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Abstract – In this paper, we examine several issues
for ordering or partially ordering elements of hyper-
powertsets involved in the recent theory of plausible,
uncertain and paradoxical reasoning (DSmT) developed
by the authors. We will show the benefit of some of
these issues to obtain a nice and useful matrix repre-
sentation of belief functions.
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1 Introduction
The Dezert-Smarandache theory (DSmT for short)

of plausible, uncertain and paradoxical reasoning [4,
5, 6, 13] is a generalization of the classical Dempster-
Shafer theory (DST) [12] which allows to formally com-
bine any types of sources of information (rational, un-
certain or paradoxical). The DSmT is able to solve
complex data/information fusion problems where the
DST usually fails, specially when conflicts (paradoxes)
between sources become large and when the refinement
of the frame of discernment Θ is inaccessible because of
the vague, relative and imprecise nature of elements of
Θ (see [6] for justification and examples). The founda-
tion of DSmT is based on the definition of the hyper-
powerset DΘ (or free distributive lattice on n gener-
ators) of a general frame of discernment Θ. Θ must
be considered as a set {θ1, . . . , θn} of n elements con-
sidered as exhaustive which cannot be precisely de-
fined and separated, so that no refinement of Θ into a
new larger set Θref of disjoint elementary hypotheses
is possible in contrast with the classical Shafer’s model
on which is based the DST. We have already presented
in a companion paper [7], how to easily generate all el-
ements of DΘ using the property of isotone Boolean

functions. In this paper, we focus our attention, on
how to order them in a clever way in order to get a
very interesting matrix representation of belief func-
tions defined over DΘ.The DSmT deals directly with
paradoxical/conflicting sources of information into this
new formalism and proposes a new and very simple
(associative and commutative) rule of combination for
conflicting sources of informations (corpus/bodies of
evidence). Some interesting results based on DSmT
approach can be found in [16, 1]. Before going deeper
into the DSmT it is necessary to briefly present first
the foundations of the DST and DSmT for a better un-
derstanding of the important differences between these
two theories based on Shafer model and DSm model.

2 Short presentation of the DST

2.1 The Shafer’s model

The Shafer’s model assumes that the frame of dis-
cernment of the problem under consideration is a set
Θ = {θ1, θ2, . . . , θn} of n exhaustive and exclusive el-
ementary hypothesis θi. Such model implicitly im-
poses that an ultimate refinement of the problem is
always possible so that θi can be well precisely de-
fined/identified in such a way that we are sure that
they are exclusive and exhaustive. From this model,
Shafer defines a basic belief assignment (bba) m(.) :
2Θ → [0, 1] associated to a given body of evidence B
by adding the following constraints to m(.)

m(∅) = 0 and
∑

A∈2Θ

m(A) = 1 (1)

where 2Θ is called the powerset of Θ, i.e. the set of
all subsets of Θ. From any bba, one then defines the
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belief and plausibility functions for all A ⊆ Θ as

Bel(A) =
∑

B∈2Θ,B⊆A

m(B) (2)

Pl(A) =
∑

B∈2Θ,B∩A 6=∅

m(B) = 1 − Bel(Ā) (3)

2.2 The Dempster’s combination rule

Let Bel1(.) and Bel2(.) be two belief functions over
the same frame of discernment Θ and their corre-
sponding bba m1(.) and m2(.) provided by two dis-
tinct bodies of evidence B1 and B2. Then the combined
global belief function Bel(.) = Bel1(.) ⊕ Bel2(.) is ob-
tained by combining the information granules m1(.)
and m2(.) through the Dempster’s rule of combination
[m1 ⊕ m2](∅) = 0 and ∀B 6= ∅ ∈ 2Θ as follows

[m1 ⊕ m2](B) =

∑

X∩Y =B m1(X)m2(Y )

1 −
∑

X∩Y =∅ m1(X)m2(Y )
(4)

The notation
∑

X∩Y =B represents the sum over all
X, Y ∈ 2Θ such that X ∩ Y = B. The orthogonal sum
m(.) , [m1 ⊕ m2](.) is considered as a basic belief as-
signment if and only if the denominator in equation (4)
is non-zero. The term k12 ,

∑

X∩Y =∅ m1(X)m2(Y ) is
called degree of conflict between the sources B1 and B2.
When k12 = 1, the orthogonal sum m(.) does not exist
and the bodies of evidences B1 and B2 are said to be
in full contradiction. Such a case can arise when there
exists A ⊂ Θ such that Bel1(A) = 1 and Bel2(Ā) = 1.
Same kind of trouble can occur also with the Optimal
Bayesian Fusion Rule (OBFR) [2, 3].

2.3 Alternatives to Dempter’s rule

The Shafer’s model and the DST is attractive for
the Data Fusion community because it gives a nice
mathematical model for ignorance and it includes the
Bayesian theory as a special case [12] (p.4). Although
very appealing, the DST presents nevertheless some
important weaknesses and limitations because of its
model itself, the theoretical justification of the Demp-
ster’s rule of combination but also because of our con-
fidence to trust the result of Dempster’s rule of combi-
nation specially when the conflict becomes important
between sources (k12 ↗ 1).The a posteriori justifica-
tion of the Dempster’s rule of combination has been
brought by the Smets axiomatic of the Transferable
Belief Model (TBM) in [14]. But recently, we must
also emphasize here that an infinite number of possi-
ble rules of combinations can be built from the Shafer’s
model following ideas initially proposed in [11] and cor-
rected here as follows:

• one first has to compute m(∅) by

m(∅) ,
∑

A∩B=∅

m1(A)m2(B)

• then one redistributes m(∅) on all A ⊆ Θ with
some given positive coefficients wm(A) such that
∑

A⊆Θ wm(A) = 1 according to

{

wm(∅)m(∅) → m(∅)

m(A) + wm(A)m(∅) → m(A), ∀A 6= ∅
(5)

The particular choice of the set of coefficients wm(.)
provides a particular rule of combination. Actually
there exists an infinite number of possible rules of com-
bination. Some rules can be better justified than others
depending on their ability or not to preserve associa-
tivity and commutativity properties of the combina-
tion. It can be easily shown in [11] that such general
procedure provides all existing rules developed in the
literature from the Shafer’s model as alternative to the
primeval Dempster’s rule of combination depending on
the choice of coefficients w(A). As example the Demp-
ster’s rule of combination can be obtained from (5) by
choosing wm(∅) = 0 and wm(A) = m(A)/(1−m(∅)) for
all A 6= ∅. The Yager’s rule of combination is obtained
by choosing wm(Θ) = 1 while the ”Smets’ rule of com-
bination” is obtained by choosing wm(∅) = 1 and thus
accepting the possibility to deal with bba such that
m(∅) > 0.

2.4 Matrix calculus for belief functions

As rightly emphasized recently by Smets in [15], the
mathematic of belief functions is often cumbersome be-
cause of the many summations symbols and all its sub-
scripts involved in equations. This renders equations
very difficult to read and understand at first sight and
might discourage potential readers for their complex-
ity. Actually, this is just an appearance because most
of the operations encountered in DST with belief func-
tions and basic belief assignments m(.) are just simple
linear operations and can be easily represented using
matrix notation and be handled by elementary ma-
trix calculus. We just focus here our presentation on
the matrix representation of the relationship between
a basic belief assignment m(.) and its associated belief
function Bel(.). A nice and more complete presentation
of matrix calculus for belief functions can be found in
[9, 10, 15]. One important aspect for the simplification
of matrix representation and calculus in DST, concerns
the choice of the order of the elements of the powerset
2Θ. The order of elements of 2Θ can be chosen arbi-
trarily actually, and it can be easily seen by denoting
m the bba vector of size 2n×1 and Bel its correspond-
ing belief vector of same size, that the set of equations
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(2) holding for all A ⊆ Θ is strictly equivalent to the
following general matrix equation

Bel = BM · m ⇔ m = BM−1 · Bel (6)

where the internal structure of BM depends on the
choice of the order for enumerating the elements of 2Θ.
But it turns out that the simplest ordering based on the
enumeration of integers from 0 to 2n − 1 expressed as
n-binary strings with the lower bit on the right (LBR)
(where n = |Θ|) to characterize all the elements of pow-
erset, is the most efficient solution and best encoding
method for matrix calculus and for developing efficient
algorithms in MatLab1 or similar programming lan-
guages [15]. By choosing the basic increasing binary
enumeration (called bibe system), one obtains a very
nice recursive algorithm on the dimension n of Θ for
computing the matrix BM. The computation of BM

for |Θ| = n is just obtained from the iterations up to
i + 1 = n of the recursive relation [15] starting with
BM0 , [1] and where 0i+1 denotes the zero-matrix of
size (i + 1) × (i + 1),

BMi+1 =

[
BMi 0i+1

BMi BMi

]

(7)

BM is a binary unimodular matrix (det(BM) = ±1).
BM is moreover triangular inferior and symmetrical
with respect to its antidiagonal.

Example for Θ = {θ1, θ2, θ3}
The bibe system gives us the following order for ele-
ments of 2Θ = {α0, . . . , α7}:

α0 ≡ 000 ≡ ∅ α1 ≡ 001 ≡ θ1

α2 ≡ 010 ≡ θ2 α3 ≡ 011 ≡ θ1 ∪ θ2

α4 ≡ 100 ≡ θ3 α5 ≡ 101 ≡ θ1 ∪ θ3

α6 ≡ 110 ≡ θ2 ∪ θ3 α7 ≡ 111 ≡ θ1 ∪ θ2 ∪ θ3 ≡ Θ

Each element αi of 2Θ is a 3-bits string. With this
bibe system, on has m = [m(α0), . . . , m(α7)]

′ and
Bel = [Bel((α0), . . . , Bel((α7)]

′. The expressions of the
matrix BM3 and its inverse BM3

−1 are given by

BM3 =















1 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0
1 0 1 0 0 0 0 0
1 1 1 1 0 0 0 0
1 0 0 0 1 0 0 0
1 1 0 0 1 1 0 0
1 0 1 0 1 0 1 0
1 1 1 1 1 1 1 1















1Matlab is a trademark of The MathWorks, Inc.

BM3
−1 =















1 0 0 0 0 0 0 0
−1 1 0 0 0 0 0 0
−1 0 1 0 0 0 0 0
1 −1 −1 1 0 0 0 0
−1 0 0 0 1 0 0 0
1 −1 0 0 −1 1 0 0
1 0 −1 0 −1 0 1 0
−1 1 1 −1 1 −1 −1 1















3 A short DSmT presentation

3.1 The DSm model

The development of the Dezert-Smarandache The-
ory (DSmT) of plausible, uncertain, and paradoxical
reasoning comes from the necessity to overcome, for a
wide class of problems, the two following inherent lim-
itations of the DST which are closely related with the
acceptance of the third middle excluded principle, i.e.

(C1) - the DST considers a discrete and finite frame of
discernment Θ based on a set of exhaustive and
exclusive elementary elements θi.

(C2) - the bodies of evidence are assumed independent
and provide their own belief function on the pow-
erset 2Θ but with same interpretation for Θ.

The relaxation of constraints (C1) and (C2) seems
necessary for a wide class of fusion problems due to
the possible vague, imprecise and paradoxical nature
of the elements of Θ. By accepting the third middle,
we can easily handle the possibility to deal directly
with a new kinds of elements with respect to those be-
longing to the Shafer’s model. This is the DSm model.
A wider class of interesting fusion problems can then
be attacked by the DSmT. The relaxation of the con-
straint (C1) can be justified since, in many problems
(see example in [6]), the elements of Θ generally corre-
spond only to imprecise/vague notions and concepts so
that no refinement of Θ satisfying the first constraint
is actually possible. The relaxation of (C2) is also jus-
tified since, in general, the same frame Θ may be inter-
preted differently by the distinct sources of evidence.
Some subjectivity on the information provided by a
source is almost unavoidable. In most of cases, the
sources of evidence provide their beliefs about some
hypotheses only with respect to their own worlds of
knowledge, experiences, feelings, senses without refer-
ence to the (inaccessible) absolute truth of the space of
possibilities and without any probabilistic background
argumentations. The DSmT includes the possibility
to deal with evidences arising from different sources of
information which don’t have access to absolute inter-
pretation of the elements Θ under consideration. The
DSmT can be interpreted as a general and direct ex-
tension of Bayesian theory and the Dempster-Shafer
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theory in the following sense. Let Θ = {θ1, θ2} be the
simplest frame of discernment involving only two ele-
mentary hypotheses (with no additional assumptions
on θ1 and θ2), then

• the probability theory deals with basic probability
assignments (bpa) m(.) ∈ [0, 1] such that

m(θ1) + m(θ2) = 1

• the DST deals with bba m(.) ∈ [0, 1] such that

m(θ1) + m(θ2) + m(θ1 ∪ θ2) = 1

• the DSmT theory deals with generalized bba
m(.) ∈ [0, 1] such that

m(θ1) + m(θ2) + m(θ1 ∪ θ2) + m(θ1 ∩ θ2) = 1

3.2 DSm model versus Shafer’s model

The Shafer’s model considers that the frame Θ of
the problem under consideration is a set of finite ex-
haustive and exclusive elements θi and requires in some
way a refinement in order to choose/select θi as exclu-
sive. The DSm model can be viewed as the model
opposite to the Shafer’s model where none of the θi

are considered exclusive. This DSm model is justi-
fied in a wide class of fusion problems when the in-
trinsic nature of the elements of Θ to be manipu-
lated is such that Θ is not refinable at all into ex-
clusive and precise subsets [6]. The DSmT can then
deal with elements/concepts which have possibly (but
not necessary) continuous and/or relative interpreta-
tion to the corpus of evidences like, by example, the
relative notions of smallness/tallness, beauty/ugliness,
pleasure/pain, heat/coldness, even the notion of col-
ors (due to the continuous spectrum of the light), etc.
None of these notions or concepts can be clearly re-
fined/separated in an absolute manner so that they
cannot be considered as exclusive and we cannot also
define precisely what their conjunctions are. Their in-
terpretations/estimations through the bba mechanism
given by any corpus of evidence is always built from its
own (limited) knowledge/experience and senses. Be-
tween these two extreme models, there exists a finite
number of DSm-hybrid models for which some integrity
constraints (by forcing some potential conjunctions to
be impossible, i.e. equal to the empty set) between
some elements of θ can be introduced depending on
the hybrid-nature of the problem. The DSm model
can then be viewed as the most free model and the
Shafer’s model as the most restrictive one. The DSmT
has been developed up to now only for the DSm model
but application of the DSmT for DSm-hybrid models
is under investigation.

3.3 Notion of hyper-powerset D
Θ

One of the cornerstones of the DSmT is the notion
of hyper-powerset which is defined as follows. Let Θ =
{θ1, . . . , θn} be a set of n elements which cannot be
precisely defined and separated so that no refinement
of Θ in a new larger set Θref of disjoint elementary
hypotheses is possible (we abandon here the Shafer’s
model). The hyper-powerset DΘ is defined as the set
of all composite propositions built from elements of Θ
with ∪ and ∩ (Θ generates DΘ under operators ∪ and
∩) operators such that

1. ∅, θ1, . . . , θn ∈ DΘ.

2. If A, B ∈ DΘ, then A∩B ∈ DΘ and A∪B ∈ DΘ.

3. No other elements belong to DΘ, except those ob-
tained by using rules 1 or 2.

The dual (obtained by switching ∪ and ∩ in expres-
sions) of DΘ is itself. There are elements in DΘ which
are self-dual (dual to themselves), for example α8 for
the case when n = 3 in the example below. The cardi-
nality of DΘ is majored by 22n

when Card(Θ) = |Θ| =
n. The generation of hyper-powerset DΘ is closely re-
lated with the famous Dedekind’s problem on enumer-
ating the set of isotone Boolean functions [7]. The
cardinality of DΘ for n = |Θ| = 0, 1, 2, 3, ... follows the
sequence of Dedekind’s numbers 1,2,5,19,167,7580,...
[7]. From a general frame of discernment Θ, we define
a map m(.) : DΘ → [0, 1] associated to a given body of
evidence B which can support paradoxical information,
as follows

m(∅) = 0 and
∑

A∈DΘ

m(A) = 1

The quantity m(A) is called A’s generalized basic belief

assignment (gbba) or the generalized basic belief mass
for A. The belief and plausibility functions are defined
in almost the same manner as within the DST, i.e.

Bel(A) =
∑

B∈DΘ,B⊆A

m(B) (8)

Pl(A) =
∑

B∈DΘ,B∩A 6=∅

m(B) (9)

These definitions are compatible with the DST defi-
nitions when the sources of information become un-
certain but rational (they do not support paradoxical
information). We still have ∀A ∈ DΘ, Bel(A) ≤ Pl(A).

3.4 The DSm rule of combination

The DSm rule of combination m(.) , [m1 ⊕ m2](.)
of two distinct (but potentially paradoxical) sources
of evidences B1 and B2 over the same general frame of
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discernment Θ with belief functions Bel1(.) and Bel2(.)
associated with general information granules m1(.) and
m2(.) is given by ∀C ∈ DΘ,

m(C) =
∑

A,B∈DΘ,A∩B=C

m1(A)m2(B)

Since DΘ is closed under ∪ and ∩ operators, this new
rule of combination guarantees that m(.) : DΘ → [0, 1]
is a proper general information granule. This rule
of combination is commutative and associative and
can always be used for the fusion of paradoxical or
rational sources of information (bodies of evidence).
It is important to note that any fusion of sources of
information generates either uncertainties, paradoxes
or more generally both. This is intrinsic to the general
fusion process itself. The theoretical justification
of the DSm rule can be found in [6]. A network
representation of this DSm rule of combination can be
found in [7].

4 Ordering elements of hyper-

powerset for matrix calculus

As within the DST framework, the order of the el-
ements of DΘ can be arbitrarily chosen. We denote
the Dedekind number or order n as d(n) , |DΘ| for
n = |Θ|. We denote also m the gbba vector of size
d(n) × 1 and Bel its corresponding belief vector of
the same size. The set of equations (8) holding for
all A ∈ DΘ is then strictly equivalent to the following
general matrix equation

Bel = BM ·m ⇔ m = BM−1 · Bel (10)

Note the similarity between these relations with the
previous ones (6). The only difference resides in the
size of vectors Bel and m and the size of matrix BM

and their components. We explore in the following
sections the possible choices for ordering (or partially
ordering) the elements of hyper-powerset DΘ, to ob-
tain an interesting matrix structure of BM matrix.
Only three issues are examined and briefly presented
in the sequel. The first method is based on the direct
enumeration of elements of DΘ according to their re-
cursive generation via the algorithm for generating all
isotone Boolean functions presented in [7]. The sec-
ond (partial) ordering method is based on the notion
of DSm cardinality which will be introduced in section
4.2. The last and most interesting solution proposed
for partial ordering over DΘ is obtained by introduc-
ing the notion of intrinsic informational strength s(.)
associated to each element of hyper-powerset.

4.1 Order based on the enumeration of

isotone Boolean functions

We have presented in [7] a recursive algorithm based
on isotone Boolean functions for generating DΘ. Here
is briefly the principle of the method. Let consider
Θ = {θ1, . . . , θn} satisfying the DSm model and the
Dezert-Smarandache order un of the Smarandache’s
codification of parts of Venn diagram Θ with n par-
tially overlapping elements θi, i = 1, . . . , n (see [7] for
details about Smarandache’s codification). All the el-
ements αi of DΘ can then be obtained by the very
simple linear equation [7]

dn = Dn · un (11)

where dn ≡ [α0 ≡ ∅, α1, . . . , αd(n)−1]
′ is the vector of

elements of DΘ, un is the proper codification vector
and Dn a particular binary matrix. The final result
dn is obtained from the previous matrix product af-
ter identifying (+, ·) with (∪,∩) operators, 0 · x with
∅ and 1 · x with x). Dn is actually a binary matrix
corresponding to isotone (i.e. non-decreasing) Boolean
functions obtained by applying recursively the steps
(starting with Dc

0 = [0 1]′)

• Dc
n is built from Dc

n−1 by adjoining to each row ri

of Dc
n−1 any row rj of Dc

n−1 such that ri∪rj = rj .
Then Dn is obtained by removing the first column
and the last line of Dc

n.

Example for Θ = {θ1, θ2, θ3}





































α0

α1

α2

α3

α4

α5

α6

α7

α8

α9

α10

α11

α12

α13

α14

α15

α16

α17

α18





































︸ ︷︷ ︸

d3

=





































0 0 0 0 0 0 0
0 0 0 0 0 0 1
0 0 0 0 0 1 1
0 0 0 0 1 0 1
0 0 0 0 1 1 1
0 0 0 1 1 1 1
0 0 1 0 0 0 1
0 0 1 0 0 1 1
0 0 1 0 1 0 1
0 0 1 0 1 1 1
0 0 1 1 1 1 1
0 1 1 0 0 1 1
0 1 1 0 1 1 1
0 1 1 1 1 1 1
1 0 1 0 1 0 1
1 0 1 0 1 1 1
1 0 1 1 1 1 1
1 1 1 0 1 1 1
1 1 1 1 1 1 1





































︸ ︷︷ ︸

D3

·













< 1 >
< 2 >
< 12 >
< 3 >
< 13 >
< 23 >
< 123 >













︸ ︷︷ ︸

u3
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Hence we finally get (after simple algebraic simplifi-
cations) the following irreducible elements for DΘ

αi (from the isotone Boolean functions alg.)

α0 , ∅
α1 , θ1 ∩ θ2 ∩ θ3

α2 , θ2 ∩ θ3

α3 , θ1 ∩ θ3

α4 , (θ1 ∪ θ2) ∩ θ3

α5 , θ3

α6 , θ1 ∩ θ2

α7 , (θ1 ∪ θ3) ∩ θ2

α8 , (θ2 ∪ θ3) ∩ θ1

α9 , [(θ1 ∩ θ2) ∪ θ3] ∩ (θ1 ∪ θ2)

α10 , (θ1 ∩ θ2) ∪ θ3

α11 , θ2

α12 , (θ1 ∩ θ3) ∪ θ2

α13 , (θ2 ∪ θ3)

α14 , θ1

α15 , (θ2 ∩ θ3) ∪ θ1

α16 , (θ1 ∪ θ3)

α17 , (θ1 ∪ θ2)

α18 , (θ1 ∪ θ2 ∪ θ3)

We denote riso(αi) the position of αi into the col-
umn vector dn obtained from the previous enumera-
tion/generation system. Such system provides a total
order over DΘ defined ∀αi, αj ∈ DΘ as αi ≺ αj (αi

precedes αj) if and only if riso(αi) < riso(αj). Based
on this order, the BM matrix involved in (10) presents
unfortunately no particular interesting structure. We
have thus to look for better solutions for ordering the
elements of hyper-powersets.

4.2 Ordering with the DSm cardinality

A second possibility for ordering the elements of
DΘ is to (partially) order them by their increasing
DSm cardinality. The DSm cardinality of any ele-
ment A ∈ DΘ, denoted CM(A), corresponds to the
number of parts of A in the Venn diagram of the
problem (model M) taking into account the set of
integrity constraints (if any), i.e. all the possible
intersections due to the nature of the elements θi.
This intrinsic cardinality depends on the model M.
M is the model that contains A which depends on
the dimension of Venn diagram, (i.e. the number of
sets n = |Θ| under consideration), and on the number
of non-empty intersections in this diagram. One has
1 ≤ CM(A) ≤ 2n − 1. CM(A) must not be confused
with the classical cardinality |A| of a given set A (i.e.
the number of its distinct elements) - that’s why a
new notation is necessary here.

In the (general) case of the free-model Mf (i.e. the
DSm model) where all conjunctions are non-empty, one
has for intersections:

• CMf (θ1) = . . . = CMf (θn) = 2n−1

• CMf (θi ∩ θj) = 2n−2 for n ≥ 2

• CMf (θi ∩ θj ∩ θk) = 2n−3 for n ≥ 3

It can be proved by induction that for 1 ≤ m ≤ n,
one has CMf (θi1 ∩ θi2 ∩ . . . ∩ θim

) = 2n−m. For the
cases n = 1, 2, 3, 4, this formula can be checked on
the corresponding Venn diagrams. Let’s consider this
formula true for n sets, and prove it for n + 1 sets
(when all intersections/conjunctions are considered
non-empty). From the Venn diagram of n sets, we
can get a Venn diagram with n + 1 sets if one draws
a closed curve that cuts each of the 2n − 1 parts of
the previous diagram (and, as a consequence, divides
each part into two disjoint subparts). Therefore, the
number of parts of each intersection is doubling when
passing from a diagram of dimension n to a diagram
of dimension n + 1. Q.e.d.

In the case of the free-model Mf , one has for unions:

• CMf (θi ∪ θj) = 3(2n−2) for n ≥ 2

• CMf (θi ∪ θj ∪ θk) = 7(2n−3) for n ≥ 3

It can be proved also by induction that for 1 ≤ m ≤ n,
one has CMf (θi1 ∪ θi2 ∪ . . . ∪ θim

) = (2m − 1)(2n−m).
The proof is similar to the previous one, and keeping in
mind that passing from a Venn diagram of dimension
n to a dimension n + 1, all each part that forms the
union θi ∩ θj ∩ θk will be split into two disjoint parts,
hence the number of parts is doubling.

For other elements A in DΘ, formed by unions
and intersections, the close-form for CMf (A) seems
more complicated to obtain. But from the gener-
ation algorithm of DΘ (see [7] for details), DSm
cardinal of a set A from DΘ is exactly equal to
the sum of its coefficients in the un basis, i.e. the
sum of its row elements in the Dn matrix, which
is actually very easy to compute by programming.
The DSm cardinality plays in important role in the
definition of the Generalized Pignistic Transform
(GPT) for the construction of subjective/pignistic
probabilities of elements of DΘ for decision-making [8].

If one imposes a constraint that a set B from DΘ is
empty, then one suppresses the columns corresponding
to the parts which compose B in the Dn matrix and
the row of B and the rows of all elements of DΘ which
are subsets of B, getting a new matrix D′

n which
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represents a new model M′. In the un basis, one
similarly suppresses the parts that form B, and now
this basis has the dimension 2n − 1 − CM(B).

Example with Mf : Consider the 3D case Θ =
{θ1, θ2, θ3} with the free-model Mf corresponding to
the following Venn diagram (where < i > denotes the
part which belongs to θi only, < ij > denotes the part
which belongs to θi and θj only, etc; this is the Smaran-
dache’s codification [7]).

Figure 1: Venn Diagram for Mf

The corresponding partial ordering for elements of
DΘ is then summarized in the following table:

A ∈ DΘ CMf (A)
∅ 0
θ1 ∩ θ2 ∩ θ3 1
θ1 ∩ θ2 2
θ1 ∩ θ3 2
θ2 ∩ θ3 2
(θ1 ∪ θ2) ∩ θ3 3
(θ1 ∪ θ3) ∩ θ2 3
(θ2 ∪ θ3) ∩ θ1 3
θ1 4
θ2 4
θ3 4
{(θ1 ∩ θ2) ∪ θ3} ∩ (θ1 ∪ θ2) 4
(θ1 ∩ θ2) ∪ θ3 5
(θ1 ∩ θ3) ∪ θ2 5
(θ2 ∩ θ3) ∪ θ1 5
θ1 ∪ θ2 6
θ1 ∪ θ3 6
θ2 ∪ θ3 6
θ1 ∪ θ2 ∪ θ3 7

Note that this partial ordering differs from the one
described in the previous section and doesn’t properly
catch the intrinsic informational structure/strength of
elements since by example {(θ1∩θ2)∪θ3}∩(θ1∪θ2) and
θ1 have the same DSm cardinal although they don’t
look similar because the part < 1 > in θ1 belongs only
to θ1 but none of the parts of {(θ1∩θ2)∪θ3}∩(θ1∪θ2)
belongs to only one part of some θi. A better ordering

function is then necessary to catch the intrinsic
informational structure of elements of DΘ. This is the
purpose of the next section.

Example with another model: Consider now the same
3D case with the model M 6= Mf in which we force all
possible conjunctions to be empty, but θ1∩θ2 according
to the following Venn diagram.

Figure 2: Venn Diagram for M

The corresponding partial ordering for elements of
DΘ, taking into account the constraints of this model,
is then summarized in the following table:

A ∈ DΘ CM(A)
∅ 0
θ1 ∩ θ2 1
θ3 1
θ1 2
θ2 2
θ1 ∪ θ2 3
θ1 ∪ θ3 3
θ2 ∪ θ3 3
θ1 ∪ θ2 ∪ θ3 4

The partial ordering of DΘ based on DSm cardi-
nality does not provide in general an efficient solution
to get an interesting structure for the BM matrix in-
volved in (10), contrarily to the structure obtained by
Smets in the DST framework (sec. 2.4). The partial
ordering presented in the sequel will however allow us
to get such nice structure for the matrix calculus of
belief functions.

4.3 Ordering based on the intrinsic in-

formational content

As already reported, the DSm cardinality is insuf-
ficient to catch the intrinsic informational content of
each element di of DΘ. A better approach to ob-
tain this, is based on the following new function s(.),
which describes the intrinsic information strength of
any di ∈ DΘ. A previous, but cumbersome, definition
of s(.) had been proposed in our previous works [5, 6]
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but it was difficult to handle and questionable with re-
spect to the formal equivalent (dual) representation of
elements belonging to DΘ. We propose here a new so-
lution for s(.), based on a very simple and natural geo-
metrical interpretation of the relationships between the
parts of the Venn diagram belonging to each di ∈ DΘ.
All the values of the s(.) function (stored into a vector
s) over DΘ are defined by the following equation:

s = Dn · wn (12)

with s , [s(d0) . . . s(dp)]
′ where p is the cardinal of

DΘ for the model M under consideration. p is equal
to the Dedekind’s number d(n) − 1 if the free-model
Mf is chosen for Θ = {θ1, . . . , θn}. Dn is the hyper-
powerset generating matrix. The components wi of
vector wn are obtained from the components of the
Dezert-Smarandache encoding basis vector un as fol-
lows (see [7] for definitions and details about Dn and
un) :

wi , 1/l(ui) (13)

where l(ui) is the length of Smarandache’s codification
ui of the part of the Venn diagram of the model M,
i.e the number of symbols involved in the codification.
For example, if ui =< 123 >, then l(ui) = 3 just
because only three symbols 1, 2, and 3 enter in the
codification ui, thus wi = 1/3.

The DSm ordering function s(.) is related with the
generalized entropy of an uncertain and paradoxical
source of information [5, 6]. From this new DSm
ordering function s(.) we can partially order all the
elements di ∈ DΘ by the increasing values of s(.).

Example for Θ = {θ1, θ2} with the free-model Mf :

In this simple case, the DSm ordering of DΘ is given
by

αi s(αi)
α0 = ∅ s(α0) = 0
α1 = θ1 ∩ θ2 s(α1) = 1/2
α2 = θ1 s(α2) = 1 + 1/2
α3 = θ2 s(α3) = 1 + 1/2
α4 = θ1 ∪ θ2 s(α4) = 1 + 1 + 1/2

Based on this ordering, it can be easily verified that
the matrix calculus of the beliefs Bel from m by equa-
tion (10), is equivalent to









Bel(∅)
Bel(θ1 ∩ θ2)

Bel(θ1)
Bel(θ2)

Bel(θ1 ∪ θ2)









︸ ︷︷ ︸

Bel

=









1 0 0 0 0
1 1 0 0 0
1 1 1 0 0
1 1 0 1 0
1 1 1 1 1









︸ ︷︷ ︸

BM2









m(∅)
m(θ1 ∩ θ2)

m(θ1)
m(θ2)

m(θ1 ∪ θ2)









︸ ︷︷ ︸

m

where the BM2 matrix has a interesting struc-
ture (triangular inferior and unimodular properties,
det(BM2) = det(BM−1

2 ) = 1). Conversely, the calcu-
lus of the generalized basic belief assignment m from
beliefs Bel will be obtained by the inversion of the
previous linear system of equations









m(∅)
m(θ1 ∩ θ2)

m(θ1)
m(θ2)

m(θ1 ∪ θ2)









︸ ︷︷ ︸

m

=









1 0 0 0 0
−1 1 0 0 0
0 −1 1 0 0
0 −1 0 1 0
0 1 −1 −1 1









︸ ︷︷ ︸

MB2=BM
−1

2









Bel(∅)
Bel(θ1 ∩ θ2)

Bel(θ1)
Bel(θ2)

Bel(θ1 ∪ θ2)









︸ ︷︷ ︸

Bel

Example for Θ = {θ1, θ2, θ3} with the free-model Mf :

In this more complicated case, the DSm ordering of
DΘ is now given by

The structure of the matrix BM3 associated to this
ordering is given by

The order for elements generating the same value
of s(.) can be chosen arbitrarily and doesn’t change
the structure of the matrix BM3. That’s why
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only a partial order is possible from s(.). It can
be verified that BM3 holds also the same previous
interesting matrix structure properties and that
det(BM3) = det(BM−1

3 ) = 1. Similar structure can
be shown for problems of higher dimensions (n > 3).

Although a nice structure for matrix calculus of be-
lief functions has been obtained in this work, and con-
versely to the recursive construction of BMn in DST
framework, a recursive algorithm (on dimension n) for
the construction of BMn from BMn−1 has not yet be
found and is still an open problem for further research.

5 Conclusion

A recent theory of plausible, uncertain, and para-
doxical reasoning (DSmT) has been developed by the
authors to deal with conflicting/paradoxist sources of
information which could not be solved by Dempster-
Shafer theory of evidence (DST). DSm rule of combin-
ing works for any kind of sources of information (cer-
tain, uncertain, paradoxist) depending on each par-
ticular model (problem), whereas DS rule of combin-
ing fails when the degree of conflict is high. In order
to obtain an easy matrix representation of the belief
functions in the DSmT, we need to better order the el-
ements of hyper-powerset DΘ, that’s why we propose
in this paper three such orderings: first, using the di-
rect enumeration of isotone Boolean functions, second,
based on the DSm cardinality, and third, and maybe
the most interesting, by introducing the intrinsic in-
formational strength function s(.) (constructed in the
DSm encoding basis) which is close related to the gen-
eralized entropy of an uncertain and paradoxist source
of information.
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