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Abstract — This paper presents in detail the generalized pigand) _ , ., m;(A) = 1 associated to a given body of evi-
nistic transformation (GPT) succinctly developed in the&& dencel; is defined, wherg® is thepower sebf ©, i.e. the
Smarandache Theory (DSmT) framework as a tool for decisiget of all subsets af. Within DST, the fusion (combina-
process. The GPT allows to provide a subjective probahitiga- tion) of two independent sources of eviderg&eandB; is

sure from any generalized basic belief assignment givengy gyptained through the Dempster's rule of combination [9] :
corpus of evidence. We mainly focus our presentation on Ehe iy @ ma)(0) = 0 andvB # 0 € 0.

case and provide the complete result obtained by the GPTtand"
validation drawn from the probability theory. S xmy—pmi(X)ma(Y)

S B) =
Keywords: Dezert-Smarandache Theory (DSmT), Dempster- [ & ma](B) 1—ZXQY:@ m1(X)ma(Y)

Shafer Theory,pignistic transformation, subjective tabty, )
pignistic probability, plausible and paradoxical reasgnibSm  The notation} . ,_p represents the sum over all
cardinality, hybrid model, data fusion, decision-makingnflict, X,Y € 2° such thatX N Y = B. The Dempster's sum

1)

processing. m(.) £ [m1 @ms](.) is considered as a basic belief assign-
ment if and only if the denominator in equation (1) is non-
1 Introduction zero. The termkis £ 3y _p m1(X)ma(Y) is called

degree of conflict between the sourdgésandB;. When

In the recent theory of plausible and paradoxical reasop-’_ | the Dempster's sum(.) does not exist and the

ing (DSmT) developed by Dezert and Smarandache [2, 18} gies of evidenceB; and B, are said to be iriull con-

a new generalized pignistic transformation has been pi;giction, This rule of combination can be extended eas-
posed to construct a subjective probability measti{e} iy for the combination ofn > 2 independent sources of
from any generalized basu(z) belief assignmerit) defined ¢ ijence. The DST, although very attractive because of its
over the hyper-power se™. In reference [2], a simple gqjig mathematical ground, presents however several weak-
example of such generalized pignistic transformation hgggqes and limitations because of the Shafer's model itself
been presented only for the case= [© = 2. In this  (ywhich does not necessary hold in some fusion problems in-
paper, we present the complete derivation of this pignis{g}ying continuous and ill-defined concepts), the justifica

transformation for the case= |©| = 3 and we generalize (o, of the Dempster’s rule of combination frequently sub-
the result. Before introducing the GPT, it is however neﬁ

> “Yect to criticisms, but mainly because of counter-intugtiv
essary to briefly present the DSmT [1, 2, 3, 4, 5, 10] witfygyts given by the Dempster's rule when the conflict be-
respect to the Dempster-Shafer Theory (DST) [9].

tween sources becomes important. Several classes of infi-
nite counter-examples to the Dempster’s rule can be found
2 Foundations of the DST and DSmT in [13]. To overcome these limitations, Jean Dezert and

, Florentin Smarandache propose a new mathematical theory
2.1 The DST and the Shafer's model based on other models (free or hybrid DSm models) with
The Shafer's model, denoted herd”(©), on which is new reliable rules of combinations able to deal with any
based the Dempster-Shafer Theory, assumes an exhaudtind of sources ( imprecises, uncertain and paradoxist, i.e
and exclusive frame of discernment of the problem undeighly conflicting). This is presented in next subsections.
consideratior® = {6y,6,,...,0,}. The model requires
actually that an ultimate refinement of the problem is po2.2 The DSmT based on the free DSm Model

§|ple S0 that; can always be well precisely deﬂnedhden.—rhe foundations of the DSmT (Dezert-Smarandache The-
tified in such a way that we are sure that they are excl

. ) ) 4 . 8Fy) is to abandon the Shafer's model (i.e. the exclusivity
sive and exhaustive. F@Eom this model, a basic belief onstraint between, of ©) just because for some fusion
signment (bbajn;(.) : 2% — [0, 1] such thatm; () = 0 problemsitis impossible to define/characterize the prble

*“Partial support by the COST action 274 TARSKI acknowlin terms of well-defined/precise and exclusive elements.
edged. The free DSm model, denotedt’ (©), on which is based




DSmT allows us to deal with imprecise/vague notions ari3 Extension of the DSmT to hybrid models
concepts between elements of the frame of discernfent _ _
The DSmT includes the possibility to deal with evidence&3.1 Notion of hybrid model

arising from different sources of information which don'’t . _
have access to absolute interpretation of the elentents- | "€ adoption of the free DSm model (and the classic DSm
der consideration. rule) versus the Shafer's model (with the Dempster’s rule)

can also be subject to criticisms since not all fusion prob-
lems correspond to the free DSm model (neither to the
Shafer's model). These two models can be viewed actu-

From this very simple idea and from any frare a new ally as the two opposite/extreme and specific models on
spaceD® = {ay, ... a(ny_1} (free Boolean pre-algebraWhiCh are based the DSmT and the DST. In general, the

generated by and operators andU), calledhyper-power qugls for (l:haractlerizing practical fusion probllems do not
setis defined [5] as follows: coincide neither with the Shafer’s model nor with the free
DSm model. They have an hybrid nature (only sofine

1. 0,6q,...,60, € D° are truly exclusive).Very recently, F. Smarandache and J.

Dezert have extended the framework of the DSmT and the

2.YVAe D® Be D® (AUB)e€ D® (AN B)ec D® previous DSm rule of combination for solving a wider class
of fusion problems in which neither free DSm or Shafer’s

3. No other elements belong #©°, except those, ob- models fully hold. This large class of problems corresponds
tained by using rules 1 or 2. to problems characterized by any hybrid DSm model. A
hybrid DSm model is defined from the free DSm model

The generation_ of hyper-power sB is relat_ed with the M/ (©) by introducing some integrity constraints on some
famous Dedekind's problem on enumerating the set gf

: : o ementsd € D®, if there are some certain facts in ac-
monotone Boolean functions. The cardinality:) of D® 4 qance with the exact nature of the model related to the

follows the Dedekind sequence. It can be shown, see [fl,piem under consideration [12]. An integrity constraint
that all elements; of D® can then be obtained by the VeNhn A € D® consists in forcingd to be empty through the
simple linear equation [4]

2.2.1 Notion of hyper-power s&®

model M, denoted asi 4 (). There are several possible

d, =D, -u, ) kinds of integrity constraints introduced in any free DSm
model:

whered,, = [ = 0,0a1,...,a4,)-1]" is the vector of

elements ofD®, u,, is the proper Smarandache’s codifi-

cation vector [4] andD,, a particular binary matrix build ™

recursively by the algorithm proposed in [4]. The finalre- 6;N...N6O, = 0.

sultd,, is obtained from the previousatrix productafter

identifying (+, -) with (U, N) operators)-z with () and1 -z e Non-existential constraintswhen some disjunctions

with z). D,, is actually a binary matrix correspondingto all ~ of elements of© are truly impossible, for example

e Exclusivity constraintswhen some conjunctions of el-
ements ofo© are truly impossible, for example when

possible isotone Boolean functions. whend; U... U6, 2 0. The degenerated hybrid DSm
model My, defined by constraint according to the to-
2.2.2 Classic DSm rule of combination tal ignorancel; £ 6, U, U... U6, d (0, is excluded

. from consideration it is meaningless.
By adopting the free DSm model and from any general om consideration, because itis meaningless

frame of discernmen®, one then defines a map;(.) : _ o M
D® — [0, 1], associated to a given source of evideiige  ® Hybrid constraintslike for exar.n_ple(emej)uﬁk = 0
such thatm; () = 0 andy" , e ms(A) = 1. This ap- and.any other hybrid proposition/element Bf in-
proach allows us to model any source which supports para- v0lving bothn andu operators such that at least one
doxical (or intrinsic conflicting) information. From this  €lémend} is subset of the constrained proposition.
very simple free DSm modeM/ (©), the classical DSm
rule of combinationmn(.) £ [m; @ ... @ my](.) of k > 2
intrinsic conflicting and/or uncertain independent sosrcel ) € D® implies the set of inner constraints
of information is defined by [1] B Y gforal B c A The introduction of two in-
tegrity constraints oM, B € D® implies the constraint

k o .
_ (AU B) € D® = () and this implies the emptiness of all
mure)(A) = Y [mi(xd) ) ¢ e p° suchthar c (AU B).
X1, XeD® =1
Xlﬁ...ﬁXi:A

The introduction of a given integrity constraint

[k

The Shafer's model, denoted®(0), can be considered
and m s (ey(9) = 0 by definition. This rule, dealing as the most constrained hybrid DSm model including all
with uncertain and/or paradoxical/conflicting informatie  possible exclusivity constraimigthout non-existential con-
commutative and associative and requires no normalizatistnaint, since all elements in the frame are forced to be mu-
procedure. tually exclusive.



2.3.2 The hybrid DSm rule of combination

The hybrid DSm rule of combination, associated to a given

hybrid DSm modelM # My , for & > 2 independent
sources of information is defined for all ¢ D® as [12]:

mace) (4) 2 $(A)[S1(4) + S2(4) + S5(4)] (@)

whereg(A) is the characteristic non emptiness function ot

asetd, ie. ¢(A) =1if A ¢ 0 andgp(A) = 0 otherwise,
where@ = {@pq, 0}. O, is the set of all elements dh®
which have been forced to be empty through the constrai

of the modelM and{ is the classical/universal empty set

S1(A) = mpgs(o)(A), Sa(A), S5(A) are defined by [12]

k
Si(4) £ > [[mx) 6
X1,Xs,...,X,eD® =1
(X1NX2N..NX,)=A
k
5:(4) £ > [Tmix)  ®
X1,Xz,...,Xpe®  i=1
[U=AIV[UEB)N(A=I})]
k
S3(4) = > [[mx) @

X1,X2,...,X,eD® =1
(X1UX2U...UX)=A
(X1NX2N...NXy)eD

with U = u(X;) Uu(Xa) U ... Uu(Xy) whereu(X) is

the union of all singletong; that composeX and I, £
61U U. .. UG, is the total ignoranceS; (A) corresponds

to the classic DSm rule of combination based on the free

DSm model;S»( A) represents the mass of all relatively an
absolutely empty sets which is transferred to the total
relative ignorancesSs(A) transfers the sum of relatively
empty sets to the non-empty sets.

2.4 The DSm cardinalityCaq(A)
2.4.1 Definition

One important notion involved in the definition of the

generalized pignistic transformation (GPT) is th&Sm
cardinality [3]. The DSm cardinalityof any element

A € D®, denotedCr(A), corresponds to the number of

Cm(A) is very easy to compute by programming from the
algorithm of generation ab® given in [4].

If one imposes a constraint that a g&from D® is empty

(i.e. we choose a hybrid model), then one suppresses the

columns corresponding to the parts which compBsethe
matrix D,, and the row ofB and the rows of all elements
f D® which are subsets aB, getting a new matrixD’,,
which represents a new hybrid mod®&l’. In theu,, basis,
one similarly suppresses the parts that f@nand now this
R@sis has the dimensi@ft — 1 — Ca(B).

2.4.2 A 3D example with the free DSm madiél

Consider the 3D cas® = {6, 62, 5} with the free DSm
model M/ corresponding to the following Venn diagram
(where< i > denotes the part which belongséponly,

< ij > denotes the part which belongsé&pandé; only,
etc; this is the Smarandache’s codification [4]).

91 92

o)
A
4

03

The elements oD® with their DSm cardinality are given
by the following table:

parts of A in the Venn diagram of the problem (model
M) taking into account the set of integrity constraints (if
any), i.e. all the possible intersections due to the nature
of the elements);. This intrinsic cardinality depends

on the modelM (free, hybrid or Shafer's model).M

is the model that containgl, which depends both on
the dimensionm: = |©| and on the number of parts of
non-empty intersections present in its associated Venn
diagram. One has < Cy(A) < 2™ — 1. Cpmq(A) must not
be confused with the classical cardinalityf of a given set
A (i.e. the number of its distinct elements) - that's why

AGD(_) CMf(A)
d (67 é@ 0
or a1é91092093 1
a2é91092 2
Oé3é91093 2
(a7} é@gﬂ@g 2
a5é(91U92)ﬂ93 3
QGé(eerg)QGQ 3
Oé7é (92U93)ﬂ91 3
agé{(HlﬂHQ)U93}ﬂ(91 U92) 4
Qg éel 4
10 é92 4
a1 £ 03 4
12 = (91 N 92) U fs 5
13 £ (91 n 93) U 6y 5
14 £ (92 n 93) U6y 5
15 £ 61 U6, 6
a16é91U93 6
17 é92U93 6
a18é91U92U93 7

Table 1: C s (A) for free DSm modeM/

z51.4.3 A 3D example with a given hybrid model

Consider now the same 3D case with the mobiek: M/f
It can be shown, see [3], thdf((A), is exactly equal to in which we force all possible conjunctions to be empty,
the sum of the elements of the rowDf, correspondingto butf; N 6, according to the following Venn diagram.
propositionA in theu,, basis (see section 2.1.1). Actually

new notation is necessary here.



O 02 3 The pignistic transformations

We follow here the Smets’ point of view [14] about the
assumption that beliefs manifest themselves at two mental
levels: thecredallevel where beliefs are entertained and the
pignisticlevel where belief are used to make decisions. Pig-
0 nistic terminology has been coined by Philippe Smets and
comes frompignus a bet in Latin. The probability func-
tions, usually used to quantify beliefs at both levels, are
Then, one gets the following list of elements (with theiactually used here only to quantify the uncertainty when a
DSm cardinal) for the restrictel® taking into account the decision is really necessary, otherwise we argue as Philipp
integrity constraints of this hybrid model: Smets does, that beliefs are represented by belief furgction
To take a rational decision, we propose to transform beliefs

ity theory which requires to construct a probability func-
tion P{.} from basic belief assignment(.) [14]. This is
achieved by the so-called classical pignistic transfoionét
as follows (see [11] for justification):

AeD® Cm(A) into pignistic probability functions through the genezali
a2 0 0 pignistic transformation (GPT) which will be presented in
a1 26, N6, 1 the sequel. We first recall the classical pignistic tramsir
ag 2 05 1 tion (PT) based on the DST and then we generalize it within
as 2 6, 2 the DSmT framework.

A
gy = 92 2
as 2 60, Ub0 3 3.1 The classical pignistic transformation
(6753 é 91 U 93 3 .. .

a When a decision must be taken, we use the expected util-
ar = 03U 03 3

4

08291U92U93

Table 2 Cyq(A) for the chosen hybrid modeit

2.4.4 A 3D example with the Shafer's model P{A} = Z XN A m(X) ®)
RY

[S]

Consider now the same 3D case but with all exclusivity re

constraints ord;, i = 1,2,3. This corresponds to thewhere|A| denotes the number of worlds in the skefwith

3D Shafer's modelM® presented in the following Venn convention|@|/|}] = 1, to defineP{0}). P{A} corre-

diagram. sponds taBet P(A) in the Smets’ notation [14]. Decisions
are achieved by computing the expected utilities of the acts
using the subjective/pignistie{.} as the probability func-

01 02 tion needed to compute expectations. Usually, one uses the
maximum of the pignistic probability as decision criterion
The max. ofP{.} is often considered as a prudent betting
decision criterion between the two other alternatives (max
of plausibility or max. of credibility). It is easy to showah
P{.} is indeed a probability function (see [11]).
03

3.2 The generalized pignistic transformation

Then, one gets the following list of elements (with theig 5 1 pefinition
DSm cardinal) for the restricte®®, which coincides nat-

urally with the classical power sgf: To take a rational decision within the DSmT framework, it
is then necessary to generalize the classical pignistisira

Ae(D® =29 Cprp(A) formation in order to construct a pignistic probability fun
ap 20 0 tion from any generalized basic belief assignmert)
a 26, 1 drawn form the DSm rule of combination (the classic or hy-
g 2 0, 1 prid rl_JIe). This generalized pignistic transformation (GP
as 2 0y 1 is defined byvA € D®,
Qg £ 91 @] 92 2
as £ 0, Ubs 2 P{A} = Z wm()() 9)
Oé(;éQQLJ@g 2 XeD® M( )
oy £ 01 U605 U 03 3

"We don't divide heren(X) by 1 — m(@) as in the P. Smets’

i 0 formulation just because:()) = 0 in the DSmT framework, un-
Table 3: Cr¢(A) for the 3D Shafer's modeMt less there is a solid necessity to justify to do it.



whereC (X)) denotes the DSm cardinal of propositidh By substitutingCa(X N (AU B)) by Cm(X N A) +
for the DSm modeM of the problem under considerationC (X N B) into (10), it comes:

Cm(XNA)+Cm(X NB)

The decision about the solution of the problem is usuP{A U B} = Z m(X)
ally taken by the maximum of pignistic probability func- XeDe Cm(X)
tion P{.}. Let's remark the close ressemblance of the two Cm(X NA)
pignistic transformations (8) and (9). It can be shown that = Z T(X)m(X)
(9) reduces to (8) when the hyper-power 8%t reduces to XeD®
classical power s&x® if we adopt the Shafer’s model. But n Z Cm(X N B)m(X)
(9) is a generalization of (8) since it can be used for com- Cm(X)
puting pignistic probabilities for any models (includirtget
Shafer's model). = P{A} + P{B}
: i Cae(XNA)
WhICh completgs the proof. Fror’q the coefﬂueﬁ%m
3.2.2 P{.}is a probability measure involvedin (9), it can also be easily checked tHat B =

P{A} < P{B}. One can also easily prove the Poincaré’
equality: P{AUB} = P{A}+ P{B}— P{ANDB} because
CM(XN(AUB) =Cm((XNA)U(X NB)) =Cm(XN
A)+Cm(XNB)—Cm(XN(ANB)) (one has substracted
Cm(X N (AN B)),ie. the number of parts of N (AN
B) in the Venn diagram, due to the fact that these parts
e Axiom 1 (nonnegativity): The (generalized pignisticyvere added twice: once & (X N A) and second time in
probability of any event! is bounded by 0 and 1, i.e.Cam(X N B).
0< P{A} <1

It is important to prove thaP{.} built from GPT is indeed
a (subjective/pignistic) probability measure satisfythg
following axioms of the probability theory [7, 8]:

4 Examples of GPT

e Axiom 2 (unity): Any sure event (the sample4 1 Example for the 2D case
space) has unity (generalized pignistic) probability, i.e ) , ,
P{S} =1 e With the free DSm modet Let's consider® =

{61,062} and the generalized basic belief assignment
m(.) over the hyper-power seD® = {0,6; N
02,01,02,6, UBs}. Itis easy to construct the pignistic
probability P{.}. According to the definition of the
GPT givenin (9), one gets:

e Axiom 3 (additivity over mutually exclusive events):
If A, B are disjoint (i.,e.ANB = @) thenP(AUB) =
P(A)+ P(B)

P{0} =0

The axiom 1 is satisfied because, by the definition of
the generalized basic belief assignment.), one has 1 2
Ya; € D®,0 < m(ay) < 1 with ZaieDQ m(a;) = 1 and P{6,} = m(91)+§m(92)+m(91092)+§m(91U92)
since all coefficients involved within GPT are bounded by 1 9
0 and 1, it follows directly that pignistic probabilitiesear P{0;} = m(92)+§m(91)+m(91ﬁ92)+§m(91U92)
also bounded by 0 and 1. . 1
P{91 M 92} = §m(92) + §m(91)+
The axiom 2 is satisfied because all the coefficients

. . 1

involved in the sure ever® £ 0, U, U...U#,, are equal to m(6y Nb2) + gm(el U b)
one becausén (XNS)/Cim(X) =Cm(X)/Cm(X) =1,

sothatP{S} = 3", po m(a;) = 1. P{01 U0} = P{O} = m(61) + m(02)+

m(91 N 92) + m(91 U 92) =1

The axiom 3 is satisfied. Indeed, from the definition of Itis easy to prove thdt < P{.} < 1andP{f;Ufs} =

GPT, one has P{6,} + P{62} — P{6; N6}
P{AUB) - Z Cm(XN(AU B))m(X) (10) e With the Shafer's model: JI\L(?ne adopts the Shafer’s

Crm(X) model (we assumé, N 0, = ), then after applying

the hybrid DSm rule of combination, one gets a basic
belief assignment with non null masses only&no,
andf; U 6. By applying the GPT, one gets:

XeD®

But if we considerd and B exclusive (i.e.A N B = (),
then it follows:

P{(Z)}:O P{91092}:0
CMmM(XNAUB)=Cm((XNA)U(XNB))

= Cp(X N A) +Cu(X N B) PLOL} = m(0) + %m(@l U6s)



P{0s} = m(62) + %m(@l U 6s)

P{091 U 092} = m(@l) + m(92) + m(91 U 092) =1
which naturally corresponds in this case to the pignis-
tic probability built with the classical pignistic trans-
formation (8).

4.2 Example for the 3D case

e With the free DSm modet Let's con-
sider © = {61,605,03}, its hyper-power set
D°® = {Oé(),...,Oélg} (Wlth i, T = 0,,18

corresponding to propositions explicated in table
1 of section 2.4), and the generalized basic belief
assignmentn(.) over the hyper-power séd®. The

six tables presented in the appendix show the full
derivations of all pignistic probabilitied?{«;} for
1=1,...,18 (P{0} always equals zero) according to
the GPT formula (9).

Note thatP{«1s5} = 1 becaus€6d, U 6 U 03) corre-
sponds to the sure event in our subjective probability
space and_, . po m(a;) = 1 by the definition of
any generalized basic belief assignmerit) defined

on D®.

It can be verified (as expected) on this example, al-

though being a quite tedious task, that the Poincaré’

equality holds:
P{A1U...UA,} =

S ey A

I1c{1,...,n} icl

It is also easy to verify thatA ¢ B = P{A} <
P{B} holds. By example, fofag = (01 U 63) N
02) C a1p = 62) and from the expressions &f{ae}
and P{a10} given in appendix, we directly conclude
that P{ag} < P{aio} because for allX € D®,

Cﬂgf\f&;“) < CMC(;((@?)“’) as shown in the following
table
Cam(XNag m(XNaig

X | SiEr < lE
a1 1 S 1

[6%) 1 S 1

as (1/2) < (1/2)
Qg 1 S 1

as (2/3) < (2/3)
(675 1 S 1

ar (2/3) < (2/3)
as (3/4) < (3/4)
Qg (2/4) < (2/4)
Q10 (3/4) S 1
11 (2/4) < (2/4)
12 (3/5) < (3/5)
ais (3/5) < (4/5)
Q4 (3/5) < (3/5)
a5 | (3/6) < (4/6)
aie (3/6) < (3/6)
aiy (3/6) < (4/6)
aig (3/7) < (4/7)

e Example with a given hybrid DSm model Consider

now the hybrid modeM # M/ in which we force all
possible conjunctions to be empty, I8yt 62 accord-

ing to the second Venn diagram presented in section
2.4. In this case the hyper-power 929 reduces to 9
elementd «ay, . .., ag} explicated in table 2 of section
2.4.The following tables present the full derivations of
the pignistic probabilitie®{«;} fori = 1,...,8from

the GPT formula (9) applying to this hybrid model.

Plai} = Plas} = Plas} =
(I/Dm(ar) | (0/1)m(aa) | (1/1)m(c)
+(0/1)m(az) | +(1/1)m(az) | +(0/2)m(az)
+(1/2)m(as) | +(0/2)m(as) | +(2/2)m(as)
+(1/2)m(aa) | +(0/2)m(aa) | +(1/2)m(cs)
+(1/3)m(as) | +(0/3)m(as) | +(2/3)m(as)
+(1/3)m(as) | +(1/3)m(as) | +(2/3)m(ae)
+(1/3)m(ar) | +(1/3)m(az) | +(1/3)m(ar)
+(1/4)m(as) | +(1/4)m(as) | +(2/4)m(as)

Table 4: Derivation of P{a; £ 6, N6},
P{Ozg £ 93} andP{a3 £ 91}

Plas} = Plas} = Plag} =
(1/Dm(ar) | (1/)mlar) | (1/1)m(c)
+(0/)m(az) | +(0/1)m(az) | +(1/1)m(a2)
+(1/2)m(as) | +(2/2)m(as) | +(2/2)m(as)
+(2/2)m(aq) | +(2/2)m () | +(1/2)m ()
+(2/3)m(as) | +(3/3)m(as) | +(2/3)m(as)
+(1/3)m(ae) | +(2/3)m(as) | +(3/3)m(as)
+(2/3)m(az7) | +(2/3)m(ar) | +(2/3)m(az)
+(2/4)m(as) | +(3/49)m(as) | +(3/4)m(as)

Table 5: Derivation of P{ay £ 05},
P{Oé5 = 0, U 92} andP{OLS = 01U 93}

Plaz} = Plag} =

(1/)m(ax (1/)m(ax

+(2/2)m(az) | +(2/2)m(az2)
+(1/2)m(as) | +(2/2)m(as)
+(2/2)m(a) | +(2/2)m ()
+(2/3)m(as) | +(3/3)m(as)
+(2/3)m(ae) | +(3/3)m(as)
+(3/3)m(ar) | +(3/3)m(cr)
+(3/4)m(as) | +(4/4)m(as)

Table 6: Derivation of P{a; £ 6, U 65} and
P{Oég é91 U92U93}

Example with the Shafer’'s model Consider now the
Shafer's modeM® # M/ in which we force all pos-
sible conjunctions to be empty according to the third
Venn diagram presented in section 2.4. In this case
the hyper-power séb® reduces to the classical power
set2® with 8 elementg v, . . ., a7} explicated in ta-
ble 3 of section 2.4. Applying, the GPT formula (9),
one gets the following pignistic probabilitieB{«;}
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Plon} = Plag} =

m(a1) m(an)

+(1/2)m(ag) | +m(az)
(1/2)m(as) | +(1/2)m(as)
(1/2)m(ca) | +(1/2)m(aa)
(1/3)m(as) | +(1/3)m(as)
(1/3)m(as) | +(2/3)m(as)
(1/3)m(ar) | +(2/3)m(az)
(1/4)m(as) | +(2/4)m(as)
(1/4)m(ag) | +(2/4)m(ag)
(1/4)m(a10) | +(2/4)m(a10)
(I/4)m(aa1) | +(1/4)m(a1r)
(1/5)m(aaz2) | +(2/5)m(a12)
(1/5)m(cus) | +(2/5)m(a13)
(1/5)m(c14) | +(2/5)m(a14)
(1/6)m(aas) | +(2/6)m(a1s)
(1/6)m(cue) | +(2/6)m(a1e)
(1/6)m(asr) | +(2/6)m(a1r)
(1/T)m(cas) | +(2/7)m(a1s)

Plas} =
m(a)
+(1/2)m(az)
+m(a3)
+(1/2)m(as)
+(2/3)m(as)
+(1/3)m(ap)
+(2/3)m(ar)
+(2/4)m(as)
+(2/4)m(ay)
+(1/4)m(a10)
+(2/4)m(ai)
+(2/5)m(a12)
+(2/5)m(a13)
+(2/5)m(a14)
+(2/6)m(a1s)
+(2/6)m(a16)
+(2/6)m(a17)
+(2/7)m(a1s)

Appendix: Derivation of the GPT for the 3D free DSm model

P{Oél()} =
m(a1)
+m(a2)
+(1/2)m(as)
+m(as)
+(2/3)m(as)
+m(a6)
+(2/3)m(ar)
+(3/4)m(as)
+(2/4)m(a)
+m(a10)
+(2/4)m(a11)
+(3/5)m(a12)
+(4/5)m(a13)
+(3/5)m(a14)
+(4/6)m(a1s)
+(3/6)m(ase)
+(4/6)m(a17)
+(4/7)m(a18)

P{a11}=
m(a1)
+(1/2)m(az)
+m(a3)
+m(ay)
+m(as)
+(2/3)m(ap)
(2/3)m(ar)
+(3/4)m(as)
+(2/4)m(ay)
+(2/4)m(a1o0)
+m(ai1)
+(4/5)m(a12)
+(3/5)m(a13)
+(3/5)m(a14)
+(3/6)m(a1s)
+(4/6)m((116)
+(4/6)m(a17)
+(4/T)m(a1s)

Plaia} =
m(ay)
+TTI/(CY2)
+m(a3)
+m(ou)
+m(as)
+m(a6)
+m(az)
+m(as)
+(3/4)m(ag)
+(3/4)m(a10)
+m(0511)
+m(a12)
+(4/5)m(a1s)
+(4/5)m(a14)
+(4/6)m(a1s)
+(4/6)m(a16)
+(5/6)m(a17)
+(5/7)m(a18)

Table 10 Derivation of P{«1 }, P{as} andP{«a3} Table 13 Derivation of P{a1¢}, P{a11} andP{a;2}

P{O[lo} =
m(aq)

P{Cm} = P{O[5} = P{O{G} =
m(ay) m(ar) m(aq)
+(1/2)m(az) | +(1/2)m(az) | +m(az)
H(1/2mlas) | +mlag) | +(1/2)m(as)
+m (o) +m(oy) +m(ay)
+(2/3)m(as) | +m(as) +(2/3)m(as)
+(2/3)m(ag) | +(2/3)m(as) | +m(as)
+(1/3)m(az) | +(2/3)mlar) | +(2/3)m(ar)
+(2/4)m(as) | +(3/4)m(as) | +(3/4)m(as)
+(1/4m(ag) | +(2/H)m(ag) | +(2/4)m(ag)
+(2/4)m(aio) | +(2/4)m(aio) | +(3/4)m(a10)
+(2/4)m(an) | +B/)mlan) | +(2/4)m(a)
+(2/5)m(a12) | +(3/5)m(a12) | +(3/5)m(a12)
+(2/5)m(ais) | +(3/5)m(ais) | +(3/5)m(ais)
+(2/5)m(a14) | +(3/5)m(a1s) | +(3/5)m(ai4)
+(2/6)m(ais) | +(3/6)m(ais) | +(3/6)m(ais)
+(2/6)m(a1e) | +(3/6)m(ass) | +(3/6)m(ae)
+(2/6)m(air) | +(3/6)m(air) | +(3/6)m(ai7)
+(2/T)m(ass) | +(3/T)m(ais) | +(3/T)m(aus)

+m(ag)
+(1/2)m(as3)
+m(a4)
+(2/3)m(as)
+m(ag)
+(2/3)m(ar)
+(3/4)m(as)
+(2/4)m(ay)
+m(ap)

+(4/7)m

(0us)

P{(Xll} = P{CMlQ} =
m(a) m(al)
+(1/2)m(az) m(ag)
+m(as) m(as)
+m(ay) m(ou)
+m(as) +m( 5)
+(2/3)m(as) | +m(ae)
+(2/3)m(az) | +m(ar)
+(3/4)m(as) | +m(as)
+(2/4)m(ag) (3/4)m( 9)
+(2/4)m(a10) +(3/4)m(a10)
+m(ai1) m(ai1)
+(4/5)m(a12) +m( 12)
+(3/5)m(a13) | +(4/5)m(aus)
+(3/5)m(a14) | +(4/5)m(a14)
+(3/6)m(a1s5) | +(4/6)m(aus)
+(4/6)m(ase) | +(4/6)m(ais)
+(4/6)m(a17) | +(5/6)m(au7)
+(4/T)m(a1s) | +(5/7)m(aus)

Plaz} =
m(ay)
+7TL(O¢2)
+m(as)
+(1/2)m(as)
+(2/3)m(as)
+(2/3)m(as)
+m(ar)
+(3/4)m(as)
+(3/4)m(ay)
+(2/4)m(aa0)
+(2/4)m(0411)
+(3/5)m(a12)
+(3/5)m(a13)
+(3/5)m(ana)
+(3/6)m(a15)
+(3/6)m(a16)
+(3/6)m(anr)
+(3/7)m(018)

Plos} =
m(on)
+m(ag)
+m(as)
+m(a4)
+m(as)
+m(ag)
+m(azy)
+m(a8)
+(3/4)m(as)
+(3/4)ym{a0)
+(3/4)m(a11)
+(4/5)m(a12)
+(4/5)m(0as)
+(4/5)m{a1s)
+(4/6)m(a15)
+(4/6)m(ase)
+(4/6)m(ca7)
+(4/7)m(a18)

Plag} =
m(a)
+m(a2)
+m(as)
+(1/2)m(aa)
+(2/3)m(as)
+(2/3)m(ae)
+m(ar)
+(3/4)m(as)
+m(ao)
+(2/4)m(a10)
+(2/4)m(an)
(3/5)m(a12)
(3/5)m(aas)
(4/5)m(a14)
(4/6)m(cus)
(4/6)m(cu6)
(3/6)m(ar7)
+(4/T)m(a1s)

+
+
J’_
+
+
+

Table 11 Derivation of P{cs}, P{as} andP{as} Table 14 Derivation of P{a3}, P{a14} andP{as5}

P{O{lﬁ} = P{O[l7} =
m(a1) m(a1)
+m(ag) +m(az)
+m(ag) +m(as)
+m(ay) +m(ay)
+m(as) +m(as)
+m(ag) +m(ag)
+m(ar) +m(ar)
+m(ag) +m(as)
+m(ag) +(3/4)m(ay)
+(3/4)m(aio) | +m(aio)
+m(a11) +m(0lu)
+m(ai2) +m(aq2)
+(4/5)m(aiz) | +m(ais)
+m(aia) +(4/5)m(a14)
+(5/6)m(a15) | +(5/6)m(ass)
+7TL(OL16) +(5/6)m(o¢16)
+(5/6)m(ai7) | +m(ai7)
+(6/7)m(a1s) | +(6/7)m(c1s)

Plais} =
m(aq)
+m(ag)
+m(o)
+m(a4)
+m(a5)
+m(og)
+m(ar)
+m(ag)
+m(ag)
+m(aap)
+m(a11)
+m(a12)
+m(a13)
+m(ona)
+m(a15)
+m(ase)
+m(aar)
+m(a18)

Table 12 Derivation of P{a}, P{as} andP{ag} Table 15 Derivation of P{a6}, P{a17} andP{a1s}




