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Abstract – The objective of this paper is to present an approach
for target tracking, which incorporates the advanced concept of
generalized data (kinematics and attribute) association to improve
track maintenance performance in complicated situations (closely
spaced targets), when kinematics data are insufficient for correct
decision making. It uses Global Nearest Neighbour-like approach
and Munkres algorithm to resolve the generalized association ma-
trix. The main peculiarity consists in applying the principles of
Dezert-Smarandache theory of plausible and paradoxical reason-
ing to model and process the utilized attribute data. The newgen-
eral Dezert-Smarandache hybrid rule of combination is usedto
deal with particular integrity constraints associated with some el-
ements of the free Dedekind’s distributive lattice. The aimof the
performed study is to provide coherent decision making process
related to generalized data association and to improve the overall
tracking performance.

Keywords: Target Tracking, Generalized Data Association,
Dezert-Smarandache Theory, DSm hybrid rule of combination.

1 Introduction
One important function of each radar surveillance system
is to keep and improve targets tracks maintenance perfor-
mance. It becomes a crucial and challenging problem espe-
cially in complicated situations of closely spaced, or cross-
ing targets. The design of a modern multitarget tracking
(MTT) algorithms in a such real-life stressful environment
motivates the incorporation of the advanced concepts for
generalized data association. In order to resolve correlation
ambiguities and to select the best observation-track pair-
ings, in this paper, a particular generalized data association
approach is proposed and incorporated in a MTT algorithm.
It allows the introduction of target attribute into the associ-
ation logic, based on the general Dezert-Smarandache rule
for combination, which is adapted to deal with possible in-
tegrity constraints on the problem under consideration due
to the true nature of the elements involved into it.
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2 Dezert-Smarandache Theory

The new Dezert-Smarandache Theory of plausible, uncer-
tain and paradoxical reasoning (DSmT) [10, 11, 12, 16]
proposes a new general and mathematical framework for
solving fusion problems. This theory overcomes the prac-
tical limitations of the Dempster-Shafer Theory, coming
essentially from its inherent constraints, which are closely
related with the acceptance of the third exclude principle.

The foundations of the DSmT is to refute the principle of
the third exclude and to allow imprecise/vague notions and
concepts between elements of the frame of discernmentΘ.
The DSmT includes the possibility to deal with evidences
arising from different sources of information which don’t
have access to absolute interpretation of the elements ofΘ
under consideration and can be interpreted as a general and
direct extension of probability theory and the DST.

2.1 Free-DSm model

Let Θ = {θ1, . . . , θn} be a set ofn elements which can-
not be precisely defined and separated. A free-DSm model,
denoted asMf (Θ), consists in assuming that all elements
θi, i = 1, . . . , n of Θ are not exclusive [12]. The free-DSm
model is an opposite to the Shafer’s modelM0(Θ), which
requires the exclusivity and exhaustivity of all elementsθi,
i = 1, . . . , n of Θ.

2.2 Hyper-power Set and Classical DSm Rule of
Combination

The hyper-power setDΘ is defined as the set of all compos-
ite possibilities build fromΘ with ∪ and∩ operators such
that:

1. ∅, θ1, . . . , θn ∈ DΘ

2. ∀A ∈ DΘ, B ∈ DΘ, (A ∪ B) ∈ DΘ, (A ∩ B) ∈ DΘ



3. No other elements belong toDΘ , except those, ob-
tained by using rules 1 or 2.

The cardinality of DΘ is majored by 22n

when
card(Θ) = |Θ| = n. The generation of hyper-power set
DΘ is closely related with the famous Dedekind’s prob-
lem on enumerating the set of monotone Boolean functions.

From a general frame of discernementΘ with its free-
DSm model, it is defined a mapm(.) : DΘ → [0, 1], as-
sociated to a given source of evidenceB, which can sup-
port paradoxical (or intrinsic conflicting) information, as
follows :

m(∅) = 0 and
∑

A∈DΘ

m(A) = 1

The quantitym(A) is called A’s general basic belief
number(gbba) or the general basic belief mass forA. The
belief and plausibility functions are defined in almost the
same manner as within the DST (Dempster-Shafer Theory),
i.e.

Bel(A) =
∑

B∈DΘ,B⊆A

m(B)

Pl(A) =
∑

B∈DΘ,B∩A 6=∅

m(B)

and∀A ∈ DΘ, Bel(A) ≤ Pl(A).

The classical DSm rule of combination of intrinsic con-
flicting and/or uncertain sources of information is based
on the free-DSm model. Fork ≥ 2 independent bod-
ies of evidence with general information granulesm1(.),
. . ., mk(.) over DΘ, the classical DSm rule of combina-
tion m(.) , [m1 ⊕ . . . ⊕ mk](.) is given by [10, 11] :
∀A 6= ∅ ∈ DΘ,

mMf (Θ)(A) =
∑

X1,...,Xk∈DΘ

X1∩...∩Xk=A

k
∏

i=1

mi(Xi) (1)

and withmMf (Θ)(∅) = 0 by definition. This rule, dealing
with uncertain and/or paradoxical/conflicting information is
commutative and associative and requires no normalization
procedure.

2.3 Definition of a DSm hybrid Model
A DSm hybrid model is defined from the free-DSm model
Mf (Θ) by introducing some integrity constraints on
some elementsA ∈ DΘ, if there are some certain facts in
accordance with the exact nature of the model related to the
problem under consideration [14]. An integrity constraint
on A ∈ DΘ consists in forcingA to be empty through the

modelM, denoted asA
M
≡ ∅.

There are several possible kinds of integrity constraints
introduced in any free-DSm model:

• Exclusivity constraints: when some conjunctions of el-
ements ofΘ are truly impossible, by example when

θi ∩ . . . ∩ θk
M
≡ ∅.

• Non-existential constraints: when some disjunctions
of elements ofΘ are truly impossible, by example

whenθi ∪ . . . ∪ θk
M
≡ ∅. The vacuous DSm hybrid

modelM∅, defined by constraint according to the to-

tal ignorance:It , θ1∪θ2∪ . . .∪θn
M
≡ ∅, is excluded

from consideration, because it is meaningless.

• Mixture of exclusivity and non-existential constraints:
like for example(θi ∩ θj) ∪ θk or any other hybrid
proposition/element ofDΘ involving both∩ and∪
operators such that at least one elementθk is subset of
the constrained proposition.

The introduction of a given integrity constraintA
M
≡ ∅ ∈

DΘ implies the set of inner constraintsB
M
≡ ∅ for all

B ⊂ A. The introduction of two integrity constraints on
A, B ∈ DΘ implies the constraint(A ∪ B) ∈ DΘ ≡ ∅
and this implies the emptiness of allC ∈ DΘ such that
C ⊂ (A ∪B). The Shafer’s modelM0(Θ), can be consid-
ered as the most constrained DSm hybrid model including
all possible exclusivity constraintswithout non-existential
constraint, since all elements in the frame are forced to be
mutually exclusive.

2.4 DSm rule of combination for hybrid models

The DSm hybrid rule of combination, associated to a given
DSm hybrid modelM 6= M∅ , for k ≥ 2 independent
sources of information is defined for allA ∈ DΘ as [14]:

mM(Θ)(A) , φ(A)
[

S1(A) + S2(A) + S3(A)
]

(2)

whereφ(A) is the characteristic emptiness function of a set
A, i.e. φ(A) = 1 if A /∈ ∅ and φ(A) = 0 otherwise,
where∅ , {∅M, ∅}. ∅M is the set of all elements ofDΘ

which have been forced to be empty through the constraints
of the modelM and∅ is the classical/universal empty set.
S1(A) ≡ mMf (θ)(A), S2(A), S3(A) are defined by [14]

S1(A) ,
∑

X1,X2,...,Xk∈DΘ

(X1∩X2∩...∩Xk)=A

k
∏

i=1

mi(Xi) (3)

S2(A) ,
∑

X1,X2,...,Xk∈∅

[U=A]∨[(U∈∅)∧(A=It)]

k
∏

i=1

mi(Xi) (4)

S3(A) ,
∑

X1,X2,...,Xk∈DΘ

(X1∪X2∪...∪Xk)=A

(X1∩X2∩...∩Xk)∈∅

k
∏

i=1

mi(Xi) (5)

with U , u(X1) ∪ u(X2) ∪ . . . ∪ u(Xk) whereu(X) is
the union of all singletonsθi that composeX . S1(A) cor-
responds to the classic DSm rule of combination based on
the free-DSm model;S2(A) represents the mass of all rela-
tively and absolutely empty sets which is transferred to the
total or relative ignorances;S3(A) transfers the sum of rel-
atively empty sets to the non-empty sets.



3 Basic Elements of Tracking Process

The tracking process consists of two basic elements:data
associationand track filtering. The first element is often
considered as the most important. Its goal is to associate
observations to existing tracks.

3.1 Data Association

To eliminate unlikely observation-to-track pairing at thebe-
gining a validation region (gate) is formed around the pre-
dicted track position. A measurements in the gate are can-
didates for association to the corresponding track.

3.1.1 Gating

We assume zero-mean Gaussian white noise for mea-
surements. The vector difference between received mea-
surement vectorzj(k) and predicted measurement vector
ẑi(k|k−1) of targeti is defined to be residual vector (called
innovation)̃zij(k) = zj(k)− ẑi(k|k− 1) with residual co-
variance matrixS = HPH′ + R, whereP is the state
prediction covariance matrix,H is the measurement matrix
andR is the measurement covariance matrix [1, 2, 3, 4].
The scan indexesk will be dropped for notational conve-
nience. The norm (normalized distance function) of the
innovation is evaluated asd2

ij = z̃′ijS
−1z̃ij . One defines

a threshold constant for gateγ such that correlation is al-
lowed if the following relationship is satisfied

d2
ij ≤ γ (6)

Assume that the measurement vector size isM . The quan-
tity d2

ij is the sum of the squares ofM independent Gaus-
sian random variables with zero means and unit standard
deviations. For that reasond2

ij will have χ2
M distribution

with M degrees of freedom and allowable probability of
a valid observation falling outside the gate. The threshold
constantγ can be defined from the table of the chi-square
(χ2

M ) distribution [2].

3.1.2 Generalized Data Association

If a single observation is within a gate and if that observa-
tion is not within a gate of any other track, the observation
can be associated with this track and used to update the
track filter. But in a dense target environment additional
logic is required when an observation falls within the gates
of multiple target tracks or when multiple observations fall
within the gate of a target track.

When attribute data are available, the generalized prob-
ability can be used to improve the assignment. In view of
independence of the kinematic and attribute measurement
errors, the generalized probability for measurementj orig-
inating from tracki is:

Pgen(i, j) = Pk(i, j)Pa(i, j)

where Pk(i, j) and Pa(i, j) are kinematic and attribute
probability terms respectively.

Our goal is to choose a set of assignments{χij}, for i =
1, . . . n andj =, . . . , m, that assures maximum of the total
generalized probability sum. To find it, we use the solution
of the assignment problem

min

n
∑

i=1

m
∑

j=1

aijχij

where:

χij =

{

1 if measurementj is assigned to tracki

0 otherwise

Because our probabilities vary0 ≤ Pk(i, j), Pa(i, j) ≤ 1
and to satisfy the condition to be minimized, the elements
of the particular assignment matrix are defined as :

aij = 1 − Pgen(i, j) = 1 − Pk(i, j)Pa(i, j)

3.2 Filtering

The used tracking filter is the first order extended Kalman
filter [7] for target state vectorx = [x ẋ y ẏ]′, wherex and
y are Cartesian coordinates andẋ andẏ are velocities along
Cartesian axes andmeasurement vectorz = [β D]′, where
β is the azimuth (measured from the North), andD is the
distance from the observer to the target under consideration.

The measurement functionh(.) is (assuming the sensor
located at position (0,0)):

h(x) = [h1(x)h2(x]′ = [arctan(
x

y
)
√

x2 + y2]′

and the Jacobian [2]:

H = [Hij ] = [∂hi/∂xj ] i = 1, 2 j = 1, . . . , 4

We assume constant velocity target model. The process
noise covariance matrix is:Q = σ2

vQT , whereT is the
sampling/scanning period,σv is standard deviation of the
process noise andQT is given by [8]:

QT = diag(Q2×2,Q2×2) with Q2×2 =

[

T 4

4
T 3

2
T 3

2 T 2

]

The measurement error matrix isR = diag(σ2
β , σ2

D) where
σβ and σD are the standard deviations of measurement
errors for azimuth and distance.

The track initiation is performed by two-point dif-
ferencing [7]. After receiving observations for first
two scans the initial state vector is estimated byx̂ =

[x(2) x(2)−x(1)
T y(2) y(2)−y(1)

T ]′ where (x(1), y(1)) and
(x(2), y(2)) are respectively the target positions at the first
scan for time stampk = 1, and at the second scan fork = 2.
The initial (starting at time stampk = 2) state covariance
matrixP is evaluated by:

P = diag(Px
2×2,P

y
2×2) with P

(.)
2×2 =





σ2
(.)

σ2
(.)

T
σ2
(.)

T

2σ2
(.)

T 2







where the index(.) must be replaced by eitherx or y in-
dexes withσ2

x ≈ σ2
D sin2(zβ) + z2

Dσ2
β cos2(zβ) andσ2

y ≈

σ2
D cos2(zβ) + z2

Dσ2
β sin2(zβ). zβ andzD are the compo-

nents of the measurement vector received at scank = 2, i.e.
z = [zβ zD]′ = h(x) + w with w ∼ N (0,R).

4 The Attribute Contribution to Generalized
Data Association

Data association with its goal of partitioning observations
into tracks is a key function of any surveillance system.
An advanced tendency is the incorporation of generalized
data (kinematics and attribute) association to improve track
maintenance performance in complicated situations, when
kinematics data are insufficient for coherent decision mak-
ing process. Analogously with the kinematic tracking,
the attribute tracking can be considered as the process of
combining information collected over time from one or
more sensors to refine the knowledge about the evolving
attributes of the targets. The motivation for attribute fu-
sion is inspired from the necessity to ascertain the targets
types, information, that in consequence has an important
implication to enhance the tracking performance. A num-
ber of techniques, probabilistic in nature are available for
attribute fusion. Their analysis led us to belief, that the
theory of Dempster-Shafer is well suited for representing
uncertainty, but especially in case of low conflicts between
the bodies of evidence. When the conflict increases and be-
comes high, (case, which often occurs in data association
process) the combinational rule of Dempster hides the risk
to produce indefiniteness. To avoid that significant risk we
considers the form of attribute likelihood function within
the context of DSm theory, i.e. the term to be used for com-
puting the probabilities of validity for data association hy-
potheses. There are a few basic steps, realizing the concept
of attribute data association.

4.1 The Input Fuzzification Interface

Fuzzification interface (see fig. 1) transforms numerical
measurement received from a sensor into fuzzy set in ac-
cordance with the a priori defined fuzzy partition of input
space-the frame of discernmentsΘ. This frame includes
all considered linguistic values related to the chosen par-
ticular input variable and corresponding membership func-
tions. The fuzzification of numerical sensory data needs
dividing an optimal membership into a suitable number of
fuzzy sets [17]. Such division provides smooth transitions
and overlaps among the associated fuzzy sets, according to
the particular real world situation.

The considerable input variable in the particular case is
the Radar Cross Section (RCS) of the observed targets. In
our work RCS data are analyzed to determine the target
size with the subsequent declaration that the observed
target is an aircraft of specified type. Taking it in mind,
we define two frames of discernments: first one according
to thesize of RCS: Θ1 = {(S)mall, (B)ig} and the second
one determining the corresponding to itsTarget Type
Θ2 = {(F)ighter, (C)argo}.
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Fig. 1: Fuzzification interface

The radar cross section is modelled as Swerling 3 type,
where the density function for the RCSσ is given by:

f(σ) =
4σ

σ2
ave

exp[−
2σ

σave
]

with the average RCS (σave) varying between different tar-
gets types [6]. The cumulative distribution function of the
radar cross section is given by

F (σ0) = P{0 ≤ σ ≤ σ0} = 1 − (1 +
2σ0

σave
) exp[−

2σ0

σave
]

Since the probabilitiesF (σ0) for having different values of
radar cross section are uniformly distributed in the interval
[0, 1] over time (i.e. these values are uncorrelated in time),
a sample of observation of the RCS can be simulated by
solving equation:

(1 +
2σ0

σave
) exp[−

2σ0

σave
] = 1 − x

wherex is a random number that is uniformly distributed
between 0 and 1.

The scenario considered in our work deals with targets
types Fighter (F) and Military Cargo (C) with an average
RCS :

σF
ave = 1.2 m2 and σC

ave = 4 m2

The input fuzzification interface maps the current modelled
RCS values into two fuzzy sets:Small andBig, which de-
fine the corresponding linguistic values, defining the vari-
able RCS. Their membership functions are not arbitrarily
chosen, but rely on the calculated respective histograms for
10000 Monte Carlo runs. Actually these fuzzy sets form
Θ1 frame of discernement. After fuzzification the new RCS
value (rcs) is obtained in the form :

rcs⇒ [µSmall(rcs), µBig(rcs)]

In general, the termsµSmall(rcs), µBig(rcs) represent the
possibilities the new RCS value to belong to the elements
of the frameΘ1 and there is no requirement to sum up to
unity.



4.2 Tracks Updating Procedures

4.2.1 Using Classical DSm Combinational Rule

After receiving the new observations, detected during the
current scan at timek, DSm classical combinational rule is
used for tracks updating. The gbbas of tracks histories and
new observations are described in terms of the hyper-power
setDΘ1 = {S, B, S∩ B, S∪ B}.

To obey the requirements to guarantee thatm(.) is a
proper general information granule, it is necessarily to
transform fuzzy membership functions representing the
new measurement into mass functions, before being fused.
It is realized through their normalization with respect to the
unity:

mmeas(C) =
µC(rcs)

∑

C∈Θ1
µC(rcs)

, ∀C ∈ Θ1 = {S, B}

Using the classical DSm rule of combination, the updated
tracks gbba become:

mij
upd(C) = [mi

hist ⊕ mj
meas](C)

=
∑

A,B∈DΘ1 ,A∩B=C

mi
hist(A)mj

meas(B)

wheremij
upd(.) represents the gbba of the updated tracksi

with the new observationj; mi
hist, mj

meas are respectively
gbba vectors of tracksi history and the new observationj.

Since, DSmT uses a frame of discernment, which is ex-
haustive, but in general case not exclusive, we are able to
take into account and to utilize the paradoxical informa-
tion S∩ B. This information relates to the case, when the
RCS value resides in an overlapping region, when it is hard
to make proper judgement about the tendency of its value.
But nevertheless this nonempty set and related to it mass as-
signment contributes to a better understanding of the overall
process.

4.2.2 Using DSm Hybrid Combinational Rule

As it was mentioned above in our work, RCS data here
are used to analyze and subsequently to determine the
specified type of the observed targets. Because of this
it is maintained the second frame of discernementΘ2 =
{(F)ighter, (C)argo}, in terms of which the decisions ac-
cording to target types have to be made. The corresponding
hyper-power set should beDΘ2 = {F, C, F ∩ C, F ∪ C}.
Taking in mind the correspondencies:

• If rcs isSmall thenthe target isFighter

• If rcs isBig thenthe target isCargo

we may transform the gbba of updated tracks, formed in
DΘ1 into respective gbba inDΘ2 , i.e:

mij
upd(CC∈DΘ2 ) = mij

upd(CC∈DΘ1 )

This equation contains, among all its elements, the follow-
ing one:

mij
upd(F∩ C) = mij

upd(S∩ B)

And while the set S∩ B 6= ∅, the set F∩ C = ∅, because
it is a proven fact, that the target can not be in one and
the same time Fighter and Cargo. So, we have to update
the previous fusion result with this new information on the
model of the considered problem. It is solved with the DSm
hybrid rule, which transfers the mass of that empty set to
the non-empty sets ofDΘ2 . Using the DSm hybrid rule (2)

with the exclusivity constraint F∩ C
M2
≡ ∅, we get:

mij
upd(F∩ C) = 0

mij
upd(F) = mij

upd(S) mij
upd(C) = mij

upd(B)

mij
upd(F∪ C) = mij

upd(S∩ B) + mij
upd(S∪ B)

It is important to note, that for us the two considered inde-
pendent sources of information are the tracks histories and
the new observations with their gbbas maintained in terms
of the two hyper-power sets. That way, we assure to ob-
tain and to keep the decisions according to the target types
during all the scans.

5 The Generalized Data Association
Algorithm (GDA)

We assume the existence of a set ofn tracks at the current
scan and received set ofm observations. These observa-
tions may be used for updating the existing tracks or for
initiating new tracks. In a cluttered environmentm does
not necessarily equaln and it may be difficult to distin-
guish whether a measurement originated from a target or
from clutter. A validated measurement is one which is ei-
ther inside or on the boundary of the validation gate of a
target. The inequality given in (6) is a validation test. It is
used for filling the assignment matrixA :

A = [Aij ] =

















a11 a12 a13

... a1m

a21 a22 a23

... a2m

...
...

...
...

...

an1 an2 an3

... anm

















The elements of the assignment matrixA have the fol-
lowing values [15]:

aij =

{

∞ if d2
ij > γ

1 − Pk(i, j)Pa(i, j) if d2
ij ≤ γ

The solution of the assignment matrix is the one that min-
imizes the sum of the choosen elements. We solve the as-
signment problem by realizing the extension of Munkres
algorithm, given in [9]. As a result, it obtains the optimal
measurements to tracks association. Because of the consid-
ered closely spaced target scenario, to produce the probabil-
ity termsPk andPa, the joint probabilistic approach is used
[7]. It assures a common base for their defining, making
that way them to be compatible.



5.1 Kinematics probability term for GDA

Let consider the existence of two tracks and two new obser-
vations, detected during the moment of their closely spaced
movement. The table 1 shows the hypotheses for the alter-
natives with respect to targets tracks and associated proba-
bilities:

Hyp. # Track 1 Track 2 Hyp. proba.P ′(Hl)

H1 0 0 (1 − Pd)
2
β2

H2 1 0 g11Pd(1 − Pd)β
H3 2 0 g12Pd(1 − Pd)β
H4 0 1 g21Pd(1 − Pd)β
H5 0 2 g22Pd(1 − Pd)β
H6 1 2 g11g22P

2
d

H7 2 1 g12g21P
2
d

Table 1: Target-oriented hypothesis based on kinematics.

Here, the numbers in the second and third columns of
the table represent the observations assigned to the tracks,
and 0 represents the assignment of no observation to a par-
ticular track. The likelihood function, associated with the
assignment of observationj to tracki is:

gij =
e−d2

ij/2

(2π)
M/2√|Si|

Pd is the probability of detection andβ is the extraneous re-
turn density, that includes probability density for new tracks
and false alarms:β = βNT + βFA. The hypotheses proba-
bilities are computed as :

P ′(Hl) = βNM−(NT−NnD)(1 − Pd)
NnD

×Pd
(NT −NnD)

∏

i6=0,j 6=0|(i,j)∈Hl

gij

NM being the total number of observations,NT the num-
ber of targets,NnD the number of not detected targets.
(i, j) ∈ Hl involved in the product represents all the possi-
ble measurement to track associations involved within hy-
pothesisHl. The normalized probabilities of association
are computed as:

Pk(Hl) =
P ′(Hl)

∑NH

k=1 P ′(Hk)

whereNH is the number of possible association hypothe-
ses. To compute the probabilityPk(i, j) that observation
j should be assigned to tracki, a sum is taken over the
probabilitiesPk(.) from those hypothesesHl, in which this
assignment occurs.

5.2 Attribute probability terms for GDA

The way of calculating the attribute probability term fol-
lows the joint probabilistic approach. In the case of exis-
tence of two tracks and two new observations, considered
in 5.1 and on the base of the hypotheses matrix (Table1)
one can obtain the respective Euclidean distancesde(ij) be-
tween gbbas of each pair (tracks historyi - observationj)
as a measures of their closeness.

Hyp. # Track 1 Track 2 Closeness measure
H1 0 0 P ′′(H1) = de(0, 0) = 0
H2 1 0 P ′′(H2) = de(1, 1)
H3 2 0 P ′′(H3) = de(1, 2)
H4 0 1 P ′′(H4) = de(2, 1)
H5 0 2 P ′′(H5) = de(2, 2)
H6 1 2 P ′′(H6) = de(1, 1)de(2, 2)
H7 2 1 P ′′(H7) = de(1, 2)de(2, 1)

Table 2: Target-oriented hypothesis based on attributes.

where the overal measure of closenessde(ij) is defined
here fori 6= 0 andj 6= 0 as

de(ij) =

√

∑

C∈DΘ2

[mi
hist(C) − mj

meas(C)]
2

mi
hist is the gbba of the tracks history,mj

meas is the gbba
of measurementj. The corresponding normalized proba-
bilities of association drawn from attribute information are
then obtained as:

Pa(Hl) =
P ′′(Hl)

∑NH

k=1 P ′′(Hk)

whereNH is the number of possible association hypothe-
ses. To compute the probabilityP ′

a(i, j) that observation
j should be assigned to tracki, a sum is taken over the
probabilitiesPa(.) from those hypothesesHl, in which this
assignment occurs. Because the Euclidean distance is in-
versely proportional to the probability of association, the
probability termPa(i, j) = 1 − P ′

a(i, j) is used to match
the corresponding kinematics probability.

6 Simulation scenario

The simulation scenario consists of two air targets (Fighter
and Cargo) and a stationary sensor at the origin withTscan=
5 sec., measurement standard deviations 0.3 deg and 60 m
for azimuth and range respectively. The targets movement
is from West to East with constant velocity of 250 m/sec.
The headings of the fighter and cargo are 225 deg and 315
deg from North respectively. During the scan 11th-14th the
targets perform maneuvers with 2.5g. Their trajectories are
closely spaced in the vicinity of the two crossing points.
The target detection probabilities have been set to 0.99 for
both targets and the extraneous return densityβ to 10−6.
In this scenario we do not consider the more complicated
situations, when the false alarms are available. This case
has been also analyzed and is presented in [14].

7 Simulation results

In this section the obtained simulation results, based
on 500 Monte Carlo runs are presented. The goal is to
demonstrate how the attribute measurements contributes
for improvement the track performance, especially in
critical cases, when the two tracks are closely spaced.



In the KDA case on fig. 2 (i.e. Kinematics-based Data
Association), it is evident that after scan 15 (the second
crossing moment for the targets), the tracking algorithm
loses the proper targets direction. Here theTracks Pu-
rity performance criterion is used to examine the ratio of
the right associations. Track purity is considered as a ra-
tio of the number of correct observation-target associations
(in case of detected target) over the total number of avail-
able observations during tracking scenario. As it is obvious
from table 3, 0.80 of (observation-track) associations are
the proper ones in that case. Figure 3 shows the result, when

Fig. 2: Performance of Tracking with KDA

attribute data are utilized in the generalized data association
algorithm in order to improve the tracks maintenance per-
formance. The DSm hybrid rule is applied to produce the
attribute probability term in generalized assignment matrix.
As a result it is obvious from table 4 that the tracks purity
increases up to 0.9367.

Fig. 3: Performance of Tracking with GDA

Obs. 1 Obs. 2
Tr. 1 0.8 0.2
Tr. 2 0.2 0.8

Table 3: Tracks’ purity in case of KDA.

Obs. 1 Obs. 2
Tr. 1 0.9367 0.0633
Tr. 2 0.0633 0.9367

Table 4: Tracks’ purity in case of GDA.

Figure 4 represents the probability of mis-correlation. Af-
ter scan 12, just when begin the targets maneouvers, it is
evident that in case of kinematics only data association
the mis-correlation probability increases up to 0.6. The
attribute utilization leads to decreasing of mis-correlation
probability to 0.2. The following two figures show the
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Fig. 4: Performance of Tracking Algorithm with GDA

variations of measured Pignistic entropy in updated tracks
attribute states, presented in the two hyper-power sets :
DΘ1 = {S, B, S∩B, S∪B} andDΘ2 = {F, C, F∩C, F∪C}.
It can be seen that :

• The pignistic entropy of the right (track-observation)
associations is less than the pignistic entropy of the
wrong ones (see fig. 5 and 6);

• In the cases of right associations, it is obvious that
in general the pignistic entropy is decreasing in the
cases when the tracks updating is realized inDΘ1 =
{S, B, S∩B, S∪B} than in the hyper powersetDΘ2 =
{F, C, F∩C, F∪C}. It is because of the integrity con-

straint F∩ C
M2
≡ ∅ (presented in section 4.2.2), which

cause the mass transfer to the uncertainty according
to mij

upd(F∩ C) = 0, mij
upd(F) = mij

upd(S), mij
upd(C) =

mij
upd(B) andmij

upd(F∪C) = mij
upd(S∩B)+mij

upd(S∪B).
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Fig. 5: Variation of Pignistic Entropy in Track 1 At-
tribute State in theΘ1 = {(S)mall, (B)ig} and Θ2 =
{(F)ighter, (C)argo}
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8 Conclusions

In this paper a new approach for target tracking, which in-
corporates the advanced concept of generalized data (kine-
matics and attribute) association is presented. The re-
alized algorithm is based on Global Nearest Neighbour-
like approach and uses Munkres algorithm to resolve the
generalized association matrix. The principles of Dezert-
Smarandache theory (DSmT) of plausible and paradoxi-
cal reasoning to utilize attribute data are applied. Espe-
cially the new general DSm hybrid rule of combination
is used to deal with particular integrity constraints associ-
ated with some elements of the free Dedekind’s distribu-
tive lattice. As a result of applied tracking algorithm the
improvement of track maintenance performance in compli-
cated situations (closely spaced targets) is realized, assur-
ing a coherent decision making, when kinematics data are
insufficient to provide the proper decisions. A comparison
of this new GDA approach with the recent Feature/Class-
Augmented Likelihood-Function-based Data Association
method (F/CA-LF DA) [5] is under investigation.
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