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Abstract – This paper presents in detail the generalized pig-
nistic transformation (GPT) succinctly developed in the Dezert-
Smarandache Theory (DSmT) framework as a tool for decision
process. The GPT allows to provide a subjective probabilitymea-
sure from any generalized basic belief assignment given by any
corpus of evidence. We mainly focus our presentation on the 3D
case and provide the complete result obtained by the GPT and its
validation drawn from the probability theory.
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1 Introduction

In the recent theory of plausible and paradoxical reason-
ing (DSmT) developed by Dezert and Smarandache [2, 10],
a new generalized pignistic transformation has been pro-
posed to construct a subjective probability measureP{.}
from any generalized basic belief assignmentm(.) defined
over the hyper-power setDΘ. In reference [2], a simple
example of such generalized pignistic transformation has
been presented only for the casen = |Θ| = 2. In this
paper, we present the complete derivation of this pignistic
transformation for the casen = |Θ| = 3 and we generalize
the result. Before introducing the GPT, it is however nec-
essary to briefly present the DSmT [1, 2, 3, 4, 5, 10] with
respect to the Dempster-Shafer Theory (DST) [9].

2 Foundations of the DST and DSmT

2.1 The DST and the Shafer’s model

The Shafer’s model, denoted hereM0(Θ), on which is
based the Dempster-Shafer Theory, assumes an exhaustive
and exclusive frame of discernment of the problem under
considerationΘ = {θ1, θ2, . . . , θn}. The model requires
actually that an ultimate refinement of the problem is pos-
sible so thatθi can always be well precisely defined/iden-
tified in such a way that we are sure that they are exclu-
sive and exhaustive. From this model, a basic belief as-
signment (bba)mi(.) : 2Θ → [0, 1] such thatmi(∅) = 0
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and
∑

A∈2Θ mi(A) = 1 associated to a given body of evi-
denceBi is defined, where2Θ is thepower setof Θ, i.e. the
set of all subsets ofΘ. Within DST, the fusion (combina-
tion) of two independent sources of evidenceB1 andB2 is
obtained through the Dempster’s rule of combination [9] :
[m1 ⊕ m2](∅) = 0 and∀B 6= ∅ ∈ 2Θ:

[m1 ⊕ m2](B) =

∑

X∩Y =B m1(X)m2(Y )

1 −
∑

X∩Y =∅ m1(X)m2(Y )
(1)

The notation
∑

X∩Y =B represents the sum over all
X, Y ∈ 2Θ such thatX ∩ Y = B. The Dempster’s sum
m(.) , [m1⊕m2](.) is considered as a basic belief assign-
ment if and only if the denominator in equation (1) is non-
zero. The termk12 ,

∑

X∩Y =∅ m1(X)m2(Y ) is called
degree of conflict between the sourcesB1 andB2. When
k12 = 1, the Dempster’s summ(.) does not exist and the
bodies of evidencesB1 andB2 are said to be infull con-
tradiction. This rule of combination can be extended eas-
ily for the combination ofn > 2 independent sources of
evidence. The DST, although very attractive because of its
solid mathematical ground, presents however several weak-
nesses and limitations because of the Shafer’s model itself
(which does not necessary hold in some fusion problems in-
volving continuous and ill-defined concepts), the justifica-
tion of the Dempster’s rule of combination frequently sub-
ject to criticisms, but mainly because of counter-intuitive
results given by the Dempster’s rule when the conflict be-
tween sources becomes important. Several classes of infi-
nite counter-examples to the Dempster’s rule can be found
in [13]. To overcome these limitations, Jean Dezert and
Florentin Smarandache propose a new mathematical theory
based on other models (free or hybrid DSm models) with
new reliable rules of combinations able to deal with any
kind of sources ( imprecises, uncertain and paradoxist, i.e.
highly conflicting). This is presented in next subsections.

2.2 The DSmT based on the free DSm Model

The foundations of the DSmT (Dezert-Smarandache The-
ory) is to abandon the Shafer’s model (i.e. the exclusivity
constraint betweenθi of Θ) just because for some fusion
problems it is impossible to define/characterize the problem
in terms of well-defined/precise and exclusive elements.
The free DSm model, denotedMf (Θ), on which is based



DSmT allows us to deal with imprecise/vague notions and
concepts between elements of the frame of discernmentΘ.
The DSmT includes the possibility to deal with evidences
arising from different sources of information which don’t
have access to absolute interpretation of the elementsΘ un-
der consideration.

2.2.1 Notion of hyper-power setDΘ

From this very simple idea and from any frameΘ, a new
spaceDΘ = {α0, . . . , αd(n)−1} (free Boolean pre-algebra
generated byΘ and operators∩ and∪), calledhyper-power
setis defined [5] as follows:

1. ∅, θ1, . . . , θn ∈ DΘ

2. ∀A ∈ DΘ, B ∈ DΘ, (A ∪ B) ∈ DΘ, (A ∩ B) ∈ DΘ

3. No other elements belong toDΘ, except those, ob-
tained by using rules 1 or 2.

The generation of hyper-power setDΘ is related with the
famous Dedekind’s problem on enumerating the set of
monotone Boolean functions. The cardinalityd(n) of DΘ

follows the Dedekind sequence. It can be shown, see [4],
that all elementsαi of DΘ can then be obtained by the very
simple linear equation [4]

dn = Dn · un (2)

wheredn ≡ [α0 ≡ ∅, α1, . . . , αd(n)−1]
′ is the vector of

elements ofDΘ, un is the proper Smarandache’s codifi-
cation vector [4] andDn a particular binary matrix build
recursively by the algorithm proposed in [4]. The final re-
sult dn is obtained from the previousmatrix productafter
identifying(+, ·) with (∪,∩) operators,0 ·x with ∅ and1 ·x
with x). Dn is actually a binary matrix corresponding to all
possible isotone Boolean functions.

2.2.2 Classic DSm rule of combination

By adopting the free DSm model and from any general
frame of discernmentΘ, one then defines a mapmi(.) :
DΘ → [0, 1], associated to a given source of evidenceBi

such thatmi(∅) = 0 and
∑

A∈DΘ mi(A) = 1. This ap-
proach allows us to model any source which supports para-
doxical (or intrinsic conflicting) information. From this
very simple free DSm modelMf (Θ), the classical DSm
rule of combinationm(.) , [m1 ⊕ . . . ⊕ mk](.) of k ≥ 2
intrinsic conflicting and/or uncertain independent sources
of information is defined by [1]

mMf (Θ)(A) =
∑

X1,...,Xk∈DΘ

X1∩...∩Xk=A

k
∏

i=1

mi(Xi) (3)

and mMf (Θ)(∅) = 0 by definition. This rule, dealing
with uncertain and/or paradoxical/conflicting information is
commutative and associative and requires no normalization
procedure.

2.3 Extension of the DSmT to hybrid models

2.3.1 Notion of hybrid model

The adoption of the free DSm model (and the classic DSm
rule) versus the Shafer’s model (with the Dempster’s rule)
can also be subject to criticisms since not all fusion prob-
lems correspond to the free DSm model (neither to the
Shafer’s model). These two models can be viewed actu-
ally as the two opposite/extreme and specific models on
which are based the DSmT and the DST. In general, the
models for characterizing practical fusion problems do not
coincide neither with the Shafer’s model nor with the free
DSm model. They have an hybrid nature (only someθi

are truly exclusive).Very recently, F. Smarandache and J.
Dezert have extended the framework of the DSmT and the
previous DSm rule of combination for solving a wider class
of fusion problems in which neither free DSm or Shafer’s
models fully hold. This large class of problems corresponds
to problems characterized by any hybrid DSm model. A
hybrid DSm model is defined from the free DSm model
Mf(Θ) by introducing some integrity constraints on some
elementsA ∈ DΘ, if there are some certain facts in ac-
cordance with the exact nature of the model related to the
problem under consideration [12]. An integrity constraint
on A ∈ DΘ consists in forcingA to be empty through the

modelM, denoted asA
M
≡ ∅. There are several possible

kinds of integrity constraints introduced in any free DSm
model:

• Exclusivity constraints: when some conjunctions of el-
ements ofΘ are truly impossible, for example when

θi ∩ . . . ∩ θk

M
≡ ∅.

• Non-existential constraints: when some disjunctions
of elements ofΘ are truly impossible, for example

whenθi ∪ . . .∪ θk

M
≡ ∅. The degenerated hybrid DSm

modelM∅, defined by constraint according to the to-

tal ignorance:It , θ1∪θ2∪ . . .∪θn

M
≡ ∅, is excluded

from consideration, because it is meaningless.

• Hybrid constraints: like for example(θi∩θj)∪θk

M
≡ ∅

and any other hybrid proposition/element ofDΘ in-
volving both∩ and∪ operators such that at least one
elementθk is subset of the constrained proposition.

The introduction of a given integrity constraint

A
M
≡ ∅ ∈ DΘ implies the set of inner constraints

B
M
≡ ∅ for all B ⊂ A. The introduction of two in-

tegrity constraints onA, B ∈ DΘ implies the constraint
(A ∪ B) ∈ DΘ ≡ ∅ and this implies the emptiness of all
C ∈ DΘ such thatC ⊂ (A ∪ B).

The Shafer’s model, denotedM0(Θ), can be considered
as the most constrained hybrid DSm model including all
possible exclusivity constraintswithout non-existential con-
straint, since all elements in the frame are forced to be mu-
tually exclusive.



2.3.2 The hybrid DSm rule of combination

The hybrid DSm rule of combination, associated to a given
hybrid DSm modelM 6= M∅ , for k ≥ 2 independent
sources of information is defined for allA ∈ DΘ as [12]:

mM(Θ)(A) , φ(A)
[

S1(A) + S2(A) + S3(A)
]

(4)

whereφ(A) is the characteristic non emptiness function of
a setA, i.e. φ(A) = 1 if A /∈ ∅ andφ(A) = 0 otherwise,
where∅ , {∅M, ∅}. ∅M is the set of all elements ofDΘ

which have been forced to be empty through the constraints
of the modelM and∅ is the classical/universal empty set.
S1(A) ≡ mMf (Θ)(A), S2(A), S3(A) are defined by [12]

S1(A) ,
∑

X1,X2,...,Xk∈DΘ

(X1∩X2∩...∩Xk)=A

k
∏

i=1

mi(Xi) (5)

S2(A) ,
∑

X1,X2,...,Xk∈∅

[U=A]∨[(U∈∅)∧(A=It)]

k
∏

i=1

mi(Xi) (6)

S3(A) ,
∑

X1,X2,...,Xk∈DΘ

(X1∪X2∪...∪Xk)=A

(X1∩X2∩...∩Xk)∈∅

k
∏

i=1

mi(Xi) (7)

with U , u(X1) ∪ u(X2) ∪ . . . ∪ u(Xk) whereu(X) is
the union of all singletonsθi that composeX and It ,

θ1 ∪θ2∪ . . .∪θn is the total ignorance.S1(A) corresponds
to the classic DSm rule of combination based on the free
DSm model;S2(A) represents the mass of all relatively and
absolutely empty sets which is transferred to the total or
relative ignorances;S3(A) transfers the sum of relatively
empty sets to the non-empty sets.

2.4 The DSm cardinalityCM(A)

2.4.1 Definition

One important notion involved in the definition of the
generalized pignistic transformation (GPT) is theDSm
cardinality [3]. The DSm cardinality of any element
A ∈ DΘ, denotedCM(A), corresponds to the number of
parts of A in the Venn diagram of the problem (model
M) taking into account the set of integrity constraints (if
any), i.e. all the possible intersections due to the nature
of the elementsθi. This intrinsic cardinality depends
on the modelM (free, hybrid or Shafer’s model).M
is the model that containsA, which depends both on
the dimensionn = |Θ| and on the number of parts of
non-empty intersections present in its associated Venn
diagram. One has1 ≤ CM(A) ≤ 2n − 1. CM(A) must not
be confused with the classical cardinality|A| of a given set
A (i.e. the number of its distinct elements) - that’s why a
new notation is necessary here.

It can be shown, see [3], thatCM(A), is exactly equal to
the sum of the elements of the row ofDn corresponding to
propositionA in theun basis (see section 2.1.1). Actually

CM(A) is very easy to compute by programming from the
algorithm of generation ofDΘ given in [4].

If one imposes a constraint that a setB fromDΘ is empty
(i.e. we choose a hybrid model), then one suppresses the
columns corresponding to the parts which composeB in the
matrix Dn and the row ofB and the rows of all elements
of DΘ which are subsets ofB, getting a new matrixD′

n

which represents a new hybrid modelM′. In theun basis,
one similarly suppresses the parts that formB, and now this
basis has the dimension2n − 1 − CM(B).

2.4.2 A 3D example with the free DSm modelMf

Consider the 3D caseΘ = {θ1, θ2, θ3} with the free DSm
modelMf corresponding to the following Venn diagram
(where< i > denotes the part which belongs toθi only,
< ij > denotes the part which belongs toθi andθj only,
etc; this is the Smarandache’s codification [4]).
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The elements ofDΘ with their DSm cardinality are given
by the following table:

A ∈ DΘ CMf (A)

α0 , ∅ 0

α1 , θ1 ∩ θ2 ∩ θ3 1

α2 , θ1 ∩ θ2 2

α3 , θ1 ∩ θ3 2

α4 , θ2 ∩ θ3 2

α5 , (θ1 ∪ θ2) ∩ θ3 3

α6 , (θ1 ∪ θ3) ∩ θ2 3

α7 , (θ2 ∪ θ3) ∩ θ1 3

α8 , {(θ1 ∩ θ2) ∪ θ3} ∩ (θ1 ∪ θ2) 4

α9 , θ1 4

α10 , θ2 4

α11 , θ3 4

α12 , (θ1 ∩ θ2) ∪ θ3 5

α13 , (θ1 ∩ θ3) ∪ θ2 5

α14 , (θ2 ∩ θ3) ∪ θ1 5

α15 , θ1 ∪ θ2 6

α16 , θ1 ∪ θ3 6

α17 , θ2 ∪ θ3 6

α18 , θ1 ∪ θ2 ∪ θ3 7

Table 1: CMf (A) for free DSm modelMf

2.4.3 A 3D example with a given hybrid model

Consider now the same 3D case with the modelM 6= Mf

in which we force all possible conjunctions to be empty,
butθ1 ∩ θ2 according to the following Venn diagram.
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Then, one gets the following list of elements (with their
DSm cardinal) for the restrictedDΘ taking into account the
integrity constraints of this hybrid model:

A ∈ DΘ CM(A)

α0 , ∅ 0

α1 , θ1 ∩ θ2 1

α2 , θ3 1

α3 , θ1 2

α4 , θ2 2

α5 , θ1 ∪ θ2 3

α6 , θ1 ∪ θ3 3

α7 , θ2 ∪ θ3 3

α8 , θ1 ∪ θ2 ∪ θ3 4

Table 2: CM(A) for the chosen hybrid modelM

2.4.4 A 3D example with the Shafer’s model

Consider now the same 3D case but with all exclusivity
constraints onθi, i = 1, 2, 3. This corresponds to the
3D Shafer’s modelM0 presented in the following Venn
diagram.
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Then, one gets the following list of elements (with their
DSm cardinal) for the restrictedDΘ, which coincides nat-
urally with the classical power set2Θ:

A ∈ (DΘ ≡ 2Θ) CM0(A)

α0 , ∅ 0

α1 , θ1 1

α2 , θ2 1

α3 , θ3 1

α4 , θ1 ∪ θ2 2

α5 , θ1 ∪ θ3 2

α6 , θ2 ∪ θ3 2

α7 , θ1 ∪ θ2 ∪ θ3 3

Table 3: CM(A) for the 3D Shafer’s modelM0

3 The pignistic transformations

We follow here the Smets’ point of view [14] about the
assumption that beliefs manifest themselves at two mental
levels: thecredallevel where beliefs are entertained and the
pignisticlevel where belief are used to make decisions. Pig-
nistic terminology has been coined by Philippe Smets and
comes frompignus, a bet in Latin. The probability func-
tions, usually used to quantify beliefs at both levels, are
actually used here only to quantify the uncertainty when a
decision is really necessary, otherwise we argue as Philippe
Smets does, that beliefs are represented by belief functions.
To take a rational decision, we propose to transform beliefs
into pignistic probability functions through the generalized
pignistic transformation (GPT) which will be presented in
the sequel. We first recall the classical pignistic transforma-
tion (PT) based on the DST and then we generalize it within
the DSmT framework.

3.1 The classical pignistic transformation

When a decision must be taken, we use the expected util-
ity theory which requires to construct a probability func-
tion P{.} from basic belief assignmentm(.) [14]. This is
achieved by the so-called classical pignistic transformation1

as follows (see [11] for justification):

P{A} =
∑

X∈2Θ

|X ∩ A|

|X |
m(X) (8)

where|A| denotes the number of worlds in the setA (with
convention|∅|/|∅| = 1, to defineP{∅}). P{A} corre-
sponds toBetP (A) in the Smets’ notation [14]. Decisions
are achieved by computing the expected utilities of the acts
using the subjective/pignisticP{.} as the probability func-
tion needed to compute expectations. Usually, one uses the
maximum of the pignistic probability as decision criterion.
The max. ofP{.} is often considered as a prudent betting
decision criterion between the two other alternatives (max
of plausibility or max. of credibility). It is easy to show that
P{.} is indeed a probability function (see [11]).

3.2 The generalized pignistic transformation

3.2.1 Definition

To take a rational decision within the DSmT framework, it
is then necessary to generalize the classical pignistic trans-
formation in order to construct a pignistic probability func-
tion from any generalized basic belief assignmentm(.)
drawn form the DSm rule of combination (the classic or hy-
brid rule). This generalized pignistic transformation (GPT)
is defined by:∀A ∈ DΘ,

P{A} =
∑

X∈DΘ

CM(X ∩ A)

CM(X)
m(X) (9)

1We don’t divide herem(X) by 1 − m(∅) as in the P. Smets’
formulation just becausem(∅) = 0 in the DSmT framework, un-
less there is a solid necessity to justify to do it.



whereCM(X) denotes the DSm cardinal of propositionX
for the DSm modelM of the problem under consideration.

The decision about the solution of the problem is usu-
ally taken by the maximum of pignistic probability func-
tion P{.}. Let’s remark the close ressemblance of the two
pignistic transformations (8) and (9). It can be shown that
(9) reduces to (8) when the hyper-power setDΘ reduces to
classical power set2Θ if we adopt the Shafer’s model. But
(9) is a generalization of (8) since it can be used for com-
puting pignistic probabilities for any models (including the
Shafer’s model).

3.2.2 P{.} is a probability measure

It is important to prove thatP{.} built from GPT is indeed
a (subjective/pignistic) probability measure satisfyingthe
following axioms of the probability theory [7, 8]:

• Axiom 1 (nonnegativity): The (generalized pignistic)
probability of any eventA is bounded by 0 and 1, i.e.
0 ≤ P{A} ≤ 1

• Axiom 2 (unity): Any sure event (the sample
space) has unity (generalized pignistic) probability, i.e.
P{S} = 1

• Axiom 3 (additivity over mutually exclusive events):
If A, B are disjoint (i.e.A∩B = ∅) thenP (A∪B) =
P (A) + P (B)

The axiom 1 is satisfied because, by the definition of
the generalized basic belief assignmentm(.), one has
∀αi ∈ DΘ, 0 ≤ m(αi) ≤ 1 with

∑

αi∈DΘ m(αi) = 1 and
since all coefficients involved within GPT are bounded by
0 and 1, it follows directly that pignistic probabilities are
also bounded by 0 and 1.

The axiom 2 is satisfied because all the coefficients
involved in the sure eventS , θ1∪θ2∪ ...∪θn are equal to
one becauseCM(X∩S)/CM(X) = CM(X)/CM(X) = 1,
so thatP{S} ≡

∑

αi∈DΘ m(αi) = 1.

The axiom 3 is satisfied. Indeed, from the definition of
GPT, one has

P{A ∪ B} =
∑

X∈DΘ

CM(X ∩ (A ∪ B))

CM(X)
m(X) (10)

But if we considerA andB exclusive (i.e.A ∩ B = ∅),
then it follows:

CM(X ∩ (A ∪ B)) = CM((X ∩ A) ∪ (X ∩ B))

= CM(X ∩ A) + CM(X ∩ B)

By substitutingCM(X ∩ (A ∪ B)) by CM(X ∩ A) +
CM(X ∩ B) into (10), it comes:

P{A ∪ B} =
∑

X∈DΘ

CM(X ∩ A) + CM(X ∩ B)

CM(X)
m(X)

=
∑

X∈DΘ

CM(X ∩ A)

CM(X)
m(X)

+
∑

X∈DΘ

CM(X ∩ B)

CM(X)
m(X)

= P{A} + P{B}

which completes the proof. From the coefficientsCM(X∩A)
CM(X)

involved in (9), it can also be easily checked thatA ⊂ B ⇒
P{A} ≤ P{B}. One can also easily prove the Poincaré’
equality:P{A∪B} = P{A}+P{B}−P{A∩B}because
CM(X ∩ (A∪B) = CM((X ∩A)∪ (X ∩B)) = CM(X ∩
A)+CM(X∩B)−CM(X∩(A∩B)) (one has substracted
CM(X ∩ (A ∩ B)), i.e. the number of parts ofX ∩ (A ∩
B) in the Venn diagram, due to the fact that these parts
were added twice: once inCM(X ∩ A) and second time in
CM(X ∩ B).

4 Examples of GPT

4.1 Example for the 2D case

• With the free DSm model: Let’s considerΘ =
{θ1, θ2} and the generalized basic belief assignment
m(.) over the hyper-power setDΘ = {∅, θ1 ∩
θ2, θ1, θ2, θ1 ∪ θ2}. It is easy to construct the pignistic
probability P{.}. According to the definition of the
GPT given in (9), one gets:

P{∅} = 0

P{θ1} = m(θ1)+
1

2
m(θ2)+m(θ1∩θ2)+

2

3
m(θ1∪θ2)

P{θ2} = m(θ2)+
1

2
m(θ1)+m(θ1∩θ2)+

2

3
m(θ1∪θ2)

P{θ1 ∩ θ2} =
1

2
m(θ2) +

1

2
m(θ1)+

m(θ1 ∩ θ2) +
1

3
m(θ1 ∪ θ2)

P{θ1 ∪ θ2} = P{Θ} = m(θ1) + m(θ2)+

m(θ1 ∩ θ2) + m(θ1 ∪ θ2) = 1

It is easy to prove that0 ≤ P{.} ≤ 1 andP{θ1∪θ2} =
P{θ1} + P{θ2} − P{θ1 ∩ θ2}

• With the Shafer’s model: If one adopts the Shafer’s

model (we assumeθ1 ∩ θ2
M0

≡ ∅), then after applying
the hybrid DSm rule of combination, one gets a basic
belief assignment with non null masses only onθ1, θ2

andθ1 ∪ θ2. By applying the GPT, one gets:

P{∅} = 0 P{θ1 ∩ θ2} = 0

P{θ1} = m(θ1) +
1

2
m(θ1 ∪ θ2)



P{θ2} = m(θ2) +
1

2
m(θ1 ∪ θ2)

P{θ1 ∪ θ2} = m(θ1) + m(θ2) + m(θ1 ∪ θ2) = 1

which naturally corresponds in this case to the pignis-
tic probability built with the classical pignistic trans-
formation (8).

4.2 Example for the 3D case
• With the free DSm model: Let’s con-

sider Θ = {θ1, θ2, θ3}, its hyper-power set
DΘ = {α0, . . . , α18} (with αi, i = 0, . . . , 18
corresponding to propositions explicated in table
1 of section 2.4), and the generalized basic belief
assignmentm(.) over the hyper-power setDΘ. The
six tables presented in the appendix show the full
derivations of all pignistic probabilitiesP{αi} for
i = 1, . . . , 18 (P{∅} always equals zero) according to
the GPT formula (9).

Note thatP{α18} = 1 because(θ1 ∪ θ2 ∪ θ3) corre-
sponds to the sure event in our subjective probability
space and

∑

αi∈DΘ m(αi) = 1 by the definition of
any generalized basic belief assignmentm(.) defined
onDΘ.

It can be verified (as expected) on this example, al-
though being a quite tedious task, that the Poincaré’
equality holds:

P{A1 ∪ . . . ∪ An} =
∑

I⊂{1,...,n}

I 6=∅

(−1)|I|+1P{
⋂

i∈I

Ai}

It is also easy to verify that∀A ⊂ B ⇒ P{A} ≤
P{B} holds. By example, for(α6 , (θ1 ∪ θ3) ∩
θ2) ⊂ α10 , θ2) and from the expressions ofP{α6}
andP{α10} given in appendix, we directly conclude
that P{α6} ≤ P{α10} because for allX ∈ DΘ,
CM(X∩α6)

CM(X) ≤ CM(X∩α10)
CM(X) as shown in the following

table

X CM(X∩α6)
CM(X) ≤ CM(X∩α10)

CM(X)

α1 1 ≤ 1
α2 1 ≤ 1
α3 (1/2) ≤ (1/2)
α4 1 ≤ 1
α5 (2/3) ≤ (2/3)
α6 1 ≤ 1
α7 (2/3) ≤ (2/3)
α8 (3/4) ≤ (3/4)
α9 (2/4) ≤ (2/4)
α10 (3/4) ≤ 1
α11 (2/4) ≤ (2/4)
α12 (3/5) ≤ (3/5)
α13 (3/5) ≤ (4/5)
α14 (3/5) ≤ (3/5)
α15 (3/6) ≤ (4/6)
α16 (3/6) ≤ (3/6)
α17 (3/6) ≤ (4/6)
α18 (3/7) ≤ (4/7)

• Example with a given hybrid DSm model: Consider
now the hybrid modelM 6= Mf in which we force all
possible conjunctions to be empty, butθ1 ∩ θ2 accord-
ing to the second Venn diagram presented in section
2.4. In this case the hyper-power setDΘ reduces to 9
elements{α0, . . . , α8} explicated in table 2 of section
2.4.The following tables present the full derivations of
the pignistic probabilitiesP{αi} for i = 1, . . . , 8 from
the GPT formula (9) applying to this hybrid model.

P{α1} = P{α2} = P{α3} =
(1/1)m(α1) (0/1)m(α1) (1/1)m(α1)
+(0/1)m(α2) +(1/1)m(α2) +(0/2)m(α2)
+(1/2)m(α3) +(0/2)m(α3) +(2/2)m(α3)
+(1/2)m(α4) +(0/2)m(α4) +(1/2)m(α4)
+(1/3)m(α5) +(0/3)m(α5) +(2/3)m(α5)
+(1/3)m(α6) +(1/3)m(α6) +(2/3)m(α6)
+(1/3)m(α7) +(1/3)m(α7) +(1/3)m(α7)
+(1/4)m(α8) +(1/4)m(α8) +(2/4)m(α8)

Table 4: Derivation ofP{α1 , θ1 ∩ θ2},
P{α2 , θ3} andP{α3 , θ1}

P{α4} = P{α5} = P{α6} =
(1/1)m(α1) (1/1)m(α1) (1/1)m(α1)
+(0/1)m(α2) +(0/1)m(α2) +(1/1)m(α2)
+(1/2)m(α3) +(2/2)m(α3) +(2/2)m(α3)
+(2/2)m(α4) +(2/2)m(α4) +(1/2)m(α4)
+(2/3)m(α5) +(3/3)m(α5) +(2/3)m(α5)
+(1/3)m(α6) +(2/3)m(α6) +(3/3)m(α6)
+(2/3)m(α7) +(2/3)m(α7) +(2/3)m(α7)
+(2/4)m(α8) +(3/4)m(α8) +(3/4)m(α8)

Table 5: Derivation ofP{α4 , θ2},
P{α5 , θ1 ∪ θ2} andP{α6 , θ1 ∪ θ3}

P{α7} = P{α8} =
(1/1)m(α1) (1/1)m(α1)
+(2/2)m(α2) +(2/2)m(α2)
+(1/2)m(α3) +(2/2)m(α3)
+(2/2)m(α4) +(2/2)m(α4)
+(2/3)m(α5) +(3/3)m(α5)
+(2/3)m(α6) +(3/3)m(α6)
+(3/3)m(α7) +(3/3)m(α7)
+(3/4)m(α8) +(4/4)m(α8)

Table 6: Derivation ofP{α7 , θ2 ∪ θ3} and
P{α8 , θ1 ∪ θ2 ∪ θ3}

• Example with the Shafer’s model: Consider now the
Shafer’s modelM0 6= Mf in which we force all pos-
sible conjunctions to be empty according to the third
Venn diagram presented in section 2.4. In this case
the hyper-power setDΘ reduces to the classical power
set2Θ with 8 elements{α0, . . . , α7} explicated in ta-
ble 3 of section 2.4. Applying, the GPT formula (9),
one gets the following pignistic probabilitiesP{αi}



for i = 1, . . . , 7 which naturally coincide, in this par-
ticular case, with the values obtained directly by the
classical pignistic transformation (8):

P{α1} = P{α2} = P{α3} =
(1/1)m(α1) (0/1)m(α1) (0/1)m(α1)
+(0/1)m(α2) +(1/1)m(α2) +(0/1)m(α2)
+(0/1)m(α3) +(0/1)m(α3) +(1/1)m(α3)
+(1/2)m(α4) +(1/2)m(α4) +(0/2)m(α4)
+(1/2)m(α5) +(0/2)m(α5) +(1/2)m(α5)
+(0/2)m(α6) +(1/2)m(α6) +(1/2)m(α6)
+(1/3)m(α7) +(1/3)m(α7) +(1/3)m(α7)

Table 7: Derivation ofP{α1 , θ1}, P{α2 , θ2}
andP{α3 , θ3}

P{α4} = P{α5} = P{α6} =
(1/1)m(α1) (1/1)m(α1) (0/1)m(α1)
+(1/1)m(α2) +(0/1)m(α2) +(1/1)m(α2)
+(0/1)m(α3) +(1/1)m(α3) +(1/1)m(α3)
+(2/2)m(α4) +(1/2)m(α4) +(1/2)m(α4)
+(1/2)m(α5) +(2/2)m(α5) +(1/2)m(α5)
+(1/2)m(α6) +(1/2)m(α6) +(2/2)m(α6)
+(2/3)m(α7) +(2/3)m(α7) +(2/3)m(α7)

Table 8: Derivation ofP{α4 , θ1 ∪ θ2},
P{α5 , θ1 ∪ θ3} andP{α6 , θ2 ∪ θ3}

P{α7} =
(1/1)m(α1)
+(1/1)m(α2)
+(1/1)m(α3)
+(2/2)m(α4)
+(2/2)m(α5)
+(2/2)m(α6)
+(3/3)m(α7)

Table 9: Derivation ofP{α7 , θ1 ∪ θ2 ∪ θ3} = 1

5 Conclusion
A generalization of the classical pignistic transformation
developed originally within the DST framework has been
proposed in this work. This generalization is based on the
new theory of plausible and paradoxical reasoning (DSmT)
and provides a new mathematical issue to help the decision-
making under uncertainty and paradoxist (i.e. highly con-
flicting) sources of information. The generalized pignistic
transformation (GPT) proposed here allows to build a sub-
jective/pignistic probability measure over the hyper-power
set of the frame of the problem under consideration or any
kind of model (free, hybrid or Shafer’s model). The GPT
coincides naturally with the classical pignistic transforma-
tion whenever the Shafer’s model is adopted. It corresponds
with assumptions of classical pignistic probability general-
ized to the free DSm model. A relation of GPT on general
hybrid models to assumptions of classical PT is still in the
process of investigation. Several examples for the 2D and
3D cases for different kinds of models have been presented
to illustrate the validity of the GPT.
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Appendix: Derivation of the GPT for the 3D free DSm model
P{α1} = P{α2} = P{α3} =
m(α1) m(α1) m(α1)
+(1/2)m(α2) +m(α2) +(1/2)m(α2)
+(1/2)m(α3) +(1/2)m(α3) +m(α3)
+(1/2)m(α4) +(1/2)m(α4) +(1/2)m(α4)
+(1/3)m(α5) +(1/3)m(α5) +(2/3)m(α5)
+(1/3)m(α6) +(2/3)m(α6) +(1/3)m(α6)
+(1/3)m(α7) +(2/3)m(α7) +(2/3)m(α7)
+(1/4)m(α8) +(2/4)m(α8) +(2/4)m(α8)
+(1/4)m(α9) +(2/4)m(α9) +(2/4)m(α9)
+(1/4)m(α10) +(2/4)m(α10) +(1/4)m(α10)
+(1/4)m(α11) +(1/4)m(α11) +(2/4)m(α11)
+(1/5)m(α12) +(2/5)m(α12) +(2/5)m(α12)
+(1/5)m(α13) +(2/5)m(α13) +(2/5)m(α13)
+(1/5)m(α14) +(2/5)m(α14) +(2/5)m(α14)
+(1/6)m(α15) +(2/6)m(α15) +(2/6)m(α15)
+(1/6)m(α16) +(2/6)m(α16) +(2/6)m(α16)
+(1/6)m(α17) +(2/6)m(α17) +(2/6)m(α17)
+(1/7)m(α18) +(2/7)m(α18) +(2/7)m(α18)

P{α10} = P{α11} = P{α12} =
m(α1) m(α1) m(α1)
+m(α2) +(1/2)m(α2) +m(α2)
+(1/2)m(α3) +m(α3) +m(α3)
+m(α4) +m(α4) +m(α4)
+(2/3)m(α5) +m(α5) +m(α5)
+m(α6) +(2/3)m(α6) +m(α6)
+(2/3)m(α7) +(2/3)m(α7) +m(α7)
+(3/4)m(α8) +(3/4)m(α8) +m(α8)
+(2/4)m(α9) +(2/4)m(α9) +(3/4)m(α9)
+m(α10) +(2/4)m(α10) +(3/4)m(α10)
+(2/4)m(α11) +m(α11) +m(α11)
+(3/5)m(α12) +(4/5)m(α12) +m(α12)
+(4/5)m(α13) +(3/5)m(α13) +(4/5)m(α13)
+(3/5)m(α14) +(3/5)m(α14) +(4/5)m(α14)
+(4/6)m(α15) +(3/6)m(α15) +(4/6)m(α15)
+(3/6)m(α16) +(4/6)m(α16) +(4/6)m(α16)
+(4/6)m(α17) +(4/6)m(α17) +(5/6)m(α17)
+(4/7)m(α18) +(4/7)m(α18) +(5/7)m(α18)

Table 10: Derivation ofP{α1}, P{α2} andP{α3} Table 13: Derivation ofP{α10}, P{α11} andP{α12}

P{α4} = P{α5} = P{α6} =
m(α1) m(α1) m(α1)
+(1/2)m(α2) +(1/2)m(α2) +m(α2)
+(1/2)m(α3) +m(α3) +(1/2)m(α3)
+m(α4) +m(α4) +m(α4)
+(2/3)m(α5) +m(α5) +(2/3)m(α5)
+(2/3)m(α6) +(2/3)m(α6) +m(α6)
+(1/3)m(α7) +(2/3)m(α7) +(2/3)m(α7)
+(2/4)m(α8) +(3/4)m(α8) +(3/4)m(α8)
+(1/4)m(α9) +(2/4)m(α9) +(2/4)m(α9)
+(2/4)m(α10) +(2/4)m(α10) +(3/4)m(α10)
+(2/4)m(α11) +(3/4)m(α11) +(2/4)m(α11)
+(2/5)m(α12) +(3/5)m(α12) +(3/5)m(α12)
+(2/5)m(α13) +(3/5)m(α13) +(3/5)m(α13)
+(2/5)m(α14) +(3/5)m(α14) +(3/5)m(α14)
+(2/6)m(α15) +(3/6)m(α15) +(3/6)m(α15)
+(2/6)m(α16) +(3/6)m(α16) +(3/6)m(α16)
+(2/6)m(α17) +(3/6)m(α17) +(3/6)m(α17)
+(2/7)m(α18) +(3/7)m(α18) +(3/7)m(α18)

P{α10} = P{α11} = P{α12} =
m(α1) m(α1) m(α1)
+m(α2) +(1/2)m(α2) +m(α2)
+(1/2)m(α3) +m(α3) +m(α3)
+m(α4) +m(α4) +m(α4)
+(2/3)m(α5) +m(α5) +m(α5)
+m(α6) +(2/3)m(α6) +m(α6)
+(2/3)m(α7) +(2/3)m(α7) +m(α7)
+(3/4)m(α8) +(3/4)m(α8) +m(α8)
+(2/4)m(α9) +(2/4)m(α9) +(3/4)m(α9)
+m(α10) +(2/4)m(α10) +(3/4)m(α10)
+(2/4)m(α11) +m(α11) +m(α11)
+(3/5)m(α12) +(4/5)m(α12) +m(α12)
+(4/5)m(α13) +(3/5)m(α13) +(4/5)m(α13)
+(3/5)m(α14) +(3/5)m(α14) +(4/5)m(α14)
+(4/6)m(α15) +(3/6)m(α15) +(4/6)m(α15)
+(3/6)m(α16) +(4/6)m(α16) +(4/6)m(α16)
+(4/6)m(α17) +(4/6)m(α17) +(5/6)m(α17)
+(4/7)m(α18) +(4/7)m(α18) +(5/7)m(α18)

Table 11: Derivation ofP{α4}, P{α5} andP{α6} Table 14: Derivation ofP{α13}, P{α14} andP{α15}

P{α7} = P{α8} = P{α9} =
m(α1) m(α1) m(α1)
+m(α2) +m(α2) +m(α2)
+m(α3) +m(α3) +m(α3)
+(1/2)m(α4) +m(α4) +(1/2)m(α4)
+(2/3)m(α5) +m(α5) +(2/3)m(α5)
+(2/3)m(α6) +m(α6) +(2/3)m(α6)
+m(α7) +m(α7) +m(α7)
+(3/4)m(α8) +m(α8) +(3/4)m(α8)
+(3/4)m(α9) +(3/4)m(α9) +m(α9)
+(2/4)m(α10) +(3/4)m(α10) +(2/4)m(α10)
+(2/4)m(α11) +(3/4)m(α11) +(2/4)m(α11)
+(3/5)m(α12) +(4/5)m(α12) +(3/5)m(α12)
+(3/5)m(α13) +(4/5)m(α13) +(3/5)m(α13)
+(3/5)m(α14) +(4/5)m(α14) +(4/5)m(α14)
+(3/6)m(α15) +(4/6)m(α15) +(4/6)m(α15)
+(3/6)m(α16) +(4/6)m(α16) +(4/6)m(α16)
+(3/6)m(α17) +(4/6)m(α17) +(3/6)m(α17)
+(3/7)m(α18) +(4/7)m(α18) +(4/7)m(α18)

P{α16} = P{α17} = P{α18} =
m(α1) m(α1) m(α1)
+m(α2) +m(α2) +m(α2)
+m(α3) +m(α3) +m(α3)
+m(α4) +m(α4) +m(α4)
+m(α5) +m(α5) +m(α5)
+m(α6) +m(α6) +m(α6)
+m(α7) +m(α7) +m(α7)
+m(α8) +m(α8) +m(α8)
+m(α9) +(3/4)m(α9) +m(α9)
+(3/4)m(α10) +m(α10) +m(α10)
+m(α11) +m(α11) +m(α11)
+m(α12) +m(α12) +m(α12)
+(4/5)m(α13) +m(α13) +m(α13)
+m(α14) +(4/5)m(α14) +m(α14)
+(5/6)m(α15) +(5/6)m(α15) +m(α15)
+m(α16) +(5/6)m(α16) +m(α16)
+(5/6)m(α17) +m(α17) +m(α17)
+(6/7)m(α18) +(6/7)m(α18) +m(α18)

Table 12: Derivation ofP{α7}, P{α8} andP{α9} Table 15: Derivation ofP{α16}, P{α17} andP{α18}


