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ABSTRACT

From a very simple multitarget tracking example, we point out in this paper a theoretical weakness of joint proba-
bilistic data association filter formulation whenever a non parametric model is used for the probability mass function
of the number of false measurements ocurring in validations gates. For such case, very frequently adopted in tracking
simulations, we propose a modification of JPDA derivations to provide a better coherence of JPDAF.

1. INTRODUCTION

The well known PDAF (Probabilistic Data Association Filter [2,3]) and JPDAF (Joint Probabilistic Data Association
Filter [1,4,5]) developped by Y. Bar-Shalom in eighties are the most popular Bayesian algorithms for target tracking
in clutter. JPDAF is a direct extension of PDAF for multitarget tracking. Both algorithms share the same theoretical
background based on Bayesian inference combined with total probability theorem [12]. We assume the reader
familar with PDAF and JPDAF formulation and we will not present in details the development of PDAF and JPDAF
algorithms here. A complete and detailed presentation of these algorithms is available in [6-8]. Improvements
of PDAF called PDAF-BD and PDAF-BDAI have been recently presented in [13]. Our intention in this paper is
rather to point out a theoretical weakness of the JPDAF formulation with respect to the PDAF one. The basic idea
which has motived this paper is the following: consider a multitarget tracking system based on separate PDAFs
and another one based only on JPDAF. If the targets are close enough, then JPDAF usually handles pretty well
multitarget tracking (regardless of the known track coalescence problem reported in [11,9] and solved in [10]).
JPDAF outperfoms target tracking based on separate PDAFs. When targets are faraway from each other, (case of
non-overlapping gates or overlapping gates with no measurement in their intersection) then tracking is usually done
by separate PDAFs (one PDAF per target) even if theoretically JPDAF could be used too. In such simple case,
JPDAF and PDAF should provide same results if the formulation of both algorithms is fully coherent. As it will be
shown in the sequel, this is not necessary the case depending on which model for probability mass function (pmf)
of the number of false measurements i is used within algorithms. Up to now, the Poisson model or the diffuse
model [6] are the only two commonly models usually adopted. We will show on very simple tracking example
that actually only Poisson model provides a perfect theoretical coherence between PDAF and JPDAF. Using the
diffuse model, JPDAF equations become incompatible with PDAF equations. This is the theoretical weakness of
the JPDAF formulation when diffuse model is adopted. To eliminate this problem, we propose a better way to
derive joint association probabilities in JP)DAF which provides the full compatibility of JPDAF with PDAF in case
of diffuse model for p. This modification however breaks down in return the coherence of JPDAF with PDAF if
the Poisson model for jy is used.
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2. JPDAF VERSUS PDAF FORMULATION

Consider the following two targets example with four measurements corresponding to the following data association
matrix at time £
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In a such case, the two targets are actually considered as independent since they don’t share validated measure-
ments. We have two independent clusters of size one. Column % corresponds to false alarm hypothesis and columns
t1 and t, correspond to the origin of measurement associated respectively with target 1 and target 2.

2.1. Data Association Probabilities computed by PDAF

If the tracking of targets #; and ¢, is done using two classical PDAFs running in parallel, we will get the following
posterior data association probabilities [6]
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where X is the spatial density of clutter; mfg is the number of validated measurements in validation gate V*; P, is the
gating probability; P;j is the detection probability of target ¢ (j = 1,2) and e? (vi(k)) = Py ' Nyi(k); 3% (k|k —
1),S% (k)]. y; is the ith validated measurement; y'i is the predicted measurement for target ¢; and S% (k) the
predicted covariance of innovation (see [6-8] for details).
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2.2. Data Association Probabilities computed by JPDAF

Consider now the same example where both targets are tracked by JPDAF instead of two separate PDAFs. Because
of independence of elementary clusters (i.e. each cluster” corresponds to only one target), we expect in theory that
marginal association probabilities 5? computed by JPDAF will correspond exactly to those given by the PDAF for
both models pp (diffuse and Poisson). Unfortunately, as it will be shown, this is not the case when diffuse model
for pipo is chosen.

In our example, the following nine feasible event matrices Q(©) = [@;;(©)] must be taken into account in the
JPDA corresponding to feasible joint association events 6, ... , Og
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Following [8], the posterior probability of any feasible joint association event © is given by the general form
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where f;,(yi(k)) 2 Nlyi(k); 3% (k|k — 1),S% (k)] = P,ef(yi(k)) and ¢ is a normalization constant. The false
measurement indicator ®(©), the target detection indicator ¢(©) and the measurement association indicator 7(0)
are all functions of the event © under consideration and are given by
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The marginal data association probabilities (4 that measurement i belongs to target ¢ is obtained by summing over
all feasible events © for which this condition is true, that is
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In our example, one gets
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If now we replace each P{©,|Y*} by its expression (24), one gets for target #
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which can be more conveniently expressed as
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Same kind of derivations can be done for target # as well and will not presented here due to space limitation.

3. COHERENCE OF JPDAF WITH PDAF FOR POISSON MODEL

If we assume a Poisson pmf for p with spatial density A of false measurements,
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after some elementary algebra, the previous normalization constant ¢! can be factorized as follows
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It can be easily checked that these expressions for marginal association probabilities are fully coherent with (2)-
(4) as soon as gating probability F, = 1. Same conclusion can be drawn about marginal probabilities @2, ﬂf,f and

%2 for target to.



4. INCOHERENCE OF JPDAF WITH PDAF FOR DIFFUSE MODEL

If now we consider the diffuse model [6] for up, i.e. up(®) =€, V@ > 0, we get for constant ¢!
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However in this case, the normalization constant ¢! cannot be factorized in two separable factors depending on
targets ¢ and ¢ like in the Poisson case. The marginal association probabilities can only be expressed as
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Because of the non separability of normalization constant ¢!, the marginal association probabilities L{)l , ﬁ{l and ﬂgl
cannot be reduced to expressions (13)-(15) obtained by standard PDAF based on same diffuse model for . This
proves the theoretical weakness of JPDAF formulation when diffuse model is chosen for g4 .

5. ANEW COHERENT JPDAF FORMULATION FOR DIFFUSE MODEL

Actually, the expression of P{0|5(0), ®(0), my,} entering in (24) for derivation of P{©|Y*} is questionable. First
note that in our example, from the set of feasible event matrices, only the following 4 pairs (4, ®) of indicators are
only feasible
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From this remark, it makes more sense to take instead of ®(©)!/my,! for P{©[6(0), ®(©), my} as done in the
standard JPDAF formulation, the new following probabilities
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with such new choice for P{©14(0), ®(©), my, } derivation we now get for target ¢;
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Same kind of derivations can be done for target ¢, as well.

5.1. Coherence of new formulation for diffuse JPDAF

If we consider the diffuse model for 1, we get for constant ¢t
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which can now be factorized as
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The marginal association probabilities can then be expressed as
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As we can easily check, these expressions for marginal association probabilities become now fully coherent with
expressions (13)-(15). Same conclusion can be drawn about marginal probabilities @z,ﬁgz and ﬁff for target t5.

5.2. Incoherence of new formulation for Poisson JPDAF

If we assume now a Poisson pmf for p, the normalization constant ¢! cannot be factorized but can only be ex-
pressed as
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Because of the non separability of normalization constant ¢, these expressions cannot be reduced to (2)-(4). There-
fore this new formulation for JPDAF (matched for diffuse model) becomes not coherent with PDAF when Poisson
model is used for .



6. CONCLUSION

From a very simple multitarget tracking example, investigations on coherence of the JPDAF formulation have been
presented. It has been shown that the standard JPDAF formulation is only coherent with PDAF formulation if only a
Poisson model is used for the pmf of number of false measurements ;4. The standard JPDAF formulation becomes
incoherent when a diffuse model for up is taken. Therefore, special caution must be taken before running JPDAF
based on diffuse model. Another derivation of joint association probabilities proposed in this paper has shown that
the coherence of JPDAF can however been obtained for a diffuse model for ;4. Unfortunately our new formulation
breaks the coherence of JPDAF if Poisson model for - is chosen instead of diffuse model. In concluding remark, it
clearly appears that there exists (until now) no unique general formulation of JPDAF equations which provides the
full coherence of JPDAF with PDAF for any pmf of the number of false measurements .
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