeler. Pour une analyse plus ap-

profondie de cette approche, on pourra se repporter à la référence [SC98].

Les 2 problèmes doivent impérativement être résolus pour mettre en œuvre la méthode de pistage par

fusion de pistes

1. On doit d’abord savoir reconnaitre (identifier) les pistes locales relatives à une même cible.

2. On doit ensuite savoir fusionner les estimées locales relatives à une même cible afin de contruire

une estimée globale (sous-optimale) de la cible.

Cette technique, comme on le verra, n’est que sous-optimale car l’estimée fusionnée obtenue

ne cöıncide pas avec l’estimée globale que l’on obtiendrait à partir de l’exploitation de toutes les

mesures relatives à une même cible et issues des différents senseurs. Malgré tout, cette méthode présente le

gros avantage (si la nature des senseurs le permet) d’être facilement implantable et intégrée aux systèmes

opérationnels de poursuite déjà développés. Nous détaillons maintenant les réponses aux deux questions

fondamentales précédentes.
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6.3.2 Test de concordance entre pistes locales

Avant toute étape de fusion, il est nécessaire de s’assurer que les pistes locales sont effective-

ment “fusionnables”. En d’autres termes, on doit d’abord chercher à déterminer si deux pistes locales

caractérisées par leurs statistiques x̂i,ni(k|.), Pi,nj (k|.) et x̂j,nj (k|.), Pj,nj (k|.) représentent, ou non, une

même cible t. ni et nj désignent ici le numéro arbitrairement associé à la piste au niveau de chaque

senseur. Ces estimées pourront être aussi bien des estimées a priori (on posera alors (k|.) = (k|k− 1)) que

des estimées a posteriori (on posera alors (k|.) = (k|k)).

Soit

∆̂ij
ninj

(k|.) = x̂i,ni(k|.) − x̂j,nj (k|.) (6.198)

l’estimée de la différence

∆ij
ninj

(k) = xi,ni (k) − xj,nj (k) (6.199)

où xi,ni(k) et xj,nj (k) désignent les états complets vrais des cibles associées à chacune des pistes locales

ni et nj .

Le test instantané de concordance (encore appelé test d’association ou parfois test de corrélation)

entre deux pistes locales ni et nj consiste alors à tester l’hypothèse

H0 : ∆ij
ninj

(k) = 0 ⇐⇒ concordance des pistes xi,ni(k) = xj,nj (k) = xt(k)

contre

H1 : ∆ij
ninj

(k) 6= 0 ⇐⇒ discordance des pistes xi,ni(k) 6= xj,nj (k)

Sous l’hypothèse de concordance des pistes ni et nj , l’erreur ∆̃ij
ninj

(k) définie par

∆̃ij
ninj

(k|.) , ∆ij
ninj

(k) − ∆̂ij
ninj

(k|.) (6.200)

doit être à moyenne nulle.

6.3.3 Cas simpliste des pistes locales indépendantes

Si l’on admet en première hypothèse que l’erreur

x̃i,ni(k|.) = xi,ni(k) − x̂i,ni(k|.) (6.201)

est statistiquement indépendante de l’erreur

x̃j,nj (k|.) = xj,nj (k) − x̂j,nj (k|.) (6.202)
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alors on a [MABS85]

Pij
ninj

(k|.) , E[x̃i,ni(k|.)x̃j,nj (k|.)′] = 0 (6.203)

Pji
njni

(k|.) , E[x̃j,nj (k|.)x̃i,ni (k|.)′] = Pij
ninj

(k|.)′ = 0 (6.204)

Sous l’hypothèse H0, la covariance de la différence (6.200) est alors donnée par

Tij
ninj

(k|.) = E[∆̃ij
ninj

(k|.)∆̃ij
ninj

(k|.)′]

= E[(x̃i,ni (k|.) − x̃j,nj (k|.))(x̃i,ni (k|.) − x̃j,nj (k|.))′]

= Pi
ni

(k|.) + Pj
nj

(k|.) (6.205)

En supposant les erreurs d’estimations locales distribuées selon une loi normale, le test optimal

de concordance, basé sur la distance de Mahalanobis d, est donné par

d , ∆̂ij
ninj

(k|.)′[Tij
ninj

(k|.)]−1
∆̂ij

ninj
(k|.)

H1
>
6

H0

δ (6.206)

Le seuil δ du test est tel que

P{d > δ|H0} = α (6.207)

où α est une valeur choisie a priori (généralement on prend 0.005 ou 0.001). Le choix du seuil δ est basé

sur l’hypothèse de normalité de ∆ij
ninj

(k) sous H0. Sous H0, d doit alors suivre une distribution du χ2 de

degré nx (nx étant la dimension du vecteur d’état complet x), c.a.d :

δ = χ2
nx

(1 − α) (6.208)

6.3.4 Cas réaliste des pistes locales dépendantes

Dans le cas général, les pistes locales ne peuvent être considérées indépendantes puisqu’elles

partagent en fait le même processus de bruit de dynamique. Il faut donc impérativement tenir

compte de cette propriété au sein du test de concordance. On notera que le fait d’avoir des bruits de me-

sures indépendants au niveau de chaque senseur n’assure pas forcément l’indépendance des erreurs locales

d’estimation x̃i,ni(k|.) et x̃j,nj (k|.). Il nous faut donc évaluer les covariances croiséesE[x̃i,ni(k|.)x̃j,nj (k|.)′]
et E[x̃j,nj (k|.)x̃i,ni(k|.)′] pour mettre en œuvre le test.

Pour simplifier la présentation, on supposera les senseurs synchronisés. Cela signifie simplement

que les termes de conditionnement (k|.) sont les mêmes au niveau du senseur i et au niveau du senseur j.

Le cas des senseurs non synchrones ne pose aucun problème particulier en soi (à part celui de la notation

bien sûr) et peut être traité d’une façon rigoureusement analogue.
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Calcul des covariances croisées

Le principe de calcul des covariances croisées est basé sur l’équation de mise à jour de l’estimée locale

au niveau de chaque senseur m, m = i, j. Cette équation est donnée par le filtre de Kalman standard

(pour simplifier, on admet ici implicitement que c’est ce type de filtre adopté pour la poursuite) à savoir :

x̂m,nm(k|k) = Ftnm (k − 1)x̂m,nm(k − 1|k − 1)

+ Km,nm(k)[zm,nm(k) −Hm,nm(k)Ftnm (k − 1)x̂m,nm(k − 1|k − 1)]
(6.209)

où Km,nm(k) est le gain du filtre de Kalman associé au processeur local m pour la piste locale nm

(m = i, j). zm,nm(k) est la mesure locale de senseur m associée à la piste nm représentative de la cible

tnm .

Compte tenu de (6.209), l’erreur d’estimation correspondante vaut :

x̃m,nm(k|k) , xtnm (k) − x̂m,nm(k|k)

= [I −Km,nm(k)Hm,nm(k)]Ftnm (k − 1)x̃m,nm(k − 1|k − 1)

+ [I −Km,nm(k)Hm,nm(k)]vtnm (k − 1) −Km,nm(k)wm(k) (6.210)

En considérant la même cible d’intérêt t au niveau de chaque senseur (i.e. t = tni = tnj ) et en

multipliant (6.210) pour m = i par sa transposée prise en m = j, on obtient le calcul récursif suivant de

la covariance croisée Pij
ninj

(k|k) :

Pij
ninj

(k|k) = [I −Ki,ni(k)Hi,ni(k)]Pij
ninj

(k|k − 1)[I −Kj,nj (k)Hj,nj (k)]′ (6.211)

avec

Pij
ninj

(k|k − 1) = Ft(k − 1)Pij
ninj

(k − 1|k − 1)Ft(k − 1) + Qt(k − 1) (6.212)

et pour condition initiale

Pij
ninj

(0|0) = 0 (6.213)

Test de concordance des pistes locales

Sous l’hypothèse H0, la covariance de la différence (6.200) est alors donnée dans ce cas par

Tij
ninj

(k|k) = E[∆̃ij
ninj

(k|k)∆̃ij
ninj

(k|k)′]

= E[(x̃i,ni (k|k) − x̃j,nj (k|k))(x̃i,ni (k|k) − x̃j,nj (k|k))′]

= Pi
ni

(k|k) + Pj
nj

(k|k) −Pij
ninj

(k|k) −Pji
njni

(k|k) = Tji
njni

(k|k) (6.214)

L’effet de dépendance des erreurs d’estimation locales induit une réduction de la covariance de

la différence (6.200) des estimées. Le test de concordance des deux pistes ni et nj est le même
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que précédemment (6.206) excepté que la matrice Tij
ninj

obtenue par (6.214) est comparativement

plus petite que celle obtenue en (6.205).

6.3.5 Principe de la fusion des pistes locales concordantes

Lorsque le test de concordance de piste décrit précédemment est satisfait (H0 est déclarée), on peut

alors réaliser la fusion des estimées locales (i.e. des pistes locales concordantes). Les équations de fusion

découlent directement des propriétés des vecteurs aléatoires conjointement gaussiens qui conduisent aux

relations classiques d’estimation linéaire [BSF88].

Equations de fusion pour des erreurs locales indépendantes

Sous l’hypothèse H0, on peut combiner les estimées locales [BS81] x̂i,ni(k|k) et x̂j,nj (k|k) de l’état de

la cible associée xtni (k) ≡ xtnj (k) , xt(k). L’estimée fusionnée, notée x̂t, et sa matrice de covariance

associée Pt sont obtenues par

x̂t = Pj,nj [Pi,ni + Pj,nj ]−1x̂i,ni + Pi,ni [Pi,ni + Pj,nj ]−1x̂j,nj (6.215)

Pt = Pi,ni [Pi,ni + Pj,nj ]−1Pj,nj (6.216)

Les indices temporels k ont ici vonlontairement été omis pour alléger la notation.

Equations de fusion pour des erreurs locales dépendantes

Si l’on se place dans un cadre plus général et réaliste où les erreurs d’estimation locales sont

corrélées à cause du processus de bruit de dynamique commun aux senseurs, il vient les équations

suivantes :

x̂t(k|k) = x̂i,ni(k|k) + Kt(k)[x̂j,nj (k|k) − x̂i,ni(k|k)] (6.217)

Pt(k|k) = Pi,ni(k|k) −Kt(k)[Pi,ni (k|k) − Pji
njni

(k|k)] (6.218)

= Pi,ni(k|k) −Kt(k)[Pi,ni (k|k) − Pij
ninj

(k|k)]′ (6.219)

Le gain de Kalman Kt de la fusion est donné par :

Kt(k) , [Pi,ni(k|k) −Pij
ninj

(k|k)][Pi,ni (k|k) + Pj,nj (k|k) −Pij
ninj

(k|k) −Pji
njni

(k|k)]−1 (6.220)

On peut facilement vérifier que les équations de fusion sont symétriques par rapport aux indices i et j et

que (6.217) et (6.218) se réduisent aux équations (6.215) et (6.216) quand Pji
njni

= Pij
ninj

= 0.
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Il est important de rappeler que ces équations de fusion ne permettent pas d’obtenir l’estimée

globale et optimale de l’état de la cible considérée, mais uniquement une estimée sous-optimale

[RM88]. L’utilisation de cette technique de fusion sous-optimale est cependant justifiée dans de nombreux

systèmes multi-senseurs car sa mise en œuvre est simple et peu coûteuse et par le fait que la perte de

performance engendrée par rapport à l’estimateur optimal ne dépasse généralement pas les 7 % [BS90].

De plus, une méthode d’approximation du calcul des covariances croisées peut être adoptée pour réduire

le coût de calcul [BS90].

6.4 Pistage par fusion plots/pistes

Dans certains systèmes de surveillance, on peut chercher à faire du pistage par une méthode de fusion

plots-pistes entre des sensures de nature hétérogène (radar+IR par exemple). On dispose généralement

de pistes élaborées à partir d’un type de senseur que l’on va chercher à mettre à jour avec les mesures

délivrées par les autres senseurs. La gestion de ce type d’information utilise les méthodes classiques de

pistages présentées précédemment. La seule contrainte est d’avoir un modèle d’observation reliant les

mesures des senseurs à l’état des pistes déjà établies.

6.5 Association entre mesures issues de senseurs multiples

6.5.1 Présentation

Dans les problèmes de pistage de cibles multiples en environnement dégradé par des systèmes multi-

senseurs (à architecture centralisée), la fusion des mesures est l’étape préalable indispensable et pri-

mordiale au traitement de l’information. Cette étape est essentielle puisqu’elle conditionne en grande par-

tie la qualité des résultats des algorithmes de poursuite choisis. Le but de la fusion des mesures consiste à

trouver l’ensemble des appariements (mises en correspondance) des mesures issues des différents senseurs.

Autrement dit on cherche à répondre à la question : telle mesure de tel senseur (supposée provenir de

telle source) correspond-t-elle à telle mesure de tel autre senseur ?

Dans le cas mono-senseur, seule l’origine de la mesure est importante et des techniques classiques

d’évaluation des vraisemblances d’origine sont disponibles [BSF88]. Dans le cas multi-senseurs, l’origine

des mesures joue un rôle important certes, mais aussi la mise en correspondance des mesures et le

problème de l’assignation optimale des mesures devient très complexe dès que le nombre de senseurs

est supérieur à 2 et le nombre de mesures par senseur est supérieur à 10. Dans de telles situations,

les techniques de balayage exhaustif de toutes les correspondances (partitions) possibles (et le calcul de
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leur vraisemblance) devient prohibitif en temps de calcul même pour les calculateurs actuels. Pour s’en

convaincre, il suffit de considérer le cas de 3 senseurs (2 senseurs IR et 1 senseur MM par exemple) ayant

chacun à un instant donné 20 mesures. La recherche de la partition la plus vraisemblable pour cet exemple

nécessite alors le balayage exhaustif de 221×21×21 = 29261 partitions d’associations de mesures ainsi que

l’évaluation de leur vraisemblance associée. Le nombre 21 (et non 20) à été utilisé car on doit également

tenir compte de l’origine “bruit thermique/FA” possible des mesures. On voit donc que ce nombre de

partitions à générer est très important et varie de façon exponentielle avec la dimension du problème.

Le problème général de l’assignation est bien connu pour être un problème “NP-hard” ; c’est à dire non

résolvable par un algorithme dont la complexité est une fonction polynomiale de la dimension du problème.

Cette section présente le principe d’une méthode récente de résolution approchée du problème général

de l’assignation qui présente l’avantage d’être à complexité polynomiale. Il faut savoir que cette

méthode qui découle des travaux de S.Deb [BS90] reste une méthode, en général, sous-optimale dans

le sens où la solution trouvée ne correspond pas toujours à la partition optimale du problème

d’assignation. Cependant elle présente le gros avantage, contrairement aux méthodes d’optimisations

plus communément employées (telles que le recuit simulé, algorithmes génétiques, recherches par méthodes

tabou, etc), de fournir une mesure de proximité de la solution générée à la solution optimale

inconnue. On peut donc en pratique utiliser cette méthode avec un critère d’arrêt qui correspondra à

la précision d’assignation choisie (typiquement inférieure à 2 pourcents pour une centaine d’itérations de

l’algorithme). Elle reste d’un intérêt certain pour les systèmes multi-senseurs actuels et futurs.

6.5.2 Associations entre des mesures délivrées par 3 senseurs

Hypothèses et modélisation adoptées

On considère une région de l’espace dans laquelle sont supposées évoluer T cibles (T est inconnu).

Chaque cible tn (n = 1, . . . T ) est repérée par ses coordonnées (xtn , ytn , ztn). On suppose disposer de 3

senseurs délocalisés s = 1, 2, 3 positionnés en (xs, ys, zs). Chaque senseur observe l’espace et fournit un

ensemble de mesures {zs
js

(k)}ms
k

js=1
.

Pour simplifier la notation, on complète cet ensemble par une “mesure” purement fictive zs
0(k)

qui permet d’envisager toutes les associations possibles mesures↔origines incluant le cas d’une détection

de cible par seulement 1 ou 2 des senseurs. L’ensemble des mesures délivrées par un senseur s est noté

Zs(k) = zs
0(k) ∪ {zs

js
(k)}ms

k

js=1
= {zs

js
(k)}ms

k

js=0
(6.221)
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L’ensemble de toutes les mesures disponibles délivrées par les 3 senseurs à l’instant k est noté

Z(k) = {Zs(k)}3
s=1 (6.222)

Le nombre de mesures délivrées ms
k pour s = 1, 2, 3 varie d’un senseur à l’autre et, en général, m1

k 6=
m2

k 6= m3
k. On suppose que chaque cible peut engendrer au plus une seule mesure au niveau de

chaque senseur et l’on autorise ici la possibilité de fausses alarmes.

Les mesures js = 1 . . .ms
k délivrées par chaque senseur s sont modélisées par :

zs
js

(k) =







htn [xtn , k] + vs
js

(k) si la mesure provient de la cible tn

ws
js

(k) si c’est une fausse alarme

(6.223)

Les bruits de mesures vs
js

(k) sont supposés indépendants d’un senseur à l’autre, gaussiens, centrés de

covariance respective Rs(k). La densité de probabilité des fausses alarmes ws
js

(k) est supposée uniforme

dans le volume d’observation V s de chaque senseur s et est donc donnée par

pws
js

(k)(w(k)) =
1

V s
(6.224)

Partition des mesures

Considérons un triplet quelconque de mesures (z1
j1

(k), z2
j2

(k), z3
j3

(k)) et notons le

Zj1j2j3(k) , (z1
j1 (k), z

2
j2 (k), z

3
j3 (k)) = {zs

js
}3

s=1
(6.225)

L’introduction des mesures fictives permet de pouvoir considérer toutes les associations possibles y com-

pris celles où une cible est détectée par seulement 1 ou 2 senseurs.

A chaque triplet envisagé, on peut calculer une vraisemblance. Supposons par exemple, qu’une cible

tn soit présente en (xtn , ytn , ztn), que le senseur 1 ne détecte pas la cible et que les senseurs 2 et 3 aient

détectés la cible, alors la vraisemblance du triplet Z0j2j3(k) est donnée par

Λ(Z0j2j3(k)|xtn , ytn , ztn) = (1 − P 1
d (tn))P 2

d (tn)p(z2
j2 (k)|xtn , ytn , ztn)P 3

d (tn)p(z3
j3 (k)|xtn , ytn , ztn) (6.226)

D’une façon générale, la vraisemblance d’un triplet conditionnellement à l’état présumé d’une cible tn est

donné par

Λ(Zj1j2j3(k)|xtn , ytn , ztn) =

3∏

s=1

[

P s
d (tn)p(zs

js
(k)|xtn , ytn , ztn)

]1−δ0js
[

1 − P s
d (tn)

]δ0js

(6.227)

où P s
d (tn) est la probabilité de détection de la cible tn par le senseur s et où δ0js est la fonction delta de

Kronecker définie par

δ0js =







1 si js = 0 représentant la non détection de la cible par le senseur s

0 sinon

(6.228)
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Compte tenu du modèle choisi, la densité p(zs
js

(k)|xtn , ytn , ztn) vaut N(htn [xtn , k],Rtn,s(k)). En pratique,

cette densité, étant inconnue, sera remplacée soit par

• l’estimée obtenue à partir de la prédiction du filtre de poursuite associé à la cible considérée dans

le cas d’un pistage dynamique. On prend alors

p(zs
js

(k)|xtn , ytn , ztn) ∼ N(ẑtn,s(k|k − 1),Stn,s(k)) (6.229)

• l’estimée obtenue (dans le cas statique) en maximisant un certain rapport de vraisemblance généralisé

(cf ci-après). On prendra alors

p(zs
js

(k)|xtn , ytn , ztn) ∼ N(htn [x̂tn , k],Rtn,s(k)) (6.230)

Partition faisable des mesures

L’ensemble des mesures Z(k), peut être divisé en deux sous-ensembles possibles de triplets de mesures

Zc et Zf associés ou non à une cible. On désigne par γ une partition possible de l’espace des mesures :

γ =
{

Zc,Zf

}

(6.231)

Zc est l’ensemble des triplets de mesures associés aux différentes cibles. Pour chaque triplet de Zc au

moins une mesure du triplet correspond à une cible véritable. Zf est l’ensemble des triplets de

fausses mesures envisagés pour la partition γ choisie.

La construction d’une partition faisable nécessite que soient respectées les 2 contraintes suivantes :

1. Chaque mesure délivrée par un senseur provient d’une seule source. Ceci impose d’avoir

Z(k) = Zc ∪ Zf (6.232)

2. Chaque mesure ne peut être associée qu’à une cible et une seule au plus ; ce qui impose

Zj1j2j3 ∩ Zj′1j′2j′3
= ∅ ∀js 6= j′s, s = 1, 2, 3 (6.233)

Désignons par Γ , {γ} l’ensemble de toutes les partitions faisables γ possibles et par ζ(γ)

l’évènement suivant : “la partition γ est correcte”. Pour normaliser la fonction de vraisemblance

de manière à ce qu’elle soit indépendante du nombre de mesures délivrées par les senseurs, on définit la

partition particulière γ0 ∈ Γ comme

γ0 , {Zc = ∅ et Zf = Z} (6.234)
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Partition la plus vraisemblable

La partition des mesures la plus vraisemblable γ? est obtenue en recherchant la partition γ ∈ Γ

qui maximise le rapport de vraisemblance normalisé

max

γ∈Γ

L(γ)

L(γ0)
(6.235)

où la vraisemblance d’une partition γ est donnée par

L(γ) = p[Z(k)|ζ(γ)] =

[
∏

Zj1j2j3∈γ

Λ(Zj1j2j3(k)|xtn , ytn , ztn)

][ 3∏

s=1

(
1

Vs
)ms

k−Ts(γ)

]

(6.236)

et la vraisemblance L(γ0) de γ0 par

L(γ0) = p[Z(k)|ζ(γ0)] =
3∏

s=1

[
1

Vs

]ms
k

(6.237)

Ts(γ) est le nombre de cibles supposées détectées par le senseur s dans la partition γ. En pratique,

les positions des cibles (xtn , ytn , ztn) sont évidemment inconnues ; ceci empêche l’utilisation directe de

(6.236).

Il existe cependant 2 approches possibles pour la mise en œuvre de (6.235) selon le contexte du problème.

1. dans un contexte d’assignation dynamique : les pistes sont déjà formées et l’on dispose déjà

de l’ensemble des positions prédites des cibles (par les filtres de poursuite) à savoir T , {(x̂t =

x̂t(k|k− 1), ŷt = ŷt(k|k− 1), ẑt = ẑt(k|k− 1))}. Ainsi dans (6.235), on remplacera directement L(γ)

par

L̂(γ) =

[
∏

Zj1j2j3∈γ

Λ̂(Zj1j2j3(k)|x̂tn , ŷtn , ẑtn)

][ 3∏

s=1

(
1

Vs
)ms

k−Ts(γ)

]

(6.238)

où Λ̂(Zj1j2j3(k)|x̂tn , ŷtn , ẑtn) est donné par

Λ̂(Zj1j2j3(k)|x̂tn , ŷtn , ẑtn) =

3∏

s=1

[

P s
d (tn)N(ẑtn,s(k|k − 1),Stn,s(k))

]1−δ0js
[

1 − P s
d (tn)

]δ0js

(6.239)

et où (x̂tn = x̂tn(k|k − 1), ŷtn = ŷtn(k|k − 1), ẑtn = ẑtn(k|k − 1)) est la position prédite d’une des

cibles pistées générant la meilleure association du triplet de mesure envisagé Zj1j2j3(k), c’est à dire :

(x̂tn , ŷtn , ẑtn) = arg max
(x̂t,ŷt,ẑt)∈T

Λ(Zj1j2j3 |x̂t, ŷt, ẑt) (6.240)

2. dans un contexte d’assignation statique : on ne dispose d’aucune information a priori sur la

position des cibles, il nous faudra remplacer la position inconnue des cibles (xtn , ytn , ztn) par
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leur estimée au sens du maximum de vraisemblance à partir du triplet de mesures Zj1j2j3

à savoir

(x̂tn , ŷtn , ẑtn) = arg max
(xt,yt,zt)

Λ(Zj1j2j3 |xt, yt, zt) (6.241)

La vraisemblance L(γ) de la partition sera alors remplacée par son estimée L̂(γ) donnée en (6.238)

avec

Λ̂(Zj1j2j3(k)|x̂tn , ŷtn , ẑtn) =

3∏

s=1

[

P s
d (tn)N(htn [x̂tn , k],Rtn,s(k))

]1−δ0js
[

1 − P s
d (tn)

]δ0js

(6.242)

Dans le cas où les senseurs sont passifs (IR), on sait qu’au moins 2 senseurs sont nécessaires

à la reconstruction de la position d’une cible par triangulation. Ainsi, dans le cas statique, on fera

l’hypothèse que tous les triplets du type Zj100, Z0j20 ou Z00j3 seront uniquement associés à Zf .

Cette hypothèse n’a, bien entendu, plus lieu d’être dans le cas du pistage dynamique.

Prise en compte de la reconnaissance

Dans le cas où des informations de reconnaissance sont également disponibles au niveau de chaque

écho reçu, en plus des mesures purement cinématiques, alors il conviendra de modifier la valeur des

vraisemblances (6.239) ou (6.242) par

Λ̂(Zj1j2j3(k)|x̂tn , ŷtn , ẑtn) =

3∏

s=1

[

P s
d (tn)Λs

js
(k)N(ẑtn,s(k|k − 1),Stn,s(k))

]1−δ0js
[

1 − P s
d (tn)

]δ0js

(6.243)

ou bien

Λ̂(Zj1j2j3(k)|x̂tn , ŷtn , ẑtn) =

3∏

s=1

[

P s
d (tn)Λs

js
(k)N(htn [x̂tn , k],Rtn,s(k))

]1−δ0js
[

1 − P s
d (tn)

]δ0js

(6.244)

où Λs
js

(k) est la vraisemblance pour que la mesure js du senseur s corresponde à une cible compte tenu

de la décision de reconnaissance prise ds
js

. Cette vraisemblance sera donnée par (6.112).

Formulation mathématique du problème

Le problème auquel on s’intéresse maintenant est celui de la recherche de γ? tel que

γ? = argmax
γ∈Γ

L̂(γ)

L(γ0)
(6.245)

Comme dans la présentation de la méthode de pistage de Morefield, ce problème de maximisation est

équivalent à la minimisation de la log-vraisemblance négative J(γ) du rapport, soit

J? = min
γ∈Γ

J(γ) = min
γ∈Γ

[
− ln

L̂(γ)

L(γ0)

]
= min

γ∈Γ

[
lnL(γ0) − ln L̂(γ)

]
(6.246)
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En utilisant (6.237), (6.238) et (6.239) et après quelques manipulations algébriques élémentaires, il vient

finalement l’expression suivante du critère J(γ)

J(γ) =
[
lnL(γ0) − ln L̂(γ)

]
=

∑

Zj1j2j3∈Zc

cj1j2j3 (6.247)

avec dans le cas dynamique

cj1j2j3 ,

3∑

s=1

[

(1 − δ0js)[ln(
(2π)

nzs/2|Stn,s|1/2

P s
d (tn)V s

)

+
1

2
(zs

js
(k) − ẑtn,s(k|k − 1))′Stn,s(k)

−1
(zs

js
(k) − ẑtn,s(k|k − 1))] − δ0js ln(1 − P s

d (tn))

]

(6.248)

ou dans le cas statique

cj1j2j3 ,
3∑

s=1

[

(1 − δ0js)[ln(
(2π)

nzs/2|Rtn,s|1/2

P s
d (tn)V s

)

+
1

2
(zs

js
(k) − htn [x̂tn , k])′Rtn,s(k)

−1
(zs

js
(k) − htn [x̂tn , k])] − δ0js ln(1 − P s

d (tn))

]

(6.249)

Problème primal d’assignation 3-D

Ce problème de minimisation peut être reformulé comme un problème classique d’assignation 3-D.

Pour cela, on définit, pour js = 0, 1, . . . ,ms
k, les variables d’évènements binaires

ρj1j2j3 =







1 si le triplet Zj1j2j3 ∈ γ

0 sinon

En utilisant ces variables binaires, la fonction de coût dans (6.247) se simplifie en

J? = min
ρj1j2j3∈P

J(ρ) (6.250)

avec

J(ρ) =

m1
k∑

j1=0

m2
k∑

j2=0

m3
k∑

j3=0

cj1j2j3ρj1j2j3 (6.251)

P est l’ensemble des partitions acceptables (i.e faisables). On rappelle qu’une partition est dite acceptable

si elle remplit les deux hypothèses de base énoncées en (6.232) et (6.233). La faisabilité d’une partition

peut mathématiquement être caractérisée par l’ensemble des contraintes égalités suivantes :

m1
k∑

j1=0

m2
k∑

j2=0

ρj1j2j3 = 1 ∀j3 = 1 . . .m3
k (6.252)

m3
k∑

j3=0

m1
k∑

j1=0

ρj1j2j3 = 1 ∀j2 = 1 . . .m2
k (6.253)

m2
k∑

j2=0

m3
k∑

j3=0

ρj1j2j3 = 1 ∀j1 = 1 . . .m1
k (6.254)

Les équations (6.250)-(6.254) constituent la formulation générale du problème primal de l’assignation

3-D.
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Méthode de recherche de la partition optimale

Les équations (6.250)-(6.254) constituent la formulation générale du problème de l’assignation 3-D.

Ce problème est connu pour être un problème “NP-hard”, c’est à dire qu’il ne peut être résolu par un

algorithme dont la complexité est une fonction polynomiale de la dimension du problème. Par conséquent,

on souhaiterait disposer d’une méthode rapide ‘a complexité (temps d’exécution) polynomiale qui donne

une solution aussi proche que l’on veut de la solution optimale. On aimerait également pouvoir savoir

mesurer la qualité de la solution fournie par la méthode par rapport à la solution optimale inconnue.

Plusieurs méthodes ont déjà été proposées dans la littérature pour répondre (partiellement) au

problème. Mais la plupart de ces méthodes (comme les méthodes de tri d’arbres binaires, de recuit simulé)

fournissent généralement une solution sous-optimale locale sans indicateur de mesure de proximité de

la solution optimale. Ceci est très préjudiciable dans les problèmes de pistage actuels où l’association des

mesures est une étape primordiale qui conditionne la qualité du filtrage mis en œuvre. Jusqu’à présent,

seule la méthode développée par S. Deb at K. Pattipati [DPBS92b, DPBS93] basée sur l’algorithme de

l’Auction (vente aux enchères) de D. Bertsekas [Ber88, Ber91, Ber92, Gau97] présente tous les atouts

qui viennent d’être mentionnés. Nous proposons donc de rappeler les principes de cette méthode et la

validons par un certain nombre de simulations démonstratrices.

Principe de la méthode de Deb et Pattipati

Le principe général de cette méthode consiste à résoudre le problème de l’assignation 3-D par la

résolution successive de problèmes d’assignation 2-D. Cette méthode est une méthode de relaxa-

tion lagrangienne primal-duale. Pour cela, on associe d’abord un ensemble de multiplicateurs de Lagrange

u = [u0, uj3 ], (j3 = 1, . . . ,m3
k) à la contrainte (6.252) ainsi qu’un paramètre fictif u0 ≡ 0 pour simplifier

les notations. Nous obtenons alors la fonction duale

q(u) , min

ρj1j2j3∈P

m1
k∑

j1=0

m2
k∑

j2=0

m3
k∑

j3=0

(cj1j2j3 − uj3)ρj1j2j3 +

m3
k∑

j3=0

uj3 (6.255)

avec les contraintes égalités restantes

m2
k∑

j2=0

m3
k∑

j3=0

ρj1j2j3 = 1 ∀j1 = 1 . . .m1
k (6.256)

m1
k∑

j1=0

m3
k∑

j3=0

ρj1j2j3 = 1 ∀j2 = 1 . . .m2
k (6.257)

On remarque alors que pour un vecteur de multiplicateurs de Lagrange u donné, le problème de minimi-
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sation (6.255) est équivalent au problème d’assignation 2-D. En effet, posons

ωj1j2 ,

m3
k∑

j3=0

ρj1j2j3 ∀j1 = 0 . . .m1
k et ∀j2 = 0 . . .m2

k (6.258)

Les contraintes (6.256) et (6.256) s’expriment alors comme

m2
k∑

j2=0

ωj1j2 = 1 ∀j1 = 1 . . .m1
k (6.259)

m1
k∑

j1=0

ωj1j2 = 1 ∀j2 = 1 . . .m2
k (6.260)

D’autre part, puisqu’on a toujours

m3
k∑

j3=0

ρj1j2j3(cj1j2j3 − uj3) ≥
m3

k∑

j3=0

ρj1j2j3min
j3

(cj1j2j3 − uj3) (6.261)

≥ min
j3

(cj1j2j3 − uj3)

m3
k∑

j3=0

ρj1j2j3 (6.262)

il vient, en posant

dj1j2 , min
j3

(cj1j2j3 − uj3) ∀j1 = 0 . . .m1
k et ∀j2 = 0 . . .m2

k (6.263)

l’inégalité fondamentale

dj1j2ωj1j2 ≤
m3

k∑

j3=0

(cj1j2j3 − uj3)ρj1j2j3 (6.264)

et par conséquent on a ∀u
qm(u) ≤ q(u) (6.265)

avec

qm(u) , min
ωj1j2

m1
k∑

j1=0

m2
k∑

j2=0

dj1j2ωj1j2 +

m3
k∑

j3=0

uj3 (6.266)

Le problème de la minimisation (6.266) sous les contraintes (6.259) et (6.260) est donc un problème

classique d’assignation 2-D dont la solution est aussi, compte tenu de (6.265), solution du problème

dual (6.255). Les assignations binaires ωj1j2 solutions de (6.266) seront notées {ω?
j1j2} et la valeur prise

par qm(u) en ω?
j1j2

sera notée q?
m(u). Il faut savoir qu’il existe différentes méthodes de résolution pour ce

problème. Parmi ces méthodes, la méthode relativement récente de la “vente aux enchères” ou “auction”

développée par le Professeur Bertsekas [Ber88] (et adaptée à notre contexte particulier) se revèle être la

plus performante. Nous allons maintenant rappeler brièvement le principe de l’algorithme de l’Auction

et de l’Auction modifié par Deb et Pattipati.
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Rappel du principe de l’Auction standard

L’algorithme de l’Auction standard développé par D. Bertsekas permet de résoudre le problème

symétrique d’appariement optimal entre n personnes et n objets. Ce problème primal peut

mathématiquement s’exprimer comme :

maximiser

n∑

i=1

∑

j∈A(i)

aijfij (6.267)

sous les contraintes
∑

j∈A(i)

fij = 1 ∀i = 1, . . . , n (6.268)

∑

i|j∈A(i)

fij = 1 ∀j = 1, . . . , n (6.269)

0 ≤ fij ∀i = 1, . . . , n j ∈ A(i) (6.270)

où n est le nombre d’objets et de personnes à appairer ; aij est le gain de l’appariement de la

personne i avec l’objet j. Le problème consiste à trouver l’assignation optimale S ; c’est à dire un en-

semble d’appariements (i, j) possibles, tel que le gain global de l’assignation
∑

(i,j)∈S aij soit maximum.

fij est l’indicateur binaire d’appariement cherché associé à (i, j). fij vaut 1 si l’appariement (i, j) est

valide dans S ou 0 sinon. A(i) est l’ensemble des objets j potentiellement associables à une personne i.

Les trois contraintes expriment le fait que chaque personne doit être associée à un et un seul objet et

réciproquement. Dans sa formulation initiale, les gains aij sont des entiers relatifs, mais il faut sa-

voir que l’utilisation de coûts à valeurs réelles est toujours possible moyennant un facteur d’échelle adapté.

Par la théorie de la dualité [Roc70], on peut montrer que le problème dual associé au problème

primal énoncé plus haut consiste à trouver les appariements (ri, pj) tels que

min
(ri,pj)

n∑

i=1

ri +

n∑

j=1

pj (6.271)

sous les contraintes

ri + pj ≥ aij ∀i, j ∈ A(i) (6.272)

Les variables duales ri et pj peuvent être assimilées (dans un contexte économique) respectivement

aux profits des personnes i et aux prix des objets j et correspondent aux contraintes (6.268) et

(6.269) du problème primal d’assignation 2-D. Cette remarque justifie la dénomination de vente aux

enchères ou “auction” donné par D. Bertsekas à la méthode. On sait [Ber88] de plus que la solution

du problème dual génère automatiquement la solution primale optimale. D’après (6.271), on voit

que le critère dual est minimisé lorsque les profits ri sont égaux à la valeur maximale de leur marge
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aij − pj pour j ∈ A(i). Par conséquent, le problème dual peut être énoncé sous la forme équivalente

suivante

min
p|pj≥0

q(p) (6.273)

avec

q(p) ,

n∑

i=1

max

j∈A(i)

{aij − pj} +

n∑

j=1

pj (6.274)

Pour un vecteur de prix donné p, on désigne par marge de profit maximale réalisée par une

personne i la quantité

πi ,

n∑

i=1

max

j∈A(i)

{aij − pj} (6.275)

Nous sommes maintenant en mesure d’énoncer le principe de la méthode de Bertsekas qui consiste en 2

phases essentielles :

1. une phase de mise aux enchères

2. une phase d’adjudication

Au départ (pour l’initialisation de l’algorithme), les prix des objets pj (j = 1, . . . , n) sont mis à zéro et

aucun appariement n’est fait (S = ∅). Les étapes successives intervenant dans les 2 phases de l’algorithme

de l’Auction sont les suivantes :

1. Phase de mise aux enchères

Pour chaque personne i non encore assignée dans S, on doit

• Calculer la valeur courante de chaque objet j ∈ A(i) donnée par

vij = aij − pj (6.276)

• Chercher le meilleur objet j? donnant la marge de profit maximale,i.e.

vij? = max
j∈A(i)

vij (6.277)

puis trouver la seconde meilleure marge wij? offerte par les objets autres que j?, i.e.

wij? = max
j∈A(i),j 6=j?

vij (6.278)

• Calculer l’enchère bij? de la personne i qui vaut

bij? = aij? − wij? + ε (6.279)
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2. Phase d’adjudication

Pour chaque objet j :

On désigne par P (j) l’ensemble des personnes ayant enchéri sur l’objet j. Si P (j) est non vide, alors

on augmente le prix pj de l’objet à sa meilleure enchère (adjudication de l’objet à la personne i?),

i.e.

pj := max
i∈P (j)

bij (6.280)

On modifie (complète) l’assignation S de la manière suivante :

(a) on enleve de l’assignation courante S l’appariement (i, j) pour lequel l’objet j était précédem-

ment associé.

(b) on rajoute à S le nouvel appariement (i?, j) issu de l’adjudication de l’objet j.

Cet algorithme fonctionne efficacement et garantit la solution optimale tant que le paramètre

ε reste inférieur à 1/n. De nombreuses simulations effectuées ont permis de valider cette méthode dont

l’efficacité est redoutable pour les problèmes de trés grandes dimensions.

Rappel du principe de l’Auction modifié

Le problème de l’assignation 2-D qu’on doit résoudre dans le cas multi-senseurs, ne correspond pas

exactement à la formulation du problème d’assignation 2-D standard décrit précédemment. Car, compte

tenu de l’introduction des mesures fictives pouvant être associées à l’hypothèse de bruit thermique,

les contraintes du problème se voient modifiées. De plus, la cardinalité de la liste des personnes

(i.e. du nombre de mesures du senseur 1) est, en général, différente de la cardinalité de la liste

des objets (i.e. du nombre de mesures du senseur 2). Des modifications de la méthode de Bertsekas

peuvent cependant être appliquées pour résoudre ce nouveau problème. On aboutit alors à l’algorithme

de l’“auction” modifié proposé par Somnath Deb dans sa thèse. Le problème primal modifié consiste

donc à résoudre

maximiser

n1∑

i=0

n2∑

j=0

aijfij (6.281)

sous les contraintes
n1∑

i=0

fij = 1 ∀j = 1, . . . , n2 (6.282)

n2∑

j=0

fij = 1 ∀i = 1, . . . , n1 (6.283)

fij ∈ {0, 1} ∀i = 0, . . . , n1 ∀j = 0, . . . , n2 (6.284)
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Le problème dual associé à ce problème primal modifié est alors (on suppose avoir a00 ≡ 0)

min
(ri,pj)

n1∑

i=1

ri +

n2∑

j=1

pj (6.285)

sous les contraintes

ri + pj ≥ aij ∀i = 1, . . . , n1 et ∀j = 1, . . . , n2 (6.286)

ri ≥ ai0 ∀i = 1, . . . , n1 (6.287)

pj ≥ a0j ∀j = 1, . . . , n2 (6.288)

On voit que lecritère dual modifié est minimisé lorsque les profits ri sont égaux à la plus grande des

valeurs entre ai0 et la valeur maximale de leur marge aij − pj pour j = 1, . . . , n2. Par conséquent, le

problème dual peut être énoncé sous la forme équivalente suivante

min
p|pj≥a0j

q(p) (6.289)

avec

q(p) ,

n1∑

i=1

max
{

ai0, max
j=1,...,n2

{aij − pj}
}

+

n2∑

j=1

pj (6.290)

En utilisant les changements de variables,

r′i , ri − ai0 ∀i = 1, . . . , n1 (6.291)

p′j , pj − a0j ∀j = 1, . . . , n2 (6.292)

le problème précédent peut être énoncé sous une forme proche de la formulation standard, à savoir

min
p′|p′

j≥0
q′(p′) (6.293)

avec

q′(p′) ,

n1∑

i=1

max
{

0, max
j=1,...,n2

{a′ij − p′j}
}

+

n2∑

j=1

p′j +

n2∑

j=1

a0j +

n1∑

i=1

ai0 (6.294)

et

a′ij , aij − ai0 − a0j ∀i = 0, . . . , n1 ∀j = 0, . . . , n2 (6.295)

L’algorithme de l’auction modifié consiste donc en les mêmes étapes que l’algorithme de l’auction

standard précédemment décrit en apportant les 3 modifications suivantes :
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1. Les variables aij et pj de l’auction standard seront modifiées en a′ij et p′j et les variables in-

termédiaires vij , vij? , wij? , bij? en

v′ij = a′ij − p′j (6.296)

v′ij? = max
{

0, max
j=1,...,n2

v′ij
}

(6.297)

w′
ij? = max

{

0, max
j=1,...,n2,j 6=j?

v′ij
}

(6.298)

b′ij? = a′ij? − w′
ij? + ε (6.299)

2. Lors de la phase d’adjudication, si toutes les personnes ont été assignées, alors les objets restant

non assignés dans S seront affectés à la personne 0 ; Si par contre, tous les objets ont été assignés,

alors toutes les personnes non encore assignées dans S seront affectées à l’objet 0.

3. Pour assurer l’optimalité de la solution générée, on devra prendre ε < 1/max{n1, n2}.

Intérêt de l’approche duale

L’approche duale présente deux propriétés fondamentales à savoir :

– q?
m(u) reste toujours une borne inférieure de la solution primale J? cherchée ; autrement dit

on a toujours ∀u
q?
m(u) ≤ J? (6.300)

En effet, supposons que {ρ?
j1j2j3} soit l’assignation 3-D optimale du problème primal. Alors, compte

tenu de (6.252) et du fait que uj3=0 ≡ 0 on a toujours

m3
k∑

j3=0

uj3(1 −
m1

k∑

j1=0

m2
k∑

j2=0

ρ?
j1j2j3) ≡ 0 (6.301)

et par conséquent ∀u

J? =

m1
k∑

j1=0

m2
k∑

j2=0

m3
k∑

j3=0

cj1j2j3ρ
?
j1j2j3 +

m3
k∑

j3=0

uj3(1 −
m1

k∑

j1=0

m2
k∑

j2=0

ρ?
j1j2j3) ≥ q?

m(u) (6.302)

L’idée consiste alors à maximiser q?
m(u) pour tendre inférieurement vers la solution optimale J?.

– la convexité de qm(u). Cette propriété permet alors d’utiliser des techniques classiques d’opti-

misation convexes des fonctions non continuement différentiables pour maximiser q?
m(u). La valeur

maximale de q?
m(u) sera notée q?

m(u?). Nous expliciterons plus loin, le principe de maximisation de

q?
m(u).



6.5. ASSOCIATION ENTRE MESURES ISSUES DE SENSEURS MULTIPLES 165

Majoration de la solution primale

Après avoir minoré la solution primale, on cherche maintenant à la majorer de façon à construire

un encadrement de J? qui servira d’indicateur de performance de la méthode (et également de critère

d’arrêt). Avant d’aller plus loin dans l’analyse, il faut d’abord remarquer que l’assignation {ρd
j1j2j3}

associée à la solution duale q?
m(u?) par la construction directe

ρd
j1j2j3 =







ω?
j1j2

si j3 = argmin
p

(cj1j2p − up)

0 sinon

(6.303)

n’est, en général, pas une solution faisable au problème primal (la contrainte (6.252) ayant été

relaxée). La différence J? − q?
m(u?) entre la solution primale et duale est appelée classiquement saut

de dualité exact en théorie de la dualité. Ce saut reste évidemment inconnu en pratique et n’a pas

lieu d’être nul puisque le problème primal est non convexe. Par contre, il est toujours possible

de construire des assignations faisables notées Pf = {ρf
j1j2j3

} à partir de la solution duale. Parmi ces

assignations faisables, il en existe au moins une {ρ?,f
j1j2j3

} qui est la meilleure et on note J?,f (u?, {ρ?,f
j1j2j3

})
sa valeur associée. Autrement dit, {ρ?,f

j1j2j3
} est donnée par

ρ?,f
j1j2j3

= arg min
{ρf

j1j2j3
}∈Pf

J?,f (u?, {ρf
j1j2j3

}) (6.304)

Comme l’assignation est faisable (mais non nécessairement optimale), on a toujours

J? ≤ J?,f (u?, {ρ?,f
j1j2j3

}) (6.305)

Compte tenu de (6.300) et de (6.305), nous avons donc l’encadrement de J ? cherché

q?
m(u?) ≤ J? ≤ J?,f (u?, {ρ?,f

j1j2j3
}) (6.306)

L’encadrement trouvé permet de mettre en évidence que le saut de dualité approximatif corres-

pondant à J?,f (u?, {ρ?,f
j1j2j3

}) − q?
m(u?) fournit une “surestimation” de l’erreur entre la solution

faisable et la solution optimale puisque l’on a toujours :

(
J?,f (u?, {ρ?,f

j1j2j3
}) − q?

m(u?)
)

=
(
J?,f (u?, {ρ?,f

j1j2j3
}) − J?

)
+

(
J? − q?

m(u?)
)
≥ 0 (6.307)

L’indicateur de performance (i.e. précision de la solution générée) de la méthode correspond alors au

saut de dualité approximatif relatif défini comme

δJ ,
J?,f (u?, {ρ?,f

j1j2j3
}) − q?

m(u?)

| q?
m(u?) | (6.308)
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Résumé de la méthode de Deb et Pattipati

En résumé, la méthode de Deb consiste en la séquence d’étapes suivantes :

1. Initialiser la méthode en choisissant u = [0, . . . , 0] (et éventuellement le nombre maximum

d’itérations de relaxation souhaité).

2. Calculer les coûts du problème dual

dj1j2 = min
j3

(cj1j2j3 − uj3)

3. Résoudre le problème dual (6.266), sous les contraintes (6.259) et (6.260) par l’auction modifié

afin d’obtenir {ω?
j1j2

} et q?
m(u).

• Construire l’assignation duale associée {ρd
j1j2j3} par (6.303)

• tester si cette assignation est faisable

• Si {ρd
j1j2j3} ∈ Pf alors on a la solution optimale du problème, i.e. {ρ?

j1j2j3} = {ρd
j1j2j3}, et c’est

terminé

4. Sinon, rechercher la meilleure assignation faisable {ρ?,f
j1j2j3

} associée à la solution duale

et calculer J?,f (u, {ρ?,f
j1j2j3

}). Cette recherche est également obtenue par l’algorithme de l’auction

modifié comme on le verra.

5. Evaluer le saut de dualité approximatif relatif δJ . Si δJ est inférieur à la précision fixée

(typiquement 2 à 3 %) ou si le nombre d’itérations est supérieur à la valeur maximale choisie, alors

la méthode est stoppée et on a généré une solution quasi-optimale faisable {ρ?,f
j1j2j3

} ≈ {ρ?
j1j2j3}

6. Sinon, améliorer la solution duale en mettant à jour le vecteur des multiplicateurs de Lagrange

u par une méthode d’optimisation convexe de manière à maximiser q?
m(u) et retourner à l’étape 2.

Principe de construction de la meilleure assignation faisable

Nous présentons maintenant le principe de recherche de la meilleure solution faisable associée à une

solution duale donnée (qm(u), {ω?
j1j2

}) (étape 4 de la méthode de Deb). L’idée consiste tout simplement

à fixer les assignations (j1, ηj1) données par la solution duale (i.e. ηj1 correspond à l’indice de la mesure

du senseur 2 associée à la mesure j1 du senseur 1 dans l’association duale), puis à résoudre le problème

d’assignation 2-D suivant :

(J?,f , {ρ?,f
j1j2j3

}) = min
ρj1ηj1

j3

m1
k∑

j1=0

m3
k∑

j3=0

cj1ηj1 j3ρj1ηj1 j3 (6.309)

sous les contraintes
m1

k∑

j1=0

ρj1ηj1 j3 = 1 ∀j3 = 1, . . . ,m3
k (6.310)
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m3
k∑

j3=0

ρj1ηj1 j3 = 1 ∀j1 = 1, . . . ,m1
k (6.311)

En pratique, la solution du problème d’assignation 2-D pour la recherche de la solution faisable sera, là

encore, obtenue par l’algorithme de l’“auction” modifié comme on l’avait été évoqué précédemment.

La valeur de ηj1 est, en pratique, obtenue pour j1 = 1, . . . ,m1
k par :

∀j2 = 1, . . . ,m2
k ηj1 = j2 si ω?

j1j2 = 1 (6.312)

La dimension du problème d’assignation 2-D qui vient d’être formulée devra être augmentée dans le cas

ou plusieurs mesures du senseur 2 sont affectées à l’hypothèse “bruit thermique” lors de la génération

de la solution duale. Cette remarque n’engendre aucune difficulté particulière quant à l’obtention de la

solution faisable.

A propos de la maximisation de q?
m(u)

Il existe de nombreuses techniques d’optimisation permettant la maximisation de q?
m(u). On peut, par

exemple, utiliser les méthodes de base telles que la méthode de l’ellipsöıde de Khachiyan ou la méthode

des plans de coupe de Kelley. Ces méthodes cependant présentent une convergence d’autant plus lente

que la dimension du problème est grand. Elles sont donc à déconseiller dans de tels cas. Des méthodes de

type sous-gradient accéléré (Space Dilatation methods de Shor) présentent une convergence plus rapide

et peuvent être employées. La méthode semblant donner actuellement la convergence la plus rapide, selon

Somnath Deb et Krishna Pattipati, consiste à mettre à jour, à l’itération (l + 1), les composantes de u

(pour j3 = 1, . . . ,m3
k) par la procédure suivante :

u
(l+1)
j3 = u

(l)
j3 +

[

J̃?,f,(l) − q̃
?,(l)
m

‖ g(l) ‖2
2

][

µ
(l)
j3

1
m3

k

(∑m3
k

j=1 µ
(l)
j

)

]

g
(l)
j3

(6.313)

où J̃?,f,(l) représente la meilleure valeur de la solution faisable obtenue jusqu’à l’itération (l)

incluse, c’est à dire

J̃?,f,(l) = min
i=1,...,l

J?,f (u(i), {ρ?,f,(i)
j1j2j3

}) (6.314)

q̃
?,(l)
m représente la meilleure solution duale obtenue jusqu’à l’itération (l) incluse, c’est à dire

q̃?,(l)
m = min

i=1,...,l
qm(u(i)) (6.315)

g(l) est le vecteur des sous-gradients à l’itération (l) dont les composantes g
(l)
j3

sont données pour

j3 = 1, . . . ,m3
k par

g
(l)
j3

= 1 −
m1

k∑

j1=0

m2
k∑

j2=0

ρ
d,(l)
j1j2j3

(6.316)
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et {µ(l)
j3
, j3 = 1, . . . ,m3

k} sont les prix atteints par les objets à l’itération (l) en sortie de l’algorithme de

l’“auction” modifié lors de la construction de la solution faisable {ρ?,f,(l)
j1j2j3

}.

Il faut cependant savoir que cette procédure n’est pas une procédure classique issue de l’analyse

convexe mais une heuristique (partiellement basée sur la méthode de sous-gradient accéléré) proposée

par S. Deb. On peut donc légitimement supposer qu’il existe potentiellement d’autres méthodes (ou

heuristiques) induisant des convergences encore plus rapides . . . à découvrir ! L’enjeu est important dans

les problèmes d’assignation multi-senseurs de grandes dimensions.

Exemple de simulations

Nous présentons ici 2 exemples de résultats de convergence obtenus sur un cube et un parallélépipèdes

générés aléatoirement ayant une densité maximale. La dimension du côté de chaque parallélépipède (ou

cube) représente directement le nombre de mesures délivrées par chaque senseur à un instant donné. Un

grand nombre de simulations a été réalisé pour différentes tailles de parallélépipèdes et différentes bornes

de coûts. Pour les problèmes de petites dimensions, les solutions générées par la méthode de Deb ont

toujours été en accord avec les solutions optimales obtenues par une méthode de balayage exhaustif.

Comme on peut le constater sur ces 2 exemples, la convergence de la méthode est très rapide pour les

premières itérations et on atteint généralement une précision de l’ordre de 5 % au bout de la trentième

itération. La convergence tend à se ralentir sensiblement pour les itérations suivantes et il n’est pas rare

de devoir attendre une centaine d’itérations pour être à une précision de 1 % de la solution optimale.

Malgré tout, la méthode est fiable et rapide compte tenu des dimensions des problèmes à résoudre et

comparativement aux méthodes concurrentes. Cette méthode reste donc un outil puissant hautement

recommandable pour les systèmes de pistage multi-cibles multi-senseurs futurs.

Dans les 2 simulations présentées les coûts cj1j2j3 ont été générés aléatoirement entre les bornes -1000

et 1000. La figure 6.1 présente le résultat obtenu par la méthode de Deb appliquée à un cube de dimen-

sions (20+1)× (20+1)× (20+1). On constate dans cet exemple que la solution quasi-optimale (i.e. avec

moins de 1 pourcent d’erreur) a été atteinte à l’itération 63. La figure 6.2 présente le résultat obtenu par

la méthode appliquée à un parallélépipède de dimensions (10+1)× (15+1)× (20+1). Ici on obtient une

précision de 1.7 % à la centième itération. Ces résultats sont représentatifs du comportement de la conver-

gence de la méthode basée sur l’heuristique de Deb (relation (6.313)). Des essais réalisés pour la méthode

de l’ellipsöıde ou de l’état dilaté confirment la supériorité de cette heuristique. On peut cependant penser

que d’autres méthodes peuvent encore accrôıtre la vitesse de convergence de la méthode d’assignation

par relaxation lagrangienne, en particulier les techniques de “Bundle Processes” développées à l’INRIA
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par C. Lemaréchal.

Fig. 6.1 – Assignation 3D sur cube 21 × 21× 21

Fig. 6.2 – Assignation 3D sur parallélépipède 11 × 16× 21

6.5.3 Extension au cas multi-senseurs

La méthode d’assignation quasi-optimale de Deb et Pattipati qui vient d’être présentée dans le cas

simplifié à 3 senseurs peut être généralisée au cas de S senseurs (S ≥ 3). L’extension des notations au cas

S-senseur est immédiate. Au niveau de la partition des mesures, on devra, non plus considérer un triplet

de mesures, mais un S-uplet de mesures du type

Zj1 ...jS (k) , (z1
j1 (k), z

2
j2 (k), . . . , z

S
jS

(k)) = {zs
js
}S

s=1
(6.317)
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La vraisemblance d’un S-uplet conditionnellement à l’état présumé d’une cible tn est donné par

Λ(Zj1...jS (k)|xtn , ytn , ztn) =
S∏

s=1

[

P s
d (tn)p(zs

js
(k)|xtn , ytn , ztn)

]1−δ0js
[

1 − P s
d (tn)

]δ0js

(6.318)

où P s
d (tn) est la probabilité de détection de la cible tn par le senseur s et où δ0js est la fonction delta de

Kronecker définie en (6.228).

A chaque instant, l’ensemble des mesures Z(k), peut être partionné en deux sous-ensembles possibles

de S-uplets de mesures Zc et Zf associés ou non à une cible. On désigne par γ une partition possible de

l’espace des mesures :

γ =
{

Zc,Zf

}

(6.319)

Zc , {Zj1...jS (k), js = 0, . . . ,ms
k s = 1, . . . , S} est l’ensemble des S-uplets de mesures associés aux

cibles et Zf est l’ensemble des S-uplets de fausses mesures envisagés pour la partition γ choisie. Zf

correspond aux N = (m1
k + m2

k + . . . + mS
k ) évènements indépendants (pour js = 1, 2, . . . ,ms

k et s =

1, 2, . . . , S) :

αs
js

=







1 si la mesure js du senseur s est fausse

0 sinon

(6.320)

Comme dans le cas simplifié à 3 senseurs, la construction d’une partition envisageable nécessite que soient

respectées les deux conditions suivantes :

1. Chaque mesure délivrée par un senseur provient d’une seule source, c’est à dire

Z(k) = Zc ∪ Zf (6.321)

2. Chaque mesure ne peut être associée qu’à une cible et une seule au plus. Ceci impose la contrainte

Zj1...jS ∩ Zj′1...j′S
= ∅ ∀js 6= j′s, s = 1, . . . , S (6.322)

On définit, comme précédemment, les variables d’évènements binaires (js = 0, 1, . . . ,ms
k) par

ρj1...jS =







1 si le S-uplet Zj1 ...jS ∈ γ

0 sinon

Compte tenu du fait que chaque cible est supposée être détectée au moins par un senseur, on a toujours

ρ00...0 ≡ 0. Avec ces notations, l’ensemble des contraintes de faisabilité est équivalent à l’ensemble de

contraintes égalités linéaires suivant (pour js = 1 . . .ms
k et s = 1, . . . , S)

m1
k∑

j1=0

. . .

ms−1
k∑

js−1=0

ms+1
k∑

js+1=0

. . .

mS
k∑

jS=0

ρj1...jS + αs
js

= 1 (6.323)
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Désignons par Γ , {γ} l’ensemble de toutes les partitions γ possibles et par ζ(γ) l’évènement suivant :

“la partition γ est correcte”. Pour normaliser la fonction de vraisemblance de manière à ce qu’elle soit

indépendante du nombre de mesures délivrées, on définit la partition particulière γ0 ∈ Γ comme

γ0 , {Zc = ∅ et Zf = Z} (6.324)

La partition des mesures la plus vraisemblable γ? est obtenue en recherchant la partition γ ∈ Γ

qui maximise le rapport de vraisemblance normalisé (6.235) avec

L(γ) = p[Z(k)|ζ(γ)] =

[
∏

Zj1...jS∈γ

Λ(Zj1...jS (k)|xtn , ytn , ztn)

][ S∏

s=1

(
1

Vs
)ms

k−Ts(γ)

]

(6.325)

et

L(γ0) = p[Z(k)|ζ(γ0)] =

S∏

s=1

[
1

Vs

]ms
k

(6.326)

Ts(γ) est le nombre de cibles supposées détectées par le senseur s dans la partition γ. En pratique, les po-

sitions des cibles (xtn , ytn , ztn) étant inconnues, les fonctions de vraisemblance Λ(Zj1...jS (k)|xtn , ytn , ztn)

seront remplacées par leur estimée Λ̂(Zj1 ...jS (k)|x̂tn , ŷtn , ẑtn) (cf paragraphe précédent).

Le problème général de partitionnement optimal est le même que précédemment, à savoir (6.245) ou

de façon équivalente, à la minimisation de la log-vraisemblance négative J(γ) du rapport (cf (6.246)).

Compte tenu du fait que Zf ∈ γ0 ∩ γ, la contribution des éléments de Zf dans L̂(γ)/L(γ0) se simplifie et

le critère J(γ) à minimiser s’exprime comme

J(γ) =
[
lnL(γ0) − ln L̂(γ)

]
=

∑

Zj1...jS
∈Zc

cj1...jS (6.327)

où les coûts cj1...jS sont donnés par (6.248) dans le cas dynamique ou par (6.249) dans le cas statique (

avec l’indice de sommation s variant de 1 à S).

Ce problème de minimisation peut être reformulé comme un problème d’assignation S-D à savoir

J? = min
ρj1 ...jS

∈P
J(ρ) (6.328)

avec

J(ρ) =

m1
k∑

j1=0

. . .

mS
k∑

jS=0

cj1...jSρj1...jS (6.329)

P est l’ensemble des partitions faisables (i.e acceptables). Chaque partition est considérée comme

acceptable si elle remplie les hypothèses de bases énoncées en (6.232) et (6.233). La faisabilité d’une

partition revient mathématiquement à satisfaire l’ensemble des contraintes d’inégalités suivantes (pour
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js = 1 . . .ms
k et s = 1, . . . , S) :

m1
k∑

j1=0

. . .

ms−1
k∑

js−1=0

ms+1
k∑

js+1=0

. . .

mS
k∑

jS=0

ρj1...jS ≤ 1 (6.330)

Ce problème général pourra être résolu par un mécanisme semblable à celui déjà présenté. Il faut ce-

pendant savoir qu’un prétraitement de coloration doit être fait au niveau de l’affectation des coûts

associés aux mesures fictives afin de transformer l’ensemble des contraintes d’inégalités en un ensemble

de contraintes d’égalités. Le détail de ce prétraitement est donné en [PDBSW90, DPBS92b, DPBSY94].

Nous nous contenterons ici d’expliciter uniquement le principe général du mécanisme de la méthode d’as-

signation S-D proposée par Deb et Pattipati.

Dans le cas 3-D, on a vu que le problème d’assignation était résolvable par une série de 2 problèmes 2-D

(1 pour la recherche de la solution duale et 1 pour la construction de la solution faisable). Dans le cas S-D,

l’idée est exactement la même et consiste à relâcher successivement r = 1, . . . , S − 2 contraintes (phase

de descente) jusqu’à descendre au problème de base 2-D qui sera résolu par par l’auction modifié. La

seconde phase (appelée phase de remontée) consiste à utiliser la solution 2-D pour construire la solution

3-D optimale faisable en maximisant le vecteur uS−2 des multiplicateurs de Lagrange de l’étape 2-D.

D’une façon similaire, la construction de la solution à l’étape r utilisera la solution du problème relaxé

de dimension (r-1). Ce mécanisme de remontée est itéré jusqu‘à l’obtention de la solution du problème

primal de dimension S. A la r-ème étape, le problème dual à résoudre est du type

max
ur

qm(ur) (6.331)

où

qm(ur) , min
ωr

jr+1...jS

mr+1
k∑

jr+1=0

. . .

mS
k∑

jS=0

dr
jr+1...jS

ωr
jr+1...jS

+

mr
k∑

jr=0

ur
jr

(6.332)

avec

dr
jr+1...jS

, min
jr

dr−1
jr ...jS

− ur
jr

(6.333)

et où {ωr
jr+1...jS

} est la solution de problème d’assignation de dimension S − r − 1 et d0
j1...jS

≡ cj1...jS .

A chaque étape r, la maximisation de qm(ur) exploitera une des des méthodes classiques d’optimisation

convexe discutées antérieurement et basées sur l’exploitation des sous-gradients

g
(l)
jr

= 1 −
mr+1

k∑

jr+1=0

. . .

mS
k∑

jS=0

ρ
d,(l),r
jrjr+1...jS

(6.334)

et où {ρd,(l),r
jrjr+1...jS

} est la solution duale du problème d’assignation de dimension S− r− 1. Cette solution
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est obtenue par la construction directe

ρ
d,(l),r
jrjr+1...jS

=







ω
r,(l)
jr+1...jS

si jr = argmin
p

(dr−1
pjr+1 ...jS

− ur
p)

0 sinon

(6.335)

6.6 Méthode de gestion des pistes

6.6.1 Présentation

Dans un contexte de pistage multi-senseurs multi-cibles, la méthode de Deb d’association optimale

des mesures et les méthodes de pistage présentées conduisent généralement à de bons résultats mais pour

une complexité importante voire rédhibitoire lorsque la densité de cibles et/ou de clutter est élevée. En

fait, dans la plupart des applications actuelles de surveillance embarquées, on ne dispose que de moyens

de calculs limités et, par conséquent, les filtres de poursuite utilisés restent le plus souvent rudimentaires.

En conséquence de quoi, les pistes générées ont une qualité beaucoup moins bonne que celle obtenue par

les méthodes plus élaborées décrites précédemment.

Dans un tel contexte, il faut donc pouvoir gérer les pistes dégradées (résultant d’une mauvaise associa-

tion de mesure ou d’une mauvaise fusion multi-senseurs par exemple) qui risquent de saturer inutilement

le système de surveillance. La gestion de ces pistes n’est pas une chose aisée, en général, car la nature de

la dégradation de la piste doit d’abord être identifiée avant la gestion proprement dite de la piste (c’est

à dire la déclaration de son maintien, sa confirnmation ou son élimination).

En effet, l’élimination d’une piste déclarée ne doit pas être effectuée directement car la nature même

de sa dégradation peut avoir trois origines complétement différentes :

1. Soit un disfonctionnement du ou des senseurs,

2. Soit un mauvais choix dans l’association des mesures pour la mise à jour de la piste,

3. Soit enfin une manœuvre de la cible.

La gestion des pistes dépend donc fortement de leur qualité conditionnée par la nature de la dégradation

inhérente. En pratique, a priori, on ne connait pas la nature de cette dégradation et il faut donc l’estimer

par des méthodes très fines pour décider soit de l’abandon ou du maintien de la piste au cycle suivant.

Nous présentons dans la suite une méthode simple et efficace permettant la gestion des pistes.
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6.6.2 Evaluation de la dégradation d’une piste

La base des méthodes de gestion de piste s’appuie sur l’exploitation du résidu de mesure z̃(k) =

z(k) − ẑ(k|k − 1) du filtre de poursuite pour tester la défaillance du senseur [May76], détecter l’associa-

tion incorrecte de la mesure [Jef89] ou la manœuvre de la cible [Bla86], [BSF88]. Des travaux récents

ont néanmoins montré que dans certaines applications l’utilisation de ces résidus ne permet pas toujours

une bonne discrimination. Dans de tels cas, la détection de la dégradation peut cependant être faite par

l’apport d’information de reconnaissance suffisante au niveau des plots reçus. Cette approche spécifique

peut être trouvée en [MD95].

On ne considère pas ici les problèmes de détection de panne de senseur car il existe le plus souvent,

dans la plupart des systèmes de pistage actuels, des moyens “hardware” ou “software” spécifiques au

contrôle du bon fonctionnement des senseurs. L’attention est portée sur la détection des manœuvres et

des mauvaises associations qui engendrent la dégradation d’une piste. On rappelle que des méthodes

sophistiquées dans le cadre du MHF et du JPDAF existent déjà pour un coût en calcul généralement

important [Gau84] et [BBS84] et [SI89]. On préconise ici une méthode classique et plus ”économique”

pour résoudre le problème.

Pour simplifier la présentation, on supposera n’avoir à faire qu’à une seule piste. Cette piste globale,

qui résulte de la fusion des informations délivrées par les différents senseurs (par une méthode de fusion

choisie a priori par le concepteur), est représentative de l’état complet de la cible (position en 3-D,

vitesse, accélération). Ceci peut être par exemple obtenu par traitement adapté des mesures angulaires de

plusieurs senseurs IR passifs (2-D) par exemple, ou par mesures issues d’un RADAR 3-D ou encore d’une

combinaison d’un RADAR-2D avec un senseur IR, etc . . . . La méthode la plus simple pour gérer la piste

consiste à examiner la séquence (ou une partie de cette séquence) des résidus de mesures z̃(i), i = 0, . . . , k

en construisant la statistique Dk−l+1 définie comme

Dk−l+1 ,

k∑

i=l

Di (6.336)

où Di , D(z(i)) = z̃(i)′S(i)−1z̃(i) ; l désigne l’instant de départ de la fenêtre temporelle servant à

construire Dk−l+1. k désigne l’instant courant et S(i) représente la matrice de covariance de l’innovation

globale calculée à l’instant i.

En supposant que toutes les mesures z(i) soient correctes et que les innovations z̃(i) soient

gaussiennes, la statistique Dk−l+1 est une variable aléatoire du χ2 de degré (k − l + 1) × nz. On peut

alors mettre en œuvre le test statistique classique du χ2 à savoir

Dk−l+1 ≤ γ(k − l + 1) (6.337)
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γ(k − l + 1) est le seuil du test du χ2. Sa valeur est choisie a priori en fonction de la qualité du test que

l’on veut.

Une variante de la méthode consiste à utiliser une fenêtre à oubli exponentiel pour construire la

statistique Dk−l+1. Si l’on désigne par α le paramètre d’oubli exponentiel, compris entre 0 et 1, Dk−l+1

sera construit selon la forme récursive suivante :

Dk−l+1 , αDk−l +Dk (6.338)

On peut montrer [BSF88] que sous l’hypothèse d’un modèle gaussien-markovien, la statistique

Dk−l+1 suit pratiquement une loi du χ2 de degré nz(1+α)/(1−α). L’utilisation seule de cette statistique

ne permet pas cependant de déterminer la nature de la dégradation quand elle apparâıt.

De plus, elle ne garantit pas forcément que la piste retenue soit la bonne (cf paragraphe suivant). Elle

permet seulement de détecter une dégradation de la qualité de la piste.

6.6.3 Probabilité d’acceptation d’une fausse piste

Comme on vient de le signaler, le test précédent ne garantit en rien que la piste retenue corresponde à

une bonne piste (i.e piste associée à une cible réelle). En effet, on va montrer qu’il existe une probabilité

non nulle PFT pour qu’une fausse piste satisfasse aussi ce test. L’idée consiste donc à évaluer cette pro-

babilité en fonction de la taille k− l+ 1 de l’échantillon. Du point de vue opérationnel, la valeur de PFT

sera une contrainte du cahier des charges du système ; celle-ci imposera la valeur minimale de k− l+ 1 à

utiliser pour le test.

Supposons que toutes les mesures choisies pour l’association correspondent à des fausses alarmes

uniformément réparties dans la fenêtre de validation du filtre de volume

Vγ = {z tel que D(z) ≤ γ} (6.339)

alors on a pour 0 ≤ a ≤ γ

Pr{Di ≤ a} = (a/γ)nz/2 (6.340)

La densité de probabilité de Di pour 0 ≤ Di ≤ γ s’écrit

p(Di) =
nz

2

D
(nz/2)−1
i

γnz/2
(6.341)

La moyenne et la variance de Di est alors donnée par [Pap84]

µi , E[Di] =
nz

nz + 2
γ (6.342)
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σ2
i , V ar[Di] =

4nz

(nz + 4)(nz + 2)2
γ2 (6.343)

Si l’on suppose que les fausses alarmes sont temporellement et spatialement indépendantes

d’un balayage à l’autre, alors la densité p(Dk−l+1) de Dk−l+1 est la convolution des k− l+1 densités

p(Di) pour i = l, . . . , k. La moyenne et la variance de Dk−l+1 est alors donnée par

µ , E[Dk−l+1] = (k − l+ 1)µi (6.344)

σ2 , V ar[Dk−l+1] = (k − l+ 1)σ2
i (6.345)

Dans le cas particulier où nz = 2, l’expression de p(Dk−l+1) peut être obtenue analytiquement [BSL91].

Dans le cas nz > 2, le calcul analytique devient très complexe. En pratique, on pourra cependant utiliser

l’approximation gaussienne pour évaluer la probabilité d’accepter des fausses pistes PFT , Pr{Dk−l+1 ≤
γ(k − l + 1)}. On prendra donc

PFT ≈ G

(
γ(k − l + 1) − µ

σ

)

(6.346)

avec

G(x) ,

∫ x

−∞

1√
2π
e−y2/2dy (6.347)

Cette probabilité permettra de quantifier la taille de l’échantillon à traiter pour répondre aux

exigences du cahier des charges du système de surveillance.

6.6.4 Détection et élimination des pistes fantômes

Dans le cas particulier du pistage par deux (voire plus) senseurs 2-D infrarouge apparâıt le problème

incontournable de la corrélation des pistes déjà évoqué. A ce problème s’ajoute celui de la génération

éventuelle de cibles fantômes dues à la géométrie du phénomène et la présence possible de cibles multiples.

En pratique la suppression des cibles fantômes peut être obtenue efficacement en gérant judicieusement

l’évolution de la différence entre les angles d’inclinaison de cibles. L’angle d’inclinaison d’une

cible est défini comme l’angle dièdre entre un plan POS1S2 , contenant la paire de senseurs S1 et S2 et un

point de référence O, et un second plan PTS1S2 , contenant S1, S2 et la cible T (voir figure 9.1). Dans

l’hypothèse où les 2 senseurs observent la même cible, les deux angles d’inclinaison l1 et l2 associés à

S1 et S2 doivent être identiques (au bruit de mesure près). Il faut savoir que la gestion des angles dièdres

n’est pas limitée à la configuration bi-senseurs puisque les angles dièdres peuvent être calculés pour

chacune des paires de senseurs possibles intervenant dans le système multi-senseurs. La discrimination

d’une vraie cible d’une fausse (cible fantôme) va donc exploiter ces angles dièdres évalués au niveau de
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Point de référence
O

Cible 
T

Senseur S2

l2

l1

Senseur S1

Fig. 6.3 – Géométrie du problème

chaque senseur.

Nous explicitons maintenant en détail le principe de gestion des angles dièdres pour la supression des

cibles fantômes. Au niveau de chaque senseur, les mesures angulaires délivrées permettent d’estimer lo-

calement la position estimée T̂1 et T̂2 de la cible. Ceci nous permet d’obtenir les plans PT̂1S1S2
et PT̂2S1S2

.

Nous pouvons alors calculer les vecteurs û1,û2 et ûref normaux aux plans PT̂1S1S2
, PT̂2S1S2

et au plan de

référence POS1S2 . Les angles entre les vecteurs û1 et ûref et entre û1 et ûref correspondent aux angles

d’inclinaison l1 et l2 cherchés. Lorsque les mesures sont asynchrones, les mesures d’un senseur doivent

alors être interpolées de façon à les synchroniser avec l’autre senseur.

La méthode de gestion des angles dièdres est semblable à la précédente. On définit la statistique

suivante

Ak−l+1 ,

k∑

i=l

Ai (6.348)

avec

Ak ,
(l1(k) − l2(k))

2

σ2
l1

+ σ2
l2

(6.349)

σ2
lj

est la variance de l’angle d’inclinaison au niveau du senseur j, j = 1, 2. Cette variance est donnée par

σ2
lj = û′

lj Bj ûlj (6.350)

Bj est la matrice transformation permettant de passer des mesures 2-D à l’angle d’inclinaison lj . En fait
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l’angle d’inclinaison lj pourra être exprimé sous la forme classique d’une équation de mesure du type

lj(k) = Bjzj(k) = Bj [Hj(k)x(k) + vj(k)]

= BjHj(k)x(k) + νj(k)

= lrj (k) + νj(k)

(6.351)

où lrj (k) désigne le véritable angle d’inclinaison (non bruité), vj(k) est le bruit de mesure (supposé

gaussien) du senseur j et νj(k) est le bruit de mesure associé à la “mesure” lj(k).

Compte tenu de cette remarque, on voit que Ak peut aussi s’écrire

Ak ,
(l1(k) − l2(k))

2

σ2
l1

+ σ2
l2

= (b(k) + ν(k))2 (6.352)

avec

b(k) ,
(lr1(k) − lr2(k))

√

σ2
l1

+ σ2
l2

(6.353)

ν(k) ,
(ν1(k) − ν2(k))

√

σ2
l1

+ σ2
l2

(6.354)

En supposant que les angles d’inclinaisons à chaque instant correspondent bien à la même cible,

et que les différences (l1(k) − l2(k)) soient gaussiennes, la statistique Ak−l+1 suivra une loi du χ2 de

degré 1 ou pratiquement une loi du χ2 de degré (1 + α)/(1 − α) si l’approche par oubli exponentiel est

adoptée. On peut comme précédemment, mettre en œuvre le test classique du χ2 à savoir

Ak−l+1 ≤ γ(k − l + 1) (6.355)

γ(k − l + 1) étant le seuil du test du χ2.

L’intérêt d’utiliser les “mesures” (l1(k) − l2(k)) tient de son indépendance vis à vis du modèle

d’évolution des cibles. Par conséquent, même en cas de manœuvre de la cible, la statistique Ak−l+1

conserve théoriquement la même loi. Ce simple test permet alors, en théorie, de discriminer les pistes

réelles des pistes fantômes. Des précautions doivent cependant être prises au niveau de la taille de

l’échantillon k − l + 1 pour s’assurer que la probabilité d’acceptation d’une piste fantôme PGT reste

suffisamment faible. Une analyse semblable à celle du paragraphe précédent doit donc être menée.

6.6.5 Probabilité d’acceptation d’une piste fantôme

Comme on vient de le signaler, le test précédent ne garantit en rien que la piste retenue corresponde à

une bonne piste (i.e piste associée à une cible réelle). En effet, il existe une probabilité non nulle PGT pour

qu’une piste fantôme (Ghost Track) satisfasse aussi ce test. On cherche donc à évaluer cette probabilité
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en fonction de la taille k− l+ 1 de l’échantillon. Comme pour PFT , la valeur de PGT sera une contrainte

du cahier des charges du système ; celle-ci imposera la valeur minimale de k− l+ 1 à utiliser pour le test.

On rappelle que pour une piste fantôme, on a nécessairement b(k) 6= 0 (b(k) = 0 étant uniquement

obtenu lorsque les deux senseurs observent une même cible réelle). Par conséquent, dans le cas d’une

fusion sur un fantôme à l’instant k, la densité de Ak est une loi du χ2 décentrée de paramètre δ = b(k)2.

La densité de Ak−l+1 sera également une loi du χ2 décentrée ayant pour paramètre λ =
∑k

i=l b(i)
2.

L’expression analytique de p(Ak−l+1) est donnée par [Mui82]

p(x) =

∞∑

j=0

e−δ/2(δ/2)
j

j!

x−1/2+je−x/2

21/2+jΓ(1/2 + j)
(6.356)

Ainsi, la probabilité PGT d’accepter une piste fantôme sera donnée par

PGT , Pr{Ak−l+1 ≤ γ(k − l+ 1)} =

∫ γ(k−l+1)

0

p(x)dx (6.357)

L’expression analytique de PGT est compliquée. En pratique, elle sera remplacée par l’approximation

gaussienne suivante

PGT ≈ G

(
γ(k − l+ 1) − µ

σ

)

(6.358)

où G(x) est donné en (6.347) et où µ et σ2 sont respectivement la moyenne et la variance de la variable

Ak−l+1 données par [Mui82]

µ , E[Ak−l+1] = 1 + λ (6.359)

σ2 , V ar[Ak−l+1] = 2 + 4λ (6.360)

Dans le cas où la statistique Ak−l+1 est construite à partir d’un facteur d’oubli exponentiel 0 ≤
α < 1, on aura

µ , E[Ak−l+1] =
1

1 − α
+ (1 + α)

k∑

i=l

α2(k − i)b(i)2 (6.361)

σ2 , V ar[Ak−l+1] =
2

1 − α
+ 4(1 + α)

k∑

i=l

α2(k − i)b(i)2 (6.362)

Cette probabilité permettra de quantifier la taille k− l+1 de l’échantillon pour s’assurer la réjection

des pistes fantômes. Il est à noter que le raisonnement ici mené suppose implicitement la connaissance

des b(i). Cette hypothèse est généralement non valide. Par conséquent, on utilisera en fait pour la mise

en œuvre du test, les estimées b̂(i) données par

b̂(i) =
(l̂1(i) − l̂2(i))
√

σ2
l1

+ σ2
l2

(6.363)
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avec pour j = 1, 2

l̂j = BjHj(i)x̂(i|i) (6.364)

6.6.6 Résumé de la méthode de gestion des pistes

Nous sommes maintenant en mesure de décrire le principe général de la méthode de gestion des pistes.

Cette méthode est basée sur les 6 étapes suivantes [Roe91b] :

1. Construire les statistiques (6.336) (ou (6.338)) locales à partir des innovations des filtres locaux et

détecter ou non la dégradation des pistes locales via (6.337).

2. Construire Ak−l+1 par (6.348) et tester la nature “fantomatique” de la piste fusionnée par (6.355).

3. Si les deux tests précédents sont satisfaits, la piste fusionnée est déclarée de bonne qualité (i.e. elle

correspond à une cible réelle).

4. Si le test (6.337) échoue et le test (6.355) est satisfait, alors on vient de détecter une manœuvre de

la cible et il faut donc adapter le filtre de poursuite à un certain modèle de manœuvre ou utiliser

des techniques plus sophistiquées telles que l’IMM par exemple.

5. Si le test (6.337) est satisfait et le test (6.355) échoue, alors cela signifie qu’il y a eu une erreur dans

la fusion des deux pistes locales et que l’on est en train de pister une cible fantôme. On doit alors

tenter une autre association de pistes.

6. Si les tests (6.337) et (6.355) échouent, alors la piste sera déclarée comme fausse et devra être

éliminée.



Chapitre 7

Pistage de cibles manœuvrantes

7.1 Bref panorama des principales méthodes existantes

Dans les chapitres précédents, les cibles étaient toujours implicitement supposées non manœu-

vrantes et l’on supposait connues les statistiques des bruits intervenants dans le modèle de dynami-

que/observation des cibles (matrices Q(k) et R(k)). En pratique, il va de soi que ces paramètres ne sont

jamais bien connus et peuvent varier au cours du temps en fonction de la capacité de manœuvrage

des cibles. De plus, les instants de manœuvre ne sont généralement pas connus du système de pour-

suite (sauf dans le cas d’applications civiles avec des avions coopératifs). Les approches possibles les plus

classiques pour traiter le pistage de cibles manœuvrantes, sont basées soit en considérant :

• la commande inconnue mais non aléatoire :

On cherchera alors à estimer la commande. Une cible manoeuvrante peut être modélisée dans ce

cas par une équation générale de dynamique (on ne considère que le cas linéaire ici) du type

x(k + 1) = F(k)x(k) + G(k)u(k) + v(k) (7.1)

où u(k) est l’entrée (la commande) imposée lors de la manœuvre de la cible. On parle alors de tech-

nique d’input estimation (IE). Deux solutions sont possibles : soit utiliser directement l’estimée

û(k) disponible en conservant le modèle de dynamique initialement choisi ; soit, selon le niveau de

û(k), on peut changer de modèle de dynamique pour améliorer le pistage (exemple du pistage d’une

cible en vol MRU qui soudainement se met à virer). Ce principe est celui du filtre à dimension

variable (VSD) proposé en [BSB82].

• la commande inconnue mais aléatoire : 2 approches sont possibles.

1. on peut supposer que la commande a un niveau qui peut varier de façon continue et l’on cher-

chera à augmenter (adapter) convenablement le processus de bruit d’état v(k) de l’équation de

dynamique. On adapte la matrice Q(k) au processus de bruit d’état qui englobe la manœuvre.

181



182 CHAPITRE 7. PISTAGE DE CIBLES MANŒUVRANTES

En général, cependant les manœuvres n’ont rien d’aléatoire puisqu’elles ont un but bien précis

qui dépend le l’objectif de la mission de l’engin et de son pilote . . .

2. on suppose que la commande ne peut prendre qu’un nombre fini (et discret) de valeurs

possibles (les modes de manœuvre m(k)) parmi un ensemble fini IM(k). Chaque mode est

caractérisé par une équation de dynamique particulière (mouvement MRU, à accélaration

constante, ballistique, virage coordonné, etc) et/ou avec certains niveaux de bruits d’état.

Les techniques d’estimation utilisées dans cette approche sont des techniques d’estimation

hybrides car l’on cherche à estimer à la fois l’état des cibles (variable continue x) et la

probabilité d’occurence des modes (m(k) qui sont des variables discrètes). Parmi les méthodes

de ce type, on citera la méthode statique MM (multi-modèles) [TH79, Tug82] qui ne prend pas

en compte la possibilité de basculement possible d’un mode à l’autre [Mag65, Tho73, MG77,

MVM79, MVM80]. La méthode optimale du FHT (Full Hypothsis Tree) inexploitable en

temps réel. Les méthodes sous-optimale de type GPB (Generalized Pseudo Bayesian)

[AF70, JG71a, JG71b, CA78] et IMM (Interacting Multiple Model) [Blo90].

Dans la suite de ce cours, nous présentons en détail uniquement l’approche par IMM car celle-ci

supplante de loin les autres méthodes antérieurement développées jusqu’alors.

7.2 Estimation hybride par modèles multiples

L’approche la plus naturelle pour l’estimation des systèmes hybrides reste celle basée sur la notion

de modèles multiples. Dans cette approche, un ensemble de modèles IM(k) est défini soit une fois

pour toute a priori IM(k) ≡ IM, ∀k (on parle alors de structure fixe de modèles) afin de couvrir tous

(on l’espère tout du moins) les modes possibles du système observé, ou bien de manière adaptative

[LBS96a, Li97c]. Pour un panorama des méthodes, on pourra se référer à [Li96]. L’estimée de l’état hy-

bride est obtenue par la combinaison judicieuse des estimées possibles conditionnellement aux hypothèses

concernant la validité des modes courants.

7.2.1 Forme de l’estimateur optimal - Algorithme FHT

L’estimée optimale x̂(k|k) de l’état x(k) et sa matrice de covariance associée P(k|k) peuvent en théorie

être obtenus en minimisant la variance de l’erreur d’estimation. En considérant toutes les combinaisons

de changement de modes possibles de l’instant initial jusqu’à l’instant courant k, on aboutit alors aux

relations classiques suivantes [BSF88] :

x̂(k|k) =
∑

i

x̂i(k|k)P{Hk
i |Zk} (7.2)
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P(k|k) =
∑

i

{
Pi(k|k) + [x̂(k|k) − x̂i(k|k)][x̂(k|k) − x̂i(k|k)]′

}
P{Hk

i |Zk} (7.3)

où x̂i(k|k) représente l’estimée optimale au temps k conditionnellement à une historique possible de chan-

gement de modes notée Hk
i couvrant la période allant du temps initial au temps courant k.

Il est clair que cet estimateur optimal nécessite le stockage de toutes les séquences possibles

de modes. Il faut bien voir que le nombre de séquences possibles N(k) croit exponentiellement avec le

temps. En effet, si l’on note n(t) le nombre de modes possibles à un instant t donné, le nombre total N(k)

de séquences possibles depuis l’instant initial jusqu’à l’instant k vaudra :

N(k) = n(1) × n(2) × . . .× n(k)

Dans le cas particulier où ∀t > 0, on a n(t) ≡ n (cas d’une structure à modèles multiple fixe), on

obtient :

N(k) = nk (7.4)

Cette remarque importante montre que l’estimateur optimal, appelé parfois estimateur FHT (Full-

Hypothesis-Tree), est inutilisable en temps réel. Dans la littérature, certaines méthodes sous-optimales

de management de l’arbre de séquences de modes ont été proposées parmi lesquelles on retiendra l’algo-

rithme de Viterbi [Vit67], l’algorithme GPB (Generalized Pseudo Bayesian) de Ackerson et Fu [AF70],

et l’algorithme IMM (Interacting Multiple Model) de H.A.P. Blom [Blo90]. Il faut savoir que L’IMM

présente des performances équivalentes à un GPB d’ordre 2 ou la méthode de Viterbi pour un coût de

calcul beaucoup plus restreint. C’est donc ce type d’algorithme que nous présentons ici uniquement. Une

présentation des autres méthodes peut être trouvée en [BSL93].

7.2.2 Algorithmes MM sous-optimaux

Pour rendre les algorithmes à modèles multiples (MM) utilisables en temps réel, on doit impérativement

limiter la croissance exponentielle du nombre d’historiques possibles. L’idée consiste, soit à fu-

sionner (merging) les historiques de modes considérées comme similaires au sens d’un certain critère, ou

bien à éliminer toutes les historiques (pruning) dont la vraisemblance, par exemple, reste en dessous d’un

certain seuil (paramètre de réglage). Une autre technique consiste à ne conserver que les N historiques

ayant les plus fortes vraisemblances. Quelle que soit l’approche adoptée, on cherche toujours à avoir un

nombre limité de termes intervenant dans les sommations (7.2) et (7.3). Il va de soi, que l’estimateur

x̂(k|k) ainsi construit perd son caractère d’optimalité mais au bénéfice d’une implémentation en temps

réel. Selon les techniques de gestion des historiques (pruning, merging) différents alogorithmes sont ap-

parus dans la littérature des méthodes non-FHT à modèles multiples (Viterbi, RSA, GPB, IMM, etc).
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Nous focalisons dans la suite notre attention sur l’IMM : la méthode la plus performante sur le marché

des algorithmes actuellement . . . Quelques rappels s’imposent avant la présentation de l’IMM.

7.2.3 Châınes de Markov discrètes

On rappelle que l’historique ou séquence Hk représente la séquence d’états du processus markovien de

changement de modes m(k) depuis l’instant initial jusqu’à l’instant k. La notation m(k) au lieu de m(k)

est ici utilisée car dans le cas général le paramètre décrivant le mode ne sera pas uniquement un scalaire,

mais plutôt un vecteur de valeurs discrètes qui décrira à la fois le mode principal (lié au centre de gravité),

le mode propre (lié au mouvement de l’engin par rapport à son centre de gravité) et éventuellement un

mode de forme (lié à la forme courante de la cible). Cette notation prend toute son importance dans le cas

de la poursuite de cibles étendues [Dez98, DL98]. Nous pourrons ici assimiler m(k) à un paramètre

scalaire car nous considérons ici les cibles comme ponctuelles.

Hk , {m(1),m(2), . . . ,m(k)} (7.5)

Une séquence de modes limitée dans le passé de l’instant l à l’instant k, sera notée :

H l,k , {m(l),m(l+ 1), . . . ,m(k)} (7.6)

L’équation d’évolution du processus markovien s’écrit :

p(m(k)|Hk−1) = p(m(k)|m(k − 1)) (7.7)

On suppose que ces probabilités de transitions sont connues et décrites au travers d’une matrice de

transition que l’on se fixera a priori.

Dans le cas d’une association parfaite des mesures (pas d’incertitude d’assignation des mesures aux

pistes), l’équation de mesure est décrite par :

p(z(k)|Zk−1, Hk) = p(z(k)|m(k)) (7.8)

Cette égalité provient du fait que par hypothèse sur le bruit de mesure (bruit de mesure blanc), la

mesure sera sans mémoire et ne dépendra que du dernier mode m(k) de la séquence Hk.

Les principales approches envisageables pour estimer le mode courant m(k) d’un système hybride

sont les suivantes :

1. Méthode du Maximum a posteriori (MAP)

Pour tous les modes possibles, on calcule les probabilités p(m(k)|Zk) puis on choisit la valeur qui
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réalise le maximum de cette distribution. En pratique le calcul du MAP est relativement simple car

le calcul récursif de p(z(k)|m(k)) est réalisé par deux étapes successives (la prédiction par équation

de Chapman-Kolmogorov, puis la mise à jour en tenant compte de la mesure).

2. Méthode de Viterbi (VA)

L’idée ici consiste à déterminer la séquence Ĥk représentant le maximum de p(Hk|Zk) et de choisir

pour m̂(k) le dernier élément de Ĥk. Pour cela, on pourra utiliser l’algorithme de Viterbi décrit en

[AIT91].

3. Méthode d’estimation à variance minimale (MMSE)

Cette méthode classique n’est malheureusement pas envisageable ici, car il faudrait réaliser des

combinaisons linéaires à coefficients réels d’éléments appartenant à IM(k), ce qui n’est pas possible.

En effet, l’estimée serait alors donnée par :

m̂(k) = E[m(k)|Zk ] =
∑

m(k)∈IM(k)

m(k)p(m(k)|Zk) (7.9)

Un des plus simples systèmes stochastiques hybrides (SSH) est le système linéaire à saut,

designé souvent par l’acronyme JLS (pour Jump Linear System). Ce type de système (à structure

fixe de modèles) est décrit dans [Mar90] et [Blo90]. Les équations qui le régissent sont les suivantes :

x(k) = F[k − 1,m(k)]x(k − 1) + G[k − 1,m(k)]v[k − 1,m(k)] (7.10)

z(k) = H[k − 1,m(k)]x(k) + w[k,m(k)] (7.11)

La transition d’un mode à l’autre est supposée être gouvernée par une châıne de Markov homogène

du premier ordre selon les probabilités :

P{mj(k + 1)|mi(k)} = πij ∀mi,mj ∈ IM (7.12)

On admet de plus que les hypothèses suivantes sont satisfaites :

– les bruits v et w sont des bruits blancs gaussiens ;

– l’état initial x(0) est gaussien de moyenne x̂(0|0) et de covariance P(0|0) ;

– v et w et x(0) sont non corrélés.

7.2.4 Estimation par IMM à structure fixe de modèles (1984)

Comme on vient de le voir, l’estimateur FHT ne peut être mis en œuvre en temps réel à

cause du nombre exponentiellement croissant d’historiques possibles nécessaire. Pour limiter ce nombre,

la méthode IMM classique (c.à.d. d’ordre 1) développée par H.A.P. Blom [Blo84a, Blo84d, Blo86, BBS88,
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Blo90, Bar90b] ne considère uniquement que les modèles courants mJ(k) possibles et non toutes les

historiques possibles pour construire un estimateur récursif sous-optimal (i.e. non-FHT) x̂(k|k) exploi-

table en temps réel. L’IMM d’ordre deux (IMM2) plus compliqué à mettre en œuvre n’est pas considéré ici

pour simplfier la présentation. On renvoie le lecteur à [BWH93] pour une présentation détaillée de l’IMM2.

La base de l’IMM tient dans la façon de mettre à jour la densité a posteriori p[x(k)|Zk ] en partant

de l’expression de la densité a priori p[x(k − 1)|Zk−1] connue à l’instant antérieur k − 1 et de la mesure

courante z(k). L’estimée optimale cherchée x̂(k|k) (et sa covariance associée P(k|k) seront données par

les 2 premiers moments de p[x(k)|Zk ]. La démarche utilisée s’appuie implicitement sur la mise à jour de

la distribution de l’état hybride selon les deux étapes suivantes :

p[x(k − 1),m(k − 1)|Zk−1]
1©

99K p[x(k),m(k)|Zk−1]
2©

99K p[x(k),m(k)|Zk] (7.13)

Si l’on suppose l’état hybride (x(k),m(k)) markovien, la transition 1© (étape de prédiction) est obtenue

par l’équation de Chapman-Kolmogorov :

p[x(k),m(k)|Zk−1] =

∫
∑

i

p[x(k),m(k),x(k − 1),mi(k − 1)|Zk−1] dx(k − 1)

=

∫
∑

i

p[x(k),m(k)|x(k − 1),mi(k − 1),Zk−1]

· p[x(k − 1),mi(k − 1)|Zk−1] dx(k − 1)

Si x(0), m(k), v(k) et w(k) sont indépendants, l’étape de mise à jour 2© de la distribution conjointe

est obtenue par la formule de Bayes :

p[x(k),m(k)|Zk ] =
p(z(k)|x(k),m(k),Zk−1)p[x(k),m(k)|Zk−1]

p(z(k)|Zk−1)

La densité marginale a posteriori cherchée p(x(k)|Zk) ainsi que la probabilité a posteriori de chaque

modèle mJ(k) sont données par les relations :

p(x(k)|Zk) =
∑

j

p[x(k),mj(k)|Zk] ≡
∑

j

p(x(k)|mj(k),Z
k) P{mj(k)|Zk} (7.14)

P{mj(k)|Zk} =

∫

p[x(k),mj(k)|Zk ] dx(k) (7.15)

On détaille maintenant les différentes étapes nécessaires aux calculs des expressions intervenant dans

(7.45) et (7.15) :

• Concernant l’état du système : on doit réaliser les étapes suivantes :
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1. Mixage

p[x(k − 1)|m(k − 1),Zk−1] 99K p[x(k − 1)|m(k),Zk−1] (7.16)

2. Prédiction

p[x(k − 1)|m(k),Zk−1] 99K p[x(k)|m(k),Zk−1] (7.17)

3. Mise à jour

p[x(k)|m(k),Zk−1] 99K p[x(k)|m(k),Zk ] (7.18)

• Concernant les modes du système : on doit réaliser les étapes suivantes

1. Prédiction

P [m(k − 1)|Zk−1] 99K P [m(k)|Zk−1] (7.19)

2. Mise à jour

P [m(k)|Zk−1] 99K P [m(k)|Zk] (7.20)

Mixage de l’état p[x(k − 1)|m(k − 1),Zk−1] 99K p[x(k − 1)|m(k),Zk−1]

Le calcul de la densité obtenue à l’issue de l’étape de mixage de l’état (relation (7.16)) se fait en

introduisant tous les modes possibles à l’instant k − 1 et utilisant le théorème des probabilités totales

selon :

p[x(k − 1)|mj(k),Z
k−1] =

∑

i

p[x(k − 1)|mj(k),mI(k − 1),Zk−1] P{mi(k − 1)|mj(k),Z
k−1}

Comme mj(k) est conditionnellement indépendant de x(k − 1) sachant mi(k − 1), on a ∀j :

p[x(k − 1)|mj(k),mi(k − 1),Zk−1] ≡ p[x(k − 1)|mi(k − 1),Zk−1] (7.21)

D’autre part, puisque mj(k) est conditionnellement indépendant de Zk−1 sachant mi(k − 1), on a

P{mj(k)|mi(k − 1),Zk−1} = P{mj(k)|mi(k − 1)} ≡ πij (7.22)

Ceci permet d’exprimer le second terme de la somme précédente, à savoir :

µi|j(k − 1|k − 1) , P{mi(k − 1)|mj(k),Z
k−1} =

P{mi(k − 1),mj(k),Z
k−1}

P{mj(k),Zk−1}

=

πij

︷ ︸︸ ︷

P{mj(k)|mi(k − 1),Zk−1}
µi(k−1)

︷ ︸︸ ︷

P{mi(k − 1)|Zk−1}
P{mj(k)|Zk−1}
︸ ︷︷ ︸

µ−
j (k)
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Soit finalement,

µi|j(k − 1|k − 1) =
1

µ−
j (k)

πijµi(k − 1) (7.23)

avec la constante de normalisation µ−
j (k) donnée par

µ−
j (k) =

∑

i

πijµi(k − 1) (7.24)

En utilisant ces relations, il vient finalement

p[x(k − 1)|mj(k),Z
k−1] =

∑

i

µi|j(k − 1|k − 1) p[x(k − 1)|mi(k − 1),Zk−1] (7.25)

On voit donc que la densité p[x(k − 1)|mj(k),Z
k−1] est constituée d’un mélange (mixage) pondéré

des densités p[x(k − 1)|mi(k − 1),Zk−1].

Pour obtenir la formulation simple du filtre IMM, on admet que les densités constituant le

mélange sont gaussiennes ; c’est à dire :

p[x(k − 1)|mi(k − 1),Zk−1] ≈ N [x(k − 1); x̂i(k − 1|k − 1),Pi(k − 1|k − 1)]

avec

x̂i(k − 1|k − 1) = E
[
x(k − 1)|mi(k − 1),Zk−1

]

Pi(k − 1|k − 1) = E
[
[x(k − 1) − x̂i(k − 1|k − 1)][x(k − 1) − x̂i(k − 1|k − 1)]′|mi(k − 1),Zk−1

]

Ces quantités seront obtenues par un filtre de Kalman adapté à chacun des modes mi envisagés

(cf. paragraphe suivant).

Sous cette hypothèse, les densités p[x(k − 1)|mj(k),Z
k−1] seront des mixtures de gaussiennes dont

les 2 moments seront donnés par [BSF88] :

x̂0
j (k − 1|k − 1) =

∑

i

µi|j(k − 1|k − 1)x̂i(k − 1|k − 1)

P0
j (k − 1|k − 1) =

∑

i

µi|j(k − 1|k − 1)
[
Pi(k − 1|k − 1)

+ [x̂i(k − 1|k − 1) − x̂0
j (k − 1|k − 1)][x̂i(k − 1|k − 1) − x̂0

j (k − 1|k − 1)]′
]

A ce stade, on assimile chaque mixture gaussienne p[x(k − 1)|mj(k),Z
k−1] en fait à une densité

gaussienne de moyenne x̂0
j (k− 1|k− 1) et de covariance P0

j (k− 1|k− 1). En d’autres termes, on admet

l’approximation :

p[x(k − 1)|mj(k),Z
k−1] ≈ N [x(k − 1); x̂0

j (k − 1|k − 1),P0
j (k − 1|k − 1)] (7.26)
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Prédiction de l’état p[x(k − 1)|m(k),Zk−1] 99K p[x(k)|m(k),Zk]

La densité conditionnelle de la prédiction p[x(k)|mJ(k),Zk−1] est obtenue par l’equation de Chapman-

Kolmogorov :

p[x(k)|mj(k),Z
k−1] =

∫

p[x(k)|x(k − 1),mj(k),Z
k−1]p[x(k − 1)|mj(k),Z

k−1]dx(k − 1)

Compte tenu de l’hypothèse gaussienne, sur p[x(k)|x(k − 1),mj(k),Z
k−1], on obtient

p[x(k)|mj(k),Z
k−1] ≈ N [x(k); x̂j(k|k − 1),Pj(k|k − 1)] (7.27)

avec

x̂j(k|k − 1) = Fj(k − 1)x̂0
j (k − 1|k − 1) + Gj(k − 1)v̄j(k − 1)

Pj(k|k − 1) = Fj(k − 1)P0
j (k − 1|k − 1)Fj(k − 1)′ + Gj(k − 1)Qj(k − 1)Gj(k − 1)′

Mise à jour de l’état p[x(k)|m(k),Zk−1] 99K p[x(k)|m(k),Zk]

La mise à jour de l’état conditionnellement à un mode courant (relation (7.18)) est obtenue par la

formule de Bayes suivante :

p(x(k)|mj(k),Z
k) = p[x(k)|mj(k), z(k),Z

k−1]

=
1

cj
p(z(k)|mj(k),x(k),Zk−1)p(x(k)|mj(k),Z

k−1) (7.28)

où cj est une constante de normalisation qui vaut :

cj = p(z(k)|mj(k),x(k),Zk−1) =

∫

p(z(k)|mj(k),x(k),Zk−1)p(x(k)|mj(k),Z
k−1)dx(k) (7.29)

La relation (7.28) exprime en fait un cycle de mise à jour du filtre d’estimation adapté au mode courant

mj(k) partant de la densité conditionnelle prédite p(x(k)|mj(k),Z
k−1) et de la densité conditionnelle de

la mesure z(k). Nous exprimons maintenant ces densités.

Expression de p(x(k)|mj(k),Z
k−1)

La densité p(x(k)|mj(k),Z
k−1) peut être exprimée comme une mixture pondérée de densités que l’on

approximera par une densité gaussienne en adaptant le premier et le deuxième moment statistique

[BSF88]. En d’autres termes, on écrit
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p(x(k)|mj(k),Z
k−1) =

∑

i

µi|j(k − 1|k − 1)p(x(k)|mj(k),mi(k − 1)Zk−1)

avec

p(x(k)|mj(k),mi(k − 1),Zk−1) ≈ p(x(k)|mj(k), x̂i(k − 1|k − 1),Pi(k − 1|k − 1))

= N
[
x(k);E[x(k)|mj(k), x̂i(k − 1, k − 1),Pi(k − 1|k − 1)], Cov[x(k)|·]

]

par conséquent, on a

p(x(k)|mj(k),Z
k−1) =

∑

i

µi|j(k − 1|k − 1)µi|j(k − 1|k − 1)N
[
x(k);E[], cov[.]

]

≈ N
[
x(k);

∑

i

E[x(k)|mj(k), x̂i(k − 1|k − 1)]µi|j(k − 1|k − 1), Cov[.]
]

= N
[
x(k); x̂j(k|k − 1),Pj(k|k − 1)

]

Expression de p(z(k)|mj(k),x(k),Zk−1)

La densité p(z(k)|mj(k),x(k),Zk−1) intervenant dans (7.28) est la densité de probabilité de la mesure

conditionnellement au modèle mj(k) et à l’état x(k). Sous l’hypothèse gaussienne et pour un modèle

linéaire à saut markovien (ayant un bruit de mesure wj(k) supposé ici à moyenne nulle w̄j(k) = 0), cette

densité s’écrit

p(z(k)|mj(k),x(k),Zk−1) = N (z(k);Hj(k)xj(k),Rj(k))

Par ailleurs, compte tenu de l’expression précédente de la densité p(x(k)|mj(k),Z
k−1, la quantité cj va

s’écrire

cj =

∫

N (z(k);Hj(k)xj(k),Rj(k))N (x(k); x̂j (k|k − 1),Pj(k|k − 1)) (7.30)

Soit encore, compte tenu des propiétés des variables aléatoires gaussiennes (cf p 107 de [Gué94])

cj = N (z(k); ẑj (k|k − 1),Sj(k)) =
1

(2π)nz/2√|Sj(k)|
exp[−1

2
z̃j(k)

′S−1
j (k)z̃j(k)] (7.31)

avec

ẑj(k|k − 1) = Hj(k)x̂j(k|k − 1) (7.32)

z̃j(k) , z(k) − ẑj(k|k − 1) (7.33)

Sj(k) = Hj(k)Pj(k|k − 1)Hj(k)
′ + Rj(k) (7.34)
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Expression de p(x(k)|mj(k),Z
k)

La densité conditionnelle de mise à jour cherchée p(x(k)|mj(k),Z
k) s’exprime donc

p(x(k)|mj(k),Z
k) =

N (z(k);Hj(k)xj(k),Rj(k))N (x(k); x̂j (k|k − 1),Pj(k|k − 1))

N (z(k); ẑj (k|k − 1),Sj(k))
(7.35)

Compte tenu des lois gaussiennes (cf annexe B de [Gué94]), on aura finalement un filtre de Kalman adapté

au mode mj ; autrement dit

p(x(k)|mj(k),Z
k) = N (x(k); x̂j (k|k),Pj(k|k)) (7.36)

avec

Kj(k) = Pj(k|k − 1)Hj(k)
′S−1

j (k) (7.37)

x̂j(k|k) = x̂j(k|k − 1) + Kj(k)[z(k) − ẑj(k|k − 1)] (7.38)

Pj(k|k) = Pj(k|k − 1) −Kj(k)Sj(k)Kj(k)
′ (7.39)

Prédiction des modes P [m(k − 1)|Zk−1] 99K P [m(k)|Zk−1]

En introduisant tous les modèles possibles à l’instant k − 1, on voit que la probabilité a priori

P{mj(k)|Zk−1} du mode mj(k) peut être obtenue par :

µ−
j (k) , P{mj(k)|Zk−1} ≡

∑

i

P{mj(k)|mi(k − 1),Zk−1}
︸ ︷︷ ︸

πij

P{mi(k − 1)|Zk−1}
︸ ︷︷ ︸

µI (k−1)

soit finalement,

µ−
j (k) =

∑

i

πij µi(k − 1) (7.40)

πij , P{mj(k)|mi(k− 1),Zk−1} est l’élément ij de la matrice (supposée connue) de transition de

Markov de changement de modes.
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Mise à jour des modes P [m(k)|Zk−1] 99K P [m(k)|Zk]

La mise à jour (7.20) de la probabilité de chaque modèle mj(k) possible se fait en utilisant la

décomposition bayésienne :

µj(k) , P{mj(k)|Zk} = P{mj(k)|z(k),Zk−1} =
1

c(k)
p{z(k)|mj(k),Z

k−1}
︸ ︷︷ ︸

ΛJ (k)

P{mj(k)|Zk−1}
︸ ︷︷ ︸

µ−
j (k)

Soit finalement :

µj(k) =
1

c(k)
Λj(k)µ

−
j (k) (7.41)

avec

c(k) =
∑

j

Λj(k)µ
−
j (k) (7.42)

Λj(k) représente la fonction de vraisemblance du modèle mj(k) et µ−
J (k) est la probabilité a

priori pour que le système soit dans le mode mj(k). Cette probabilité est obtenue par (7.40). Si on

suppose que l’information a priori Zk−1 peut être résumée dans les 2 premiers moments mixés

x̂0
j (k − 1|k − 1) et P0

j (k − 1|k − 1), alors on peut écrire :

Λj(k) ≈ p{z(k)|mj(k), x̂
0
j (k − 1|k − 1),P0

j (k − 1|k − 1)}

Avec l’hypothèse supplémentaire de normalité, on aboutit à :

Λj(k) = N
[
z(k); ẑj [k|k − 1; x̂0

j (k − 1|k − 1)],Sj [k;P
0
j (k − 1|k − 1)]

]

Soit encore plus simplement,

Λj(k) = N
[
z̃j(k); 0,Sj(k)

]
(7.43)

où z̃j(k) est l’innovation du filtre adapté au mode mj(k) donnée par :

z̃j(k) , z(k) − ẑj [x̂j(k|k − 1)] = z(k) − ẑj [k|k − 1; x̂0
j (k − 1|k − 1)] (7.44)

x̂j(k|k − 1) est l’état prédit à partir de l’état mixé x̂0
j (k − 1|k − 1) et du mode mj(k). Sj(k) =

Sj [k;Pj(k|k − 1)] = Sj [k;P
0
j (k − 1|k − 1)] est la covariance de z̃j(k).

Reconstruction de l’estimée globale par combinaison

Pour reconstruire l’estimée globale x̂(k|k), on utilise la densité p(x(k)|Zk) que l’on exprime comme le

mélange des densités suivantes

p(x(k)|Zk) =
∑

j

p[x(k)|mj(k),Z
k ] µj(k) ≈ N (x(k); x̂(k|k),P(k|k)) (7.45)
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où la notation suivante a été adoptée

µj(k) , P{mj(k)|Zk} (7.46)

On approxime ce mélange par une nouvelle densité gaussienne en faisant cöıncider les 2 premiers moments

statistiques et on obtient

x̂(k|k) =
∑

j

µj(k)x̂j(k|k)

P̂(k|k) =
∑

j

µj(k)
[
Pj(k|k) + [x̂(k|k) − x̂j(k|k)][x̂(k|k) − x̂j(k|k)]′

]
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7.2.5 Résumé d’un cycle complet de l’IMM standard

1. Interaction

Probabilité du mode a priori et de mixage

µ−
j (k) = P{mj(k)|Zk−1} =

∑

i

µi(k − 1)πij

µi|j(k − 1|k − 1) = P{mi(k − 1)|mj(k),Z
k−1} = µi(k − 1)πij/µ

−
j (k)

Initialisation des filtres par mixage

x̂0
j (k − 1|k − 1) =

∑

i

µi|j(k − 1|k − 1)x̂i(k − 1|k − 1)

P0
j (k − 1|k − 1) =

∑

i

µi|j(k − 1|k − 1)
[
Pi(k − 1|k − 1)+

[x̂i(k − 1|k − 1) − x̂0
j (k − 1|k − 1)][x̂i(k − 1|k − 1) − x̂0

j (k − 1|k − 1)]′
]

2. Filtrage conditionnellement aux modes

x̂j(k|k − 1) = Fj(k − 1)x̂0
j (k − 1|k − 1) + Gj(k − 1)v̄j(k − 1)

Pj(k|k − 1) = Fj(k − 1)P0
j (k − 1|k − 1)Fj(k − 1)′ + Gj(k − 1)Qj(k − 1)Gj(k − 1)′

ẑj(k|k − 1) = Hj(k)x̂j(k|k − 1) + w̄j(k)

z̃j(k) = z(k) − ẑj(k|k − 1)

Sj(k) = Hj(k)Pj(k|k − 1)Hj(k)
′ + Rj(k)

Kj(k) = Pj(k|k − 1)Hj(k)
′S−1

j (k)

x̂j(k|k) = x̂j(k|k − 1) + Kj(k)z̃j(k)

Pj(k|k) = Pj(k|k − 1) −Kj(k)Sj(k)Kj(k)
′

3. Mise à jour des probabilités des modes

Λj(k) = N
[
z̃j(k); 0,Sj(k)

]

µj(k) = Λj(k)µ
−
j (k)/

∑

j

Λj(k)µ
−
j (k)

4. Combinaison

x̂(k|k) =
∑

j

µj(k)x̂j(k|k)

P̂(k|k) =
∑

j

µj(k)
[
Pj(k|k) + [x̂(k|k) − x̂j(k|k)][x̂(k|k) − x̂j(k|k)]′

]
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7.2.6 Schéma de principe d’un cycle de l’IMM standard

Le schéma de principe pour le cycle de l’IMM standard à 2 modèles est le suivant

Combinaison

?
x̂(k|k) P(k|k)

Filtre adapté

au mode

m1(k)

x̂1(k|k) P1(k|k)

x̂0
1(k|k)

P0
1(k|k)

x̂1(k − 1|k − 1)

P1(k − 1|k − 1)

(k-1 <- k)

?

-

r

?

?

z(k)��
��

Filtre adapté

au mode

m2(k)

x̂2(k|k) P2(k|k)

x̂0
2(k|k)

P0
2(k|k)

x̂2(k − 1|k − 1)

P2(k − 1|k − 1)

(k -> k-1)

?

�

r

?

?

z(k)��
��

Mise à jour

des probabilités

des modes

µ2(k)

(k -> k-1)(k-1 <- k)

µ1(k)

µi|j(k)

Λ1(k) Λ2(k)

?

6

?

6

�

r
-

r

Interaction/Mixage

? ?

7.2.7 IMM/PDAF pour le pistage de cible manœuvrante dans du clutter

L’algorithme IMM mono-senseur qui vient d‘être présenté supposait l’association parfaite de la mesure

avec la piste considérée et prenait en compte le basculement possible de l’état d’un modèle à un autre

pour modéliser les phases de manœuvre de la cible. En environnement dégradé, on dispose de plusieurs

mesures validées à chaque scan dont une, au plus, est supposée provenir de la cible. On a une incertitude

sur l’origine des mesures. Pour pister une cible manœuvrante dans de telles conditions, l’idée consiste

à mixer l’algorithme du PDAF pour traiter l’incertitude d’origine des mesures avec l’IMM pour traiter

l’estimation du modèle de manœuvre. Il suffit alors de remplacer, dans le schéma précédent, les filtres

de poursuite classiques (KF ou EKF) adaptés à chaque mode mi(k) par des filtres PDAF adaptés aux

différents modèles, selon le schéma de principe suivant, dans le cas de 2 modèles (l’extension au cas de

N > 2 modèles est immédiate) :
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Combinaison

?
x̂(k|k) P(k|k)

PDAF adapté

au mode

m1(k)

x̂1(k|k) P1(k|k)

x̂0
1(k|k)

P0
1(k|k)

x̂1(k − 1|k − 1)

P1(k − 1|k − 1)

(k-1 <- k)

?

-

r

?

?

Z(k)��
��

PDAF adapté

au mode

m2(k)

x̂2(k|k) P2(k|k)

x̂0
2(k|k)

P0
2(k|k)

x̂2(k − 1|k − 1)

P2(k − 1|k − 1)

(k -> k-1)

?

�

r

?

?

Z(k)��
��

Mise à jour

des probabilités

des modes

µ2(k)

(k -> k-1)(k-1 <- k)

µ1(k)

µi|j(k)

Λ1(k) Λ2(k)

?

6

?

6

�

r
-

r

Interaction/Mixage

? ?

L’IMM/PDAF a d’abord été proposé en [Blo84a]. Des exemples détaillés de cet algorithme, basés sur

le logiciel MultiDat développé par Bar-Shalom et ses étudiants, peuvent être trouvés en [BSL95]. Une

information de reconnaissance/amplitude peut être prise en compte comme dans le PDAFAI et conduit à

l’IMM/PDAFAI. Des extensions récentes ont également été proposées pour le pistage de cibles multiples

par Farina et aboutissent à l’IMM/JPDAF.

7.2.8 IMM/MSPDAF pour le pistage multi-senseurs de cible manœuvrante

Dans le cas de senseurs multiples, l’idée la plus simple consiste là encore combiner l’IMM avec un

algorithme sous-optimal PDAF multi-senseurs (MSPDAF) déjà décrit précédemment et comme le propose

la référence [HBS89]. On suppose avoir M modèles possibles et connues les probabilités de transitions

πij = P{mj(k)|mi(k − 1)}, ∀k. L’IMM/MSPDAF proposé consiste alors en les étapes suivantes :

1. Mixage des estimées antérieures

µi|j(k − 1|k − 1) = P{mi(k − 1)|mj(k),Z
k−1} =

1

c̄j
πijµi(k − 1) i = 1, . . . ,M (7.47)

avec

c̄j ,

M∑

i=1

πijµi(k − 1) (7.48)
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Connaissant les états antérieurs x̂i(k−1|k−1) et Pi(k−1|k−1), on calcule les états mixés adaptés

à chaque mode j = 1, . . . ,M

x̂0
j (k − 1|k − 1) =

M∑

i=1

µi|j(k − 1|k − 1)x̂i(k − 1|k − 1) (7.49)

P0
j (k − 1|k − 1) =

M∑

i=1

µi|j(k − 1|k − 1)
[

Pi(k − 1|k − 1)+

[x̂i(k − 1|k − 1) − x̂0
j (k − 1|k − 1)][x̂i(k − 1|k − 1) − x̂0

j (k − 1|k − 1)]′
]

(7.50)

2. Prédiction des états et des mesures suivant chaque mode j = 1, . . . ,M

x̂j(k|k − 1) = Fj(k)x̂
0
j (k − 1|k − 1) (7.51)

Pj(k|k − 1) = Fj(k)P
0
j (k − 1|k − 1)Fj(k)

′ + Qj(k) (7.52)

3. Prédiction de la mesure pour le senseur s1 adaptée aux modes j = 1, . . . ,M

ẑs1

j (k|k − 1) = hs1 [x̂j(k|k − 1)] (7.53)

et des covariances (Hs1 étant la matrice jacobienne de hs1 [.] - cf EKF)

Ss1

j (k) = Hs1(k)Pj(k|k − 1)Hs1(k)′ + Rs1(k) (7.54)

4. Validation des mesures du senseur s1

Pour ce faire, on doit utiliser la même fenêtre de validation pour tous les modes. On

prend donc la fenêtre de plus grande taille (ayant le plus grand volume V avec le seuil de validation

γ choisi a priori. Autrement dit, on prendra

V s1(k) = V s1

j∗ (k) = max
j

[γπ
√

Ss1

j (k)] (7.55)

où j∗ est l’indice du mode ayant la plus grande fenêtre de validation correspondante. Une fois cette

fenêtre maximale déterminée, on valide les mesures par la procédure classique, c.à.d par

[z(k)s1 − ẑs1

j∗(k|k − 1)]′Ss1

j∗(k)[z(k)
s1 − ẑs1

j∗(k|k − 1)] ≤ γ (7.56)

5. Mise à jour de l’état de la cible pour chaque mode par un PDAF appliqué aux mesures validées

du senseur s1. On obtient alors x̂s1

j (k|k) et Ps1

j (k|k).

6. Prédiction de la mesure attendue pour chaque mode par le senseur s2.

ẑs2

j (k|k) = hs2 [x̂s1

j (k|k)] (7.57)
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et des covariances (Hs2 étant la matrice jacobienne de hs2 [.] - cf EKF)

Ss2

j (k) = Hs2(k)Ps1

j (k|k)Hs2(k)′ + Rs2(k) (7.58)

7. Validation des mesures du senseur s2

Choisir la fenêtre de plus grande taille parmi les modes, i.e.

V s2(k) = V s2

j∗ (k) = max
j

[γπ
√

Ss2

j (k)] (7.59)

Une fois cette fenêtre maximale déterminée, on valide les mesures par la procédure classique, c.à.d

par

[z(k)s2 − ẑs2

j∗(k|k)]′Ss2

j∗(k)[z(k)
s2 − ẑs2

j∗(k|k)] ≤ γ (7.60)

8. Mise à jour de l’état de la cible pour chaque mode par un PDAF appliqué aux mesures validées

du senseur s2. On obtient alors x̂j(k|k) ≡ x̂s2

j (k|k) et Pj(k|k) ≡ Ps2

j (k|k).

9. Mise à jour de la probabilité des modes par

µj(k) =
1

c
Λj(k)

M∑

i=1

πijµi(k − 1) (7.61)

avec la vraisemblance Λj(k) de chaque mode mj donnée par

Λj(k) = p(Zs1 (k),Zs2(k)|mj(k),m
s1

k ,m
s2

k ,Z
s1,k−1,Zs2,k−1)

= p(Zs1 (k)|mj(k),m
s1

k ,Z
s1,k−1)p(Zs2 (k)|mj(k),m

s2

k ,Z
s2,k−1)

= Λs1

j (k)Λs2

j (k)

avec (en notant Zk−1 l’ensemble des données passées)

Λs1

j (k) = p(Zs1 (k)|mj(k),Z
k−1)

= V s1(k)
−m

s1
k γ0[m

s1

k ] + V s1(k)
−m

s1
k +1

m
s1
k∑

l=1

1

Pg
N [z̃s1

j,l; 0;Ss1

j ]γl[m
s1

k ]

Λs2

j (k) = p(Zs2 (k)|mj(k),Z
k−1)

= V s2(k)−m
s2
k γ0[m

s2

k ] + V s2(k)−m
s2
k +1

m
s2
k∑

l=1

1

Pg
N [z̃s2

j,l; 0;Ss2

j ]γl[m
s2

k ]

et les quantités γl données par (dans le cas d’un PDAF à version non paramétrique)

γl[mk] =







1
mk
PdPg l = 1, . . . ,mk

1 − PdPg l = 0

(7.62)
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10. Combinaison des estimées conditionnelles par

x̂(k|k) =

M∑

j=1

µj(k)x̂j(k|k) (7.63)

P(k|k) =

M∑

j=1

µj(k)
[
Pj(k|k) + [x̂j(k|k) − x̂(k|k)][x̂j(k|k) − x̂(k|k)]′

]
(7.64)
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Chapitre 8

Aide aux simulations

Nous donnons dans ce chapitre, certains points importants intervenant dans la mise en œuvre de

simulations d’un système de pistage.

8.1 Test de consistance d’un filtre

8.1.1 Dans les simulations

La consistance d’un filtre permet de s’assurer (en simulation) que l’erreur d’estimation vraie obtenue

par le filtre x̃(k) , x(k) − x̂(k|k) est compatible avec sa covariance estimée P(k|k). Pour tester la

consistance, on définit l’erreur d’estimation normalisée au carré (NEES - Normalized Estimation

Error Squared) par

εx(k) , [x(k) − x̂(k|k)]′P(k|k)−1[x(k) − x̂(k|k)] (8.1)

Sous les hypothèses de modèle linéaire/gaussien, εx(k) est une variable aléatoire qui suit un χ2
nx

. Pour

tester la consistance, généralement on réalise N essais Monté-Carlo indépendants [Rub81, Rub86] pour

un scénario donné et on peut calculer pour chaque instant k, la NEES moyenne qui vaut

ε̄x(k) ,
1

N

N∑

i=1

εix(k) (8.2)

Dans ces conditions, la quantité Nε̄x(k) doit suivre, en théorie, un χ2
Nnx

si le filtre est consistant. Le

tracé de Nε̄x(k) et des bornes du χ2
Nnx

à 95 % (obtenues dans les tables statistiques) permet de juger de

la qualité du filtre simulé. Souvent en simulations, on teste séparément la consistance sur les composantes

de position et de vitesse en construisant ε̄p(k) = 1
N

∑N
i=1 ε

i
p(k) et ε̄v(k) =

∑N
i=1 ε

i
v(k) avec

εp(k) , [xp(k) − x̂p(k|k)]′Pp(k|k)−1
[xp(k) − x̂p(k|k)] (8.3)

εv(k) , [xv(k) − x̂v(k|k)]′Pv(k|k)−1
[xv(k) − x̂v(k|k)] (8.4)

où les indices p et v désignent les comporantes relatives à la position et à la vitesse de la cible.

201
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8.1.2 Dans les applications réelles

En pratique, on ne connait évidemment pas l’état réel x(k) de la cible pistée et par conséquent le

test de consistance précédent ne peut être utilisé. Cependant, on dispose des innovations normalisées au

carré (NIS) et le test peut être effectué sur ces informations disponibles. En effet, sous les hypothèses de

modèle linéaire/gaussien et de consistance du filtre, la NIS définie par

εz(k) , [z(k) − ẑ(k|k − 1)]′S(k)
−1

[z(k) − ẑ(k|k − 1)] (8.5)

est en théorie une variable aléatoire qui suit un χ2
nz

. La NIS moyenne calculée sur N essais Monté-Carlo

indépendants pour un scénario donné vaut alors

ε̄z(k) ,
1

N

N∑

i=1

εiz(k) (8.6)

et la quantitéNε̄z(k) doit suivre en théorie un χ2
Nnz

quand le filtre est consistant. Le tracé deNε̄z(k) et des

bornes (à 95 ou 99 % ) du χ2
Nnz

permet alors de mettre en évidence la consistance ou non du filtre simulé.

Un test supplémentaire sur la blancheur des innovations peut être également effectué. En effet, on sait

que l’innovation [Kal60a, KB61] doit en théorie être un bruit blanc gaussien de covariance S(k). Il suffit

donc de tester l’autocorrélation moyenne des innovations au cours du temps définie comme

ρ̄(k, k + l) ,

∑N
i=1 z̃i(k)′z̃i(k + l)

√
∑N

i=1 z̃i(k)′z̃i(k)
∑N

i=1 z̃i(k + l)′z̃i(k + l)
(8.7)

Pour N suffisamment grand, ρ̄(k, k+ l) peut être considéré comme une variable aléatoire normale, centrée

de variance 1/N et l’hypothèse de blancheur de l’innovation sera acceptée si

ρ̄(k, k + l) ∈ 1√
N

[−r, r] (8.8)

où [−r, r] est l’intervalle de confiance d’une variable aléatoire u ∼ N (0, 1) tel que

P{u ∈ [−r, r]} = 1 − α (8.9)

En géneral on prend l = 1 pour l’intervalle de corrélation et α = 0.05 ou 0.01.

8.2 Initialisation des filtres pour les simulations

On rappelle ici la technique d’initialisation des filtres proposée par K.Birmiwal et Y. Bar-Shalom

[BSB83]. Cette méthode permet d’assurer la bonne consistance de l’initialisation d’un filtre. On a ainsi

une erreur d’estimation initiale cohérente avec la précision de mesure du senseur utilisé.
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8.2.1 Initialisation des filtres locaux

Nous considérons ici le cas d’un système constitué de 2 senseurs uniquement. La généralisation au cas

de N > 2 senseurs est immédiate. L’initialisation d’un filtre local associé au senseur si (i = 1, 2) utilise la

mesure zsi(0) et différence entre zsi(0) et une mesure antérieure zsi(−1). En effet, considérons une seule

coordonnée notée ξ (ξ = x ou ξ = y peu importe). La mesure de la position de la cible (relativement à la

coordonnée choisie) est de la forme

zsi(k) = ξ(k) + wsi(k) (8.10)

avec wsi (k) ∼ N (0, Rsi

ξ ). Si l’on dispose uniquement des mesures zsi(0) et zsi(−1), alors l’estimation

de la position et de la vitesse initiale de la cible (relativement à la coordonnée choisie) sera obtenue en

prenant

ξ̂(0|0) ≡ zsi(0) (8.11)

ˆ̇
ξ(0|0) ≡ zsi(0) − zsi(−1)

T
(8.12)

La covariance de l’erreur d’estimation initiale (pour la coordonnée ξ) vaut alors

Psi

ξ (0|0) =




Rsi

ξ Rsi

ξ /T

Rsi

ξ /T 2Rsi

ξ /T
2



 (8.13)

Cette méthode est utilisée pour des coordonnées x et y afin d’obtenir l’estimation initiale du vecteur

d’état x̂si(0|0). La matrice de covariance initiale du filtre local sera donc (O étant la matrice nulle de

dimension 2× 2)

Psi(0|0) =




Psi

ξ=x(0|0) O

O Psi

ξ=y(0|0)



 (8.14)

8.2.2 Initialisation d’un filtre centralisé

La méthode d’initialisation du filtre centralisé est faite de manière analogue mais en utilisant les

mesures fusionnées des 2 senseurs z(0) et z(−1). Ces mesures (relatives à une coordonnée ξ = x ou ξ = y)

sont obtenues par la pondération probabiliste des mesures des senseurs suivantes

z(0) = [
zs1(0)

Rs1

ξ

+
zs2(0)

Rs2

ξ

]/C (8.15)

z(−1) = [
zs1(−1)

Rs1

ξ

+
zs2(−1)

Rs2

ξ

]/C (8.16)

où la constante de normalisation C vaut

C =
1

Rs1

ξ

+
1

Rs2

ξ

(8.17)

La matrice de covariance de l’erreur d’estimation fusionnée sera donnée par

P(0|0) =
[
[Ps1(0|0)]

−1
+ [Ps2 (0|0)]

−1]−1
(8.18)
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Chapitre 9

Articles complémentaires (anglais)

9.1 Sur la génération des fausses alarmes

9.1.1 Introduction

In the Monte Carlo simulations for the study and design of multitarget tracking algorithms [BSL93,

BSL95], one needs frequently to generate false alarms (FA) in target validation gates defined by hyperellip-

soids in measurement space computed from predicted target measurement and covariance of measurement

innovation. False alarms are usually supposed to be independent and uniformly distributed in validation

gates. During many years, the only inefficient method for generating such random points [BSF88] was

to generate points in the minimal hypercube containing hyperellipsoid, and then sort and keep points

which have been drawn in the hyperellipsoid based on a Mahalanobis distance test. This method which

can be used whenever measurement space dimension and spatial density of false alarms are low, become

very inefficient with the growth of FA spatial density and measurement space dimension because of the

exponential rejection ratio which will be presented in section 2.3.

To overcome this major drawback, X.R. Li has been the first one (to the knowledge of the authors) to

propose in 1992 [Li92b] a new algorithm, for generating points uniformly distributed in hyperellipsoids.

In 1999, T.J. Ho and M. Farooq have however pointed out in [HF99] an obstacle in the practical use of

Li’s approach. They have then proposed an improved approach (referred here as HF algorithm ; HF stan-

ding for initials of authors) based on the orthogonal factorization of covariance matrix S which avoids

the indefinite number of iterations occuring within Li’s algorithm. It is worthwhile to note that both

approaches are based on computation of eigenvalues of matrix S. This requirement is time consuming

(high computation burden) when measurement space dimension becomes high.

In recent tracking developments, authors have tested intensively the HF algorithm and have discovered

205



206 CHAPITRE 9. ARTICLES COMPLÉMENTAIRES (ANGLAIS)

the poor performances of this algorithm in term of spatial uniformity of random points generated in

validation gates. A presentation of HF algorithm results will be detailed in the sequel. To overcome this

major drawback, we propose a new fast, efficient and reliable algorithm for generating directly random

points really uniformly distributed in hyperellipsoid which has the following two important properties : its

complexity is O(n3) (n being the measurement space dimension), and it does not require the computation

of eigenvalues of matrix S−1 and S−1 itself as in previous existing methods. The new method proposed in

this paper follows exactly the same assumptions as in [Li92b, HF99] : 1) the number of false measurements

to be generated can be described by a suitable Poisson model ; 2) the false measurements are uniformly

distributed in validation gate and are independent from scan to scan.

9.1.2 Preliminary

Validation of measurements

In target tracking, a validation gate V is used for eliminating sensor measurements which have small

probability to belong to target. The measurements falling in the gate are said to be validated. Let x̂(k|k−1)

be the one step predicted state vector of a given target at time k and P(k|k − 1) the corresponding one

step prediction covariance matrix of prediction error x(k)− x̂(k|k − 1). x(k) is the true (unknown) state

vector of target at time k with dimension nx. Given all information about the target up to k, we assume

the probability density function (pdf) p(x) to be Gaussian with mean x̂(k|k−1) and covariance P(k|k−1),

that is p(x(k)) = N (x(k); x̂(k|k−1),P(k|k−1)). If the observation model z(k) = h[k,x(k),w(k)] is linear

with additive zero-mean white Gaussian noise w(k) with covariance R(k) (i.e. z(k) = H(k)x(k) +w(k)),

then the innovation z̃(k) (i.e. difference between measurement z(k) and its prediction ẑ(k|k − 1) =

H(k)x̂(k|k − 1)) is Gaussian with zero mean and covariance S(k) = H(k)P(k|k − 1)H′(k) + R(k) where

superscript ′ denotes the transposition [BSL93]. Therefore, the pdf of true target measurement z(k) is

given by [Mui82]

p(z(k)) = N (z(k); ẑ(k|k − 1),S(k)) = |2πS(k)|−1/2e−
1
2 [z(k)−ẑ(k|k−1)]′S−1(k)[z(k)−ẑ(k|k−1)] (9.1)

or equivalently

p(z̃(k)) = N (z̃(k);0,S(k)) = |2πS(k)|−1/2
e−

1
2 z̃′(k)S−1(k)z̃(k) (9.2)

where z(k) and z̃(k) are vectors of dimension nz, S(k) is a real symmetric and positive definite matrix

of size nz × nz and 0 is the null vector ([0, . . . , 0]′) of size nz. For notation convenience and brevity, the

time index k is from now omitted in the following.

The density function (9.1) is constant whenever the quadratic form ε , [z − ẑ]′S−1[z − ẑ] in the

exponent is, so that it is constant on the ellipsoid (called hyperellipsoid if nz > 3) defined by

[z − ẑ]′S−1[z − ẑ] = γ (9.3)
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in R
nz for every γ > 0. ε is called the Mahalanobis distance (or statistical distance) of the measurement

z with respect to its prediction ẑ and is also referred as the NIS (Normalized Innovation Squared) in

[BSL93]. This ellipsoid has center ẑ, while S determines its shape and orientation. Since innovation z̃ is

a zero-mean Gaussian random variable with dimension nz, ε is a χ2
nz

random variable (see theorem 1.4.1

of [Mui82] for proof). The pdf of ε is then given by [Pap84] (p. 187)

p(ε) =







0 for ε < 0

1
2nz/2Γ(nz/2)

ε
1
2 nz−1e−

1
2 ε for ε ≥ 0

(9.4)

where Γ(.) is the Gamma function defined for n > 0 by Γ(n) =
∫ ∞
0
tn−1e−tdt which follows the well known

recurrence formulae Γ(n+ 1) = nΓ(n) and Γ(n+ 1) = n! if n = 0, 1, 2, . . .. One has also Γ(2) = Γ(1) = 1

and Γ( 1
2 ) =

√
π and the following recurrence formula Γ(n) = Γ(n+ 1)/n holds when n < 0.

The validation (gating) of sensor measurements is obtained by choosing the threshold γ in such a way

that the probability of true measurement falling in the validation gate V(γ), defined by

Vnz(γ) , {z : [z − ẑ]′S−1[z − ẑ] ≤ γ} (9.5)

corresponds to a given gating probability Pg . The gating threshold γ and Pg are related through the

following relationship

Pg = Pr{z ∈ Vnz (γ)} = Pr{χ2
nz

≤ γ} =

∫ γ

0

p(ε)dε =
1

2nz/2Γ(nz/2)

∫ γ

0

ε(nz/2)−1e−ε/2dε (9.6)

Under Matlab programming environment (with statistics toolbox), the threshold γ can be easily computed

using the command gamma_threshold=chi2inv(Pg,nz). The square root g =
√
γ is usually called the

‘’number of sigmas” (standard deviations) of the gate [BSF88]. The semi-axis of ellipsoid Vnz(γ) are the

square roots of diagonal terms of γS. In summary the validation test T (z) is formally defined by

T (z) =







1 if z̃′S−1z̃ ≤ γ ⇒ z is validated

0 if z̃′S−1z̃ > γ ⇒ z is discarded

(9.7)

In most of tracking applications, the observation of the targets is quite often difficult because of small

target detection probabilities, bad conditions of observations due to cluttered environment and the limited

quality of sensors of tracking system. In many practical tracking problems, one has therefore to take into

account the presence of false measurements in the validation gate. For performance evaluation of realistic

tracking algorithms based on Monte Carlo simulations, we are then frequently faced to the problem of

generation of false alarms in validation gates. The usual assumption made is to consider the false alarms

uniformly distributed in validation and independent from scan to scan. The development of our new

algorithm for generating random points uniformly distributed in an hyperellipsoid allows herefater to

efficiently solve this problem with a minimal computational burden.
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Volume of an hyperellipsoid

The volume V nz (γ) of an hyperellipsoid Vnz(γ) is defined by

V nz(γ) =

∫

z̃′S−1z̃≤γ

dz̃ (9.8)

Since S is a real symmetric positive definite matrix, there exists [Mil64] a non singular linear trans-

formation T such that S = TT′. T is called square root of S. Such decomposition is not unique but

the Cholesky factorization allows to get easily an useful solution (in O(n3) complexity) for S1/2 = T.

Details about implementation of Cholesky factorization can be found in [BSL93] and [Bie77]. From this

factorization, one has

S−1 = (TT′)
−1

= T′−1
T−1 ⇔ T′S−1T = I (9.9)

In order to compute V nz (γ), one has to introduce the following variable transformation y = T−1z̃. Then

z̃′S−1z̃ = (Ty)′S−1(Ty) = y(T′S−1T)y = y′y (9.10)

It follows

V nz(γ) =

∫

y′y≤γ

Jdy (9.11)

where J =| ∂z̃
∂y

|=| T | is the Jacobian of the transformation from the z̃ variable to the y variable. Since

S−1 = T′−1
T−1, then | S−1 |= | T |−2

and therefore J =| T |= 1/
√

|S−1| =
√

|S(k)|. By using the

generalized spherical coordinate change of variable [Mil64], one has

V nz(γ) =
√

|S|
∫ √

γ

0

∫ 2π

0

∫ π

0

. . .

∫ π

0
︸ ︷︷ ︸

nz−2

rnz−1
(nz−2∏

k=1

sinnz−1−k Φk

)

drdθdΦ1 . . . dΦnz−2 (9.12)

which can be written as

V nz(γ) =
√

|S|
(∫ √

γ

0

rnz−1dr
)(∫ 2π

0

dθ
) nz−2∏

k=1

∫ π

0

sinnz−1−k ΦkdΦk (9.13)

But
∫ π

0

sinnz−1−k ΦkdΦk = B((nz − k)/2, 1/2) =
Γ( 1

2 (nz − k))Γ( 1
2 )

Γ( 1
2 (nz − k + 1))

(9.14)

where B(., .) is the Beta function and Γ(.) the Gamma function and hence

nz−2∏

k=1

∫ π

0

sinnz−1−k ΦkdΦk =
Γnz−2( 1

2 )

Γ(nz

2 )
=
π(nz−1)/2

Γ(nz

2 )
(9.15)

By reporting previous expressions into (9.13), one gets

V nz(γ) =
√

|S| × γ
nz
2

nz
× 2π × π(nz−1)/2

Γ(nz

2 )
(9.16)

which can be finally expressed as

V nz (γ) =
(πγ)

nz
2

√

|S|
Γ(nz

2 + 1)
= cnz

√

|S|γnz/2 (9.17)
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where coefficient cnz is given by

cnz =
πnz/2

Γ(nz

2 + 1)
=







πnz/2

(nz/2)! for nz even

2nz+1(nz+1/2)!
(nz+1)! π(nz−1)/2 for nz odd

(9.18)

cnz can be easily obtained under Matlab by using the command cnz=pi^(nz/2)/gamma(1+nz/2).

The volume V nz
s (γ) of an nz-dimensional hypersphere of radius

√
γ is therefore obtained by choosing

S = I (i.e. the identity matrix of size nz × nz). One gets directly from (9.17)

V nz
s (γ) =

(πγ)
nz
2

Γ(nz

2 + 1)
(9.19)

The volume V nz
c (γ) of minimal hypercube containing this hypersphere is given by

V nz
c (γ) = (2

√
γ)

nz (9.20)

Hence, the ratio r = V nz
c (γ)/V nz

s (γ) is equal to (4/π)nz/2Γ(nz

2 + 1). By using Stirling development of

Γ(nz

2 + 1), one can show for nz sufficiently large that r is actually proportional to c = (4/π)nz/2 ×
√
πnz(nz/2)nz/2e−nz/2. With elementary algebraic manipulation, the factor c can be expressed as c =

√
πnze

nz/2[ε+lnnz] with ε = ln(2) − ln(π) − 1. This remark shows clearly the exponential increase of r

with nz as reported in following section.

Evolution of V nz
c /V nz

s with nz

As already stated, during many years the generation of FA uniformly distributed in hyperellipsoid was

based on the generation of FA uniformly distributed in the minimal hyperparallelepiped containing the

validation gate. This method is still frequently used in many tracking simulators. When the dimension nz

of measurement space is low (nz ≤ 3), this method is acceptable since the overcharge of computations is

low. However, whenever nz > 3, such method must really be bannished because of its strong overcharge

of needless computations involved due to the exponential growth of the ratio r of hyperparallelepiped

volume over hyperellipsoid volume with dimension.

We have plotted on figure 9.1 the growth of r = V nz
c /V nz

s with nz. We can see the exponential growth

of r which renders this method very inefficient for Monte-Carlo simulations since most of the time the

method generates FA outside the hyperellipsoid rather than inside. For example for nz = 7, if one wants

to generate on average 100 FA in a given hyperellipsoid, the method requires to generate and to test

on average 2700 FA in hyperparallelepiped. This is the major limitation of this method for Monte Carlo

simulations. The new algorithm presented in this paper does not suffer of such limitation as it will be

shown.
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Fig. 9.1 – Evolution of V nz
c /V nz

s with nz

9.1.3 Limitations of HF algorithm for simulations

In this section we recall the HF algorithm proposed recently in [HF99] to generate random points

uniformly distributed in validation gate. We point out some problems arising in simulations with this

algorithm and show its practical limitations.

The HF algorithm consists of two stages. The first stage generates the Poisson-distributed number

mFA of false validated measurements in the hyperellipsoid under consideration. T. Ho and M. Farooq

use the Poisson Random Generator (PRG) proposed in [BFS83]. This is only one issue possible among

many other PRG available in the literature [Rub81, Dev86]. We will not discuss here about the quality

of PRG used in stage I. Under Matlab, mFA can be easily generated by using the simple instruction

m_FA=poissrnd(Lfa*V) where V is the volume of hyperellipsoid given by (9.17) and Lfa is the spatial density

of FA. The stage II generates false measurements supposed to be uniformly distributed in hyperellipsoid.

This is accomplished as follows :

1. Stage I : Poisson Random Generator (PRG) to generate mFA

2. Stage II : Generation of mFA random points uniformly distributed in gate
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– Obtain the orthogonal matrix L such that

L−1S−1L =















λ1 0 0 . . . 0

0 λ2 0 . . . 0

...
...

. . .
...

...

0 . . . 0 λnz−1 0

0 . . . 0 0 λnz















where each λi, 1 ≤ i ≤ nz, is an eigenvalue of the matrix S−1 and λ1 ≤ λ2 ≤ . . . ≤ λnz .

– l = 1

– Repeat until l > mFA

– Form the vector x = [x1 . . . xnz ] where

– x1 ∼ U [−
√

γ/λ1,
√

γ/λ1] and

– for 2 ≤ i ≤ nz, xi ∼ U [−
√

τi/λi,
√

τi/λi]

– with τi = γ − λ1x1 − . . .− λi−1x
2
i−1

– z̃(l) = Lx (or equivalently z(l) = Lx + ẑ)

– l = l + 1

where γ is the gating threshold and x ∼ U [a, b] means that x is a real random variable uniformly distri-

buted in the interval [a, b]. z̃(l) is the l-th innovation generated in the validation gate by the algorithm.

The l-th false measurement is obtained by adding the center of the gate ẑ to z̃(l) ; i.e. z(l) = z̃(l) + ẑ.

This algorithm outperforms Li’s algorithm [Li92b] in term of computation cost because it does not

require an indefinite number of iterations since not rejection test is necessary. The first drawback of this

algorithm is its necessity to compute S−1 and sort all eigenvalues of S−1. This first step of stage II can

become actually very difficult to achieve with good precision as already reported in [Li92b]. Usually, this

requires a lot of computations when dimension of measurement space becomes high. The second and

most important drawback of HF algorithm is its reliability. Actually, the random points generated by

HF algorithm appear to be not uniformly distributed in the gate (see following examples). All results

reported here have been obtained with the generic Matlab routine (HFalgorithm.m) given in the appendix

to convince the reader about these concluding remarks and results.

Simulation results of random points generated by HF algorithm

We present here three results of random points generation obtained by HF algorithm in 2D measure-

ment space (nz = 2). The gating probability Pg has been set to 0.99 which imposes the following gating

threshold γ ≈ 9.2103. The number of points generated in each validation gate has been arbitrary chosen

to mFA = 10000. The center ẑ of gates has been taken at ẑ = [100 100]′. The simulation results presented
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on figure 9.2 correspond to the three choices of covariance matrices for S

S1 =




1 0

0 1



 S2 =




1000 500

500 1000



 S3 =




1000 −500

−500 1000





As we can easily observe, random points generated by HF algorithm cover the entire validation gates.
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9.2.2 : Gate 2 : S = S2
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Fig. 9.2 – Simulation results of HF algorithm (nz = 2, Pg = 0.99 and mFA = 10000)

However, simulation results show also that the false alarms are actually not exactly uniformly distributed

in gates since there are two regions (darker areas on figures) in each gate which have a higher spatial

density. This can be observed at left and right side of x-axis for gate 1 and at extremities of major axis

of gates 2 and 3. This clearly indicates that practical use of HF algorithm is questionable. To overcome
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this drawback, we propose a new efficient algorithm which is more reliable both in term of uniformity, in

term of computation burden reduction and which does not require inversion of S.

9.1.4 A new efficient algorithm

Theoretical development of the new algorithm

As in previous algorithms, our new algorithm consists of two stages. The first stage generates the

Poisson-distributed number mFA of false validated measurements in the hyperellipsoid under considera-

tion with some existing PRG algorithms [Rub81, BFS83, Dev86]. In our Matlab simulations, we simply

use the poissrnd function of Matlab statistics toolbox for stage I. The stage II, which generates mFA

false measurements uniformly distributed in hyperellipsoid, is now presented.

Consider the hyperellipsoid in R
nz defined by Vnz(γ) , {z̃ ∈ R

nz : z̃′S−1z̃ ≤ γ} where S is a real

symmetric positive definite matrix. This ellipsoid is equivalent, by denoting x , z̃/
√
γ to ”unit” ellip-

soid Vnz(1) , {x ∈ R
nz : x′S−1x ≤ 1}. As already recalled in section 2.2, since S is a real symmetric

positive definite matrix, there exists a square matrix T such that S = TT′ ⇔ S−1 = T′−1
T−1 Using

the following linear transformation y = T−1x, one has x′S−1x = y′y. Consequently, if y is uniformly

distributed in unit hypersphere Vnz
s (1) = {y ∈ R

nz : y′y ≤ 1}, then x = Ty will be uniformly distributed

in ”unit” ellipsoid Vnz(1) because of linear mapping between x and y and therefore z̃ =
√
γx will be

uniformly distributed in validation gate Vnz(γ) which is what we are looking for. Hence, our problem

is mathematically equivalent to the problem of generation of random points uniformly distributed in

hypersphere Vnz
s (1). The solution of this problem is however well established in the milestone book of L.

Devroye [Dev86] (Chapter V, section 4) and we present now the algorithm for generating points in Vnz
s (1).

We first recall basic definitions and theorems about radially symmetric random variables in R
nz . A

random vector u ∈ R
nz is radially symmetric if Au is distributed as u for all orthonormal (rotation)

nz × nz matrices A. If moreover Pr{u = 0} = 0, then u is said to be strictly radially symmetric. u is

uniformly distributed on unit hypersphere Vnz
s (1) when u is radially symmetric with ‖u‖= 1 (‖.‖ being

the standard L2 norm). The density p(u) of any radially symmetric random variable u is necessarly of

the form g(‖u‖) such that
∫ ∞
0 nzV

nz
s rnz−1g(r)dr = 1 where V nz

s = (π)
nz
2 /Γ(nz

2 + 1) is the volume of

unit hypersphere derived in (9.19). g(.) is called the defining function of radial density p(u).

The generation of random points uniformly distributed on Vnz
s (1) can be easily obtained via nor-

mal random variates as follows [Dev86] : each random point ui (i = 1, . . . ,mFA) is generated by

drawing nz iid normal random variates u1, . . . , unz , computing s = (u2
1 + . . .+ u2

nz
)
1/2

and returning

ui = [u1/s, . . . , unz/s]
′. The radial transformation theorem [Dev86], states that :
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a) if u is strictly radially symmetric in R
nz with a defining function g(.), then r = ‖u‖ has density

p(r) = nzV
nz
s rnz−1g(r).

b) if u is uniformly distributed on Vnz
s (1) and r is independent of u and has pdf p(r) above, then ru

is strictly radially symmetric in R
nz with defining function g(r).

A random vector is uniformly distributed in Vnz
s (1) when it is radially symmetric with defining function

g(r) = 1/V nz
s (1) for 0 ≤ r ≤ 1 and g(r) = 0 for r > 1.

We give here the proof of statement b) not provided in [Dev86]. If we consider a random vector u

uniformly distributed over Vnz
s (1) and a random variable r uniformly distributed in Vnz

s (1) with p(r) =

nzr
nz−1, then we want to prove that z = ru is uniformly distributed in Vnz

s (1) which is equivalent to

prove p(z) = 1
V nz

s (1)
1Vnz

s (1) (where 1a denotes the indicator function on set a). Consider now the following

pdf p(u) = 1
T (ε)1T (ε) defined in hypertorus T (ε) , {u ∈ R

nz : 1 − ε ≤ ‖u‖≤ 1 + ε} having volume (by

setting S = I and γ1/2 = 1 + ε in (9.17)) T (ε) = cnz [(1 + ε)nz − (1 − ε)nz ] ' 2εnzcnz when ε → 0.

Now, consider the pdf of z which can be expressed as p(z) =
∫ 1

0
p(z = ru)p(r)dr. By taking into account

previous expressions for p(u) and p(r), p(z) can equivalently be expressed as

p(z) = lim
ε→0

1

T (ε)

∫ 1

0

nz

rnz
1T (ε)r

nz−1dr = lim
ε→0

nz

T (ε)

∫ 1

0

11−ε≤‖u‖≤1+ε
1

r
dr = lim

ε→0

nz

T (ε)

∫ ‖z‖
1−ε

‖z‖
1+ε

1

r
dr × 1‖u‖≤1

by integration, one gets

p(z) = lim
ε→0

nz

T (ε)
log[

1 + ε

1− ε
] × 1‖u‖≤1 ' nz

2εnzcnz

2ε× 1‖u‖≤1 =
1

cnz

1‖u‖≤1 ≡ 1

V nz
s (1)

1V nz
s (1)

which completes the proof.

From the previous theorem, the following steps allow to generate random point y uniformly distributed

in Vnz
s (1) :

1. generate a random vector u uniformly distributed on Vnz
s (1)

2. generate a scalar random variate r with density p(r) = nzr
nz−1

3. return y = ru

To generate r (0 ≤ r ≤ 1) following pdf nzr
nz−1 in previous step 2, we use the standard inverse method

[Rub81, Pap84] as follows. The repartition function associated with p(r) is

v , F (t) = Pr{r ≤ t} = nz

∫ t

0

rnz−1dr = tnz

and its inverse is equal to F−1(v) = v1/nz. Hence, the generation of r ∼ p(r) is easily obtained by

generating F−1(v) with v ∼ U([0; 1]).

Summary

We give here the summary of our new algorithm for generating random points uniformly distributed

in hyperellipsoid Vnz(γ).
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1. Stage I : Poisson Random Generator (PRG) to generate mFA

2. Stage II : Generation of mFA random points uniformly distributed in gate as follows

– generate iid points ui (i = 1, . . . ,mFA) uniformly distributed on unit hypersphere Vnz
s (1). Each

point ui is generated by drawing nz iid normal random variates u1, . . . , unz , computing s =
√

u2
1 + . . .+ u2

nz
and returning ui = [u1/s, . . . , unz/s].

– generate, independently of ui, scalarri = v1/nz (i = 1, . . . ,mFA) with v ∼ U([0; 1]).

– compute yi = rui (i = 1, . . . ,mFA). yi is uniformly distributed in Vnz
s (1).

– compute square root matrix T of S using Cholesky factorization (S = TT′).

– compute xi = Tyi (i = 1, . . . ,mFA).

– return (false alarms) zi =
√
γxi + ẑ (i = 1, . . . ,mFA).



216 CHAPITRE 9. ARTICLES COMPLÉMENTAIRES (ANGLAIS)

Simulation results of random points generated by the new algorithm

We present on figure 9.3 the results of random points generation in 2D measurement space obtained

with our new algorithm (provided in appendix for convenience) with same parameters as before (nz =

2,Pg = 0.99, mFA = 10000, ẑ = [100 100]′) with

S1 =




1 0

0 1



 S2 =




1000 500

500 1000



 S3 =




1000 −500

−500 1000




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9.3.2 : Gate 2 : S = S2
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Fig. 9.3 – Simulation results of new algorithm (nz = 2, Pg = 0.99 and mFA = 10000)

Simulations results on figure 9.3 show the better quality of spatial uniformity of random points gene-
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rated by our new algorithm with respect to the uniformity obtained by HF algorithm on figure 9.2. This

”visual” conclusion is reinforced by uniformity test results presented on next figure 9.4.2.
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Fig. 9.4 – Performance comparison of the new algorithm vs. HF algorithm

The comparison of the averaged number of Matlab flops (floating point operations) of the two algo-

rithms with variation of measurement space dimension nz is plotted on figure 9.4.1. These results are

based on 10 Monte Carlo runs for each value of nz. Each run consists in random generation of covariance

matrix S with dim(s) = nz × nz and generation of mFA = 5000 false alarms per gate. Results indicate

the O(n3/3) complexity of our new algorithm with measurement space dimension. The charge of com-

putation is mainly due to Cholesky factorization step involved in our algorithm which requires O(n3/3)

arithmetic operations. All other steps of our algorithm require only O(n) operations. For small values of
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measurement space dimension (nz ≤ 3) the HF algorithm seems to require less amount of flops than our

new algorithm. The difference of computation load between two algorithms is however not that much.

When the dimension nz increases, our algorithm however outperforms drastically HF algorithm in term

of computation loads. We point out the fact that our algorithm does not require the inversion of matrix S

but only Cholesky factorization of S. The number of flops for matrix inversion have not been taken into

account for complexity evaluation of HF algorithm. If this had been done, its complexity would become

greater than the complexity of our algorithm even for small measurement space dimensions. On figure

9.4.2, we present the results of the following uniformity test applied to both algorithms (with parameters

S = S3, mFA = 10000 and Pg = 0.99). For any given real symmetric definite positive matrix S and

positive threshold γ, we consider the full gate volume V nz (γ) and any enclosing gate V nz(γ1) < V nz (γ)

with γ1 = rγ, (0 ≤ r ≤ 1). The ratio of two volumes V nz(γ1)/V
nz (γ) is then exactly equal to rnz/2. If the

random points are exactly uniformly distributed in V nz(γ), all of them included in any V nz(γ1) < V nz (γ)

must be necessary uniformly distributed in V nz (γ1) and therefore the ratio ρ̂ of number of points n1 in

V nz(γ1) over the total number mFA of points generated in V nz(γ) must be theoretically equal to rnz/2.

In 2D measurement space, if the algorithms are well designed, one should get the straight line ρ̂ ' r for

r varying in [0; 1]. Simulation results clearly indicate the poor performance obtained by HF algorithm by

using such empirical uniformity test. This confirm our previous ”visual” conclusion about HF algorithm

given in section 3.1. On the contrary, the new algorithm provides uniformity performances which appear

to be very close to optimality.

9.1.5 Conclusion

We have presented in this paper a new efficient algorithm for generating directly random points uni-

formly distributed in hyperellipsoid defined by [z − ẑ]′S−1[z − ẑ] ≤ γ. This algorithm outperforms all

previous existing methods in term of computation savings (since computation of S−1 and computation of

eigenvalues of S−1 is not required), in term of quality of uniformity obtained and in term of complexity

(O(n3/3)). The choice of this new method is highly recommended specially in multitarget tracking re-

search area for running Monte Carlo simulations requiring an efficient and fast way to generate false

measurements in validation gates.

9.1.6 Matlab routines

We provide here only stage II of the HF and new algorithm. The stage I can be easily accomplished

by using poissrnd function of statistics toolbox of Matlab (if available) or by implementing one of PRG

described in [Rub81, BFS83, Dev86].

Generic Matlab implementation of HF algorithm
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1 %∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

2 function [ z fa ]=HFalgorithm(Gamma Threshold,S inv,z hat,m FA)

3 %∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

4 % This routine implements the T.J. HO and M. Farooq algorithm for

5 % generating random points uniformly distributed in hyperellipsoid .

6 % Inputs: Gamma Threshold = Gating threshold (>0)

7 % S inv = inverse of covariance matrix S (dim(S)=nzxnz)

8 % z hat = center of the gate (dim(z hat)=nzx1)

9 % m FA = number of false alarms to generate in the gate

10 % Output: Z fa = [z (1),... z(mFA)] set of FA generated by HF algorithm

11 %∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

12 [V,D]=eig(S inv); % Decomposition inv(V)∗S inv∗V=Diag(eigenvalues)

13 [Y,I]=sort(diag(D)); % Sorting of eigenvalues by ascending order

14 A=diag(Y,0); % Diagonal matrix of sorted eigenvalues

15 L=V(:,I); % Permutation of eigenvectors corresponding to eigenvalues

16 z fa =[];nz=size(z hat ,1);

17 for l=1:m FA

18 x(1)=sqrt(Gamma Threshold/A(1,1))∗(2∗rand−1);

19 for i=2:nz

20 Tau i=0;

21 for j=1:i−1, Tau i=Tau i+A(j,j)∗(x(j)ˆ2);end

22 Tau i=Gamma Threshold−Tau i;

23 x(i)=sqrt(Tau i/A(i,i))∗(2∗rand−1);

24 end

25 z fa=[z fa (L∗x’+z hat)];

26 end
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Generic Matlab implementation of the new algorithm

1 %∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

2 function [ z fa ]=New Algorithm(Gamma Threshold,S,z hat,m FA)

3 %∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

4 % This routine implements the new algorithm for generating random

5 % points uniformly distributed in hyperellipsoid for nz>=2.

6 % Inputs: Gamma Threshold = Gating threshold (>0)

7 % S = Covariance matrix S (dim(S)=nzxnz)

8 % z hat = center of the gate (dim(z hat)=nzx1)

9 % m FA = number of false alarms to generate in the gate

10 % Output: Z fa = [z (1),... z(mFA)] set of FA generated by new algorithm

11 %∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

12 nz=length(S);

13 X Cnz=randn(nz,m FA);

14 X Cnz=X Cnz./kron(ones(nz,1),sqrt(sum(X Cnz.ˆ2))); % Points uniformly distributed on hypersphere

15 R=ones(nz,1)∗(rand(1,m FA).ˆ(1/nz)); % Points with pdf nz∗rˆ(nz−1); 0<r<1

16 unif sph=R.∗X Cnz; % m FA points in the hypersphere

17 T=chol(S); % Cholesky factorization of S => S=T’T

18 unif ell =T’∗unif sph; % Hypersphere to hyperellipsoid mapping

19 z fa=(unif ell ∗sqrt(Gamma Threshold)+(z hat∗ones(1,m FA))); % Translation around gate center

9.2 Interview of Professor Bar-Shalom

The following interview entitled ”Everything You Always Wanted to Know About Professor Bar-

Shalom” has been was conducted during the Banquet at the Workshop on Estimation, Tracking, and

Fusion - A Tribute to Yaakov Bar-Shalom for his 60th Birthday, Naval Postgraduate School, Monterey,

California, USA, May 17, 2001 [DBC+01] and a conference report written by Professor Peter K. Willett

can be found in [Wil02].

9.2.1 Introduction

Professor Bar-Shalom, for the last 30 years, your name has been inseparably associated with MS-MTT

(Multi-Sensor Multi-Target Tracking) ; no researcher working in the field can ignore your name and your

contributions to the advancement of the tracking field, published in more than 290 papers, 7 books, 19

book chapters, and accorded with many distinctions. Although most researchers in the tracking area know

you quite well professionally, very few people know your personal/human sides. We are very pleased to

contribute here another look at you. We thank you heartily for having accepted this interview, and we
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hope that readers will enjoy it as much as we have.

9.2.2 About Your Name

1. Could you tell us the meaning of your name ?

It means son [Bar (in Aramaic)] (of) peace [Shalom (in Hebrew)]

2. A quick web search of your name reveals that you are number 2982 on the list of

the top 10000 most cited researchers in Computer Science (January 2001). Have you

thought of joining the computer science department ?

I don’t want to give a bad reputation to estimation. . .

What is your favorite programming language ?

The last time I programmed was in Fortran (20 yrs ago. . .)

3. We learned that your first name has something to do with tracking. What is that

exactly ? Do you think that has anything to do with the fact that you are a pioneer

and an unquestionable world leader in tracking area ?

Yaakov in modern Hebrew means “he shall track”. The original meaning comes from Jacob (the

3rd patriarch, son of Isaac) who was born “holding the heel” of his brother Esau. The etimological

explanation is “following in the heels of. . .”, which became tracking. I also happen to believe in the

causality between the given name of a person and this person’s profession.

9.2.3 About Your Childhood and Your Family

1. You were born in Timishoara, Romania on May 11, 1941 during the second World

War period. Could you tell us more about your early childhood ? Do you have pleasant

recollection of good times of this period or was it to your memory only a very bad

period ?

Fortunately we were spared from Nazis’ plans of exterminating all the Jews. The Romanians, even

though they were allied with the Nazis, did not let them take over. Fortunately, the antisemitism

of those in power was exceeded by their corruption. They changed sides towards the end of WWII

when it became clear which side is winning and fought with the same enthusiasm as before. My

only memory from the war time is that once I decided to take a walk out of a bomb shelter where

everybody went when RAF bombers were flying over Timishoara on their way to the Romanian oil

fields. Eventually, my father found me and was not very happy.

2. Could you tell us a few words about your family ? What were your parents doing ? Are

you from a scientist’s or artist’s family ? How many brothers and sisters do you have ?
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My father was an antiquities merchant and accountant later. He was good with numbers. My mother

raised my sister and me reminding us that success in life requires hard work in school. My sister,

who is a psychologist, sent me a 140,000,000 year old fossil as the LX birthday present – to make

me feel young.

3. When did you move to Israel and under what conditions ? How long did you stay

there ?

After my father realized that there is no future for us under communism, we moved to Israel in

1960. After getting my B.S. in 1963 and M.S. in 1967 from the Technion, I came to Princeton for

the Ph.D.

4. Were you a quiet and studious little boy ?

I was very quiet after my first electrical engineering experience at age 6 : I threw some old batteries

behind our house and they ended up breaking the neighbors’ window. Before this, at age 5, I

showed my mechanical engineering capabilities when I hammered very thoroughly the living room

furniture ; my parents’ quiet reaction shamed me into channeling my excess energy in a different

direction.

5. What did your teachers think of you and your future career ?

My high school math teacher said that he will teach me a lot so I will learn a little.

6. Did you always prefer math and physics, or did your prefer to learn literature and

arts ?

I could never write a decent literary composition, was never good at arts (even though I enjoy both)

so the only thing left was math and science (with the exception of chemistry, which I flunked as a

freshman). I learned to enjoy art from the history of art course I took as a senior at the Technion,

after which I was fortunate to spend the summer in Europe marveling at the masterpieces I just

studied.

7. What did you dream to become when you were very young ?

At age 5 I wanted to become a chauffeur, at age 7 a pilot. I realized these dreams after 15 and 35

years, respectively. The pilot license I got at the Navy Flying Club in Monterey.

8. Do you consider yourself as an ex-prodigy, as did Norbert Wiener ?

I am a slow study – by now I am probably at the level to be considered a child prodigy.

9. Your son, Michael, is eleven now. Are you going to push him to follow your footsteps

to have a distinguished career in engineering ? Are you prepared for the teenager

rebellion?

He is only ten, but recently he intimated to me that he hopes he did not inherit my engineering

genes. I guess he already started his teenage rebellion.
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10. What else can you tell us about your family ?

My wife is a Ph.D. in linguistics and she keeps correcting my word order in English. My daughters

did not follow in my footsteps – since I flunked chemistry as a freshman, both of them majored in

chemistry. After that, they became so motivated that one of them is a Ph.D. in biochemistry, the

other is a veterinarian.

11. Do you consider yourself a religious person ?

I like tradition, and religion is a part of it. As far as the strict religious observance, my uncle in NY

does it for the whole family.

12. You are one of the most humorous persons we know, did you get this from your

parents ?

Humor was (and is) a necessity of life. It is also a tradition : does anybody know why Jews like to

answer a question by another question ? Why not ?

13. What are your favorite readings ?

The biography of Churchill by William Manchester. The Roman Republic series of historic novels

(from Gaius Marius to Caesar) by Colleen McCullough.

14. What’s your favorite quotation ?

Keep things as simple as possible but not simpler (A. Einstein)

9.2.4 About Your PhD Study

1. Your Ph.D. dissertation is curiously never referenced in your very first papers, nor

afterwards. Was this a deliberate or accidental omission ? What was your Ph. D. dis-

sertation about ?

An obscure controller.

2. To be fair, do you consider that this work was excellent, very good or good enough ?

I would not give today a Ph.D. for this work. It was deemed good enough to get a Ph.D. at the

time.

3. Who was your Major advisor ?

Stuart Schwartz, who taught me to pursue an approach even if not ideal and evaluate it at the end.

4. Did you have a good relationship with him?

Yes. He also taught me to shoot for long flat shots in tennis.

5. Who also was a Ph.D. student there at same time, and had a distinctive career ?

Tony Ephremides, now at UMD, well known in Information Theory (as well as in sailing).
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6. Do you have funny stories about your Ph.D. time ? Were they the Best Years of Your

Life, as UConn claims to all of its students ?

One snowy day at Princeton I ran into Tony Ephremides stuck with his newly acquired used car

with bald tires in snow. I rescued him from being stuck forever (that’s what he still thinks) by

bumping into his car with mine. The bumpers were already rusty so the additional damage was

undetectable.

7. You got your B.S.E.E and your M.S.E.E at the Technion (Israel Institute of Techno-

logy) when you were 22 and 26 years old respectively. How did you make the choice

to follow a scientific track/career ?

I always thought electricity should be fun. But then I found out that estimation/tracking is even

more fun.

8. Was your choice influenced by some other famous scientists in the area ? Who were

the eminent Professors who were teaching at the Technion at that time ?

The first teacher who gave me a taste of research was my EM fields teacher Remus Raduletz in

Romania, where I studied at the Polytechnic Institute of Bucharest until they kicked me out because

we wanted to leave the country. He had his Ph.D. from ETH, Zurich, where Einstein studied. He

taught me the rigor of Maxwell’s equations as well as the Greek alphabet (he was named after one of

the founders of Rome and the Romans had a great appreciation for the classical Greek education).

At the Technion, Jack Ziv (who later invented, together with a classmate of mine, Abraham Lempel,

the code used today by practically everybody without even knowing it – fax machines are based on

it) taught me probability theory.

9. You moved to the USA to pursue your Ph.D. degree. When did you move to USA ?

Why did you choose this country ? Were you recommended by somebody, or was it

difficult to find financial support by yourself ?

My M.S. advisor at the Technion, Raphael Sivan, set the example by getting his Ph.D. at Berkeley.

My predecessors at Princeton (Abe Haddad and Elias Masry) gave a good reputation there to the

Technion graduates, which I could not dispel.

10. How did you choose Princeton University and why ? Did you consider some other

places at the same time?

I sent several applications to different places indicating that when I will finish my M.S. thesis I

will publish it in a journal, but this was not taken seriously by most places. The paper from my

M.S. thesis eventually appeared in IEEE T-AC while I was still working for my Ph.D. I also tried

to apply to Berkeley but I did not get the forms on time. Two weeks before the deadline, I had a

suspicion that they sent them by surface mail, so requested another set by air mail. Long after the

deadline passed, I got two sets of forms by surface mail. Eventually the only place that offered me
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an assistantship was Princeton.

11. Richard Bellman was one of your famous predecessors at Princeton. He completed his

Ph.D. in a record time of three months and has published more than 600 papers and

38 textbooks. He had already left Princeton when you got there. Have you been in

some way influenced by his work ? Did you hear any stories about him?

I did not hear much about him until I got to my first job at Systems Control in CA. One day he was

invited to give a seminar in the morning and he was late – eventually he made it by the afternoon.

Apparently he needed some extra time to finish book number 33 that he started the day before. I

have to confess that I plagiarized one of his footnotes (about the principle of perversity of inanimate

objects) but I referenced him.

12. Did you already plan to become a Professor ?

No University wanted me until 1976.

13. Where did you arrive for the first time ? What was your first impression at your arrival

and a few months after your arrival in U.S. ? Was it difficult to live and to understand

the new way of American life ?

The taxicab driver who took me from Kennedy airport to my uncle in NY said “You can’t be a

student in the US, you don’t speak no English”.

9.2.5 About Your Industry Years

1. After completing your Ph.D. study in 1970, you worked as a Research Scientist/En-

gineer for Systems Control, Inc. until 1976 in California and you have been at same

time part-time lecturer at University of Santa Clara. Why did you choose to go to

work for Industry ? Was it too difficult to find an academic position in some American

universities ? Was your choice guided by a financial and/or family reason ?

Following the landing on the moon in ‘69, the NASA budget crashed, with most of the aerospace

industry and University research following, and there were very few jobs in anything related to

space and control (at the time I thought I was still in control). As an aside, a colleague and friend

(Alex Levis, who is now Chief Scientist of the USAF) said that I would not have made it for tenure

if I went directly into an academic position. I think he is right and I happened to be very lucky to

join Systems Control.

2. Systems Control was almost like the Xerox PARC in control and estimation (excellent

people, great ideas but cannot capitalize on the ideas). Can you tell us about what it

was like to be at SCI in those days ?

It was an unusually stimulating environment. I learned there more than in grad school.
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3. Who were your colleagues at SCI and where are they now ?

The following graduates of SCI should be mentioned :

– Raman Mehra –Harvard, then President of SSCI

– Atif Debs – Georgia Tech

– Edison Tse – Stanford

– Howard Weinert – Johns Hopkins

– John Casti – U. of Portland, then Courant Inst., then U. Arizona

– Dave Kleinman – UConn, now at NPS (claims to be retired)

– Kent Wall – UVA, then NPS

– Alex Levis – MIT, then GMU (now USAF)

– Adrian Segall – MIT, then Technion

– Ben Friedlander – UC Davis, then UCSC

– Richard Wishner – President of ADS (originally named AIDS ; bought out by BAH), then DARPA

– Narendra Gupta – President of ISI (of MatrixX fame)

– Robert Larson – VP, then President of SCI, President of IEEE, now Silicon Valley venture

capitalist

4. How did you get into target tracking ?

A colleague was trying to debias an EKF for reentry vehicle tracking and I noticed that the true

initial range was 100kft, the initial estimate was 80kft and the initial variance given to the filter

was 106 (that is 20 sigma !). Changing the 106 to 108 immediately eliminated the bias !

5. Do you have any comments about your bosses at the time ? Anybody like Dilbert’s

manager ?

My direct boss wanted to keep PDAF proprietary. However, when he went on vacation, I got the

signature of the VP to publish it. This boss had 2 years until the paper appeared, but never made

any effort to promote it. Another boss told me that whenever they hint at a problem, I go too far

in solving it. . .

6. Have you ever given thought to returning to Israel, for example to get a position at

the Technion or in some other famous University there ?

Yes, but I never got an offer from the Technion. When I got an offer from Univ. of Tel Aviv I wanted

it at the Associate level but it was for a Senior Lecturer, so I chose to stay at SCI. The following

year I got the offer I was looking for from UConn.

7. When exactly did you decide to switch to academia, and why ?

When my newly arrived boss asked me in 1975 to solve a problem I already solved years ago

unbeknownst to him, I just gave him the report I wrote on it in 1971 and took it as a sign that it is

time to leave for new pastures. In 1974 Dave Sworder told me that in 2 years I will be in academia
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– he had a perfect prediction algorithm.

8. When did you apply for position at University of Connecticut ? How did you choose

UConn ? Was it difficult for you to move from the West Coast to New England ?

Dave Kleinman called me one day in 1976 if I am interested in an interview at UConn. The first

offer went to somebody else (with more papers than me at the time), but he preferred to start his

own company, so I ended up in New England.

9. During the years 1982-1984 you’ve been visiting Professor in Stanford and the Naval

Postgraduate School, Monterey. Can you describe your experiences there ?

Following my divorce in New England I felt like going back to Palo Alto, so I ended up at Stanford. I

met my wife in Los Angeles after a seminar at UCSD during that time, so I quickly decided to spend

another year in CA before I dragged her to CT (she still prefers CA, except for the earthquakes).

10. Was UConn your first choice ?

The only one.

11. Among the technical projects that you worked on at Systems Control, are there any

that you’d like to share, or that you are particularly proud of ?

My best work in control was the “Dual Effect, Certainty Equivalence and Separation” paper, which

drew a distinction between Certainty Equivalence and Separation in stochastic control and showed

that, for a class of problems, Certainty Equivalence holds iff the control has no dual effect. Otherwise

the PDAF (Probabilistic Data Association Filter) – in addition to several fielded radar tracking

systems it has found applications in image tracking as well as wireless communication.

12. Did you invent the PDAF at Systems Control ? If so, what was the reaction of your

colleagues and employers ? Did you know at the time how important it would be ?

My project manager was ready to fire me because I was spending time on senseless things. He asked

a highly paid consultant at the time to evaluate my work and he said that it makes sense. The real

proof of how he valued it was when he later published a similar approach from his consulting work

at another organization.

13. In its early days, did you think that PDA would achieve its present-day prominence,

with applications not only in target tracking, but also in many other areas ?

I felt there is something to it, but nothing like you are implying.

14. What do you see as the limits of PDA ?

One limit is the Cramer-Rao Lower Bound. The rest is up to the ingenuity of the many people

working on problems where estimation in the presence of continuous and discrete uncertainties is

needed.
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15. Did you ever implement any of the algorithms, for example the PDAF, which you

invented ?

If you promise to keep this confidential : never (why ruin a good thing ?).

16. You made some outstanding contributions in stochastic control area, particularly dual

effect and dual control. In fact, you were a leading expert in that area in 1970s. What

was the driving force for your shift of research focus from that area to tracking area ?

Murray Wonham from Toronto wrote a paper stating (approximately) that “stochastic control can

only change the system performance from very bad to bad”. First I insisted on proving him wrong,

but eventually I succumbed to the obvious. My work in control did not have even 1

17. Why are you out of control these days ?

For some reason, I got interested in useful things. The rest is a corollary. However, I still enjoy

controlling vertical airfoils and foot supports on crystals.

9.2.6 About Your Students and Your Research

1. Up to now, you have been Major Advisor to seventeen Ph.D. students with degrees

awarded at the University of Connecticut. Many of your former Ph.D. students are

very active in the tracking research area. Are you very proud of the careers of your

Ph.D. students ?

Absolutely, I could not have accomplished (almost) anything significant without them.

2. In general, do you have good relationships with your former Ph.D. students ?

Of course. One of them, in his last email to me, sent me the Melissa virus.

3. Many people who had the honor to work with you have been impressed with your

deep insight about practical problems and with the keenness by which you search for

solutions. Are the applications the starting point for your research ? If so, are there

any criticisms about that ?

I am sure that some people feel that without measure theory there can be no important work.

However, I have a filter that blocks out such noise. Some people make a living from data mining –

I prefer problem mining.

4. How many post-doctoral visitors have you hosted in your ESP lab ?

– Alain Houles – formerly with the French Navy, now with NATO

– Claude Jauffret – formerly with the French Navy, now Univ. of Toulon

– Jean Dezert – ONERA, France

– Chun Yang – Sigtem Technology

– Eli Oron – Israel Aircraft Industries
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5. During your career, have you had the opportunity to meet and talk with Professor R.

Kalman ? Did he influence your research ?

I never talked to him. He talks only to God. When he was (still) doing reviews for IEEE T-AC,

according to a former Editor of this journal, he used to classify all papers in three categories :

Trivial, Wrong or “I’ve done it”. My encounter with his March 1960 paper on what became known

as the Kalman Filter was fairly long : I plowed through it on my own in 1966 (during my military

service in Israel) and it took me two weeks just to understand his notation of the norm of a vector

w.r.t. a matrix.

6. Have you observed a strong modification of the interests in this research field since the

end of cold war, and especially since 1989 after the fall of Berlin wall and ex-USSR ?

If so, is this effect in your opinion more beneficial or detrimental for the research area

(from the scientific point of view) ?

It’s back to the big time for tracking but with one difference : you can’t publish papers on scalar

systems and you have to show relevance to some real problem.

7. If you were able, like Dr. Frankenstein, to construct an ideal student, how would he

or she be constituted ?

Such a student would write in 3 months 3 seminal papers that I would not need to proofread (neither

for the math, nor for the English). Anybody noticed the wrong word order ?

8. Thinking back, which period is the most important in your career ?

Curiously, I felt more productive in the last few years than ever before. Did anybody notice that car

manufacturers use LX for their luxury versions ? When you get to be LX there is a lot of experience

you can take advantage of and enjoy it.

9. You have made so many great contributions, which one do you think had the greatest

impact ? Which one are you most proud of ?

The IMM (which is really not mine – it was invented by Henk Blom).

10. In tracking and data fusion area, what topics do you think are most important ? What

is the future of the area ?

Find practical and efficient algorithms that fuse kinematic and feature data from improperly re-

gistered moving sensors (with biases, finite resolution, strange noises) about a large number of

hard-to-describe nonstationary targets in a heterogeneous cluttered environment. Predictions are

hard (especially about the future) but I believe the future is bright (technically) for this area.

11. Have you instilled upon your students any bad habits ?

(a) To drive fast.

(b) To have high standards in reviewing papers (which, as journal editors, they applied to me. . .)
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(c) To charge properly when they consult (some companies think this is a bad habit).

12. Do you have some funny stories to tell us ?

One day, in the heat of advising a Ph.D. student on an interesting problem, I emptied my pipe

into the trash can behind me and after a couple of minutes I felt an unusual heat in my back – the

papers in the can were on fire. Turning the can upside down solved this problem.

9.2.7 About Your Leisure

1. Let us talk now about your leisure. Almost all your close friends and colleagues know

you love good wine and very spicy food. Where does this desire come from ? Do you

cook yourself during your leisure time, and if so what is your favorite recipe ?

Oenology was one my sabbatical projects. The desire for spicy food probably comes from growing

up with a rather mild style of cooking. Blackened catfish is a favorite.

2. We think that your ability to stomach hot food exceeds that of anyone I know. Who

else is in your league when it comes to chili peppers ?

A former student (from a famous spice country) survived Salsa Fuego at Denver International

Airport (with only a major stomach upset) after it floored me.

3. You like exotic food a lot. What is your favorite cuisine ?

I am on a seefood diet – I eat every food I see.

4. Your other passion is sailing, and you are a good sailor according to people who have

already gone for a sail with you (and who are usually not so familiar with sailing). When

did you learn sailing and where ? Have you ever participated in a sailing competition ?

What is your worst memory of sailing ? What kind of sailing boat do you have/prefer

(old ones or high-tech ones) ?

At the 1979 IT Symposium in Italy Judea Pearl (from UCLA) suggested that we go sailing (he said

he’ll show me) and after we found a boat (in what was Yugoslavia at the time) he gave me the 5

minute lesson and jumped in the water to take a closer look at some topless girls. I managed to

circle for a while and pick him up eventually. Two weeks after that I bought my first sailboat. It

took 20 years to get the second one.

The highest tech boat I sailed on is the America’s Cup winner Stars and Stripes – I did not sail in

the Cup, only in the St. Martin 12m regatta where I qualified as a lowly crew.

I have no bad memories of sailing, just difficulty in communicating with a green crew. I am still

learning how to do this more efficiently. The closest I got to a rock was under the Golden Gate

Bridge when my crew were looking backwards and when I said “release right sheet” the port (left)
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sheet was released. Since then I use only sailing terminology, to the dismay of my (sometimes green)

crew.

5. You have been sailing all over the world ; where is your favorite place and why ?

San Francisco – they have every afternoon in summer a small craft warning.

6. During the winter you love skiing. Are you a very reckless skier ? What kind of skiing

do you prefer ?

I had many days when I took no spills, so I am probably not reckless enough. I prefer downhill

skiing because, as a lazy person, I would rather let nature (gravity in this case) do most of the

work.

7. What other sports do you take part in ?

Sometimes I let some of my young (quadrigenarian) colleagues beat me at tennis.

8. How do you spend your leisure time when you aren’t on a boat or skiing ?

Reading National Geographic or a good book and listening to classical music.

9. How many weeks of vacation do you take on average per year ? During this time, does

your mind succeed fully to leave the tracking area ?

Two official weeks. The rest depends on how many weeks I attend conferences in a year. Since I am

out of control, I cannot control my mind either.

10. How would you characterize your driving : like sailing, adventurous, fast (I mean really

fast) or just normal ?

Very sedate. I always obey the old (pre 1974) Montana speed limit (“reasonable and proper”).

11. Any tips if one is caught speeding on the highway and is about to get a ticket ?

Say you were rushing to the nearest exit to find a bathroom, then ask the cop if he minds if you go

to the second nearest tree while he writes the ticket.

12. At one time, you tried to learn how to fly, but some accident happened. What is the

story ?

I learned what the propeller steering torque can do (in a souped-up Cessna 152) in the same way

as the Admiral who was the boss at the Naval Postgraduate School (a former fighter pilot) at the

time. If you do not apply enough left rudder control at take-off, it can take you off the runway

(sideways, not up). Actually this happened before I got my license. After I got the license in 1984,

I flew for two years, then I decided that I am too dangerous to those around me, so I stopped.

13. Given that you are color-blind, how do you manage the traffic lights ?

Except for one notorious horizontal light in Princeton, NJ, they usually have the red at the top.

However, I heard that during the Cultural Revolution, red was for “go” in China. I like to drive in

some of the European countries where traffic light rules are considered merely an opinion.
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14. You have been in many places of the world, which place do you like best ?

The charming places (can’t offend anyone).

15. Do you like to travel and to visit foreign countries as a simple tourist rather than

bringing with you your professional hat ?

I don’t need my professional hat anymore – a virtual one is glued on all the time.

9.2.8 About Your Retirement

1. How many more years do you plan to teach ?

Until I get tired or run out of good students, whichever comes first. I am not yet ready for maturity

leave. I am not yet started to play golf.

2. Do you accept well the idea of your retirement ? How and where will you spend your

free time ? Sailing in Florida ?

The Caribbean is more interesting.

9.2.9 More Difficult Questions

1. Have you any regret about the choice of your career ? Maybe you’d have preferred to

become a great Captain sailing all around the world ?

There is much more satisfaction in getting together with people like you – my colleagues – than

being all the time on the ocean.

2. Have you ever thought to leave and give up this research area for something else ?

When I grow up I’ll figure out what I want to be.

3. If you’d have only one paper to keep and you consider as your major contribution,

which paper would it be ?

The Maximum Likelihood PDA and CRLB-in-clutter paper, because they are exact.

4. What is your own philosophy of life ?

Enjoy it while you can. As I told a friend who recently became a quadrigenarian, after 40 it’s all

downhill but, like in skiing, with a lot of thrill.

The other one is : Illegitimi non carborundum.

5. Any advice for all future young researchers willing to work in this area ?

Be thorough in your work and honest in presenting the results.

6. Do you have anything that you would do differently if given another chance ?

I’ll let you know next time.
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7. You used to have a beard some 20 year ago. When and why did you decide to change ?

It was gray and I still did not get no respect. . .

8. If you have to do your Ph.D. all over again, what will it be on ? What would you do

differently this time ?

I don’t think I could easily do a piece of work worth a Ph.D. these days.

9. Which important questions do we miss ?

1. Do you take yourself seriously ? NO !

2. What is your pet peeve ? Pharisaic janiform coprocephalocratic academic administrators (they

don’t understand this anyway).
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lage de centrales de navigation. PhD dissertation, Ecole Nationale Supérieure de l’Aéronautique
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[Fau79] R. Faure. Précis de Recherche Opérationnelle. Editions Dunod, Paris, 1979. 4ième Edition.

[Fav82] Gérard Favier. Filtrage, Modélisation et Identification de Systèmes Linéaires Stochastiques à
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[Gau97] Hervé Gauvrit. Extraction Multi-Pistes : Approche Probabiliste et Approche Combinatoire. PhD
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[GJC98] Hervé Gauvrit, Claude Jauffret, and Jean-Pierre Le Cadre. Combinatorial optimization for

initialization of probabilistic approaches. In Proceedings of Workshop Commun GdR ISI (GT1)

and NUWC - Approches probabilistes pour l’extraction multipistes, Paris, France, November 9-

10th 1998.

[GK98] Douglas A. Gray and Mark L. Krieg. Recursive least squares and kalman filtering approaches to

estimating and tracking the parameters of mixture models. In Proceedings of Workshop Commun

GdR ISI (GT1) and NUWC - Approches probabilistes pour l’extraction multipistes, Paris, France,

November 9-10th 1998.

[GL83] G.H. Golub and C.F. Van Loan. Matrix Computations. John Hopkins University Press, Balti-

more, MD, 1983.

[GM77] Norman.H. Gholson and Richard L. Moose. Maneuvering target tracking using adaptive state

estimation. IEEE Transactions on AES, 13(3) :310–317, may 1977.

[GM98] Olivier Grondin and Christian Musso. Strategy for radar pulse allocation applied to multitarget

tracking by metaheuristics. In Proceedings of Workshop Commun GdR ISI (GT1) and NUWC

- Approches probabilistes pour l’extraction multipistes, Paris, France, November 9-10th 1998.

[GMN97a] I.R. Goodman, R.P.S. Mahler, and H.T. Nguyen. Mathematics of Data Fusion. Kluwer, 1997.

[GMN97b] John Goutsias, Ronald P.S. Mahler, and Hung T. Nguyen. Random Sets : Theory and Appli-

cations. Springer Verlage, IMA Vol. 97, 1997.

[GMW81] P.E. Gill, W. Murray, and M.H. Wright. Practical Optimization. Academic Press, New York,

1981.

[Gol85] D. Goldfarb. Efficient dual simplex algorithm for the assignment problem. Mathematical Pro-

gramming, 33 :187–203, 1985.

[Gol89] D.E. Golberg. Genetic Algorithms in Search, Optimization and Machine Learning. Addison

Wesley, New York, 1989.



BIBLIOGRAPHIE 259

[Goo86] I.R. Goodman. Pact : An approach to combining linguistic-based and probabilistic information

in correlation and tracking. Technical Report Tech. Doc. 878, Naval Ocean Systems Center, San

Diego, CA, march 1986.

[Gro94] W. Grossman. Bearings-only tracking : A hybrid coordinate system approach. Journal of Gui-

dance, Control and Dynamics, 17(3) :451–457, may-june 1994.

[GS90] A.E. Gelfand and A.F.M. Smith. Sampling based approaches to calculating marginal densities.

J. Amer. Statist. Assoc., 85 :398–409, 1990.

[GSS92] Neil L. Gordon, D.J. Salmond, and A.F.M. Smith. Novel approach to nonlinear/non-gaussian

bayesian state estimation. IEE Proceedings-F, 104(2), october 1992.

[Gué94] Yves Guézengar. Radar Tracking in Cluttered Environment applied to Adaptive Phased Array

Radar. PhD dissertation, Nantes University, Nantes, France, november,16th 1994.
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