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Abstract — Most of modern multitarget target tracking
and recognition systems integrate different kind of sensors
(imaging, optical, radar, IR, etc). The major problemin
such new systems is to find how to fuse optimally measure-
ments, decisiong/classifications or estimates provided by
the different sources of information involved in the global
system. One of the main difficulty is to take into account in
the fusion process the reliability of each source of informa-
tion. We present in this paper the optimal bayesian fusion
rule (OBFR) for the case of unreliable multi-classifier prob-
lem. Validation of OBFR through Monte Carlo simulations
is presented.

Keywords: Bayesian fusion, bayesian theory, target clas-
sification, multisensor system, system reliability.

1 Introduction

We consider a system based on N different unreli-
able sources of information (sensors, human experts,
Al analyzers or whatever). Each source of information
(i.e. a sensor coupled with its own processing unit)
sn,n = 1... N provides a decision A,, on the true nature
w of the target 7" under consideration with given reliability
weights 7, = (1 — a,,1 — 3,) € [0;1)2. «a, and 3,
correspond to Type | and Type Il errors often referred to
false alarm and miss probabilities in engineering [9] (see
discussion in the sequel). w belongs to a given finite set
W = {wy,ws,... ,wy} called the world (or frame) of
discernement of the problem.

In our Bayesian framework, we assume that prior prob-
abilities p; £ P{w = w;},i = 1,... , M are known with
S M pi = 1if we consider a close-world W or "™ p; <
1 if we consider an open-world. In the open-world case, the
list of w; is not exhaustive. Since we can always intro-
duce the complement hypothesis wy = “Not a w; target”
with probability po = 1 — Zfil pi, the initial open-world
W can always be replaced by the new close-world Wy =
{wo, w1, wa, ... ,wpr}. Hence if we need to deal with an
open-world, we will just have to deal with M + 1 hypothe-
ses rather than M in OBFR formulaes developped in the
sequel. A simple classification system could be

W = {w; = “Fighter”,
wo = “Small civilian jet”,
ws = “Civilian air carrier”,
wy = “Bomber”,
ws = “Air-to-air missile”,
wg = “Helicopter”}

Each source s,, (n = 1,...,N) asserts either
A, & “weW,” = “wg¢W¢S or its negation
-A, & *w¢W,” = “we WS about the nature of

the target. W, and W, are disjoint subsets of W with
W, UWS = W. The assertion A,, or —A,, can change with
time k& because of the dynamic of target, environmental
conditions, etc. For notation convenience, time index k
will be omitted in the sequel.

This modelling is more general than the classical one
which usually provides only a decision on a focal hypoth-
esis w; at a time. In the classical multi-sensor detection
problem, we look for the best decision between hypoth-
esis Hy = “notarget” and H; = “presence of a target”
[3, 16, 19]. Usually in practice, each classifier is only able
to discriminate between several subsets of 17/ rather than all
elements w; separately. Assertions A,, or —A,, are in gen-
eral not sure and we have to deal with classification errors of
type I or Il which are characterized by the false alarm prob-
ability (i.e. the probability that source s,, asserts A,, while
A, is physically not valid (false) - we will write A,, = V)

an = P{acceptd,|A, =V}

and the miss probability (the probability that source s, as-
serts —A,, while A,, is physically valid (true); we will then
write 4,, = V):

Bn, = P{accept—A4,|A, =V}

o, and (3, are assumed to be known and r, =
(1 — ay, 1 — B,) is the reliability of s,,.

It must be noted that OBFR developped in the following
requires the full knowledge of prior probabilities p; and r,,.
Different approaches based on non-bayesian frameworks
(like evidence theory [1, 2, 6], fuzzy sets [5, 11], possibility



theory, etc) could also be used when the full knowledge of
prior is missing. For notation convenience, we will note

W=l =4, and W="=-4,

which allows to identify directly W for assertion A4,
with subset 1W,, and W2 for assertion — A, with subset W <.

The Optimal Bayesian Fusion (OBF) problem consists

to compute, fori = 1,..., M, the fused conditional prob-
abilities P{w = w;|W?*,... , W3~} from local unreliable
sources si, - .. , sy with reliability r1,... ,rx. More pre-

cisely, the derivation must be done from local conditional
probabilities P{w = w;|W{'}, ... ,P{w = w;|W3"}.
The purpose of this work is then to find the general rela-
tionship of the kind

P{w = w W, ... W} = FIP{w = w;|W*},

,P{w:wﬂw%"},rl,... SN, WoD1, -, P

where F[.,... ,.] is the OBFR we are searching for. This
can be summarized by the block-scheme on figure 1
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Optimal Bayesian Fusion Rule
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Figure 1: Optimal Bayesian Fusion

Condition of existence of OBFR: The OBFR always ex-
ists if the sources are unreliable even if they appear to be
incompatible, ie. Wn,...,NnW3 = 0 when §;, =
.. = On. When the sources are fully reliable (r; =
... =rny = (1,1)) and if for 6; = ... = du, one has
Wi nwiz, ... ,ﬂsz, = () then no theoretical optimal
fusion rule exists. Only some heuristic fusion rules can be
developped eventually.

2 Simpliest case: OBFR(2)

Consider now the simpliest case for 2 classifiers, de-
noted by OBFR(2). The condition of existence of OBFR is
assumed to be met and we suppose that 17 has M elements
w;. I ={1,2,...,m} is the set of hypothesis indices in
W. Source s; can discriminate between W' C W and its
complement W2 £ W and s, between W, C W and its
complement W9 £ Wy. I} and I3 are the sets of hypothe-
sis indices involved in W and W . Complement of I} and

I in I are denoted 79 and I9. Cardinalities of W' and
W32 (for &y, 8, € {0,1}) can be any integer between 1 and
M with the constraint Card(W,}) + Card(W?) = M for
n = 1,2. Reliability parameters for s; and s- are respec-
tively ry = (]. —ap,l — ﬁl) and ro = (]. — 9,1 — /6)2)

2.1 Derivation of P{W?}

The prior marginal probabilities of classifier assertion
P{W{*} and P{W?} taking into account reliability pa-
rameters are obtained by elementary probability calculus
[9]. We get for n = 1,2 and for §,, € {0, 1},

P{Wiry= > (fuldn,0] D i) @
an,€{0,1} eIy

where A,, is the Kronecker indicator function defined here
as A, = 1ifa, = 6, or 0 otherwise. The function
fnlAs, d,] is defined as

fn[An:(sn] = (1 -«
Bp(1mAn)(1=0n) o (1=An)dn

. Ap(1=65) 1-8, Apdn
) =g

which corresponds to

1-a, if A,=0andd, =0
1-0, if A,=0andd,=1
fn[Ana(Sn] = . o o
OBn if A,=1andd, =0
Qp if A,=1andd,=1

When a,, = By, fu[An,0,] depends only on A, and if
an = B, = 0.5 then f,[A,,d,] = 0.5. It can be easily

checked that
> Pwirt=1
§,€{0,1}
2.2 Derivation of P{W?"|w = w;}

The derivation of likelinood P{W o= |w = w;} is com-
puted using the total probability theorem by introducing the
truth or falsety of assertion as follow

P{WS |w = w;} =
P{Wi|w = w;, Wi = VYP{WS = Viw = w;}
+P{W? w = w;, Wi = VIP{W = V|w = w;}
@)
P{W? = Alw = w;} when A,, =V (truth)yor A, =V
(falsety) is given by
P{W.r = Aglw = wi} = (1= A, i)' " Aufi]™ (4)

which is either equal to O or 1 and where v,, = 1if A, =V
or 0 otherwise. A, [4] is a new indicator function introduced
here for notation convenience defined by A ,[i] = 1 if
i € I3~ or 0 otherwise.

P{W3r|w = w;, Wi = V'} is given by
0 ifi¢ o
1-8, ifiel’andj, =1
l-—a, ifiellandé, =0



P{W?w = w;, WS = V} is given by
0 ifieldn
an ifi ¢ I3 and §, = 1
By ifi ¢ I3 and §,, = 0

Note : When i ¢ I+, the conditioning event
“w = w;” N “W2 = V” can never occur (impossi-
ble event). The event “w = w;” N “W2» = V” when
i € IS is also an impossible event. Therefore, theo-
retically, P{W " |w = w;, Wi = V} wheni ¢ IJ
and P{W2|lw = w;, WS = V} wheni € I are not
defined. These “probabilities” can however be set to any
arbitrary finite value without affecting the global result
since they are multiplied by a zero factor in (3). This
justifies our choice to set P{W 3 |w = w;, WS =V} and
P{Wo|w = w;, Wi = V} to zero when i ¢ I%» and
i € I~ respectively.

Using previous expressions in (3), we get for P{W 2= |w =
U)i}

(1—a) (1 =8, ifieln
alr B0 ifi ¢ Idn
which can be rewritten as
P{Wo|w = w;} = fu[Anli], 0,] (5)

with f,,[.,.] defined in (2).

2.3 Derivation of P{w = w;|W°"}

The conditional probability of a focal hypothesis “w =
w;” given the assertion W2~ provided by s,, forn = 1,2
follows from Bayes’ rule. One gets
P{Wp lw = wi}pi

P{wi}
where p; £ P{w = w;} are assumed to be known;
P{W?|w = w;} is given by (5) and P{W 2~} is given by
(1). The normalization constant P{1 2~} can be computed
by (1) or by

P{Wir} =Y P{WS jw = w;}p; (7)

P{w = wi| Wy} =

(6)

and the following equality always holds for any ¥ 2~

D falAnlildalpi = 3 (falAn,0a] 3 pi)

an€{0,1} i€l

2.4 Derivation of P{W}", W3}
The prior probability of joint assertions P{WW %, W22}

is given by
> p) ©®

ielftnig?

(f1[A1,01]f2[A2, 0]

(a17a2)€{071}2

where {0, 1}2 represents the set of all couples (7, j) taking
their values in {0,1} x {0,1}. One has also

>

(61762)6{071}2

P{Wy, Wy} =1

2.5 Derivation of P{W, W3 |w = w;}
By introducing the truth or falsety of joint assertion un-

der consideration and using the total probability theorem,
the likelihood P{W{*, Ws?|w = w;} is the given by

P{WY Wyt |w = w;} =
> (P{W W2 fwi, WP = Ay, W2 = As}
(A1, A2)e{V,V}?
P{W = Ay, W = Az |wi})
)

where (A, As) € {V,V} represents all combinations of
truth and falsety for possible joint assertions (W0, W292).
We must note that there exists only one non null term
P{W W2 |w;, W = Ay, We? = A }P{W{r =
Ay, W22 = As|w;} in the previous summation. The choice
of this non null term depends on the membership of w ; with
the intersection of W' = A, with W.* = A, for a par-
ticular (A, A2) € {V,V}z. More precisely, the joint con-
ditional probabilities P{W* = A;, W2 = Asjw = w;}
are theoretically given by

1 ifie i NI
0 ifig i nzdv

where the new set Z2»+V» is defined by

It & oI U (1= vp) 10 (10)

which is only a concise form to indicate that Z%»*» = [~
when v,, = 1 (i.e. A, = V) or I}=% when v, = 0.

By scanning all combinations of binary values for §,, and v,,
(for n = 1,2), it can be shown that P{W " = A, W2 =
Asjw;} can be rewritten as

[T @—au A

n=1,2
Taking into account (4), we finally get for P{Wf1 =
Ay, W2 = As|w;}

II Piwi = Anlw = wi}

n=1,2

(11)
Two cases must now be considered for the derivation of
P{WEI,W§2|1UZ’,W161 = A17W§2 = AZ}

o Casel i ¢ I{"" NIy

In this case, P{W}* = A;, W3? = As|w = w;} = 0. This
corresponds to the impossible event

uw:win N “Wldl :Aln ) ::ng :AQH

P{Wr W2 |w;, W = Ay, We? = Ay} is not defined
in theory but can be set to any finite value since it is
multiplied by a zero factor in derivations. We set it to zero.



e Case2: i€ IV N5

In this case, P{W{* = A;, W = Ay|w;} = 1. Using
Bayes’ rule, P{W ' W jw = w;, W' = A, W =
A, }is given by

P{W161|U) = U)i,Wlél - ./41,W262 - Az,W262}

(12)
P{W2‘52|w = U)i,Wlél = Al,Wgz = ./42}

If there is no feedback (communications) between sources
sn, the irrelevant conditioning terms can be removed in pre-
vious formulaes and one gets

P{W W22 |wi, W = Ay, Wi = Ay} =
[T PAW3 ws, Wi = A}

n=1,2

(13)

The non null term P{W{* We2|w;, W = Ay, We? =
A }P{WE = Ay, W22 = As|w;} entering in (9) can be
expressed as,

[T Powie jwi, Wi = A} P{W) = Ay|w;}

n=1,2

which finally implies, because of (3),

PV, We|w = w;} = [[ PAWR" |w = w;}

n=1,2

or equivalently,

P{W{517W52|w =wi} = H fnlAnli]; 0]

n=1,2

(14)

2.6 Derivation of P{w = w;|W*, WS}

The conditional probabilities of focal hypothesis “w =
w;” given the joint unreliable assertions W * and . are
obtained by the Bayes’ rule as follows.

P{W W32 lw = w;}p;
P{W, Wy}

Plw = wi|[ W), Wi} =

P{W W2*|lw = w;} is given by (14); p; is known and
the normalization constant is given by (8) or equivalently
by

P{WP, W2y = P{W Wt w = wilp;  (15)
i
An other useful expression (for practical implementation)
of P{w = w;|W{*, Ws2} is

pi Hn:Lz fn[An[Z]: 5n]
Ei:l,M bi Hn:172 fulAnli], 65]

2.7 Final expression of OBFR(2)

The OBFR(2) rule consists to express P{w =
w;|WP, W22} as a function F[.] of P{w = w;|Wi*},

(16)

and p;. Using algebraic manipulations on previous formu-
laes, one gets the final general OBFR(2) result

pit IT Plwiwin}

n=1,2

> ot II Plwlwiy

i=1,M n=1,2
17)

P{w = wi| W, Wy} =

If we assume uniform prior p; = 1/M, then terms p{l can
be removed in the OBFR(2) formula above. The validation
of theoretical OBFR(2) via Monte-Carlo simulation is pre-
sented in next section.

2.8 Simulation results of OBFR(2)

Comparison of Monte Carlo simulations results with
theoretical results will now be presented for cases of a bi-
classifier system. Each independent classifier can have dif-
ferent or same performance as the other one. Both cases are
presented.

2.8.1 OBFR(2) with 2 different classifiers

We consider here the general case with two different
classifiers s; and s, having different reliability factors r,
and r,. The frame of discernement 1 under considera-
tion is supposed to have only 9 focal hypotheses, i.e. W =
{wy,...,we}. s is able to discriminate between subset B
and its complementary B with reliability 7, = (0.60,0.75)
and s, between subset C and its complementary C' with
reliability 7, = (0.90, 0.80) where

B = {wy,ws, w5} and C = {wy,ws, w3, ws}

The reliability factors imply «; = P{B|B =V} = 0.40,
pr=P{B|B =V} =025 a = P{C|C =V} =0.10
and g, = P{C|C =V} = 0.20.

e OBFR(2) with non uniform prior
Consider the following non uniform prior probabilities

p1 = 0.05,p» = 0.30, p3 = 0.05, pa = 0.40, ps = 0.05,

pe = 0.05,p7 = 0.02, ps = 0.05, py = 0.03

Our simulation are based on samples drawing and
occurences counting to estimate the experimental proba-
bilities in one side and the implementation of theoretical
relationships previously presented in othre side. Monte
Carlo simulations are based on 50000 samples.

Figure 2 shows Monte-Carlo and theoretical results
for estimation of fused conditional probabilities of focal
hypothesis “w = w;”.

Figure 3 presents a comparison between marginal con-
ditional probabilities P{w = w;|W;%} (for §; € {0,1}
and ¢ = 1,2) and the joint conditional probabilities
P{w = w|W, %, W5%2}. As we observe, one gets a very
good agreement between Monte Carlo results and theoret-
ical ones. This validates our development of the optimal
Bayesian fusion. Other simulations results not reported
here confirm this conclusion.
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Figure 3: P{w = w;|W, %, W5°2} vs. P{w = w;|W;%}

Since pretty good reliability parameters have been
chosen in this example, Bayesian fusion rule always em-
phasizes (in this case) the probabilities of all hypotheses w;
belonging to intersection of joint assertion ;%% N T,°%.
However, the improvement on these probabilities provided
by optimal fusion rule is not that much.

Note : Continuous plots have been drawn on figure 3 to fa-
cilitate the comparison however it is obvious that only val-
ues at abscisses w; must be considered for the comparison
of conditional pmf (probability mass functions).

e OBFR(2) with uniform prior

Focal hypotheses w;,i = 1,...,9 have now uniform
priorsp; = 1/9,i=1,...,9. s; and so have same pretty
good reliability factors as before. Results plotted on fig-
ures 4 and 5 confirm our previous remark. In this particular
case, we can better distinguish the improvement obtained
by the OBFR(2) on hypotheses w; belonging to intersec-
tion of joint assertion W% N W,°2.
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Figure 5: P{w = w;|W,°, W5°2} vs. P{w = w;|W;%}

2.8.2 OBFR(2) with similar classifiers

Consider now two sensors s; and s, having the same
discrimination capacity (i.e. (W, = B) = (W, = C')) but
not necessarily same reliability parameters r; and 5. Such
sensors are said similar; In our simulations, we have cho-
sen (W, = B) = (W, = C) = {wz,ws,ws} C W and
all our theoretical predictions match very well with Monte
Carlo results. Due to space limitation, we don’t have in-
cluded Monte Carlo results here. Only theoretical fusion
results are shown on figure 6 to see the benefit brought by
the OBFR(2) for several typical cases.

e OBFR(2) with r; # ro and non uniform p;

Figure 6.1 plots result obtained with non uniform p; cho-
sen as in previous section and reliabilities r; = (0.60,0.75)
and o = (0.90,0.80). In most of cases, s; and s
provide the same assertions since P{WW, = B, W, =
C} = 0.46255. But since s, is more reliable than sy,
the pmf P{w;|W, = B,W, = C} is a little bit better



than P{w;|W> = C} for w; € C. The improvement of
OBFR(2) is very limited in this case. In the dual case,
where classifiers claim both W, = W, = B = C, we
can see also a small improvement for w; € B. When sim-
ilar classifiers claim paradoxal/conflictual assertions (i.e.
W, =Band W, = C or W, = B and W, = (), then no
improvement is obtained at all since there isnow; € BNB.
The fusionned pmf only follows the conditional pmf cor-
responding to the best classifier which intuitively makes
sense.

e OBFR(2) with r; = r, and non uniform p;

Figure 6.3 plots results obtained with non uniform prior
distribution and good and same reliabilities (r; = r, =
(0.90,0.90)). When both classifiers agree, one has a
small improvement for all w; which support the asser-
tions. When classifiers disagree, the fusionned pmf tries
to reduce the max performances of both classifiers (i.e.
Vi, P{w;|W1, W5} < max(P{w;|W1}, P{w;|W:})). In
the dual case, where we force the same classifiers to have
same poor reliability parameters (r; = 72 = (0.10,0.10)),
one gets results plotted on figure 6.5. Dual conclusions can
be drawn when classifiers agree (i.e. a small improvement
for all w; which do not support the assertions), but same
concluding remark when classifiers disagree.

e OBFR(2) with r; # r4 and uniform p;

Figure 6.2 plots results obtained with uniform prior p;
with pretty good different reliability parameters (i.e. r; =
(0.60,0.75) and r» = (0.90,0.80)). Same concluding re-
marks as for non uniform case hold.

e OBFR(2) with r; = r, and uniform p;

Figure 6.4 plots results obtained with uniform p; and
same good reliabilities (r; = r» = (0.90,0.90)). Figure
6.6 plots results obtained with uniform p; and same bad
reliabilities r; = ro = (0.10,0.10)). Same concluding re-
marks as for the non uniform case hold. It is worthwhile
to note that OBFR now generates (because of the uniform
prior condition) the full ignorance pmf (taken as uniform
pmf if we admit the principle of sufficient reason) when
classifiers are in full contradiction. This result makes sense
with our logical intuition.

3 General case: OBFR(N)

The extension of optimal Bayesian fusion rule to general
case of the IV unreliable classifiers problem follows directly
from previous results. Details of derivations will be omitted
in the sequel due to space limitation. We will just indicate
important results for the OBFR(N).

3.1 Derivation of P{W{",... Wi}

Relation (1) can easily be extended for N > 2 as follows
to provide P{W ", ... Wi},

> [I #al2n.6.]

(a1,...,an)€{0,1}¥ n=LN

Z pi

ieItn. NI

3.2 Derivation of P{W{" ... W2 w,;}
P{W, . W |w = w;} is given by
H P{W{f"lw =w;} = H fnlAnli], 8,]
n=1,N n=1,N
3.3 Derivation of P{w|W,... Wi}
P{w = w|W}", ... , W3} is given by
pi [ falAnlil, 64

P{w = w W, ... W} = nLl

k

with

k= Y pe T1 fulAli).6)

i=1,M n=1,N

3.4 Final expression of OBFR(N)
The general OBFR(N) is then given by
pi " I Plwdwin}

n=1,N
Ky

P{w = w W, ... W} =
(18)

with Ky = Y pi™ [ Plwiwi}

i=1,M n=1,N
If we assume uniform prior p, = 1/M, then terms p%_N
can be removed in the OBFR(N) formula above. This
formula coincides exactly with Demspter-Shafer rule of
combination when basic mass assignments become basic

conditional probabilities.

Since the list of w; is exhaustive and w; are mutually
exclusive, any disjunction of general hypothese can be eas-
ily evaluated from (18) because of additivity property of
probabilities. Hence for example, the fusioned conditional
probability P{A[W*, ..., W2~} will be computed by

> (B 11 rPlwmi

w; CA n=1,N

Several N > 2 multi-classifier bayesian fusion problems
have been simulated. All predicted theoretical results have
shown a very good agreement with all Monte Carlo simula-
tion results but are not reported here due to space limitation.

3.5 A noteon implementation of OBFR(N)

OBFR(N) can be implemented directly following (18)
or through any sequential ways involving combinations of
clusters of sub-joint assertions. Final OBFR result will not
depend on the order of combinations. Consider as example,
the four unreliable classifier problem. The direct OBFR(4)
is given by (18), i.e.

pi_3 Hn:1,4 P{uw;|Wir}
K,

P{w = w| W, ... Wi} =



This formula can however, by example, be rewritten as
Pi* M s Plwidl Wi } - pi Pl Wi}
K,

By introducing the K3 constant, one has now

P77y Plwi W}

K3 pl._IP{wi|Wf4}
Ki/K;

which corresponds to nothing but the OBF between one
classifier providing Wf‘* and a cluster of 3 classifiers pro-
viding joint assertions (W}, W22, W), The same rea-
soning is valid for any classifiers clustering choice.

4 Conclusion

The optimal bayesian fusion rule for the general unre-
liable multi-classifier fusion problem has been fully devel-
opped here. Our theoretical results have been intensively
validated through comparison with Monte carlo simulation
results. We have proved that a very good accuracy of the-
oretical prediction with experience is achievable. The Op-
timal Baysian fusion rule (OBFR) is actually very easy to
implement and requires only a very low cost of computa-
tion even for the general case of IV classifiers. This OBFR
is very useful to optimize detection/classification perfor-
mances of future multi-sensor/classifier systems and also to
solve many practical problems arising in multi-sensor sys-
tems. We have pointed out the typical behavior of OBFR for
several different practical cases involving same or different
sensors having either same, or different reliability parame-
ters.
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Figure 6: Fusion Results with similar classifiers (s; = s2)
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