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ABSTRACT

The model set used in a multiple-model (MM) algorithm
in many practical situations has a layered structure. This
paper presents a novel and highly efficient MM algorithm,
called Layered MM (LMM) algorithm, which takes full
advantage of the layered structure. Compared with the
standard MM algorithm, it is expected that the LMM al-
gorithm will have a substantial saving in computation and
similar performance. The need for such a layered struc-
ture and layered algorithm is motivated by the problem of
tracking maneuvering and bending extended targets in a
cluttered environment. The basic idea of the LMM algo-
rithm is to incorporate the coupling between the layers us-
ing time-varying transition probabilities of the models. In
conjunction with a fast point-pattern matching algorithm
and a modified conditional matching pairs support find-
ing algorithm proposed recently, the LMM algorithm is
applied to solve the problem of tracking maneuvering and
bending extended targets in a cluttered environment.

1. INTRODUCTION

Most modern tracking algorithms described in the litera-
ture (see e.g.,'®) deal mainly with point targets where a
target is represented by its center of mass (COM) and the
tracking systems track the COMs of targets. Such point-
target tracking is sufficient for many applications. It is
also the only viable solution in many situations because
of the limited resolution of sensors. The dynamic models
involved in such algorithms are therefore only relative to
the evolution of the COM of targets expressed in a relative
(platform) or an absolute frame. Since the attitude of
the target is not observable using point-target modeling,
it cannot be taken into account in classical trackers even
though it could provide very useful information for other
functions (e.g., threat assessment) of a defense system.
With the advancement of sensor technology and sig-
nal processing (for example, the development of advanced
super-resolution algorithms for radar signals), the above
point-target assumption is losing its validity in many sit-
uations. For the next generation of tracking systems,
targets should be considered as extended targets having
high maneuvering and intelligent hiding abilities rather
than as point targets. We will refer to such non-point
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targets as bending extended targets. To the best knowl-
edge of the authors, few algorithms for bending extended
target tracking are available in the literature. These algo-
rithms are based on digital image processing techniques,
which assume the availability of the target images and
thus require (high resolution) imaging sensors and have
a heavy computational load. Point targets and imaging
targets are two extreme cases. Many practical situations
lie in between. Many sensors provide extended target
observations that are not rich enough to form images. In
such cases, we cannot track extended targets directly by
existing image processing approaches.

The first algorithm for maneuvering and bending ex-
tended target tracking (MBETT) in a cluttered envi-
ronment was proposed in.? It is, however, computa-
tionally intense even for the simple design of the model
set. We propose in this paper an improved algorithm for
MBETT problem in a cluttered environment based on
a novel multiple-model (MM) estimation algorithm com-
bined with an improved point pattern matching algorithm
developed recently to tackle the data association prob-
lem of tracking in clutter. The proposed MM algorithm
is highly efficient. Its novelty lies in that it takes full
advantage of the layered structure of the problem: The
total set of models is decomposed into layers (subsets)
of models and the standard MM algorithm of running a
large bank of filters is decomposed into the running of
several layers of much smaller banks of filters with the
coupling among layers taken into account in the transi-
tion probabilities. As a result, a substantial reduction in
computation is achieved, which is crucial for many prac-
tical problems, in particular the MBETT problem. The
proposed LMM algorithm does not need the fundamental
assumption of® that the layers are independent, which is
seldom valid in reality.

2. PROBLEM OF TRACKING
MANEUVERING AND BENDING
EXTENDED TARGETS

To simplify analysis, we consider only the mono-sensor
case with only one maneuvering and bending extended
target moving in a 2D cluttered space with a detection
probability that is less than one.

We model the evolution and the observation of an
extended target by the following stochastic hybrid sys-
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where z;, = [(2])’, (z%)"]" is the global base state vector
of the extended target; 27 represents the principal state
of the target relative to its center of mass (COM) (zf
is the conventional state used in a classical description of
the dynamic system); z} will be referred to as the proper
state of the target and its evolution describes the proper
(angular) motion of the target around its COM; s, =
[s7, 5%, 5]’ is the discrete-valued modal state vector of
the system at time k; s} and s§ denote respectively the
principal and proper modes in effect during the sampling
period k; sj denotes the shape-mode in effect during
the sampling period k, which describes the evolution of
the point patterns of the extended target. The sequence
of system modes is assumed a first-order homogeneous
Markov chain with known transition probabilities
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where m$, mp, mj and m{, m},, m; are the particular val-
ues of the the components of the modal state vector s at
time k+1 and k, respectively. The system mode sequence
s is then an indirectly observed (or hidden) Markov
chain. The vector-valued functions f and h are assumed
known; wy(sg+1) = [wy(Sk41)",wh(sk4+1)"]" is the mode-
dependent process noise with mean wy(sg+1) and covari-
ance Qg (sg+1); the measurement vector 2y is the stacked
vector of ny, reflection points z;(k), (i = 1,...,ng) of the
extended target. Since the probability of detection of the
target can be less than one and the shape of the target
can change during tracking, the number nj, of reflection
points coming from the the extended target is a discrete
random variable. Therefore, measurement vector z de-
scribed by (2) is actually of a random dimension. Eq.
(2) implies that the global base state observations are
mode-dependent and the mode information is embedded
in the measurement sequence.!® vy is the stacked vec-
tor [(v})',...,(vp*)"]" of measurement noise vj(si) with
mean U}, (sx) and covariance R{ (s;). It is assumed that v,
w, uncorrelated with xg, are mutually uncorrelated; x¢ is
assumed to have mean x| and covariance FPy|g; hx(sk) is
the known — when data association is solved (see later)
— stacked matrix [hy(sg), ..., hp* (s)']’. All vectors and
matrices are assumed to have appropriate dimensions.
The problem we are facing is to estimate the global base
state and the hidden modal state of the hybrid system
with all available information (including prior information
and past and present observations Z¥ = {z1,...,2;}).
Note that the measurement of the principal and proper
state, as described in (2), may not be separated in some

measurement, of the principal state is simply the COM
measurement, which can be easily obtained from the ny
reflection points (after point pattern matching). In such
a case, we have

g
z
Zk:[ k

— hi(xiaxgask)
2 hi

(.’L'i, ‘(Ega Sk)

|+ [

3. LAYERED MULTIPLE-MODEL
ALGORITHM

It is clear from the above formulation of tracking a ma-
neuvering and bending extended target that there exist
three natural layers in the system modes: (a) the princi-
pal mode sg4, (b) the proper mode s,, and (c) the shape
mode s;. Suppose that the mode spaces of s, s, and s
are covered by ry,r, and r; models, respectively. Then
a standard MM algorithm would have to run a bank of
filters based on r,r,r; models in parallel at each time,
which could have an infeasible computational burden. We
propose in this work a structured MM algorithm, called
Layered MM (LMM) algorithm, that needs to use
only vy + rp, + 1, models by taking advantage of the lay-
ered structure of the system modes using time-varying
transition probabilities of the models.

For simplicity of presentation, assume as in® that the
the space of the principal mode s, can be covered effec-
tively by two models: a nearly constant velocity (CV)
model and a nearly coordinated turn (CT) model; the
space of the proper mode s, can be covered effectively
by two models: a nearly null velocity (NV) model and
a nearly constant velocity (CV) model; the space of the
shape mode s, can be covered effectively by two models:
a 4-point pattern model and a 5-point pattern model.
This is represented concisely as s, € {CV,CT},sp, €
{NV,CV},ss € {4,5}.

A standard MM algorithm for the above global mode
set is to use 8 models: {CV,NV,4}, {CV,NV,5},
{CV,CV, 4}, {CV,CV,5}, {CT,NV,4}, {CT,NV,5},
{CT,CV,4}, {CT,CV,5}. The layered MM uses three
2-model MM estimators separately: CV and CT for s,
NV and CV for s,, and 4- and 5-point patterns for s,.
Note that in practice two models for each layer is usually
not sufficient. If three models were used for each layer
then the standard MM algorithm would require the use
of 27 models and the layered MM algorithm would only
require the use of 9 models. Clearly, the computational
savings of the layered MM algorithm over the standard
MM algorithm will be tremendous if more models are
used in each layer.

Note that when model set are decomposed into layers,
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which is more general and precise than the following
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(5)—(6) indicate that the probability of a mode transition
within one layer depends in general on the modes in ef-
fect in other layers before (and after) the transition. The
basic idea of LMM is to account for the coupling between
different layers in the mode transition probabilities.

For the MBETT problem, it can be observed that the
principal mode s, and the proper mode s, are coupled
because e.g., nearly coordinated turn motion of the prin-
cipal mode is more often accompanied by a nearly con-
stant angular motion in the proper mode and thus mode
{sg,8p} = {CV,NV} is much more likely than mode
{CV,CV} or {CT,NV} and similarly, mode {CT,CV}
is more likely than mode {CT,NV} or {CV,CV}. In
other words, the fundamental assumption of that the lay-
ers are independent is seldom valid in reality. Also, the
computational advantage of the algorithm proposed in®
is questionable since the computational load of the stan-
dard MM algorithm can also be easily reduced by say a
simple logic under the independence assumption.

3.1. The LMM Algorithm for MBETT
Problem

We first illustrate our LMM algorithm for the simpli-
fied MBETT problem of two layers with s, € {CV,CT}
and s, € {NV,CV}. The standard MM algorithm
would use four models {CV, NV}, {CV,CV}, {CT,NV},
{CT,CV}. The LMM operates two 2-model layers based
on the model sets {C'V,CT'} for s, and {NV,CV'} for sp.
If s4 and s, are independent, then we can run the two 2-
model layers independently. Otherwise, we have to run
them in a fashion that accounts for the coupling between
the modes in different layers. This coupling can be ac-
counted for using coupled transition probabilities. This
is the basic idea of the LMM algorithm.

Since the evolution of the COM is affected to a lesser
degree by the proper motion than the dependence of the
proper motion on the principal mode, an implementation
of the LMM for the simplified MBETT problem consists
of two step at each time :

CV and CT models) as if s, and s, were indepen-
dent but the transition probabilities of the principal
mode s, are time varying and are given by, by total
probability theorem, for m;,m; € {CV,CT},

P{sf =mj|sp_, =m;, 2"}
mn€{NV,CV}
ZMYP{sh = ma|ZF1}
mn€{NV,CV}
xP{sh_y =mq|Z*1} (7)
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where the proper mode probabilities P{si_, =
my|Z*~1} were obtained from the previous recursive
time cycle k — 1.

Note that this equation reveals that the transition
probability P{s{ = m;|s{_, = m;, ZF¥"'} is a time-
varying (more precisely, data-dependent) probabilis-
tic weighted sum (average) of the time-invariant
(more precisely, data-independent) but proper-
mode-dependent transition probabilities P{s] =
mj|sy_, = mi,sh_; = My}, which are design pa-
rameters. If the evolution of the principal mode
does not depend on the proper mode, then, for all
m, € {NV,CV},

P{si =mjlsi_; = mi,sp_; =mn} (8)
= P{sy =mjlsi_, = mi} 9)
In this case, step 1 is identical to a standard MM

algorithm using model set {C'V,CT} that is inde-
pendent of the proper mode.

. Run a 2-model MM algorithm for the proper mode

sp 84 and s, were independent but the transition
probabilities of the proper mode s, are time varying
and are given by, by total probability theorem, for
My, My € {NV,CV},

P{sh = myl|si_; = my, Zk_l}

=" P{sh =mulsh_; = mum, s} = m;,
i,J
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where the summation is over all possible combina-
tions of m; and m; such that they are both in the
model set {CV,CT}. The mode-dependent (but



mj|sp_y = M, S, = Mm,S,_; = My} are design
parameters. The probabilities P{s] = my,|s]_, =
Mn, Z*¥=1}, given by (7), and P{s}_, = m,|Z*~1}
were obtained from step 1 before Z is received. In
some situations, the transition probabilities P{s} =
mj|sk | = mi, ${ = My, s5_; = my} does not de-
pend on the current principal mode and thus, for
Mo, My € {NV,CV},

P{s? =mp|st | =mn, ZF 1}
m;€{CV,CT}
Sh1 = mi,Zk_l}P{si_l =m|Z*'} (11)

P{sj, = mnl|sj_; = mm,

In such a case, step 1 and step 2 can be interchanged
without difference.

To improve accuracy, the two steps can be iterated with
(7) replaced by the following equation except for the first
time step 1 is executed, for m;, m; € {CV,CT},
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= E P{s] =mj|si_, = my,s) =mn,s,_; = Mm,
m,n
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Note that the above LMM algorithm is valid provided
that the mode-dependent transition probabilities are re-
ally data-independent. This assumption is usually valid
and convenient for practical application. Otherwise, there
is no easy and general way to determine these transition
probabilities.

There are two possible couplings between the layers:
(a) between the principal and proper modes and (b) be-
tween the principal and proper states. The above deals
with the coupling between modes. measurements are The
coupling in states poses no problem for the LMM algo-
rithm. In fact, the LMM algorithm can take care of this
coupling better than the standard MM algorithm for a
nonlinear system. If the measurements of the principal
and proper states can be separated as in (4), use the fol-
lowing for step 1:
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If the measurements of the principal and proper states
cannot be separated, the measurement prediction should
be replaced in step 1 by
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In the above, :Ez_ll ¢ is one-step fixed-lag smoothed es-
timate of z7_,. If an extended Kalman filter (EKF)
is used for nonlinear dynamics and/or measurements,
the Jacobian (and/or Hessian) of f? and h? in the k-
th time cycle should be evaluated at (:i*i_l‘ k,:ﬁg_ll k1)
and (i‘ilk,fzﬁlk_l), respectively (although the Jacobian
(and/or Hessian) of f9 and hY are the same as in the
standard MM algorithm based on EKF); for example,
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Note that the standard MM algorithm based on EKF
would use, if the measurements can be separated (sim-
ilarly for the case where measurements cannot be sepa-
rated)
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and the Jacobian (and/or Hessian) of f and h in the k-th

time cycle should be evaluated at &3_1)x—1 and Zgx_1,
respectively; for example,
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smoothing estimate :f:i_ll ¢ is used in the LMM algorithm,
then one cycle of the LMM algorithm is “equivalent” to
the iterated EKF for the principal state part of the stan-
dard MM algorithm.

3.2. The LMM Algorithm in General Case
The above algorithm for the simplified MBETT problem
can be extended to the general case without difficulty. As
a result, the application of the LMM algorithm consists,
in general, of the following conceptual steps:

S1. Identify the layers in the mode space.

S2. If there are layers that are (almost) independent of
the other layers, then the original mode space de-
composes naturally into several independent sub-
spaces of the mode, where the modes in each in-
dependent layer form a subspace. As a result, the
standard MM algorithm with a model set that covers
the original mode space is equivalent to the group of
(layered) MM algorithms, each with the model set
that covers an independent layer.

Order the coupled layers such that the layer that is
least dependent on the other layers is at the top and
the layer that is most dependent on the others is at
the bottom.

Run an MM algorithm for the top layer first (whose
mode is denoted as s') as if the other layers were
non-existent. This MM algorithm is obtained by
replacing the transition probabilities in the standard
MM algorithm that uses the models for the top layer
as follows (where every quantity is conditioned on
Zk=1 which is dropped for simplicity)

S3.

S4.

P{s; = mjls_; = m;}

= Y Pl =milsh=m,
all My-?
SNt = MYz SNt = MY} (23)

where S,Jc\i 7' = MY~ is a shorthand notation for

{si_,=m2,,...,si ; =m} } and the summation
is over all possible MY =t = {m2_,...,m} }; that

is, over all possible combinations of the models used
to cover layers 2 through N. Note that the mode
probabilities

P{Sih = M)

=P{s;_, =m?>

PR

N

N _
Sy Sp—1 = My,

were obtained from the previous recursive time cy-
cle and the mode-dependent transition probabilities
P{s} = mj|si_, = m;, Syt = MY 1} are design
parameters.

Run an MM algorithm for the r-th layer as if the
other layers were non-existent. This MM algorithm

S5.

in the standard MM algorithm that uses the models
for the r-th layer as follows

P{si = mjlsi_; = m;}
= Z P{sy =mjl|si_, = mi,S,jcv:lr =My st
= My, L 3P{S;T = My ST = MY T (24)

where the following shorthand notations were used

STt = {s',8%,..., 8"}

SN = (st . sm T s s
Myt = {mp, my o mp
Mflv_" = {mil,...,mz:_ll,mgﬁl,...,mgN

and the summation is over all possible combina-
tions of M~ and MXN-"; that is, over all possi-
ble combinations of the models used to cover the
other layers. Note that the mode probabilities
P{S;7' = M1, ST = MY-"|Z% 1} were ob-
tained from the previous recursive time cycle and
the higher layers in the same time cycle without us-
ing Zy. The mode-dependent transition probabili-
ties P{s} = my|s)_, = m;,Sp ' = MI~1, S0 =

MN-7} are design parameters.

The handling of the coupling in the state components
is similar to the case for the simplified MBETT problem.

4. 2D POINT PATTERN MATCHING

Point pattern matching (PPM) plays an important role
in pattern recognition,”® computer/stereo vision,?20:16
autonomous navigation,!! and astronautics'®!4'® and
has recently been proposed for solving data association
problem involving in tracking maneuvering/bending ex-
tended target (MBET).® The general PPM problem con-
sists of finding an optimal (in minimum mean square er-
ror sense) matching M* between an unknown subset of
given point pattern (i.e., reference target) P = {z;,i =
1,...,m} and an unknown subset of point measurements
set @ ={y;,j=1,...,n}.

In 2D space, every matching pairs of points (z; ¢ y;)
is related by the affine registration mapping y; = (T +
sRxz;) + b; where T' = [t t,]' is an unknown translation
vector, s an unknown scaling factor, R an unknown ro-
tation matrix with angle § and b; is a zero-mean white
Gaussian noise with known covariance Py,. (R,T,s) is
the set of unknown affine registration parameters of the
PPM problem.

Many algorithms have been developed over the past two
decades for solving such PPM problems, but very few of
them are able to take simultaneously into account the
five defective conditions: adding or suppressing points,
location distortion, rotation, scaling and translation. Re-
cent surveys on PPM techniques can be found in.!%:%21,17

1



fast 2D-PPM algorithm recently proposed in,” which was
initiated by Chang et al. in.® A fast PPM algorithm ca-
pable of taking into account all the five above-mentioned
conditions is specially required for MEBTT applications
because:

e condition 1 (adding or suppressing points) reflects
the ability to have a target detection probability less
than unity within a cluttered environment.

e condition 2 (location distortion) reflects the ability
to deal with a noisy observation sensor.

e conditions 3, 4 and 5 (rotation,scaling and transla-
tion) reflect the ability of the algorithm to carry on
full affine registration uncertainty on the reference
point pattern with respect to the observation point
set.

When two pairs of different points (vectors) (z;,zp) in
P and (y;,yx) in Q matches, (ie., (z; ¢ y;) and (z5 ¢
yr)) under (R,T,s), then vector z = T;7}, matches with
y = 7574 under the reduced affine registration (R, s) since

m = (T—}—SR.’L‘h)—(T—}—SR.’L‘i)—i—(bh—bi)
= sRz;@}, + biby = sRz + b

It can be shown® that maximum likelihood estimation
(MLE) of scaling factor and rotation angle for such a
given pair of matching vectors is given by 6 = 0, — 0, and
8= llyll/lll-

Moreover, the pair of independent variables z = z'y
and zt = (z1)'y contains exactly the same information
as (8,0) (z being the orthogonal vector of z). Assuming
observation noise vector b to be Gaussian zero-mean with
covariance 202I then the random vector z = [z z1]" is
Gaussian with mean z = ||z||*[3 cos(d) 3sin(d)]’ and co-
variance P,, = 202||z|’I with I being the 2 x 2 identity
matrix.

Let X = {z;,¢i = 1,...,p} C P and Y = {y;,i =
1,...,p} C Q be two sets of p matching points under an
affine registration (R,T,s). Then for each matching pair
(z; ¢ yi), the sets of vectors X; = {TZ1, ...,0, ..., Tz}
and V; = {yiwt, - - -, 6, ..., Jiy;} match under the reduced
affine registration (R,s). Since for j = 1,...,p (j # 1),
vector Z;z; matches with 777}, there are necessary p — 1
matching vectors under the reduced registration (R, s)
for each matching pair of points (z; < y;). Conversely
if p < min(m,n) is the (unknown) maximum number of
matched pairs between P and Q under an unknown affine
registration and if (z; <> y;), then there exists p — 1 other
pairs of matching points. Hence there are exactly p — 1
matching vectors under the reduced registration (s, 8).

An accumulator array Mi,j(ﬁ,é) can be used to accu-
mulate (3,6) determined by matching Z;Z7, with 752 for
all h # i and k # j and (8,0) being the MLE of (s, 6)
for the given pair of matching vectors. If (z; < y;) and

k=1,...,n with h # ¢ and k # j), it was reported in°
that (s,8) corresponds to the peak value of the accumu-
lator array Mi,j(§,é). Moreover, this value w};, called
the conditional support of point matching (z; > y;), is
exactly equal to p — 1. When z; does not match with y;,
one has w;; < p— 1. This fundamental property is the
basis of the fast 2D PPM algorithm.

The practical construction of accumulator arrays
M; ;(5,0) and peak values wj; determination consti-
tutes the Conditional Matching Pairs Support Finding
(CMPSF) algorithm.® The original CMPSF algorithm
was based on Hough transform, a discretization of the
(s,6)-space with an arbitrary vote procedure to increase
accumulator arrays. An improvement of the CMPSF al-
gorithm based on statistical test has been proposed re-
cently in. The major difficulty associated with the
CMPSF algorithm is the correct increasing of the accu-
mulators M; j(3,6). This difficulty is related to decide if
two pairs of assumed matching vectors, say (Z;Z#, J;Uk)
and (Z;Zr’, Y;Ux'), support the same underlying reduced
affine registration. In other words, to increase M,J(§,é)
we first have to decide if (§y, i n) computed from match-
ing (Z:Tr, J;U) is statistically equivalent to (5,0) com-
puted from matching (Z;Z%, J;7%)- Because of the equiv-
alence between z = [z 1]’ with (3,6) and zx = [zn 25’
with (3x,6x) and the Gaussian property of the pdfs, we
can perform (after some decorrelation preprocessing) a
chi-square test to check the similarity of zx with 2. The
result of the test allow us to increase and/or initialize
M,J(é,é) accumulators. A more sophisticated test has
been developed for the general case where we have to
check the similarity of zx with an existing cluster of, say
N —1, similar vectors Cy 1 = {21,...,2~n_1}. The reader
is referred to® for details of the CMPSF algorithm.

For matching two point patterns P and Q under
translation, rotation, scaling, local distortion, and miss-
ing/extra points conditions, the 2D-PPM algorithm con-
sists of the following main steps:

S1. Initialization
e Set w* =0 and set p = min(m,n)
S2. Scanning of P and Q sets
e Fori=1,....m
sForj=1,...,n

* Determine wj; and Mj;

CMPSF algorithm below
* if wj; > w* then set w* = wj;, M* =
M3, i =iand j* =

using

» End loop on j
s The maximum support is not found, de-
crease p by one =>p=p—1
e End loop on 4



tections (matching pairs) will be given by p.

The fast version of this 2D-PPM algorithm which re-
quires an additional matching flag array and minimal and
maximal support thresholding steps can be found in.? In
short, the 2D-PPM algorithm detects using CMPSF al-
gorithm, for each pair of tried matching points (z; <+ y;),
the point pairs that own the maximum conditional match-
ing pairs support and the registration parameters (s,0)
which can match the most points between P and Q; then
2D-PPM looks for the overall (unconditional) maximum
matching support to get the optimal PPM solution. If
required, the estimation of the affine registration param-
eters underlying the PPM solution can be obtained us-
ing the generalized least square estimator (GLSE) as de-
scribed briefly at the end of this section.

The CMPSF algorithm for an assumed point matching
(x; > y;) can be stated as follows:

S1. Initialization

e Choose an arbitrary but different pair of points
(Zpr,yr) € P x Q with b 27 and k' # j
o Set Cluster(1) = {(zp,yx) } and nemax =1
S2. Data clustering
eForh=1,...,m (h#h' and h # i)
wnFork=1,...,n (k#k and k # j)

* Perform chi-square similarity test be-
tween (Z;zf,7;uk) and Cluster(nc)
for nc=1,...,nCnax

* if (Z;Th,y;Uk) belongs to an ex-
isting cluster (say nc*), update it
by Cluster(nc*) = Cluster(nc*) U
{(zn,yr)}; otherwise create a new
one (NCmax = NCmax + 1 and
Cluster(nemax) = {(zh,yr)})

= End loop on &
e End loop on A

S3. Search for the index nc* of the cluster having the
maximal cardinality

e w¥; = Card[Cluster(nc*)] is the desired sup-
port for pair (z;,y;)
o Mj; = {(zi,9;)} U Cluster(nc*) is the condi-

tional PPM solution with respect to (x;,y;).

The peak value wj; = c means that there are other ¢
pairs of corresponding points supporting x; matched with
y;; and therefore there are ¢ + 1 pairs of corresponding
points matching under the same underlying affine regis-
tration (s};,07;). The cardinality of M; is exactly equal
to c+ 1. A fast version of this CMPSF algorithm requires
an additional match flag array to represent the matching

condition between each point in P and each point in Q.

previous 2D-PPM algorithm, and assuming that the num-
ber p of matching pairs (x; <> y;) is greater than 2 (which
is the number of independent parameters involved in the
affine registration divided by the space dimension), the
estimation of the affine registration parameters can eas-
ily be obtained using the generalized least square (GLSE)
estimator as follows!»%-¢:

[i2. 1y, 5cos(0), 4sin(@)] = (C'P7'C) 'O PTY (25)

where P_l = diag[szla - "szl]’
C =[C},...,Cl) with C; = [
{1,..

5. LAYERED IMM WITH FAST PPM
ALGORITHM FOR MBETT PROBLEM
The Interacting Multiple-Model (IMM) has been shown
to be one of the most cost-effective and simple schemes
for the estimation in hybrid systems,?%1%12:4 in partic-
ular for tracking maneuvering targets. Therefore, a lay-
ered IMM algorithm is used for tracking maneuvering and
bending extended targets. Specifically, we use the Lay-
ered MM structure combined with the IMM configuration
in the sense that the MM estimator for each layer is an
IMM algorithm. On the other hand, the data association

problem is solved by the PPM algorithm.
Conceptually, the solution to the simplified MBETT
problem consists of the following steps:

D}

S1. Run the interaction and mode-conditioned predic-
tion steps of the IMM estimator for the principal
layer with the transition probabilities given by (7).
Measurement validation and data association via
PPM:

e Validate measurements using a statistical gate
which takes into account the (mode-dependent)
target size.

e Solve the PPM problem using Fast PPM al-
gorithm to get the (mode-dependent) matched
measurement vector z.

S2.

S3. Run the model-conditioned filtering and combina-
tion steps of the IMM estimator for the principal
layer.

Run the full cycle of the IMM estimator for the
proper layer with the transition probabilities given

by (10).

S4.

6. CONCLUSIONS
A novel multiple-model (MM) algorithm, called Layered
MM (LMM) algorithm, has been developed. It takes
full advantage of the layered structure of the models re-
quired for solving many practical problems. The need for



from the problem of tracking maneuvering and bending
extended targets in a cluttered environment and other
practical problems. The coupling in the models between
the layers is accounted for by using time-varying transi-
tion probabilities of the models, which are probabilistic
weighed sum (average) of the data-independent but other-
model-dependent transition probabilities and the other-
model probabilities. The coupling in the state between
the layers is readily incorporated into the LMM algo-
rithm. It is expected that the LMM will have a substan-
tial reduction in computation and similar performance
as compared with the standard MM algorithm. The un-
certainties in the received measurements of the reflection
points of an extended target is handled by the use of a fast
point-pattern matching algorithm, in conjunction with
a modified Conditional Matching Pairs Support Finding
(CMPSF) algorithm proposed recently in.”
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