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Abstract — The objective of this paper is to present an approac2 Dezert-Smarandache Theory

for target tracking, which incorporates the advanced cquosf )
generalized data (kinematics and attribute) associatimprove 1he new Dezert-Smarandache Theory of plausible, uncer-
track maintenance performance in complicated situatiofssely tain and paradoxical reasoning (DSmT) [10, 11, 12, 16]
spaced targets), when kinematics data are insufficientdorect proposes a new general and mathematical framework for
decision making. It uses Global Nearest Neighbour-likerapgch  solving fusion problems. This theory overcomes the prac-
and Munkres algorithm to resolve the generalized assamiatia-  tical limitations of the Dempster-Shafer Theory, coming
trix. The main peculiarity consists in applying the prirle® of - essentially from its inherent constraints, which are dipse

Dezert-Smarandache theory of plausible and paradoxiaoe- g|ated with the acceptance of the third exclude principle.
ing to model and process the utilized attribute data. The gem

eral Dezert-Smarandache hybrid rule of combination is uted . . L
deal with particular integrity constraints associated wigome el- The foundations of the DSmT is to refute the principle of

ements of the free Dedekind’s distributive lattice. The airthe (€ third exclude and to allow imprecise/vague notions and
performed study is to provide coherent decision making gssc CONCepts between elements of the frame of discernfaent
related to generalized data association and to improve treall  The DSmT includes the possibility to deal with evidences
tracking performance. arising from different sources of information which don't
Keywords: Target Tracking, Generalized Data Associatior|}aVe access to absolute interpretation of the elemertis of
Dezert-Smarandache Theory, DSm hybrid rule of combination Under consideration and can be interpreted as a general and
direct extension of probability theory and the DST.
1 Introduction

One important function of each radar surveillance systetsl Free-DSm model

[ k nd improve tar racks maintenan rfpr- .
s to keep and improve targets tracks maintenance peripg o _ {61,...,0,} be a set olr elements which can-
mance. It becomes a crucial and challenging problem espe;

) . . o Ot be precisely defined and separated. A free-DSm model,
cially in complicated situations of closely spaced, or sros 7 S .
. . : —denoted as\’ (©), consists in assuming that all elements
ing targets. The design of a modern multitarget tracking™ . .

. X . . 2,1 =1,...,n of © are not exclusive [12]. The free-DSm
(MTT) algorithms in a such real-life stressful environment : . . .
. . : odel is an opposite to the Shafer's modéf (©), which
motivates the incorporation of the advanced concepts for . o L
; i . requires the exclusivity and exhaustivity of all elemehts

generalized data association. In order to resolve cormelati 1 nof©
ambiguities and to select the best observation-track pair- """’ '
ings, in this paper, a particular generalized data assouiat .
approach is proposed and incorporated ina MTT algorithn%-.2 Hyper-pO\_Ner Set and Classical DSm Rule of
It allows the introduction of target attribute into the asiso Combination
ation logic, based on the general Dezert-Smarandache I’Jrlhee

- ane i i -
for combination, which is adapted to deal with possible in- hyp_er_ powers IS deflr_1ed as the set of all compos
. . . : ite possibilities build from® with U andn operators such
tegrity constraints on the problem under consideration d{’heat'

to the true nature of the elements involved into it.
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3. No other elements belong 0 , except those, ob- e Non-existential constraintswhen some disjunctions
tained by using rules 1 or 2. of elements of© are truly impossible, by example

M .
The cardinality of D® is majored by 22" when whend; U ... U6y = . The vacuous DSm hybrid
card®) = |©| = n. The generation of hyper-power set model My, defined by constraint according to the to-

D® is closely related with the famous Dedekind’s prob-  ta] ignorancel; £ 6, U6, U...U6, M @, is excluded
lem on enumerating the set of monotone Boolean functions.  from consideration, because it is meaningless.

From a general frame of discerneménwith its free- e Mixture of exclusivity and non-existential constraints
DSm model, it is defined a map(.) : D — [0,1], as- like for example(d; N 6;) U 6, or any other hybrid
sociated to a given source of evider8ewhich can sup- proposition/element oD® involving both N and U
port paradoxical (or intrinsic conflicting) informationsa ~ OPerators such that at least one elentgris subset of
follows : the constrained proposition.

m(@) =0  and > m4) =1

AeD® . i i i M
D® implies the set of inner constrainB = () for all

The quantitym(A) is called A's general basic belief . . . ) .
: : B C A. The introduction of two integrity constraints on
number(gbba) or the general basic belief mass forThe A, B € D implies the constraintA U B) € D® = {

belief and plausibility functions are defined in almost the’ S . o
e ) d this implies the emptiness of @l ¢ D® such that
same manner as within the DST (Dempster ShaferTheorg?,C (AU B). The Shafer’s modeM®(6), can be consid-

The introduction of a given integrity constraiAt® 0e

ie. . . . .
. ered as the most constrained DSm hybrid model including
Bel(4) = Z m(B) all possible exclusivity constraintsithout non-existential
BeD® ,BCA . . .
constraint since all elements in the frame are forced to be
PiA)= > m(B) mutually exclusive.
BeD® ,BNA#(D
andvA € D, Bel(4) < PI(A). 2.4 DSm rule of combination for hybrid models

The DSm hybrid rule of combination, associated to a given
The classical DSm rule of combination of intrinsic conbSm hybrid modelM # M, , for & > 2 independent
flicting and/or uncertain sources of information is basesburces of information is defined for all € D® as [14]:
on the free-DSm model. Faor > 2 independent bod-
ies of evidence with general information granutes(.), mame)(A) £ ¢(A)|S1(A) + S2(A) + S3(A) (2)
.., mg(.) over D®, the classical DSm rule of combina-
tion m(.) £ [m1 @ ... ® my](.) is given by [10, 11] : whereg(A) is the characteristic emptiness function of a set
€

VA # 0 € D®, A ie. ¢(A) = 1if A ¢ 0 andp(A) = 0 otherwise,
N where@ = {@nq, 0}. D4 is the set of all elements dp®
_ hich have been forced to be empty through the constraints
A) = i(Xi n v . ' X
s @) (4) Z o gm (X3) @ of the modelM and{ is the classical/universal empty set.

XNk A S1(A) = mus ) (A), S2(A), S3(A) are defined by [14]
and withm s @) () = 0 by definition. This rule, dealing k
with uncertain and/or paradoxical/conflicting informatie Sy (A) & Z H mi(X;) (3)
commutative and associative and requires no normalization X1 XpXpep® =1
procedure. (X1NX2N...NX5)=A

2.3 Definition of a DSm hybrid Model

A DSm hybrid model is defined from the free-DSm model 2(4) Z H (%) )

_ . . . . X1,X9,.-s X, €0 =1
M/ (©) by introducing some integrity constraints on [U=A]V[UEB)A(A=1})]
some elementd € D@, if there are some certain facts in &
accordance with the exact nature of the model related to the S3(A) & Z H mi(X;) (5)
problem under consideration [14]. An integrity constraint X xiepe i1
. . . 1,X2,...,Xp€D
on A € D® consists in forcingd to be empty through the (X1UXpU...UX))=A

(X1NXgN...NX)ED

model M, denoted ast £ 0. . N .
with U £ u(X71) U u(Xz) U ... Uu(Xy) whereu(X) is
There are several possible kinds of integrity constrairfidé union of all singletong; that composeX.. .5, (A) cor-
introduced in any free-DSm model: responds to the classic DSm rule of combination based on
o ) ) ) the free-DSm model$,(A) represents the mass of all rela-
* Exclusivity constraintswhen some conjunctions of el-gyely and absolutely empty sets which is transferred to the
ements ofo j\i/lre truly impossible, by example whenygi| or relative ignorancesi; (A) transfers the sum of rel-
;N...N0L=0. atively empty sets to the non-empty sets.



3 Basic Elements of Tracking Process Our goal is to choose a set of assignments }, fori =

The tracking process consists of two basic elemedidga L...n E.ind] = e e I that assures maximum of the tot_al
generalized probability sum. To find it, we use the solution

associationandtrack filtering The first element is often ;
) ) . .of the assignment problem
considered as the most important. Its goal is to associate
n m
min E E Qi Xij

observations to existing tracks.
3.1 Data Association i=1 j=1

To eliminate unlikely observation-to-track pairing at thee  Where:

gining a validation region (gate) is formed around the pre- . . .
{1 if measuremeny is assigned to track

0 otherwise

dicted track position. A measurements in the gate are can-y, —
didates for association to the corresponding track.

3.1.1 Gating Because our probabilities vaty < P(i, j), Pa(i,7) < 1
and to satisfy the condition to be minimized, the elements

We assume zero-mean Gaussian white noise for meathe particular assignment matrix are defined as :
surements. The vector difference between received mea-

surement vectog; (k) and predicted measurement vector a;ij =1 — Pyenli, j) = 1 — P(, ) Pa(3, j)
z;(k|k—1) of targeti is defined to be residual vector (called
innovation)z;; (k) = z;(k) — z;(k|k — 1) with residual co- 3.2 Filtering

) LA , :
V?égzgﬁnﬂiggﬁar;e?nf;ﬂ Hﬁsfiﬁgvnﬁi;esﬁr:mtgr?t frtlzttfix-rhe used tracking filter is the first order extended Kalman
P jlter [7] for target state vectox = [z z y y|’, wherez and

and R is the measurement covariance matrix [1, 2, 3, 4]. . . : . o
: : ! are Cartesian coordinates aindndy are velocities along

The scan indexek will be dropped for notational conve- . )
Cartesian axes amdeasurement vectar= [ D]’, where

nience. The norm (normalized distance function) of thﬁ is the azimuth (measured from the North), abds the
innovation is evaluated a§; = z;;S~'z;;. One defines ’

T distance from the observer to the target under consideratio
a threshold constant for gatesuch that correlation is al- 9
lowed if the following relationship is satisfied The measurement functidn(.) is (assuming the sensor
located at position (0,0)):
& < (6) position (0.0))

X
Assume that the measurement vector siz&/isThe quan- h(x) = [h1(x) ha(x]" = [arcmn(;) Va4 g2
tity dfj is the sum of the squares 8f independent Gaus-
sian random variables with zero means and unit stand&yd the Jacobian [2]:
deviations. For that reasatf; will have x3, distribution . ,
with M degrees of freedom and allowable probability of H = [Hy] = [0hi/0x;] i=1,2 j=1,....4

a valid observation falling outside the gate. The thresho\l)g}e assume constant velocity target model. The process

constanty can be defined from the table of the chi-square . . e 5 .
L oise covariance matrix isQ = , whereT is the
(x3,) distribution [2]. Q = 0,Qr

sampling/scanning period, is standard deviation of the

. . rocess noise a is given by [8]:
3.1.2 Generalized Data Association P MQrisg y 8]
T 7
Z 2
2

If a single observation is within a gate and if that obseranT — diag(Qaxs, Qaxz) With Qoxo = [
- X2 X X -
2

tion is not within a gate of any other track, the observation
can be associated with this track and used to update the
track filter. But in a dense target environment additiondlhe measurement error matrixis = diag(c3, 07,) where
logic is required when an observation falls within the gates; and op are the standard deviations of measurement
of multiple target tracks or when multiple observations fakrrors for azimuth and distance.

within the gate of a target track.

The track initiation is performed by two-point dif-
When attribute data are available, the generalized prdbrencing [7].  After receiving observations for first
ability can be used to improve the assignment. In view dvo scans the initial state vector is estimated by=
independence of the kinematic and attribute measuremgs) 22—z y(2) ¥2_vM} where (x(1),y(1)) and
errors, the generalized probability for measuremjenig-  ((2),y(2)) are respectively the target positions at the first

inating from track is: scan for time stamp = 1, and at the second scan for= 2.
o . . The initial (starting at time stamp = 2) state covariance
Pyen(i, j) = P(i, ) Pa(i, 7) matrix P is evaluated by:

where P(i,7) and Ps(i,j) are kinematic and attribute 5
probability terms respectively. P = diag(P%,,,PY, ) with P{), = |0 7T
O



Fuzzification Interface
T T T

where the index.) must be replaced by eitheror y in-
dexes witho? ~ o, sin®(23) + 23,05 cos?(23) ando? ~
o}, cos?(zp) + 2505 sin’(zp). zp andzp are the compo-
nents of the measurement vector received at 5car?, i.e.
z = [z3 zp]’ = h(x) + w with w ~ NV (0, R).

Membership Function

4 The Attribute Contribution to Generalized
Data Association

Data association with its goal of partitioning observasion
into tracks is a key function of any surveillance system. CR
An advanced tendency is the incorporation of generalized

data (kinematics and attribute) association to improwektra Fig. 1: Fuzzification interface

maintenance performance in complicated situations, when

kinematics data are insufficient for coherent decision mak-The radar cross section is modelled as Swerling 3 type,

ing process. Analogously with the kinematic trackingyhere the density function for the RGSis given by:
the attribute tracking can be considered as the process of

4 6 8 10 12 14 16 18 20
Radar Cross Section=f(Swerling 3 Type)

combining information collected over time from one or 4o 20
more sensors to refine the knowledge about the evolving flo) = 026 exp[— Cave

attributes of the targets. The motivation for attribute fu-

sion is inspired from the necessity to ascertain the targetith the average RCSs{,e) varying between different tar-
types, information, that in consequence has an importaygts types [6]. The cumulative distribution function of the
implication to enhance the tracking performance. A numnadar cross section is given by

ber of techniques, probabilistic in nature are availabte fo

attribute fusion. Their anal_ysis led us to belief, that t_heF(UO) —P{0<o<ool=1—(1+ QUO)GXP[_
theory of Dempster-Shafer is well suited for representing Oave Oave

uncertainty, but especially in case of low conflicts between . ) )
the bodies of evidence. When the conflictincreases and #ce the probabilities'(oo) for having different values of

comes high, (case, which often occurs in data associatigiglar cross section are uniformly distributed in the iraérv
process) the combinational rule of Dempster hides the rik 1] over time (i.e. these values are uncorrelated in time),
to produce indefiniteness. To avoid that significant risk w& Sample of observation of the RCS can be simulated by
considers the form of attribute likelihood function withirS0!ving equation:

the context of DSm theory, i.e. the term to be used for com- 5 9
puting the probabilities of validity for data associatioy h (1+ %o ) exp[— 9o
potheses. There are a few basic steps, realizing the concept Oave Tave
of attribute data association.

20‘0

|=1—x

wherex is a random number that is uniformly distributed

4.1 The Input Fuzzification Interface between 0 and 1.

Fuzzification interface (see fig. 1) transforms numerical The scenario considered in our work deals with targets

measurement received from a sensor into fuzzy set in agpes Fighter (F) and Military Cargo (C) with an average

cordance with the a priori defined fuzzy partition of inpuRCS :

space-the frame of discernmerids This frame includes

all considered linguistic values related to the chosen par- ofe=1.2m> and  oS.=4m

ticular input variable and corresponding membership func-

tions. The fuzzification of numerical sensory data needs$e input fuzzification interface maps the current modelled

dividing an optimal membership into a suitable number &{CS values into two fuzzy set€mall andBig, which de-

fuzzy sets [17]. Such division provides smooth transitiorfine the corresponding linguistic values, defining the vari-

and overlaps among the associated fuzzy sets, accordingltte RCS. Their membership functions are not arbitrarily

the particular real world situation. chosen, but rely on the calculated respective histograms fo
The considerable input variable in the particular case 19000 Monte Carlo runs. Actually these fuzzy sets form

the Radar Cross Section (RCS) of the observed targets.dinframe of discernement. After fuzzification the new RCS

our work RCS data are analyzed to determine the targetiue (rcs) is obtained in the form :

size with the subsequent declaration that the observed

target is an aircraft of specified type. Taking it in mind, rcs= [usman(rcs), peig(rcs)]

we define two frames of discernments: first one according

to thesize of RCS ©; = {(S)mall (B)ig} and the second In general, the termgsman(rcs), usig(rcs) represent the

one determining the corresponding to ifarget Type possibilities the new RCS value to belong to the elements

0, = {(F)ighter (C)argg. of the frame®; and there is no requirement to sum up to

unity.

2



4.2 Tracks Updating Procedures And while the set $1B # 0, the set F1 C = (), because

it is a proven fact, that the target can not be in one and
o . ] the same time Fighter and Cargo. So, we have to update
After receiving the new observations, detected during e previous fusion result with this new information on the
current scan at timg, DSm classical combinational rule isy,gdel of the considered problem. Itis solved with the DSm
used for tracks updating. The gbbas of tracks histories ai%rid rule, which transfers the mass of that empty set to

new observations are described in terms of the hyper-powi§g non-empty sets dp©2. Using the DSm hybrid rule (2)
setD® = {S B,SNB,SUB}.

4.2.1 Using Classical DSm Combinational Rule

: - : M
with the exclusivity constraint FN C ‘= (), we get:

To obey the requirements to guarantee thdt) is a
proper general information granule, it is necessarily to
transform fuzzy membership functions representing the N N B N
hew measurement into mass functions, before being fused. mind(F) = mipd(S)  mpa(C) = myjpa(B)
Itis realized through their normalization with respecttie t

mffbd(F NC)=0

unity: mi((FUC) =myy(SNB) +m(SUB)
rcs o ; ;
Mmead C) = L, VC € 0, = {S,B} Itis important to note, that fqr us the two conS|d¢req inde-
ZC€(~)1 pc(res) pendent sources of information are the tracks histories and

Using the classical DSm rule of combination, the updaté e new observations with their gbbas maintained in terms

i of the two hyper-power sets. That way, we assure to ob-
tracks gbba become: . o .
tain and to keep the decisions according to the target types

mfﬁ;d(c) = [Miis ® Mihead (C) during all the scans.
= Z mraist(A)m{neagB) . .
A.BEDOT ANB=C 5 The Generalized Data Association

Algorithm (GDA)

wherem,7 (.) represents the gbba of the updated traicks

with the new observation; m/..,, mieasare respectively We assume the existence of a sendfacks at the current
gbba vectors of trackishistory and the new observatign ~ Scan and received set of observations. These observa-
tions may be used for updating the existing tracks or for
Since, DSMT uses a frame of discernment, which is eitiating new tracks. In a cluttered environmentdoes
haustive, but in general case not exclusive, we are able@ necessarily equal and it may be difficult to distin-
take into account and to utilize the paradoxical inform&uish whether a measurement originated from a target or
tion SN B. This information relates to the case, when thom clutter. A validated measurement is one which is ei-
RCS value resides in an overlapping region, when it is haiféer inside or on the boundary of the validation gate of a
to make proper judgement about the tendency of its valiialget. The inequality given in (6) is a validation test.slt i
But nevertheless this nonempty set and related to it mass&ged for filling the assignment matrix :
signment contributes to a better understanding of the dvera
process. :
aip ai2 aiz - Qim
4.2.2 Using DSm Hybrid Combinational Rule B ~laar age a3 i aom

As it was mentioned above in our work, RCS data here

are used to analyze and subsequently to determine the ]

specified type of the observed targets. Because of this Gnl  Gn2 Aap3  © Onm

it is maintained the second frame of discernent@nt=
(Pightet (C)argd, in terms of which the decisions ac- . :

c{:ording to target gpes have to be made. The correspondtﬂymg values [15]:

hyper-power set should bB®: = {F C,FN C,FU C}. o

Taking in mind the correspondencies: G — {OO if di; >

Y 1_Pk(i7j)Pa(ivj) if d?g <7z

The elements of the assignment matAixhave the fol-

e If rcs is Small thenthe target ig-ighter

e If rcs is Big thenthe target iCargo The solution of the assignment matrix is the one that min-
imizes the sum of the choosen elements. We solve the as-
W‘(a_) may transform the gb_ba@of updated tracks, formed &ynment problem by realizing the extension of Munkres
D into respective gbba in™2, i.e: algorithm, given in [9]. As a result, it obtains the optimal
measurements to tracks association. Because of the consid-
ered closely spaced target scenario, to produce the ptebabi
This equation contains, among all its elements, the follovty terms P« and P,, the joint probabilistic approach is used
ing one: [7]. It assures a common base for their defining, making

mad(FNC) = my(SNB) that way them to be compatible.

mZJ’Jd(CCED@Z ) = mfj]pd(CCeDel )



5.1 Kinematics probability term for GDA

. . Hyp. # | Track 1| Track 2 Closeness measure
Let consider the existence of two tracks and two new obset= H 0 0 P(H,) = d.(0,0) =
vations, detected during the moment of their closely spaged Hl 1 0 P”(lH ) :ed ’(1 1)
movement. The table 1 shows the hypotheses for the al1er-H§ 5 0 P”(Hz) - de(l, 2
Ef'?n_ve? with respect to targets tracks and associated prgba H, 0 1 P"(Hy) = do(2,1)
fities: Hs 0 2 P"(Hs) = de(2,2)
Hyp. # | Track 1] Track 2 [ Hyp. proba.P’(H;) Hg 1 2 P"(Hg) = de(1,1)de(2,2)
H, 0 0 (1—Py)°B2 Hr 2 1 | P'(Hr) =de(1,2)de(2,1)
Hy 1 0 g1 Pa(1 — Py)B _ . . .
Hs 2 0 g12Pa(1 — P Table 2: Target-oriented hypothesis based on attributes.
54 8 ; 921?8 B ﬁdgg where the overal measure of closends&ij) is defined
HZ 1 2 922 gigzdeQd here fori # 0 andj # 0 as
H; 2 1 G12921 P _ . 2
. . . . de(ij) = Z [Mmst(C) — Mimead )]
Table 1: Target-oriented hypothesis based on kinematics. CceD©s

Here, the numbers in the second and third columns of; . , i
the table represent the observations assigned to the 1raml's‘ is the gbba of the tracks hISt.OrmmeaS'S .the gbba
andOre rer)ents the assignment of no obgservation toa %lfr— easuremeny. The corresponding normalized proba-
. P g 9 . . . FEﬁ‘llties of association drawn from attribute informatiorea
ticular track. The likelihood function, associated W|th13ththen obtained as:
assignment of observatigrto tracki is: '

P Hl
o—d3/2 Pa(H)) = #
Zk:l P (Hk)

(2m)"7%/IS1]
. N . . where Ny is the number of possible association hypothe-
Py is the probability of detection andlis the extraneousre- ses. To compute the probabilifyt (i, j) that observation

turn density, thatincludes probability density for newek®  ; should be assigned to track a sum is taken over the
and false alarms3 = Gy + Bra. The hypotheses proba-propapilitiesP,(.) from those hypothesds;, in which this
bilities are computed as : assignment occurs. Because the Euclidean distance is in-
versely proportional to the probability of associatione th
probability termP,(i,j) = 1 — P4(i,7) is used to match
x Py(NT=Nup) 11 9ij the corresponding kinematics probability.

i#0,770|(i,5) € Hy

gij =

PI(HZ) _ /BNI\I_(NT_NnD)(l - Pd)NnD

Ny, being the total number of observatioi$é; the num- 6 Simulation scenario

ber of targets,N,,p the number of not detected targetsThe simulation scenario consists of two air targets (Fighte
(4,7) € Hy involved in the product represents all the possind Cargo) and a stationary sensor at the origin Righ, =
ble measurement to track associations involved within hysec., measurement standard deviations 0.3 deg and 60 m
pothesisH;. The normalized probabilities of associatiofior azimuth and range respectively. The targets movement
are computed as: is from West to East with constant velocity of 250 m/sec.
P(H) The headings of the fig_hter and cargo are 225 deg and 315
= deg from North respectively. During the scan 11th-14th the
>y P (Hy) targets perform maneuvers with 2.5g. Their trajectories ar
losely spaced in the vicinity of the two crossing points.
he target detection probabilities have been set to 0.99 for
both targets and the extraneous return densitg 10~6.
In this scenario we do not consider the more complicated
situations, when the false alarms are available. This case
has been also analyzed and is presented in [14].

P(H,) =

where Ny is the number of possible association hypoth
ses. To compute the probabilify (i, j) that observation
4 should be assigned to track a sum is taken over the
probabilitiesP(.) from those hypothesd$;, in which this
assignment occurs.

5.2 Attribute probability terms for GDA . .
7 Simulation results

The way of calculating the attribute probability term fol-

lows the joint probabilistic approach. In the case of exish this section the obtained simulation results, based
tence of two tracks and two new observations, considered 500 Monte Carlo runs are presented. The goal is to
in 5.1 and on the base of the hypotheses matrix (Tableddmonstrate how the attribute measurements contributes
one can obtain the respective Euclidean distaric@ég) be- for improvement the track performance, especially in
tween gbbas of each pair (tracks historyobservatiory) critical cases, when the two tracks are closely spaced.

as a measures of their closeness.



In the KDA case on fig. 2 (i.e. Kinematics-based Dathigure 4 represents the probability of mis-correlation- Af
Association), it is evident that after scan 15 (the secomer scan 12, just when begin the targets maneouvers, it is
crossing moment for the targets), the tracking algorithevident that in case of kinematics only data association
loses the proper targets direction. Here ffracks Pu- the mis-correlation probability increases up to 0.6. The
rity performance criterion is used to examine the ratio aftribute utilization leads to decreasing of mis-corielat
the right associations. Track purity is considered as a farobability to 0.2. The following two figures show the
tio of the number of correct observation-target assoaiatio

(in case of detected target) over the total number of avail- Mis-Correlation Probability
. . . . . . . ir
able observations during tracking scenario. As itis obsiou
from table 3, 0.80 of (observation-track) associations are 3 o Ceneralied (CrematcsEn

the proper ones in that case. Figure 3 shows the result, when

°
3
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Serostongny” m“ variations of measured Pignistic entropy in updated tracks
attribute states, presented in the two hyper-power sets :
D®:1 = {S B,SNB, SUB} andD®2 = {F,C,FNC, FUC}.

. S . . . Itcan be seenthat:
attribute data are utilized in the generalized data astonia

algorithm in order to improve the tracks maintenance per-e The pignistic entropy of the right (track-observation)
formance. The DSm hybrid rule is applied to produce the associations is less than the pignistic entropy of the
attribute probability term in generalized assignment iratr wrong ones (see fig. 5 and 6);

As a result it is obvious from table 4 that the tracks purity .
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increases up to 0.9367. _In the cases of _rlght _assomatlon_s, it is ob\_/lou_s that
in general the pignistic entropy is decreasing in the
Pertormance ot Tracking Algorithm with Generalized Data Association cases when the tracks Updating is realizeaDFT')ll =
x10* based on DSm Hybrid Rule of Combination . e
2 {S,B, SNB, SUB} than in the hyper powersé&t®z =
1 {F,C,FNC,FUC}. Itis because of the integrity con-

. M . . :

. straint FN C "= () (presented in section 4.2.2), which

Track - Fighter cause the mass transfer to the uncertainty according
to mg(F N C) = 0, mpa(F) = mpa(S), mpd(C) =

Mind(B) andmyi (FUC) = myJ,(SNB)+m,h,(SUB).
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Table 3: Tracks’ purity in case of KDA. N T TR
Obs. 1] Obs. 2 Fig. 5: Variation of Pignistic Entropy in Track 1 At-
Tr. 1| 0.9367| 0.0633 ribute State in thed. — {(Small (B do.
Tr. 2 | 0.0633| 0.9367 rbute Staté in 1 = {(S)mall (B)ig} and©; =

{(Fighter (C)argg
Table 4: Tracks’ purity in case of GDA.
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8 Conclusions (1]
In this paper a new approach for target tracking, which in-
corporates the advanced concept of generalized data (kiﬂez—]
matics and attribute) association is presented. The re-
alized algorithm is based on Global Nearest Neighbour-
like approach and uses Munkres algorithm to resolve the
generalized association matrix. The principles of Dezeytt3]
Smarandache theory (DSmT) of plausible and paradoxi-
cal reasoning to utilize attribute data are applied. Espe-
cially the new general DSm hybrid rule of combination
is used to deal with particular integrity constraints agsoc
ated with some elements of the free Dedekind’s distrib{14]
tive lattice. As a result of applied tracking algorithm the
improvement of track maintenance performance in compli-
cated situations (closely spaced targets) is realizedy-ass
ing a coherent decision making, when kinematics data 3&@5]
insufficient to provide the proper decisions. A comparis
of this new GDA approach with the recent Feature/Class-
Augmented Likelihood-Function-based Data Association
method (F/CA-LF DA) [5] is under investigation.
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