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Abstract: This paper presents two new promising combina-
tion rules for the fusion of uncertain and potentially highl
conflicting sources of evidences in the theory of belief func
tions established first in Dempster-Shafer Theory (DST) and
then recently extended in Dezert-Smarandache Theory
(DSmT). Our work is to provide here new issues to palliate
the well-known limitations of Dempster’s rule and to work
beyond its limits of applicability. Since the famous Zadeh’
criticism of Dempster’s rule in 1979, many researchers have
proposed new interesting alternative rules of combination
palliate the weakness of Dempster’s rule in order to provide
acceptable results specially in highly conflicting sitaas.

In this work, we present two new combination rules: the
class of Adaptive Combination Rules (ACR) and a new effi-
cient Proportional Conflict Redistribution (PCR) rule. Bot
rules allow to deal with highly conflicting sources for stati
and dynamic fusion applications. We present some inter-
esting properties for ACR and PCR rules and discuss some
simulation results obtained with both rules for Zadeh'dgpro
lem and for a target identification problem.

Keywords: Information Fusion, Combination of evidences,
Conflict management, DSmT.

1 Introduction

Beside Zadeh's Fuzzy Set Theory (FST) [32], Dempster-
Shafer Theory (DST) [16, 31] is one of most major paradigm
shifts for reasoning under uncertainty. DST uses Dempsster’
rule to combine independent pieces of information (called
sources of evidence) but this rule has been strongly criti-
cized (and still is) in literature [33, 4, 30] because of its
unexpected behaviour which can both reflect the minority
opinion in some cases and provide counter-intuitive result
when combining highly conflictual information as proved
by Zadeh [33]. Some authors argue that tinexpectedtbe-
haviour of Dempster’s rule is a false problem since the rea-
son for the counter-intuitive results comes from an imprope

tally convincing since usually proponents of Dempsterfs ru
only circumvent Zadeh's problem by changing it through
more or less well justified modifications rather than solv-
ing it, and fundamentally and numerically the problem with
Dempster’s rule as clearly stated by Zadeh still remainsaope
forever. Actually in many cases - specially those involv-
ing human experts - sources of evidence provide opinions or
beliefs from their own limited sensing abilities, expeigen
knowledge with their own interpretation and understanding
of the given problem and even sometimes with conflicting
interests or purposes. One has moreover not necessarily ac-
cess to the quality or reliability of sources to discountithe
because some problems are not repeatable and we can never
assess the quality of an expert facing a new problem that has
never occurred in the past. There is no 100% warranty be-
forehand that a complex fusion system will never fall into
Zadeh's paradox [17]. Actually Dempster’s rule appears to
be satisfactory only in situations with high beliefs and low
conflict, when sources agree almost totally which is rarely
the case in practice. In all other cases, better alterrsative
Dempster’s rule have to be found to palliate its drawbacks.
Since in military real-time systems, one never knows be-
forehand if the sources of information will be in low con-
flict or not, it is preferable to switch directly towards one
of efficient alternative rules proposed in the literaturdaso

[5, 28, 30, 10, 11, 15, 1, 12, 17]. In practice the condi-
tions of applicability of Dempster’s rule (independence of
homogeneous sources working on the same exhaustive and
exclusive frame of discernment) are restrictive and toe dif
ficult to satisfy. Thus, the DST was extended to new more
flexible theories in order to cope with an unknown and un-
predictable reality. Among them, the Transferable Belief
Model (TBM) of Smets and Kennes [22, 24, 25] which,
by the open-world assumption, refutes the exhaustivity con
straint on the frame of discernme@t and the underlying
probability model. The TBM allows to consider elements
outside of©, all represented by the empty set. More re-
cently the Dezert-Smarandache Theory (DSmT) [17] has

use of this rule [27, 8, 13, 9] and so these authors emphasize been developed to deal with (highly) conflicting imprecise

the limits of applicability of the Dempster’s rule itself ka
ing DST less attractive. The argument in favour of Demp-
ster’s rule is that if the initial conditions are respected a
if the problem is well modelized, then Dempster’s rule pro-
vides valid results. Such an argumentation is however ot to

and uncertain sources of information. DSmT provides a
general framework to work with any kind of models (free
or hybrid models as well as Shafer's model) and for static
or dynamic fusion applications. ( e. applications where
the model and/or the frame are changing with time). When



working with the free model, DSmT refutes the exclusivity in an absolute interpretation because of the unreachable un
constraint on the frame of discernment, allowing new ele- versal truth. Shafer's model, denotéd®(©), assumes that
ments than those initially considered to appear. In these tw all element®; € ©,7 = 1,...,n are truly exclusive. In this
frameworks (TBM and DSmT free-based model), the con- case, all intersections involved in elements/?? become
flictis no more a problem. DSmT however allows to include  empty andD® reduces to classical power set deno2&d

if necessary (depending on the application) some integrity [16]. Between the free-DSm model and the Shafer's model,

constraints (non existential or exclusive constraintsthim there exists a wide class of fusion problems represented in
modeling and propose a new hybrid rule (called DSmH) of term of the DSm hybrid models whegeinvolves both fuzzy
combination for re-assignment of the conflicting mass. continuous hypothesis and discrete hypothesis. Each hy-

brid fusion problem is then characterized by a proper hybrid

In this paper,we present two new combination rules DSm modelM (©) with M(0) # M7/ (6) and M(0) #
called ACR (Adaptive Combination Rule) [6, 7] and PER ~ M°(©). The main differences between DST and DSmT are
(Proportional Conflict Redistribution rule) [18, 21] which (1) the model on which one works with, and (2) the choice of
are new efficient alternatives to Dempster’s rule. The ACR the combination rule. We use here the generic notatiéor
is a mixing of the conjunctive and the disjunctive rules lbase  denoting eithe® (when working in DSmT) o2° (when
on the distribution of the conflict according to a new choice working in DST). We denoté&* the setG from which the
of weighting coefficients. Using the ACR, a partial posi- empty setis exclude@z* = G \ {9)}).
tive reinforcement of the belief can be observed for the fo-
cal elements commun to all the bbas to combine. The PCR 2 2 BRasic belief functions
redistributes the partial conflicting masses to the element _ _ _ ) )
involved in the partial conflicts only, considering the con- A basic belief assignment (bba), called also belief mass, is
junctive normal form of the partial conflicts. We restrictee ~ defined as a mapping function(.) : G — [0, 1] provided
our presentation to the simple case of the combination of two PY @ given source of evidendesatisfying
independent sources of evidence working on Shafer's model
for the frame® = {#:,...,0,}, n > 1 (finite set of ex- m(@)=0  and Z m(4) =1 1)
haustive and exclusive hypotheses), although the extensio Acd
to the free and hybrid model of the DSmT can easily be ob- The elements off having a strictly positive mass are called
tained.. We assume the reader is already familiar with DST, focal elements of5. Let F be the set of focal elements of
with classical belief functions and Dempster’s rule. Faand  m(.). In the DST frameworks can only be2®, while in the
tions of DST and its recent advances can be foundin [16, 31] DSmT frameworkG can beD®, a restrictedD® given by
while foundations of DSmT and its first applications can be some integrity constraints, @P and thus, we talk about the
foundin [17]. In the next section we briefly remind only ba-  free model, the hybrid model or Shafer’s model.
sics on DST and DSmT and the major fusion rules to make
this paper self-consistent for the evaluation of simutatie 2.3 Brief review of main fusion rules
sults. Section 3 is devoted to ACR while Section 4 is devoted

to PCR. Section 5 presents and compares simulation results A Wide variety of combination rules exists and a review
and then we conclude in Section 6. and classification is proposed for example in [15], where

the rules are analyzed according to their algebraic proper-
ties as well as on different examples. A recent review of
main fusion rules can also be found in [19, 26]. To simplify
the notations, we consider only two independent sources of
evidences; andB; over the same fram® with their corre-

2 Basics of DST, DSmT and fusion

2.1 Power set and hyper-power set

Let©® = {64,...,0,} be a finite set (called frame) of sponding bbag; (.) andma(.). Even if the general case of
exhaustive elements . The free Dedekind’s lattice denoted N different sources is defined it is not considered in this pa-
hyper-power seD® [17] is defined as per. Most of the fusion operators proposed in the literature
o so far use either the conjunctive operator, the disjuncipre
1.2,01,....0, € D" erator or a particular combination of them. These operators
2. If A, B € D®, thenAN B andA U B belong toD®. are respectively defineédd € G, by
3. No other elements belong ©°, except those ob- ma(A) = (mi Ama)(A) = Y mi(X)ma(Y) (2)
tained by using rules 1 or 2. ))((ﬁ?ici

If |©] = n, then|D®| < 22", Since for any finite se®, A
= \% A) = X Y) (3
|D®| > [29], we call D® the hyper-power sebf ©. The my(4) = (ma vms)(4) X;G mi(X)ma(Y) (3)

free DSm modeM/(©) is based orD® and allows to work XUy=4

with vague concepts which exhibit a continuous and relative  Thedegree of conflidbetween the sourced andB; is de-
intrinsic nature. Such concepts cannot be precisely refined fined by

For historical reasons, PCR presented here was called PCREri A 12 o
previous papers [18, 21] since it results from a step-bg-stgorovement k12 = mpy (@) o Z ma (X)m2 (Y) (4)

of a very simple PCR rule proposed in [20]. ?ﬁ?i%



If k12 is close ta0, the bbasn, (.) andms(.) are almost not

in conflict, while if k15 is close tol, the bbas are almost

in total conflict. Next, we briefly review the main common
fusion rules encountered in the literature and used in engi-
neering applications.

e Dempster’s rule [3]: This combination rule has been pro-
posed by Dempster. We assume (without loss of generality)
that the sources of evidence are equally reliable. Otherwis
a discounting preprocessing is first applied. It is defined on
G = 2° by forcingmps(2) £ 0 andvA € G* by

1 ma(A)

maA) = 10 9

mDS(A) = 1— kg A

®)

Whenk,, = 1, this rule cannot be used. Dempster’s rule of
combination can be directly extended for the combination
of N independent and equally reliable sources of evidence
and its major interest comes essentially from its commuta-
tivity and associativity properties [16]. Dempster’s rata-
responds to the normalized conjunctive rule by uniformly
reassigning the mass of total conflict onto all focal elerment
through the conjunctive operator. The non normalized ver-
sion of the Dempster’s rule corresponds to the Smet’s fu-
sion rule in the TBM framework working under an open-
world assumptionj. e. mg(@) = k2 andvVA € G*,
mg(A) =ma(A).

e Yager's rule [28, 29, 30]: Yager admits that in case of
conflict Dempster’s rule provides counter-intuitive resul
Thus, k12 plays the role of an absolute discounting term
added to the weight of ignorance. The commutative and
quasi-associativeYager’s rule is given byny (@) = 0 and

VA € G* by

my (4) = ma(A) )
my (©) = ma(0) + ma(2)

e Dubois & Prade’s rule [5]: This rule supposes that the
two sources are reliable when they are not in conflict and at
least one of them is right when a conflict occurs. Then if
one believes that a value is in a s€twhile the other be-
lieves that this value is in a sé&t, the truth lies inX NY
aslongX NY # @. If X NY = &, then the truth lies in
X UY. According to this principle, the commutative and
guasi-associative Dubois & Prade hybrid rule of combina-
tion, which is a reasonable trade-off between precision and
reliability, is defined by pp (&) = 0 andvVA € G* by

mpp(A) =ma(A) + Y mi(X)ma(Y)

X, YeG
XUY=A
XNY =g

()

e Inagaki’s rule [10]: Inagaki proposed a very general for-
malism for all fusion rules which distributes the mass of
the empty set after the conjunctive combinationnof(.)
andms(.). Inagaki’s rule is given byn;,.(2) = 0 and
YA € G* by

Mina(A) = ma(A) + wp, (A)ma (D) (8)

2quasi-associativity was defined by Yager in [30]

with w,, (A) € [0,1], YA € G* such tha_ , ., wn(A) =

1. It can be shown in [11, 17] that all previous combina-
tion rules (Dempster, Yager, Dubois & Prade, Smets) can
be obtained from Inagaki’s formula (8) with a proper choice
of weighting factorsu,, (.). Inagaki also derived from (8) a
particular class of combination rules for which the ratie be
tween the mass of any two subsdtsand B (different from

the frame®) must be the same before and after the distribu-
tion of the mass of the empty set (see [10] for more details).

e Classic DSm fusion rule (DSmCJ17]: Within the DSmT
framework and when the free DSm model/(©) holds,

the conjunctive consensus, called the DSm classic rule (we
will use the acronym DSmC in the sequel), is performed on
G = D®. DSmC of two independehsources associated
with m4 (.) andms(.) is thus given by (2). Sincé€'is closed
underJ andn set operators, DSmC guarantees thét) is a
proper belief assignmerit,e. m(.) : G — [0, 1]. DSmC is
commutative, associative and can always be used for the fu-
sion of sources involving fuzzy concepts whenever the free
DSm model holds. This rule is directly and easily extended
for the combination of > 2 independent sources [17].

e Hybrid DSm fusion rule (DSmH) [17]: DSmH general-
izes DSmMC and is no longer equivalent to Dempster’s rule.
DSmH is actually a direct extension of Dubois & Prade’s
rule [5] from the power-se2® to the constrained hyper-
power setD® to take into account the possible dynamic-
ity of the frame®. It works for any models (the free DSm
model, Shafer’s model or any other hybrid models) when
manipulatingprecisegeneralizedi( e. defined ovetD®) or
eventually classicali( e. defined over®) basic belief as-
signments. A complete description of this combination rule
is givenin [17].

3 The Adaptive Combination Rule

A new class of combination rules - a mixing between the
conjunctive ruleA and the disjunctive rule/ (defined re-
spectively by (2) and (3)) was proposed for evidence theory
in [6]. Hence, we assume Shafer's model and thus work on
the power se{G = 2°). The generic Adaptive Combi-
nation Rule (ACR) betweem(.) andms(.) is defined by
macr(@) =0andvA € G* by

macr(A) = a(kiz)my(A) + B(ki2)ma(A)  (9)
wherea and g are functions of the conflidt;s = m (@)
from [0, 1] to [0, +00[. macr(.) must be a normalized bba
(we assume here a closed world) and a desirable behaviour
of ACR is to act more like the disjunctive rule whenever
k1o is close tol (i. e. at least one source is unreliable),
while it should act more like the conjunctive rute when
k12 becomes close t6 (i. e. both sources are reliable).
Hence, the three following conditions should be satisfied by
the weighting functions: andj :

SWhile independence is a difficult concept to define in all tieoman-
aging epistemic uncertainty, we consider that two souréevidence are
independenti( e. distinct and noninteracting) if each leaves one totally
ignorant about the particular value the other will take.



(C1) aisiincreasing withx(0) = 0 anda(1) = 1;
(C2) gis decreasing witt#(0) = 1 andj3(1) = 0.
(C3) a(ki2) =1~ (1 — k12)B(k12)

The Condition (C3) is given by the necessity of thecr
tobe abba)’ ,.,macr(4) =1).

It has been shown however in [6] that (C1) is actually a di-
rect consequence of (C2) and (C3) and becomes irrelevant.
This class of ACR can be stated from (9), for any function
satisfying (C2) and fow given by condition (C3).

Here are some important remarks on the class of ACR as
presented in [6] :

1. Theclass of ACR is a particular case of Inagaki's gen-
eral class of combination rules with weighting factors
expressed as (see [6] for proof)

B(k12)

wn(4) = =2 (4) = ()

+B(k12)my (A)

(10)

. wy, (A) drawn from ACR can be negative in (10)g.
wpm(A) < 0VA € G* such that

ki2(k12)
1 — B(ki12)

Thus, ACR defined previously may be viewed as an
extension of Inagaki’s rules (8).

ma(A) > my(A)[1 +

. The ACR creates a bba with focal elements chosen
from the focal elements produced by the conjunctive
or the disjunctive combination rule§cr = Fia2U
Fivz2). Inagaki’'s general class of combination rules
can distribute the mass of the empty Jebj to any
subset 0f©, thus is more general than the ACR, but
this is not necessarily an asset.

. The combination ofn;(.) andms(.) using the ACR
leads to gpartial positive reinforcement of the belief
for the focal elements common to bath and 7.

It can easily be shown that the ACR preserves the neutral
impact of the vacuous belief in the fusion processes.

A symmetric ACR (SACR for short), e. with symmetric
weightings form . (.) andm.,(.), such thatx(kis) = 1 —
B(1 — k12), was also introduced in [6]. This choice was
imposed by a particular behaviour for the ACR. The SACR
is defined byngsacr(2) = 0 andvVA € G* by

msacr(A) = ag(kiz)my(A) + Bo(kiz)ma(4)  (11)
where
k1o
kig) = —=———
OéO( 12) 1— k12 + k%Q
(12)
Bolkis) = ——F12__
0 1—kio+ k%Q

In [6], the authors show the uniqueness of SACR.

4 Proportional Conflict Redistribution

4.1 Principle of PCR

Instead of applying a direct transfer of partial conflictéoon
partial uncertainties as with DSmH rule, the idea behind the
Proportional Conflict Redistribution (PCR) rule [18, 21] is
to transfer conflicting masses (total or partial) propartio
ally to non-empty sets involved in the model according to
all integrity constraints. The general principle of PCResul
isto:

1. calculate the conjunctive rule of the belief masses of
sources ;

2. calculate the total or partial conflicting masses ;

3. redistribute the conflicting mass (total or partial) pro-
portionally on non-empty sets involved in the model
according to all integrity constraints.

The way the conflicting mass is redistributed yields ac-
tually to five versions of PCR rules, denoted PCR1-PCR5
which have been presented in [18, 21]. These PCR fusion
rules work for any degree of confliéts € [0, 1] orkio. s €
[0, 1], for any DSm models (Shafer’s model, free DSm model
or any hybrid DSm model) and both in DST and DSmT
frameworks for static or dynamical fusion problematics. We
present below only the most sophisticated proportional con
flict redistribution rule (corresponding to PCR5 in [18, 21]
but denoted here just PCR) since this rule is what we feel
the most efficient PCR fusion rule developed so far.

4.2 Explicit formula for PCR for two sources

The PCR rule redistributes the partial conflicting mass to
the elements involved in the partial conflict, considerime t
conjunctive normal form of the partial conflict. PCR is what
we think the most mathematically exact redistribution @f th
conflicting mass obatined after the conjunctive rule. PCR
rule preserves the neutral impact of the vacuous belief as-
signment because the mass of the focal elem@eoannot

be involved in the conflict. Sinc® is a neutral element for
the intersection (conflict) gets no mass after the redis-
tribution of the conflicting mass. We have also proven the
continuity property of the PCR result with continuous vari-
ations of bbas to combine in [18]. PCR rule for two sources
is given by:mpcr(@) = 0andvX € G*

mper(X) =ma(X)+ > [M N

Yean(x} mq X) + mg(Y)
c(XNY)=0
mg(X)2m1 (Y)

wherec(X) is the canonical forth(conjunctive normal) of

X and where all denominators adéferent from zero If a
denominator is zero, that fraction is discarded. The génera
PCR formula fors > 2 sources is given in [18].

4The canonical form is the conjunctive normal form, also kn@s con-
junction of disjunctions in Boolean algebra, which is ur@qnd is its sim-
plest form. For example iX = (ANB)N(AUBUC), ¢(X) = ANB.



5 lllustrative examples

5.1 A simple two-source example

e Example 1 Let us take® = {A, B} of exclusive
elements (Shafer’'s model), and the following bbas:

A B AUB
mi() | 06 0 04
ma() | 0 03 07

[mi() [ 042 012 0.28]

The conflicting mass i812 = ma (AN B) and equals
mi(A)ma(B) + mq(B)ma(A) = 0.18. Therefore

A and B are the only focal elements involved in the
conflict. Hence according to the PCR hypothesis only
A and B deserve a part of the conflicting mass and
A U B does not deserve. With PCR, one redistributes
the conflicting mas#,, = 0.18 to A and B propor-
tionally with the massesi; (A) andms(B) assigned

to A andB respectively. Let: be the conflicting mass
to be redistributed tod, andy the conflicting mass
redistributed taB, then

T y  x+ty 70.18:02

06 03 06+03 09

hencer = 0.6-0.2 = 0.12, y = 0.3 - 0.2 = 0.06.
Thus, the final result using the PCR rule is

mPCR(A) =0.42+0.12=0.54
mpcr(B) =0.1240.06 = 0.18
mPCR(A U B) =0.28

With SACR,a(0.18) ~ 0.211 and(3,(0.18) ~ 0.962
and therefore

msacr(A) =ag -0+ By - 0.42 =~ 0.404
msacr(B) = ag-0+ Bo-0.12~0.116
msacr(AUB) = ag -1+ - 0.28 ~ 0.480

We summarize in the following table the previous re-
sults and the results obtained from other rules pre-
sented in Section 2 (three decimals approximations).

not been included in this table since they are based
on different models (open-world and free-DSm model

respectively). They cannot be compared formally to

the other rules since Shafer's model does not hold
anymore. Within DSmC one keeps separately all the
masses committed to partial conflicts while within Smets’
rule all partial conflicts are reassigned to the empty set
interpreted as all missing hypotheses.

Example 2 Let us modify a little bit the previous
example and consider now the following bbas:

A B AUB
mi() | 06 0 04
m2() | 02 03 05

[mA() [050 0.12 0.20]

The conflicting masgi2 = ma(A N B) as well as
the distribution coefficients andy for the PCR rule
and the weighting coefficientgy ~ 0.211 and gy =
0.962 for the SACR rule remain the same as in the
previous example. Thus, the result obtained using the
PCR rule is:

mpcr(A) = 0.50+0.12 = 0.620
mpCR(B) =0.12+0.06 = 0.180
mPCR(A U B) =0.20+0=10.200

Using SACR rule, the result of the combination is:

msacr(A) = ag-0.12 4 By - 0.50 ~ 0.506
msacr(B) = ag -0+ By -0.12 ~ 0.116
msacr(AUB) = ag-0.88 4 By - 0.20 ~ 0.378

All fusion rules based on Shafer's model are used in
this example and the results are presented in the fol-
lowing table (three decimals approximations).

A B AUB
P 0512 0.146 0.342
mpp 0.420 0.120 0.460
mpsmp || 0.420 0.120  0.460
my 0.420 0.120 0.460
MIna 0.560 0.160 0.280
msacr | 0.404 0.116 0.480
mpcr || 0.540 0.180 0.280

A B AUB
Mmps 0.609 0.146 0.231]
mpp 0.500 0.120 0.380
mpsme || 0.500 0.120  0.380
my 0.500 0.120 0.380
Mina 0.645 0.155 0.200
msacr | 0.506 0.116 0.378
mpcr || 0.620 0.180 0.200

In this example SACR is very close to DP, Y and
DSmH rules while PCR is more close to DS and Ina-

gaki’s rule.

Example 3 Let’s go further modifying this time the

Note that in this particular 2D case DSmH, Dubois
& Prade’s and Yager's rules coincide. They do not
coincide in general whef®| > 2. ACR provides

very close results as DSmH, DP and Y. Inagaki’s op-
timal combination rule was used in this example (see
[10] for more details). Smets’ and DSmC rules have

previous example and considering the following bbas:

A B AUB
mi() | 0.6 03 01
m2() | 02 03 05

[ma() [ 044 0.27 0.05]




The conflicting mas&2 = ma(AN B) = 0.24 = 5.2 Zadeh's example
0.1840.06 = mq (A)msa(B) + mq(B)mz(A) is now
different from the two previous examples, which means
thatmq(A) = 0.2 andm4(B) = 0.3 did make an
impact on the conflict. Thereford and B are the
only focal elements involved in the conflict and thus
only A and B deserve a part of the conflicting mass.

We compare here the solutions for the well-known Zadeh'’s
example [33] provided by several fusion rules. A detailed
presentation with more comparisons can be found in [17,
18]. Let us consider the frant®@ = { A, B, C'}, the Shafer’s
model and the two following belief assignments :

PCR redistributes the partial conflicting mass 0.18 to A) =09 B)=0 C) =01

A and B proportionally with the masses;(A) and ma(4) ' ma(B) ma(C) '

ma(B) (let z; andy; be the conflicting mass to be ma(A) =0 ma(B) = 0.9 my(C) = 0.1
redistributed toA and B, respectively) and also the - - . o

partial conflicting mass 0.06 td and B proportion- The total conflicting mass s high since it is

ally with the massesny(A) andm; (B) (let z» and ma(A)ms(B) + mi (A)ms(C) + mo(B)my (C) = 0.99

12 be the conflicting mass to be redistributedtand 1(Ayma(B) 1(A)m2(C) 2(B)ma ()

B, respectively). The distribution coefficients and Al fusion rules based on Shafer's model are used in this

y1 are those computed in the two previous examples example and the results are presented in the following table
(r1 = 0.12 andy; = 0.06). To compute the second

pair of distribution coefficients, one has: Mmps | My | Mpp | MDSmH
C 1 0.01| 0.01 0.01
T2 _ Y2 _ T2ty 006, AUB 0 0 | 081 081
02 03 02+0.3 0.5 AUC 0 0 0.09 0.09
whencer, = 0.2:0.12 = 0.024 andy, = 0.3-0.12 = itjgu c 8 0%9 0'89 0.89
0.036. Thus, the result obtained using the PCR rule is: -
mpor(A) = 0.44 + 0.12 + 0.024 = 0.584 y mg“l mSSCR Tgfjgé
mpor(B) = 0.27 4 0.06 + 0.036 = 0.366 B 0 0 0.486
mpcr(AUB) =0.054+0=0.05 C 1 ~0.0101| 0.028
AUB 0 ~ 0.8099 0
Since the conflict ig;» = 0.24, the weighting coef- AUC 0 ~ 0.0900 0
ficients for the SACR becomey ~ 0.294 and 5, ~ BuUC 0 ~ 0.0900 0

0.930 and the result is: . S
We can see that Dempster’s rule yields the counter-intuitiv

msacr(A) = ag - 0.12+ o - 0.44 ~ 0.445 result_(se(_ajustifiqations in [33, 4., 30, 27, 17]) which refffec
msacr(B) = ao - 0.09 + fo - 0.27 ~ 0.277 the minority op|n|,on. The Dub_0|s & Pra_de’s ruIe’(DP) [4]
based on Shafer's model provides in this Zadeh’s example
msacr(AU B) = ag - 0.79 + fo - 0.05 ~ 0.278 the same result as DSmH, because DP and DSmH coincide
in all static fusion problents SACR is very close to DP and
All fusion rules based on Shafer's model are used in  psmH since the conflict is close to 1 and the SACR acts
this example and the results are presented in the fol- more like the disjunctive rule (according to the definition
lowing table (three decimals approximations). hypothesis). PCR acts more like a mean operator over the
two bbas and is similar to Murphy’s rule [14].

A B AUB
mps 0.579 0.355 0.066 e
M 0440 0270 0290 5.3 Target classification example
mpsmy || 0.440 0.270 0.290 In this section we study a simple test scenario of targetiden
my 0.440 0.270 0.290 tification. Several pieces of evidential information comin
MIna 0.588 0.362 0.050 from an ESM (Electronic Support Measures) analyzing a
msacr | 0.445 0.277 0.278 combat scene are sequentially combined at a fusion centre.
MPpPCR 0.584 0.366 0.050 The 135 targets to be potentially identified are listed in a

Platform Data Base (PDB), according to 22 features. One of
these features is the emitters on board for each target.eHenc
we have© = {61, ...,60135}.

The following simulation test was randomly generated
considering that the probability of false alarm of the ESM is
0.3, which means that 3 times over 10 the emitter reported
does not belong to the observed target. Obfagtis the

One clearly sees thatps(A U B) gets some mass
from the conflicting mass although U B does not
deserve any part of the conflicting mass (according to
PCR hypothesis) sincd U B is not involved in the
conflict (only A and B are involved in the conflicting
mass). Dempster’s rule appears to us less exact than
PCR and Inagaki’s rules. PCR result is very close to 5DP rule has been developed for static fusion only while DSmidre
Inagaki’s result but upon our opinion iS more exact. general since it works for any models as well as for static dyramic
SACR follows behaviours of DP, Y and DSmH. fusion.
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Figure 1: Test scenario of target identification fusion ESdarts with a probability of false alarm of 0.3.

observed object and it is the ground truth. We built two sets
of emitters - the sek having only the emitters df,s and the
setY having emitters used on objects similarftg which

are not inX. Randomly, we choose an emitter frakh 7
times of 10 and fromY” 3 times of 10. We generated 25
such emitters (the repetitions were allowed) and each piece
of information was modelled in evidence theory using the
following bba:m(A4) = 0.8 andm(©) = 0.2 whereA is

the subset o® corresponding to the received informatian (

e. each element aft owns the emitter reported by the ESM).
The successive bbas;, m,; are combined using different
combination rules, and the decision on the most probable
observed target is taken following the maximum of pignistic
probability? criterion (max BetP) [23].

The final pignistic probabilities obtained using DS, DP,
PCR and SACR after 25 combination steps are shown in Fig-
ure 1. Figure 2 shows a comparative temporal evolution of
the pignistic probability of Singletofi,s during the fusion
process. In our data base, the difference between olgjgcts
andéd,g is only given by one emitter. Thus, we expect Sin-
gletond,s to have a maximum BetP, béty must be pro-
vided as a possible option for the identification. Using all
four decision rules, we identify the Singletérg, which is
our ground truth. However, using DS, the final BetP gives
almost all credibility to Singletord,s without giving any
chances to other Singletons, which is in opposition with our
expectations. DP, SACR and PCR give to Singlefgna
high probability, which is however smaller than the proba-
bility of Singletonf,s. In the case of PCR, the choice be-
tween Singletong,s andf,e is made with more difficulty
than in the case of SACR and DP.

6The pignistic probability (BetP) was introduced by Smetf2i8]

Temporal evolution — Object 48 — comparison of different combination rules
. T T T T

0.9

10 15 25
Fusion steps

Figure 2: Evolution of the pignistic probability of Singtet
045 using different combination rules.

6 Conclusion

We discussed here two new and interesting combination rules
for evidence theory: (1) the class of adaptive combination
rules (ACR) with its particular case the symmetric adaptive
combination rule (SACR) and (2) the proportional conflict
redistribution rule (PCR). PCR can also be used in DSm
free model or in any hybrid model. These two new com-
bination rules are able to cope with conflicting information
contrary to the classic Dempster’s rule. Some simple exam-
ples and a target classification example were presented to
show their interest in defense application. Both SACR and
PCR were compared to some classical rules showing their
ability to combine high conflicting information in a new ro-
bust and better way than conventional rules used so far.
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