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Abstract - An improved version of the In-

tegrated Probabilistic Data Association Filter

(IPDAF) and the IJPDAF based on a new con-

cept of probability of target perceivability has

been recently introduced for tracking one or sev-

eral targets by a single sensor. IPDAF and

IJPDAF algorithms allow to perform online

track initiation, maintenance, con�rmation and

termination as well using an appropriate target

perceivability probability decision logic. This pa-

per deals with the development of a DSN (Dis-

tributed Sensor Networks) version of the new

IPDAF algorithm. Simulation results of this

new DSN/IPDAF algorithm for tracking a sin-

gle occasionally occulted ground-target in a clut-

tered urban environment is presented for a sim-

ple 2D scenario.

Keywords: Distributed Estimation, Multisensor Tar-

get Tracking, IPDAF, DSN, perceivability.

1 Introduction

A distributed sensor network (DSN) is a set of
sensors connected by a communication network
to a set of local processing nodes. These nodes
process measurements and communicate among
themselves in order to track the target. An impor-
tant problem in distributed tracking is how to de-
cide whether local tracks delivered at the local pro-
cessing level represent the same target. We assume
here that this track-to-track association problem
has been solved (see [6] for discussion). In previ-
ous works done by K.C. Chang and al. during last
decade [9, 7, 8, 10, 11, 21], the DSN sensor target
tracking problem has been solved on the basis of
classical PDAF and/or JPDAF algorithms (also
coupled with Interacting Multiple Model (IMM)
approach for maneuvering target tracking). It has
already been shown that performances obtained

with distributed estimation algorithms are very
close to the optimal performance obtained by a
centralized estimation algorithm. Moreover it is
well known that DSN has many advantages over
a centralized system in terms of reliability, ex-
tended coverage, better use of information and
so forth. These Distributed PDAF/JPDAF al-
gorithms have however been developed with an
implicit strong assumption that the targets are
always perceivable by the sensors. A target is
said to be perceivable if it is present in the en-
vironment and not hidden/occulted in the field of
view of the sensor. Of course in many real sit-
uations and like the one described in this paper,
this is not always the case. To remove this to-
tal perceivability assumption, new versions of the
Integrated Probabilistic Data Association Filter
(IPDAF) and IJPDAF for a single sensor/tracker
have been developed recently in [14, 13] which in-
cludes a more rigourous concept of target perceiv-
ability [15, 18] into its formalism than privious
works of Colegrove [12] and Musicki [22]. Her-
after we extent this new IPDAF for DNS in order
to extend their application fields to more realistic
situations.

2 Problem formulation

We consider an s-node distributed sensor network
as in [8] where each node processes the local mea-
surements from its own sensor based on a local
IPDAF and sends the local estimates to the fu-
sion processor periodically. The fusion processor
then sends back the processed results after each
communication time. The dynamic of the target
in track is modeled as

x(k + 1) = F(k)x(k) + v(k) (1)

where x(k) is the state vector and v(k) is the pro-
cess noise assumed to be zero-mean and Gaussian



with a known covariance matrix Q(k). The target
detection probability P id for each sensor i is as-
sumed to be known. The equation measurement
for the target relative to sensor i is

zi(k) = Hi(k)x(k) + wi(k) (2)

where Hi(k) is a known observation matrix and
wi(k) is the corresponding measurement noise
assumed to be zero-mean, Gaussian with a given
covariance Ri(k). Furthermore noise sequences
{v(k)} and {wi(k)} (k = 1, 2, . . .) are assumed
to be mutually independent and independent of
initial state vector x(0).

The classical gating technique [4] with a given
probability P ig (i = 1, . . . , s) is used for the se-
lection of measurements. For each sensor i =
1, . . . , s, the set of the mi

k validated measurement
at time k and the cumulative set of measurements
are denoted

Zi(k) = {ziji(k)}
mik
ji=1 and Zi,k = {Zi(l)}kl=1

The distributed estimation problem we have
to solve is the reconstruction of the global
conditional pdf p(x(k)|Z1,k, . . . ,Zs,k) from the
local ones p(x(k)|Z1,k), . . . , p(x(k)|Zs,k). Un-
der linear models and Gaussian noise assump-
tions, this problem reduces to evaluate x̂(k|k) =
E[x(k)|Z1,k, . . . ,Zs,k] from local estimates with
its covariance P(k|k).

3 The Local IPDAF

At a given node associated with a sensor s, the
local tracking is assumed to be done with the new
IPDAF. This tracking filter is an extension of the
classical PDAF which integrates the concept of
target perceivability.

At any time k, the target state of perceivability
with respect to a given sensor s and its comple-
ment is represented by the exhaustive and exclu-
sive events

Osk , {target is perceivable from s}
Ōsk , {target is unperceivable from s}

When there are ms
k validated measurements at

time k, the intersection of these events with the
classical data association events involved in the
PDAF formalism [4]

θsi (k) , {zsjs(k) comes from target}
θs0(k) , {none of zsjs(k) comes from target}

defines a new set of integrated association events

Es−js(k) , Ōsk ∩ θsjs (k) js = 1, . . . , ms
k

Es0̄ (k) , Ōsk ∩ θs0(k)

Es0 (k) , Osk ∩ θs0(k)
Esjs(k) , Osk ∩ θsjs (k) js = 1, . . . , ms

k

Since any target measurement cannot
arise without target perceivability, events
Es−js(k), js = 1, . . . , ms

k are impossible and we
have P {E−i(k)|.} = P {∅|.} = 0. Only events
Es

0̄
(k), Es0(k) and Esjs(k) (js = 1, . . . , ms

k) may
have a non null probability to occur. The devel-
opment of a new PDAF (called IPDAF) based
on these integrated association events yields the
following updating equations (see [14, 15] for
complete derivation) which are valid for ms

k ≥ 0:

x̂s(k|k) =
msk∑

js=0̄,0

βsjs (k)x̂
s
js(k|k) (3)

Ps(k|k) =
[ msk∑
js=0̄,0

βsjs(k)P
s
js

(k|k)
]

− x̂s(k|k)x̂s(k|k)′ +
msk∑

js=0̄,0

βsjs (k)x̂
s
js

(k|k)x̂sjs(k|k)
′

(4)

where the conditional estimates and their covari-
ances are

x̂s0̄(k|k) = x̂s(k|k− 1) (5)
x̂s0(k|k) = x̂s(k|k− 1) (6)
x̂sjs(k|k) = x̂s(k|k− 1) + Ks(k)z̃sjs(k) (7)

Ps
0̄(k|k) = Ps(k|k − 1) (8)

Ps
0(k|k) = [I + qs0Ks(k)Hs(k)]Ps(k|k − 1) (9)

Ps
js(k|k) = [I−Ks(k)Hs(k)]Ps(k|k− 1) (10)

with the following computations [14, 15, 16]

qs0 ,
P sd (P sg − P sgg)

1− P sdP sg
P sg , P {χ2

nzs
≤ γ}

P sgg , P {χ2
nzs+2 ≤ γ}

Ss(k) = Hs(k)Ps(k|k − 1)Hs(k) + Rs(k)

Ks(k) = Ps(k|k − 1)Hs(k)′[Ss(k)]−1

ẑs(k|k − 1) = Hs(k)x̂s(k|k− 1)



z̃sjs(k) = zsjs(k) − ẑs(k|k − 1)

z̃s(k) =
msk∑
js=1

βsjs(k)z̃
s
js

(k)

The integrated a posteriori data association prob-
abilities βjs (k) , P {Ejs(k)|Zs(k), ms

k,Z
k−1,s}

(js = 0̄, 0, . . . , ms
k) taking into account the target

perceivability are given by

• when ms
k = 0,

βs0̄(k) = 1− PO
s

k|k−1,0 (11)

βs0(k) = PO
s

k|k−1,0 (12)

• when ms
k > 0,

βsjs (k) =
1
cs
ejs(k)P

Os

k|k−1,msk
(13)

βs0(k) =
1
cs
bs0(k)P

Os

k|k−1,msk
(14)

βs0̄(k) =
1
cs
bs0̄(k)(1 − P

Os

k|k−1,msk
) (15)

where cs is a normalization constant and

ejs (k) ,
1
P sg
N [z̃sjs(k); 0; Ss(k)]

bs0(k) ,
ms
k

V sk

1− P sdP sg
P sdP

s
g

ξsk

bs0̄(k) ,
ms
k

V sk

1
P sdP

s
g

[
P sdP

s
g + (1− P sdP sg )ξsk

]
V sk is the volume of the measurement validation
gate for sensor s [4, 5] and ξsk, µF (.) are defined as

ξsk ,
µF (ms

k)
µF (ms

k − 1)

µF (.) , pmf of number of false alarms in V sk

If a Poisson model with clutter density λs for
µF is assumed, the predicted and updated con-
ditional and unconditional target perceivability
probabilities (PO

s

k|k−1 , P {Osk|Zk−1,s} and PO
s

k|k ,
P {Osk|Zk,s}) can be expressed as [14, 15, 16]

PO
s

k|k−1,msk
=

(1− εsk)PO
s

k|k−1

1− εskPO
s

k|k−1

(16)

with

εsk ,
{
P sdP

s
g ms

k = 0
P sdP

s
g (1− msk

λsV sk
) ms

k 6= 0
(17)

and

PO
s

k|k−1 = πs11P
Os

k−1|k−1 + πs21(1 − PO
s

k−1|k−1) (18)

PO
s

k|k =
(1− φsk)PO

s

k|k−1

1− φskPO
s

k|k−1

(19)

φsk ,
{
P sdP

s
g ms

k = 0
P sdP

s
g (1− 1

λs

∑msk
js=1 ejs) ms

k 6= 0
(20)

Hence PO
s

k|k−1 and PO
s

k|k can be computed on-line
recursively as soon as the design parameters
πs11 , P {Osk|Osk−1}, πs21 , P {Osk|Ōsk−1} and PO

s

1|0
have been set. In practice, the clutter density λs

is usually unknown. To implement the IPDAF,
we have to replace λs by its estimation based on
the Bayesian (conditional mean) estimation, the
maximum likelihood method or the least squares
method recently developed in [15, 19]. Theoretical
investigations on design of IPDAF trackers for
perceivability probability enhancement can be
found in [17].

Finally with some elementary algebra Ps(k|k)
given by (4) can take the following forms depend-
ing on ms

k

• when ms
k = 0, Ps(k|k) =

[I + qs0P
Os

k|k−1,0K
s(k)Hs(k)]Ps(k|k − 1)

• when ms
k > 0, Ps(k|k) =

βs0̄(k)Ps(k|k − 1)
+ βs0(k)[I + qs0Ks(k)Hs(k)]Ps(k|k − 1)

+ (1− βs0̄(k)− βs0(k))Pc,s(k|k) + P̃s(k)

with

Pc,s(k|k) = [I−Ks(k)Hs(k)]Ps(k|k − 1)

P̃s(k) = Ks(k)[
msk∑
js=1

βsjs(k)z̃
s
js(k)z̃

s
js(k)

′

− z̃s(k)z̃s(k)′]Ks(k)′

The local state prediction is done according to
classical prediction equations, i.e.

x̂s(k + 1|k) = F(k)x̂s(k|k)
Ps(k + 1|k) = F(k)Ps(k|k)F′(k) + Q(k)



4 The Distributed IPDAF

Given the local statistics delivered by s local
IPDAF of a s-node sensor network1, we are now
looking for the solution of the distributed estima-
tion problem in order to retrieve the optimal global
target state estimate and its covariance which are
given by 2

x̂(k|k) = E[x(k)|Z1,k, . . . ,Zs,k]

=
m1
k∑

j1=0̄,0

. . .

msk∑
js=0̄,0

βj1,js(k)x̂j1,js(k|k) (21)

with

βj1,js(k) , P (E1
j1(k), . . . , E

s
js(k)|Z

1,k, . . . ,Zs,k)

x̂j1,js(k|k) , E[x(k)|Z1,k, E1
j1

(k), . . . ,Zs,k, Esjs(k)]

and

P(k|k) =
m1
k∑

j1=0̄,0

msk∑
js=0̄,0

βj1,js(k)Pj1,js(k|k)

+
m1
k∑

j1=0̄,0

msk∑
js=0̄,0

βj1,js(k)
[
x̂j1,js(k|k)x̂j1,js(k|k)′

− x̂(k|k)x̂(k|k)′
]

These previous equations are always valid
whatever the values of m1

k, . . . , m
s
k are. If there

is no validated measurement for a given node at
a given time, the corresponding summation must
be only computed from 0̄ up to 0.

If we assume the measurement errors from sen-
sors independent, the joint conditional estimates
with their covariances can be obtained from the
optimal distributed fusion equations of Chong
[9, 8, 2, 6].

x̂j1,js(k|k) = Pj1,js(k|k)
[
P(k|k − 1)−1x̂(k|k − 1)

+
s∑
i=1

Pi
ji(k|k)

−1
x̂iji(k|k)

−
s∑
i=1

Pi(k|k− 1)
−1

x̂i(k|k − 1)
]

(22)

1s represents now the total number of sensors in the
DSN instead of typical sensor index as in previous section

2due to space limitation, notation j1, js must actually be
read j1, . . . , js and sometimes Z1,k ,Zs,k as Z1,k , . . . ,Zs,k

Pj1,js
−1(k|k) =P(k|k− 1)−1 +

s∑
i=1

Pi
ji(k|k)

−1

−
s∑
i=1

Pi(k|k − 1))
−1

(23)

When all nodes communicate every scan the
global and local prior estimates are the same (i.e.
x̂i(k|k − 1) = x̂(k|k − 1) and Pi(k|k − 1) =
P(k|k−1)) and then eqs. (22) and (23) will reduce
to

x̂j1,js(k|k) = Pj1,js(k|k)
[
[
s∑
i=1

Pi
ji(k|k)

−1
x̂iji(k|k)]

− (s− 1)P(k|k− 1)−1x̂(k|k − 1)
]

(24)

Pj1,js
−1(k|k) = [

s∑
i=1

Pi
ji

(k|k)−1
]

− (s− 1)P(k|k− 1)−1

(25)

The derivation of βj1,js(k) is quite complicated
and will not be detailed here. We refer the reader
to [8] for a complete derivation. Assuming the
independence between sensor measurements and
between events E1

j1
(k), . . . , Esjs(k) given the target

state, then the final expression for βj1,js(k) is

βj1,js(k) =
1
c
γ(E1

j1 (k), . . . , E
s
js(k))

s∏
i=1

βiji (k)

(26)

where c is a normalization constant such that

m1
k∑

j1=0̄,0

. . .

msk∑
js=0̄,0

βj1,js(k) = 1

and where the correlation factor
γ(E1

j1
(k), . . . , Esjs(k)) is given by

∫
p(x(k)|Z1,k−1,Zs,k−1)

s∏
i=1

p(x(k)|E iji(k),Z
i,k)

s∏
i=1

p(x(k)|Zi,k−1)

dx

Using the gaussian distribution approximation
and moment matching method, it can be shown



that γ(E1
j1 (k), . . . , Esjs(k)) can be approximated by√

|Pj1,js(k|k)|
∏s
i=1 |Pi(k|k− 1)|

|P(k|k− 1)|
∏s
i=1 |Pi

ji
(k|k)| e

− 1
2Dj1,js

with

Dj1,js ,
[ s∑
i=1

x̂iji(k|k)
′Pi

ji
(k|k)−1

x̂iji(k|k)

− x̂i(k|k − 1)′Pi(k|k − 1)
−1

x̂i(k|k − 1)
]

+ x̂(k|k − 1)′P(k|k− 1)−1x̂(k|k− 1)

− x̂j1,js(k|k)
′Pj1,js(k|k)

−1x̂j1,js(k|k)

When all nodes communicate every scan,
γ(E1

j1
(k), . . . , Esjs(k)) will reduce to√
|Pj1,js(k|k)||P(k|k− 1)|s−1∏s

i=1 |Pi
ji

(k|k)| e−
1
2Dj1,js

with

Dj1,js ,
[ s∑
i=1

x̂iji(k|k)
′Pi

ji(k|k)
−1

x̂iji(k|k)
]

− (s− 1)x̂(k|k − 1)′P(k|k − 1)−1x̂(k|k− 1)

− x̂j1,js(k|k)
′Pj1,js(k|k)

−1x̂j1,js(k|k)

where x̂j1,js(k|k) and Pj1,js
−1(k|k) are obtained

from (24) and (25) respectively.

5 Simulation results

A two-dimensional single ground-target tracking
problem is considered here. The target is assumed
to move on a road in a town with (nearly) constant
velocity of 36 km/h during 110 s from crossroad A
towards the crossroad C as on figure 1. Only three
buildings B1, B2 and B3 have been simulated
in our scenario. The target dynamic model (i.e.
piecewise constant white acceleration model) with
discretization over time interval of length T = 1s
is [5]

x(k + 1) = Fx(k) + Gv(k)

where x(k) = [x ẋ y ẏ]′ is the target state vector
at time k and F and G are given by

F =


1 T 0 0
0 1 0 0
0 0 1 T
0 0 0 1

 G =


T 2/2 0
T 0
0 T 2/2
0 T



The process noise v(k) representing the accelera-
tion during one period is a zero-mean Gaussian
white noise having covariance Qv = diag(qv, qv)
with qv = (0.001m/s2)2. The magnitude of
the process noise has been chosen very low
in order to force the target to move on the
segment [A;C] (middle of the road). The
true initial target state is assumed to be
x(0) = [−800 m 10 m/s − 450 m 0 m/s]′.
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Figure 1: Urban environment scenario

We have considered a 2-nodes DSN with full
communication at every scan. The sensor S1 is
located at position (−850 m,−950 m) and S2 at
(−100 m,−50 m). It is assumed that only position
measurements are available, i.e.

zi(k) = Hx(k) + wi(k) i = 1, 2

with

H =
[
1 0 0 0
0 0 1 0

]
Figure 2 shows the line of sight between sensors
and the true target position for a given realization
of the process noise. On average for our scenario,
the target is occulted by building B1 for sensor
S1 during period [25s; 72s] and by B2 for sensor
S2 during period [50s; 92s]. Thus during period
[50s; 72s] the target is occulted for both sensors.

Both sensors have same measurement precision.
The standard deviation of measurement errors are
5 meters on x and y coordinates. The detection
probabilities for both sensors are equal to 0.7
and the false alarm rates are both equal to
λ = 0.0003FA/m2. The initial state estimate
for both sensors is estimated using the so-called
two-point differencing technique (TPD) [5, 6] (see
also [20] for recent advances).
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Figure 2: Perceivability scenario (top view)

At each scan, each node will process its own set
of sensor measurements first using local IPDAF,
then will send its local processed results to the
fusion node. After receiving the information
from local nodes, the fusion node will use the
the distributed fusion algorithm presented at the
end of section 4 to construct the global estimate
and will send the results back to each local node
at every sampling time. Both local IPDAF use
the same set of design parameters (Pg = 0.99,
π11 = 0.988, π21 = 0.05 and PO1|0 = 0.5) and the
true value λ for clutter density.

Simulations were carried out with 50 Monte
Carlo runs. The results of successful runs for
decentralized trackers (without fusion) are plotted
on figures 3 and 4. A successful run is defined
when the estimated target position is within 30
m of the true target position for the last three
scans [7]. Figures 5 and 6 show the averaged
performances of the successful runs for the decen-
tralized case. We can observe from figure 5 and
figure 6 that the target perceivability probabili-
ties estimated by the local IPDAF fit well their
true values even when the perceivability mode
is switching. Obviously in nominal mode (for
k > 20s), the rms position errors increase with
time when the target becomes unperceivable by
the sensors. The maximum of rms errors are ob-
tained for k around 72 s and 92 s. These instants
correspond to the end of the unperceivability
period for each sensor. For the decentralized case,
out of 50 runs, sensor 1 alone and sensor 2 alone
only track the occulted target successfully in 29
and 41 runs, respectively.

Figures 7 and 8 show the results obtained with
the distributed IPDAF (distributed communica-

tion scheme at every scan). According to the re-
sults plotted on the figures, the distributed IPDAF
performs better than the single sensor configura-
tions. In nominal mode, the maximum rms po-
sition error is now obtained for k = 72 s which
corresponds to the end of the period where the
target is unperceivable by both sensors simultane-
ously which makes sense with the theory. In such
case, the DIPDAF sucessfully tracks the target in
48 out of 50 runs. Note also that the quality of
estimation using both sensors in terms of mean
square error and in terms of target perceivabil-
ity estimation is significantly better than with the
decentralized scheme. In our simulations the aver-
aged number of false alarms per gate was around
0.5. The simulations shows the usefulness and the
improvement of DIPDAF with respect to decen-
tralized schemes for tracking an occulted ground-
target in an urban cluttered environment.
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Figure 3: Estimated perceivability probabilities
(decentralized communication case)
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Figure 4: R.M.S. errors for successful runs (decen-
tralized communication case)
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Figure 5: Averaged perceivability probabilities
(decentralized communication case)
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Figure 6: Averaged R.M.S. errors for successful
runs (decentralized communication case)

6 Conclusion

From a new formulation of IPDAF based on a
recent method for target perceivability probabil-
ity estimation and by following the theoretical ap-
proach of Chang and al. [8, 11, 21], a distributed
version of IPDAF (called DIPDAF) has been pro-
posed here (with implicit assumption of lossless
communication of sufficient statistics). This algo-
rithm takes into account the information fusion in
a distributed sensor network. This new DIPDAF
is fully coherent and intuitively appealing with the
Distributed PDAF formulation [2] as soon as the
target perceivability probabilities for each sensor
becomes unitary. This filter has been successfully
implemented for tracking a ground-target occa-
sionnally occulted in a cluttered urban environ-
ment on a simple 2-nodes 2D scenario. Exten-
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Figure 7: Averaged perceivability probabilities
(distributed communication case)
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Figure 8: Averaged R.M.S. errors for successful
runs (distributed communication case)

sion of this new tracker for tracking maneuvering
target with or without different local observation
models could also be developed by taking into ac-
count methodology described in previous works [7]
and [1, 3]. Another extension of this algorithm for
multi-target tracking based on the IJPDAF devel-
oped in [13] is under investigations.
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