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Abstract – Most of modern multitarget target tracking
and recognition systems integrate different kind of sensors
(imaging, optical, radar, IR , etc). The major problem in
such new systems is to find how to fuse optimally measure-
ments, decisions/classifications or estimates provided by
the different sources of information involved in the global
system. One of the main difficulty is to take into account in
the fusion process the reliability of each source of informa-
tion. We present in this paper the optimal bayesian fusion
rule (OBFR) for the case of unreliable multi-classifier prob-
lem. Validation of OBFR through Monte Carlo simulations
is presented.

Keywords: Bayesian fusion, bayesian theory, target clas-
sification, multisensor system, system reliability.

1 Introduction
We consider a system based on N different unreli-

able sources of information (sensors, human experts,
AI analyzers or whatever). Each source of information
(i.e. a sensor coupled with its own processing unit)
sn; n = 1 : : : ; N provides a decision An on the true nature
w of the target T under consideration with given reliability
weights rn = (1 � �n; 1 � �n) 2 [0; 1]2. �n and �n
correspond to Type I and Type II errors often referred to
false alarm and miss probabilities in engineering [9] (see
discussion in the sequel). w belongs to a given finite set
W = fw1; w2; : : : ; wMg called the world (or frame) of
discernement of the problem.

In our Bayesian framework, we assume that prior prob-
abilities pi , Pfw = wig; i = 1; : : : ;M are known withP

M

i=1 pi = 1 if we consider a close-worldW or
P

M

i=1 pi <

1 if we consider an open-world. In the open-world case, the
list of wi is not exhaustive. Since we can always intro-
duce the complement hypothesis w0 = “Not a wi target”
with probability p0 = 1 �

P
M

i=1 pi, the initial open-world
W can always be replaced by the new close-world W0 =

fw0; w1; w2; : : : ; wMg. Hence if we need to deal with an
open-world, we will just have to deal with M +1 hypothe-
ses rather than M in OBFR formulaes developped in the
sequel. A simple classification system could be

W = fw1 = “Fighter”;

w2 = “Small civilian jet”;

w3 = “Civilian air carrier”;

w4 = “Bomber”;

w5 = “Air-to-air missile”;

w6 = “Helicopter”g

Each source sn, (n = 1; : : : ; N) asserts either
An , “w 2Wn” � “w =2W c

n
” or its negation

:An , “w =2Wn” � “w 2W c

n
” about the nature of

the target. Wn and W c

n
are disjoint subsets of W with

Wn[W
c

n
=W . The assertionAn or :An can change with

time k because of the dynamic of target, environmental
conditions, etc. For notation convenience, time index k

will be omitted in the sequel.

This modelling is more general than the classical one
which usually provides only a decision on a focal hypoth-
esis wi at a time. In the classical multi-sensor detection
problem, we look for the best decision between hypoth-
esis H0 = “no target” and H1 = “presence of a target”
[3, 16, 19]. Usually in practice, each classifier is only able
to discriminate between several subsets ofW rather than all
elements wi separately. Assertions An or :An are in gen-
eral not sure and we have to deal with classification errors of
type I or II which are characterized by the false alarm prob-
ability (i.e. the probability that source sn asserts An while
An is physically not valid (false) - we will write An = �V )

�n , PfacceptAnjAn = �V g

and the miss probability (the probability that source sn as-
serts :An while An is physically valid (true); we will then
write An = V ):

�n = Pfaccept:AnjAn = V g

�n and �n are assumed to be known and rn ,

(1� �n; 1� �n) is the reliability of sn.

It must be noted that OBFR developped in the following
requires the full knowledge of prior probabilities p i and rn.
Different approaches based on non-bayesian frameworks
(like evidence theory [1, 2, 6], fuzzy sets [5, 11], possibility



theory, etc) could also be used when the full knowledge of
prior is missing. For notation convenience, we will note

W Æn=1
n

� An and W Æn=0
n

� :An

which allows to identify directly W 1
n

for assertion An

with subset Wn andW 0
n

for assertion :An with subset W c

n
.

The Optimal Bayesian Fusion (OBF) problem consists
to compute, for i = 1; : : : ;M , the fused conditional prob-
abilities Pfw = wijW

Æ1

1 ; : : : ;W ÆN

N
g from local unreliable

sources s1; : : : ; sN with reliability r1; : : : ; rN . More pre-
cisely, the derivation must be done from local conditional
probabilities Pfw = wijW

Æ1

1 g, : : : ,Pfw = wijW
ÆN

N
g.

The purpose of this work is then to find the general rela-
tionship of the kind

Pfw = wijW
Æ1

1 ; : : : ;W ÆN

N
g = F [Pfw = wijW

Æ1

1 g;

: : : ; Pfw = wijw
ÆN

N
g; r1; : : : ; rN ;W; p1; : : : ; pM ]

where F [:; : : : ; :] is the OBFR we are searching for. This
can be summarized by the block-scheme on figure 1
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Figure 1: Optimal Bayesian Fusion

Condition of existence of OBFR: The OBFR always ex-
ists if the sources are unreliable even if they appear to be
incompatible, i.e. W Æ1

1 \; : : : ;\W ÆN

N
= ; when Æ1 =

: : : = ÆN . When the sources are fully reliable (r1 =

: : : = rN = (1; 1)) and if for Æ1 = : : : = ÆN , one has
W Æ1

1 \ W Æ2

2 ; : : : ;\W ÆN

N
= ; then no theoretical optimal

fusion rule exists. Only some heuristic fusion rules can be
developped eventually.

2 Simpliest case : OBFR(2)
Consider now the simpliest case for 2 classifiers, de-

noted by OBFR(2). The condition of existence of OBFR is
assumed to be met and we suppose that W has M elements
wi. I = f1; 2; : : : ;mg is the set of hypothesis indices in
W . Source s1 can discriminate between W 1

1 � W and its
complement W 0

1 , W c

1 and s2 between W 1
2 � W and its

complement W 0
2 ,W c

2 . I11 and I12 are the sets of hypothe-
sis indices involved in W 1

1 and W 1
2 . Complement of I 11 and

I12 in I are denoted I 01 and I02 . Cardinalities of W Æ1

1 and
W Æ2

2 (for Æ1; Æ2 2 f0; 1g) can be any integer between 1 and
M with the constraint Card(W 1

n
) + Card(W 0

n
) = M for

n = 1; 2. Reliability parameters for s1 and s2 are respec-
tively r1 = (1� �1; 1� �1) and r2 = (1� �2; 1� �2).

2.1 Derivation of PfW Æn
n g

The prior marginal probabilities of classifier assertion
PfW Æ1

1 g and PfW Æ2

2 g taking into account reliability pa-
rameters are obtained by elementary probability calculus
[9]. We get for n = 1; 2 and for Æn 2 f0; 1g,

PfW Æn

n
g =

X
an2f0;1g

�
fn[�n; Æn]

X
i2I

an
n

pi
�

(1)

where �n is the Kronecker indicator function defined here
as �n = 1 if an = Æn or 0 otherwise. The function
fn[�n; Æn] is defined as

fn[�n; Æn] = (1� �n)
�n(1�Æn)(1� �n)

�nÆn

��n
(1��n)(1�Æn)�n

(1��n)Æn
(2)

which corresponds to

fn[�n; Æn] =

8>>><
>>>:
1� �n if �n = 0 and Æn = 0

1� �n if �n = 0 and Æn = 1

�n if �n = 1 and Æn = 0

�n if �n = 1 and Æn = 1

When �n = �n, fn[�n; Æn] depends only on �n and if
�n = �n = 0:5 then fn[�n; Æn] = 0:5. It can be easily
checked that X

Æn2f0;1g

PfW Æn
n
g = 1

2.2 Derivation of PfW Æn
n jw = wig

The derivation of likelihood PfW Æn
n
jw = wig is com-

puted using the total probability theorem by introducing the
truth or falsety of assertion as follow

PfW Æn

n
jw = wig =

PfW Æn

n
jw = wi;W

Æn

n
= V gPfW Æn

n
= V jw = wig

+PfW Æn

n
jw = wi;W

Æn

n
= �V gPfW Æn

n
= �V jw = wig

(3)

PfW Æn
n

= Ajw = wig when An = V (truth) or An = �V

(falsety) is given by

PfW Æn
n

= Anjw = wig = (1��n[i])
1�vn�n[i]

vn (4)

which is either equal to 0 or 1 and where vn = 1 ifAn = V

or 0 otherwise. �n[i] is a new indicator function introduced
here for notation convenience defined by �n[i] = 1 if
i 2 IÆn

n
or 0 otherwise.

PfW Æn
n
jw = wi;W

Æn
n

= V g is given by8><
>:
0 if i =2 IÆn

n

1� �n if i 2 IÆn
n

and Æn = 1

1� �n if i 2 IÆn
n

and Æn = 0



PfW Æn
n
jw = wi;W

Æn
n

= �V g is given by8><
>:
0 if i 2 IÆn

n

�n if i =2 IÆn
n

and Æn = 1

�n if i =2 IÆn
n

and Æn = 0

Note : When i =2 IÆn
n

, the conditioning event
\w = wi" \ \W Æn

n
= V " can never occur (impossi-

ble event). The event \w = wi" \ \W Æn
n

= �V " when
i 2 IÆn

n
is also an impossible event. Therefore, theo-

retically, PfW Æn
n
jw = wi;W

Æn
n

= V g when i =2 IÆn
n

and PfW Æn
n
jw = wi;W

Æn
n

= �V g when i 2 IÆn
n

are not
defined. These “probabilities” can however be set to any
arbitrary finite value without affecting the global result
since they are multiplied by a zero factor in (3). This
justifies our choice to set PfW Æn

n
jw = wi;W

Æn
n

= V g and
PfW Æn

n
jw = wi;W

Æn
n

= �V g to zero when i =2 I Æn
n

and
i 2 IÆn

n
respectively.

Using previous expressions in (3), we get for PfW Æn
n
jw =

wig (
(1� �n)

1�Æn(1� �n)
Æn if i 2 IÆn

n

�Æn
n
�n

1�Æn if i =2 IÆn
n

which can be rewritten as

PfW Æn

n
jw = wig = fn[�n[i]; Æn] (5)

with fn[:; :] defined in (2).

2.3 Derivation of Pfw = wijW
Æn
n g

The conditional probability of a focal hypothesis “w =

wi” given the assertion W Æn
n

provided by sn for n = 1; 2

follows from Bayes’ rule. One gets

Pfw = wijW
Æn

n
g =

PfW Æn
n
jw = wigpi

PfW Æn
n g

(6)

where pi , Pfw = wig are assumed to be known;
PfW Æn

n
jw = wig is given by (5) and PfW Æn

n
g is given by

(1). The normalization constant PfW Æn
n
g can be computed

by (1) or by

PfW Æn

n
g =

X
i

PfW Æn

n
jw = wigpi (7)

and the following equality always holds for any W Æn
nX

i

fn[�n[i]; Æn]pi =
X

an2f0;1g

�
fn[�n; Æn]

X
i2I

an
n

pi
�

2.4 Derivation of PfW Æ1
1
;W

Æ2
2
g

The prior probability of joint assertions PfW Æ1

1 ;W Æ2

2 g

is given byX
(a1;a2)2f0;1g

2

�
f1[�1; Æ1]f2[�2; Æ2]

X
i2I

a1

1
\I

a2

2

pi
�

(8)

where f0; 1g2 represents the set of all couples (i; j) taking
their values in f0; 1g� f0; 1g. One has alsoX

(Æ1;Æ2)2f0;1g
2

PfW Æ1

1 ;W Æ2

2 g = 1

2.5 Derivation of PfW Æ1
1
;W Æ2

2
jw = wig

By introducing the truth or falsety of joint assertion un-
der consideration and using the total probability theorem,
the likelihood PfW Æ1

1 ;W Æ2

2 jw = wig is the given by

PfW Æ1

1 ;W Æ2

2 jw = wig =X
(A1;A2)2fV;�V g

2

�
PfW Æ1

1 ;W Æ2

2 jwi;W
Æ1

1 = A1;W
Æ2

2 = A2g

�PfW Æ1

1 = A1;W
Æ2

2 = A2jwig
�

(9)

where (A1;A2) 2 fV; �V g
2

represents all combinations of
truth and falsety for possible joint assertions (W Æ1

1 ;W Æ2

2 ).
We must note that there exists only one non null term
PfW Æ1

1 ;W Æ2

2 jwi;W
Æ1

1 = A1;W
Æ2

2 = A2gPfW
Æ1

1 =

A1;W
Æ2

2 = A2jwig in the previous summation. The choice
of this non null term depends on the membership ofw i with
the intersection of W Æ1

1 = A1 with W Æ2

2 = A2 for a par-

ticular (A1;A2) 2 fV; �V g
2
. More precisely, the joint con-

ditional probabilities PfW Æ1

1 = A1;W
Æ2

2 = A2jw = wig

are theoretically given by(
1 if i 2 I

Æ1;v1

1 \ I
Æ2;v2

2

0 if i =2 I
Æ1;v1

1 \ I
Æ2;v2

2

where the new set IÆn;vn
n

is defined by

I
Æn;vn

n
, vnI

Æn

n
[ (1� vn)I

1�Æn
n

(10)

which is only a concise form to indicate that I Æn;vn
n

= IÆn
n

when vn = 1 (i.e. An = V ) or I1�Æn
n

when vn = 0.

By scanning all combinations of binary values for Æn and vn
(for n = 1; 2), it can be shown that PfW Æ1

1 = A1;W
Æ2

2 =

A2jwig can be rewritten asY
n=1;2

(1��n[i])
1�vn�n[i]

vn

Taking into account (4), we finally get for PfW Æ1

1 =

A1;W
Æ2

2 = A2jwig

Y
n=1;2

PfW Æn
n

= Anjw = wig (11)

Two cases must now be considered for the derivation of
PfW Æ1

1 ;W Æ2

2 jwi;W
Æ1

1 = A1;W
Æ2

2 = A2g

� Case 1: i =2 I
Æ1;v1

1 \ I
Æ2;v2

2

In this case, PfW Æ1

1 = A1;W
Æ2

2 = A2jw = wig = 0. This
corresponds to the impossible event

“w=wi” \ “W Æ1

1 =A1” \ “W Æ1

2 =A2”

PfW Æ1

1 ;W Æ2

2 jwi;W
Æ1

1 = A1;W
Æ2

2 = A2g is not defined
in theory but can be set to any finite value since it is
multiplied by a zero factor in derivations. We set it to zero.



� Case 2: i 2 I
Æ1;v1

1 \ I
Æ2;v2

2

In this case, PfW Æ1

1 = A1;W
Æ2

2 = A2jwig � 1. Using
Bayes’ rule, PfW Æ1

1 ;W Æ2

2 jw = wi;W
Æ1

1 = A1;W
Æ2

2 =

A2g is given by

PfW Æ1

1 jw = wi;W
Æ1

1 = A1;W
Æ2

2 = A2;W
Æ2

2 g

�PfW Æ2

2 jw = wi;W
Æ1

1 = A1;W
Æ2

2 = A2g

(12)

If there is no feedback (communications) between sources
sn, the irrelevant conditioning terms can be removed in pre-
vious formulaes and one gets

PfW Æ1

1 ;W Æ2

2 jwi;W
Æ1

1 = A1;W
Æ2

2 = A2g =Y
n=1;2

PfW Æn

n
jwi;W

Æn

n
= Ang

(13)

The non null term PfW Æ1

1 ;W Æ2

2 jwi;W
Æ1

1 = A1;W
Æ2

2 =

A2gPfW
Æ1

1 = A1;W
Æ2

2 = A2jwig entering in (9) can be
expressed as,Y
n=1;2

PfW Æn
n
jwi;W

Æn
n

= AngPfW
Æn
n

= Anjwig

which finally implies, because of (3),

PfW Æ1

1 ;W Æ2

2 jw = wig =
Y
n=1;2

PfW Æn

n
jw = wig

or equivalently,

PfW Æ1

1 ;W Æ2

2 jw = wig =
Y
n=1;2

fn[�n[i]; Æn] (14)

2.6 Derivation of Pfw = wijW
Æ1
1
;W

Æ2
2
g

The conditional probabilities of focal hypothesis “w =

wi” given the joint unreliable assertions W Æ1

1 and W Æ2

2 are
obtained by the Bayes’ rule as follows.

Pfw = wijW
Æ1

1 ;W Æ2

2 g =
PfW Æ1

1 ;W Æ2

2 jw = wigpi

PfW Æ1

1 ;W Æ2

2 g

PfW Æ1

1 ;W Æ2

2 jw = wig is given by (14); pi is known and
the normalization constant is given by (8) or equivalently
by

PfW Æ1

1 ;W Æ2

2 g =
X
i

PfW Æ1

1 ;W Æ2

2 jw = wigpi (15)

An other useful expression (for practical implementation)
of Pfw = wijW

Æ1

1 ;W Æ2

2 g is

pi
Q

n=1;2 fn[�n[i]; Æn]P
i=1;M pi

Q
n=1;2 fn[�n[i]; Æn]

(16)

2.7 Final expression of OBFR(2)
The OBFR(2) rule consists to express Pfw =

wijW
Æ1

1 ;W Æ2

2 g as a function F [:] of Pfw = wijW
Æn
n
g, rn

and pi. Using algebraic manipulations on previous formu-
laes, one gets the final general OBFR(2) result

Pfw = wijW
Æ1

1 ;W Æ2

2 g =

p�1
i

Y
n=1;2

PfwijW
Æn

n
g

X
i=1;M

p�1
i

Y
n=1;2

PfwijW
Æn

n
g

(17)

If we assume uniform prior pi = 1=M , then terms p�1
i

can
be removed in the OBFR(2) formula above. The validation
of theoretical OBFR(2) via Monte-Carlo simulation is pre-
sented in next section.

2.8 Simulation results of OBFR(2)
Comparison of Monte Carlo simulations results with

theoretical results will now be presented for cases of a bi-
classifier system. Each independent classifier can have dif-
ferent or same performance as the other one. Both cases are
presented.

2.8.1 OBFR(2) with 2 different classifiers

We consider here the general case with two different
classifiers s1 and s2 having different reliability factors r1
and r2. The frame of discernement W under considera-
tion is supposed to have only 9 focal hypotheses, i.e. W =

fw1; : : : ; w9g. s1 is able to discriminate between subset B
and its complementary �B with reliability r1 = (0:60; 0:75)

and s2 between subset C and its complementary �C with
reliability r2 = (0:90; 0:80) where

B = fw2; w4; w5g and C = fw1; w2; w3; w4g

The reliability factors imply �1 = PfBjB = �V g = 0:40,
�1 = Pf �BjB = V g = 0:25, �2 = PfCjC = �V g = 0:10

and �2 = Pf �CjC = V g = 0:20.

� OBFR(2) with non uniform prior

Consider the following non uniform prior probabilities

p1 = 0:05; p2 = 0:30; p3 = 0:05; p4 = 0:40; p5 = 0:05;

p6 = 0:05; p7 = 0:02; p8 = 0:05; p9 = 0:03

Our simulation are based on samples drawing and
occurences counting to estimate the experimental proba-
bilities in one side and the implementation of theoretical
relationships previously presented in othre side. Monte
Carlo simulations are based on 50000 samples.

Figure 2 shows Monte-Carlo and theoretical results
for estimation of fused conditional probabilities of focal
hypothesis “w = wi”.

Figure 3 presents a comparison between marginal con-
ditional probabilities Pfw = wijWi

Æi
g (for Æi 2 f0; 1g

and i = 1; 2) and the joint conditional probabilities
Pfw = wijW1

Æ1 ;W2
Æ2
g. As we observe, one gets a very

good agreement between Monte Carlo results and theoret-
ical ones. This validates our development of the optimal
Bayesian fusion. Other simulations results not reported
here confirm this conclusion.
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Figure 2: s1 6= s2, r1 6= r2 with non-uniform pi
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Figure 3: Pfw = wijW1
Æ1 ;W2

Æ2
g vs. Pfw = wijWi

Æi
g

Since pretty good reliability parameters have been
chosen in this example, Bayesian fusion rule always em-
phasizes (in this case) the probabilities of all hypothesesw i

belonging to intersection of joint assertion W1
Æ1
\ W2

Æ2 .
However, the improvement on these probabilities provided
by optimal fusion rule is not that much.

Note : Continuous plots have been drawn on figure 3 to fa-
cilitate the comparison however it is obvious that only val-
ues at abscisses wi must be considered for the comparison
of conditional pmf (probability mass functions).

� OBFR(2) with uniform prior

Focal hypotheses wi; i = 1; : : : ; 9 have now uniform
priors pi = 1=9; i = 1; : : : ; 9. s1 and s2 have same pretty
good reliability factors as before. Results plotted on fig-
ures 4 and 5 confirm our previous remark. In this particular
case, we can better distinguish the improvement obtained
by the OBFR(2) on hypotheses wi belonging to intersec-
tion of joint assertion W1

Æ1
\W2

Æ2 .
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Figure 4: s1 6= s2, r1 6= r2 with uniform pi
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Figure 5: Pfw = wijW1
Æ1 ;W2

Æ2
g vs. Pfw = wijWi

Æi
g

2.8.2 OBFR(2) with similar classifiers

Consider now two sensors s1 and s2 having the same
discrimination capacity (i.e. (W1 = B) � (W2 = C)) but
not necessarily same reliability parameters r1 and r2. Such
sensors are said similar; In our simulations, we have cho-
sen (W1 = B) � (W2 = C) = fw2; w4; w5g � W and
all our theoretical predictions match very well with Monte
Carlo results. Due to space limitation, we don’t have in-
cluded Monte Carlo results here. Only theoretical fusion
results are shown on figure 6 to see the benefit brought by
the OBFR(2) for several typical cases.

� OBFR(2) with r1 6= r2 and non uniform pi

Figure 6.1 plots result obtained with non uniform p i cho-
sen as in previous section and reliabilities r1 = (0:60; 0:75)

and r2 = (0:90; 0:80). In most of cases, s1 and s2
provide the same assertions since PfW1 = B;W2 =

Cg = 0:46255. But since s2 is more reliable than s1,
the pmf PfwijW1 = B;W2 = Cg is a little bit better



than PfwijW2 = Cg for wi 2 C. The improvement of
OBFR(2) is very limited in this case. In the dual case,
where classifiers claim both W1 = W2 = �B � �C, we
can see also a small improvement for wi 2

�B. When sim-
ilar classifiers claim paradoxal/conflictual assertions (i.e.
W1 = B and W2 = �C or W1 = �B and W2 = C), then no
improvement is obtained at all since there is now i 2 B\ �B.
The fusionned pmf only follows the conditional pmf cor-
responding to the best classifier which intuitively makes
sense.

� OBFR(2) with r1 = r2 and non uniform pi

Figure 6.3 plots results obtained with non uniform prior
distribution and good and same reliabilities (r1 = r2 =

(0:90; 0:90)). When both classifiers agree, one has a
small improvement for all wi which support the asser-
tions. When classifiers disagree, the fusionned pmf tries
to reduce the max performances of both classifiers (i.e.
8i; PfwijW1;W2g � max(PfwijW1g; PfwijW2g)). In
the dual case, where we force the same classifiers to have
same poor reliability parameters ( r1 = r2 = (0:10; 0:10)),
one gets results plotted on figure 6.5. Dual conclusions can
be drawn when classifiers agree (i.e. a small improvement
for all wi which do not support the assertions), but same
concluding remark when classifiers disagree.

� OBFR(2) with r1 6= r2 and uniform pi

Figure 6.2 plots results obtained with uniform prior p i
with pretty good different reliability parameters (i.e. r1 =

(0:60; 0:75) and r2 = (0:90; 0:80)). Same concluding re-
marks as for non uniform case hold.

� OBFR(2) with r1 = r2 and uniform pi

Figure 6.4 plots results obtained with uniform p i and
same good reliabilities (r1 = r2 = (0:90; 0:90)). Figure
6.6 plots results obtained with uniform p i and same bad
reliabilities r1 = r2 = (0:10; 0:10)). Same concluding re-
marks as for the non uniform case hold. It is worthwhile
to note that OBFR now generates (because of the uniform
prior condition) the full ignorance pmf (taken as uniform
pmf if we admit the principle of sufficient reason) when
classifiers are in full contradiction. This result makes sense
with our logical intuition.

3 General case : OBFR(N )
The extension of optimal Bayesian fusion rule to general

case of theN unreliable classifiers problem follows directly
from previous results. Details of derivations will be omitted
in the sequel due to space limitation. We will just indicate
important results for the OBFR(N).

3.1 Derivation of PfW Æ1
1
; : : : ;W

ÆN
N g

Relation (1) can easily be extended forN > 2 as follows
to provide PfW Æ1

1 ; : : : ;W ÆN

N
g,

X
(a1;::: ;aN )2f0;1gN

Y
n=1;N

fn[�n; Æn]
X

i2I
a1

1
\:::\I

a
N

N

pi

3.2 Derivation of PfW Æ1
1
; : : : ;W

ÆN
N jwig

PfW Æ1

1 ; : : : ;W ÆN

N
jw = wig is given by

Y
n=1;N

PfW Æn

n
jw = wig =

Y
n=1;N

fn[�n[i]; Æn]

3.3 Derivation of PfwijW
Æ1
1
; : : : ;W

ÆN
N g

Pfw = wijW
Æ1

1 ; : : : ;W ÆN

N
g is given by

Pfw = wijW
Æ1

1 ; : : : ;W ÆN

N
g =

pi
Y

n=1;N

fn[�n[i]; Æn]

k

with k =
X
i=1;M

pi
Y

n=1;N

fn[�n[i]; Æn]

3.4 Final expression of OBFR(N)
The general OBFR(N) is then given by

Pfw = wijW
Æ1

1 ; : : : ;W ÆN

N
g =

p1�N
i

Y
n=1;N

PfwijW
Æn

n
g

KN

(18)

with KN =
X
i=1;M

p1�N
i

Y
n=1;N

PfwijW
Æn

n
g

If we assume uniform prior pi = 1=M , then terms p1�N
i

can be removed in the OBFR(N) formula above. This
formula coincides exactly with Demspter-Shafer rule of
combination when basic mass assignments become basic
conditional probabilities.

Since the list of wi is exhaustive and wi are mutually
exclusive, any disjunction of general hypothese can be eas-
ily evaluated from (18) because of additivity property of
probabilities. Hence for example, the fusioned conditional
probability PfAjW Æ1

1 ; : : : ;W ÆN

N
g will be computed by

X
wi�A

hp1�N
i

KN

Y
n=1;N

PfwijW
Æn

n
g

i

SeveralN > 2 multi-classifier bayesian fusion problems
have been simulated. All predicted theoretical results have
shown a very good agreement with all Monte Carlo simula-
tion results but are not reported here due to space limitation.

3.5 A note on implementation of OBFR(N)
OBFR(N) can be implemented directly following (18)

or through any sequential ways involving combinations of
clusters of sub-joint assertions. Final OBFR result will not
depend on the order of combinations. Consider as example,
the four unreliable classifier problem. The direct OBFR(4)
is given by (18), i.e.

Pfw = wijW
Æ1

1 ; : : : ;W Æ4

4 g =
p�3
i

Q
n=1;4 PfwijW

Æn
n
g

K4



This formula can however, by example, be rewritten as

p�2
i

Q
n=1;3 PfwijW

Æn
n
g � p�1

i
PfwijW

Æ4

4 g

K4

By introducing the K3 constant, one has now

p
�2
i n=1;3

PfwijW
Æn

n
g

K3

� p�1
i
PfwijW

Æ4

4 g

K4=K3

which corresponds to nothing but the OBF between one
classifier providing W Æ4

4 and a cluster of 3 classifiers pro-
viding joint assertions (W Æ1

1 ;W Æ2

2 ;W Æ3

3 ). The same rea-
soning is valid for any classifiers clustering choice.

4 Conclusion
The optimal bayesian fusion rule for the general unre-

liable multi-classifier fusion problem has been fully devel-
opped here. Our theoretical results have been intensively
validated through comparison with Monte carlo simulation
results. We have proved that a very good accuracy of the-
oretical prediction with experience is achievable. The Op-
timal Baysian fusion rule (OBFR) is actually very easy to
implement and requires only a very low cost of computa-
tion even for the general case of N classifiers. This OBFR
is very useful to optimize detection/classification perfor-
mances of future multi-sensor/classifier systems and also to
solve many practical problems arising in multi-sensor sys-
tems. We have pointed out the typical behavior of OBFR for
several different practical cases involving same or different
sensors having either same, or different reliability parame-
ters.
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6.1: r1 6= r2; non uniform pi
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6.2: r1 6= r2; uniform pi
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6.3: r1 = r2 = \good"; non uniform pi
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6.4: r1 = r2 = \good"; uniform pi
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6.5: r1 = r2 = \poor"; non uniform pi
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6.6: r1 = r2 = \poor"; uniform pi

Figure 6: Fusion Results with similar classifiers (s1 = s2)


