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Abstract: This paper presents two new promising combina-
tion rules for the fusion of uncertain and potentially highly
conflicting sources of evidences in the theory of belief func-
tions established first in Dempster-Shafer Theory (DST) and
then recently extended in Dezert-Smarandache Theory
(DSmT). Our work is to provide here new issues to palliate
the well-known limitations of Dempster’s rule and to work
beyond its limits of applicability. Since the famous Zadeh’s
criticism of Dempster’s rule in 1979, many researchers have
proposed new interesting alternative rules of combinationto
palliate the weakness of Dempster’s rule in order to provide
acceptable results specially in highly conflicting situations.
In this work, we present two new combination rules: the
class of Adaptive Combination Rules (ACR) and a new effi-
cient Proportional Conflict Redistribution (PCR) rule. Both
rules allow to deal with highly conflicting sources for static
and dynamic fusion applications. We present some inter-
esting properties for ACR and PCR rules and discuss some
simulation results obtained with both rules for Zadeh’s prob-
lem and for a target identification problem.

Keywords: Information Fusion, Combination of evidences,
Conflict management, DSmT.

1 Introduction

Beside Zadeh’s Fuzzy Set Theory (FST) [32], Dempster-
Shafer Theory (DST) [16, 31] is one of most major paradigm
shifts for reasoning under uncertainty. DST uses Dempster’s
rule to combine independent pieces of information (called
sources of evidence) but this rule has been strongly criti-
cized (and still is) in literature [33, 4, 30] because of its
unexpected behaviour which can both reflect the minority
opinion in some cases and provide counter-intuitive results
when combining highly conflictual information as proved
by Zadeh [33]. Some authors argue that theunexpectedbe-
haviour of Dempster’s rule is a false problem since the rea-
son for the counter-intuitive results comes from an improper
use of this rule [27, 8, 13, 9] and so these authors emphasize
the limits of applicability of the Dempster’s rule itself mak-
ing DST less attractive. The argument in favour of Demp-
ster’s rule is that if the initial conditions are respected and
if the problem is well modelized, then Dempster’s rule pro-
vides valid results. Such an argumentation is however not to-

tally convincing since usually proponents of Dempster’s rule
only circumvent Zadeh’s problem by changing it through
more or less well justified modifications rather than solv-
ing it, and fundamentally and numerically the problem with
Dempster’s rule as clearly stated by Zadeh still remains open
forever. Actually in many cases - specially those involv-
ing human experts - sources of evidence provide opinions or
beliefs from their own limited sensing abilities, experience,
knowledge with their own interpretation and understanding
of the given problem and even sometimes with conflicting
interests or purposes. One has moreover not necessarily ac-
cess to the quality or reliability of sources to discount them
because some problems are not repeatable and we can never
assess the quality of an expert facing a new problem that has
never occurred in the past. There is no 100% warranty be-
forehand that a complex fusion system will never fall into
Zadeh’s paradox [17]. Actually Dempster’s rule appears to
be satisfactory only in situations with high beliefs and low
conflict, when sources agree almost totally which is rarely
the case in practice. In all other cases, better alternatives to
Dempster’s rule have to be found to palliate its drawbacks.
Since in military real-time systems, one never knows be-
forehand if the sources of information will be in low con-
flict or not, it is preferable to switch directly towards one
of efficient alternative rules proposed in the literature sofar
[5, 28, 30, 10, 11, 15, 1, 12, 17]. In practice the condi-
tions of applicability of Dempster’s rule (independence of
homogeneous sources working on the same exhaustive and
exclusive frame of discernment) are restrictive and too dif-
ficult to satisfy. Thus, the DST was extended to new more
flexible theories in order to cope with an unknown and un-
predictable reality. Among them, the Transferable Belief
Model (TBM) of Smets and Kennes [22, 24, 25] which,
by the open-world assumption, refutes the exhaustivity con-
straint on the frame of discernmentΘ and the underlying
probability model. The TBM allows to consider elements
outside ofΘ, all represented by the empty set. More re-
cently the Dezert-Smarandache Theory (DSmT) [17] has
been developed to deal with (highly) conflicting imprecise
and uncertain sources of information. DSmT provides a
general framework to work with any kind of models (free
or hybrid models as well as Shafer’s model) and for static
or dynamic fusion applications (i. e. applications where
the model and/or the frame are changing with time). When



working with the free model, DSmT refutes the exclusivity
constraint on the frame of discernment, allowing new ele-
ments than those initially considered to appear. In these two
frameworks (TBM and DSmT free-based model), the con-
flict is no more a problem. DSmT however allows to include
if necessary (depending on the application) some integrity
constraints (non existential or exclusive constraints) inthe
modeling and propose a new hybrid rule (called DSmH) of
combination for re-assignment of the conflicting mass.

In this paper, we present two new combination rules
called ACR (Adaptive Combination Rule) [6, 7] and PCR1

(Proportional Conflict Redistribution rule) [18, 21] which
are new efficient alternatives to Dempster’s rule. The ACR
is a mixing of the conjunctive and the disjunctive rules based
on the distribution of the conflict according to a new choice
of weighting coefficients. Using the ACR, a partial posi-
tive reinforcement of the belief can be observed for the fo-
cal elements commun to all the bbas to combine. The PCR
redistributes the partial conflicting masses to the elements
involved in the partial conflicts only, considering the con-
junctive normal form of the partial conflicts. We restrict here
our presentation to the simple case of the combination of two
independent sources of evidence working on Shafer’s model
for the frameΘ = {θ1, . . . , θn}, n > 1 (finite set of ex-
haustive and exclusive hypotheses), although the extensions
to the free and hybrid model of the DSmT can easily be ob-
tained.. We assume the reader is already familiar with DST,
with classical belief functions and Dempster’s rule. Founda-
tions of DST and its recent advances can be found in [16, 31]
while foundations of DSmT and its first applications can be
found in [17]. In the next section we briefly remind only ba-
sics on DST and DSmT and the major fusion rules to make
this paper self-consistent for the evaluation of simulation re-
sults. Section 3 is devoted to ACR while Section 4 is devoted
to PCR. Section 5 presents and compares simulation results
and then we conclude in Section 6.

2 Basics of DST, DSmT and fusion

2.1 Power set and hyper-power set

Let Θ = {θ1, . . . , θn} be a finite set (called frame) ofn
exhaustive elements . The free Dedekind’s lattice denoted
hyper-power setDΘ [17] is defined as

1. ∅, θ1, . . . , θn ∈ DΘ.

2. If A, B ∈ DΘ, thenA ∩ B andA ∪ B belong toDΘ.

3. No other elements belong toDΘ, except those ob-
tained by using rules 1 or 2.

If |Θ| = n, then|DΘ| ≤ 22n

. Since for any finite setΘ,
|DΘ| ≥ |2Θ|, we callDΘ the hyper-power setof Θ. The
free DSm modelMf(Θ) is based onDΘ and allows to work
with vague concepts which exhibit a continuous and relative
intrinsic nature. Such concepts cannot be precisely refined

1For historical reasons, PCR presented here was called PCR5 in our
previous papers [18, 21] since it results from a step-by-step improvement
of a very simple PCR rule proposed in [20].

in an absolute interpretation because of the unreachable uni-
versal truth. Shafer’s model, denotedM0(Θ), assumes that
all elementsθi ∈ Θ, i = 1, . . . , n are truly exclusive. In this
case, all intersections involved in elements ofDΘ become
empty andDΘ reduces to classical power set denoted2Θ

[16]. Between the free-DSm model and the Shafer’s model,
there exists a wide class of fusion problems represented in
term of the DSm hybrid models whereΘ involves both fuzzy
continuous hypothesis and discrete hypothesis. Each hy-
brid fusion problem is then characterized by a proper hybrid
DSm modelM(Θ) with M(Θ) 6= Mf (Θ) andM(Θ) 6=
M0(Θ). The main differences between DST and DSmT are
(1) the model on which one works with, and (2) the choice of
the combination rule. We use here the generic notationG for
denoting eitherDΘ (when working in DSmT) or2Θ (when
working in DST). We denoteG∗ the setG from which the
empty set is excluded(G∗ = G \ {∅)}).

2.2 Basic belief functions

A basic belief assignment (bba), called also belief mass, is
defined as a mapping functionm(.) : G → [0, 1] provided
by a given source of evidenceB satisfying

m(∅) = 0 and
∑

A∈G

m(A) = 1 (1)

The elements ofG having a strictly positive mass are called
focal elements ofB. Let F be the set of focal elements of
m(.). In the DST frameworkG can only be2Θ, while in the
DSmT frameworkG can beDΘ, a restricted-DΘ given by
some integrity constraints, or2Θ and thus, we talk about the
free model, the hybrid model or Shafer’s model.

2.3 Brief review of main fusion rules

A wide variety of combination rules exists and a review
and classification is proposed for example in [15], where
the rules are analyzed according to their algebraic proper-
ties as well as on different examples. A recent review of
main fusion rules can also be found in [19, 26]. To simplify
the notations, we consider only two independent sources of
evidenceB1 andB2 over the same frameΘ with their corre-
sponding bbasm1(.) andm2(.). Even if the general case of
N different sources is defined it is not considered in this pa-
per. Most of the fusion operators proposed in the literature
so far use either the conjunctive operator, the disjunctiveop-
erator or a particular combination of them. These operators
are respectively defined∀A ∈ G, by

m∧(A) = (m1 ∧ m2)(A) =
∑

X,Y ∈G
X∩Y =A

m1(X)m2(Y ) (2)

m∨(A) = (m1 ∨ m2)(A) =
∑

X,Y ∈G
X∪Y =A

m1(X)m2(Y ) (3)

Thedegree of conflictbetween the sourcesB1 andB2 is de-
fined by

k12 , m12
∧ (∅) =

∑

X,Y ∈G
X∩Y =∅

m1(X)m2(Y ) (4)



If k12 is close to0, the bbasm1(.) andm2(.) are almost not
in conflict, while if k12 is close to1, the bbas are almost
in total conflict. Next, we briefly review the main common
fusion rules encountered in the literature and used in engi-
neering applications.

• Dempster’s rule [3] : This combination rule has been pro-
posed by Dempster. We assume (without loss of generality)
that the sources of evidence are equally reliable. Otherwise
a discounting preprocessing is first applied. It is defined on
G = 2Θ by forcingmDS(∅) , 0 and∀A ∈ G∗ by

mDS(A) =
1

1 − k12
m∧(A) =

m∧(A)

1 − m∧(∅)
(5)

Whenk12 = 1, this rule cannot be used. Dempster’s rule of
combination can be directly extended for the combination
of N independent and equally reliable sources of evidence
and its major interest comes essentially from its commuta-
tivity and associativity properties [16]. Dempster’s rulecor-
responds to the normalized conjunctive rule by uniformly
reassigning the mass of total conflict onto all focal elements
through the conjunctive operator. The non normalized ver-
sion of the Dempster’s rule corresponds to the Smet’s fu-
sion rule in the TBM framework working under an open-
world assumption,i. e. mS(∅) = k12 and ∀A ∈ G∗,
mS(A) = m∧(A).

• Yager’s rule [28, 29, 30]: Yager admits that in case of
conflict Dempster’s rule provides counter-intuitive results.
Thus, k12 plays the role of an absolute discounting term
added to the weight of ignorance. The commutative and
quasi-associative2 Yager’s rule is given bymY (∅) = 0 and
∀A ∈ G∗ by

{

mY (A) = m∧(A)

mY (Θ) = m∧(Θ) + m∧(∅)
(6)

• Dubois & Prade’s rule [5]: This rule supposes that the
two sources are reliable when they are not in conflict and at
least one of them is right when a conflict occurs. Then if
one believes that a value is in a setX while the other be-
lieves that this value is in a setY , the truth lies inX ∩ Y

as longX ∩ Y 6= ∅. If X ∩ Y = ∅, then the truth lies in
X ∪ Y . According to this principle, the commutative and
quasi-associative Dubois & Prade hybrid rule of combina-
tion, which is a reasonable trade-off between precision and
reliability, is defined bymDP (∅) = 0 and∀A ∈ G∗ by

mDP (A) = m∧(A) +
∑

X,Y ∈G
X∪Y =A
X∩Y =∅

m1(X)m2(Y ) (7)

• Inagaki’s rule [10]: Inagaki proposed a very general for-
malism for all fusion rules which distributes the mass of
the empty set after the conjunctive combination ofm1(.)
andm2(.). Inagaki’s rule is given bymIna(∅) = 0 and
∀A ∈ G∗ by

mIna(A) = m∧(A) + wm(A)m∧(∅) (8)

2quasi-associativity was defined by Yager in [30]

with wm(A) ∈ [0, 1], ∀A ∈ G∗ such that
∑

A∈G wm(A) =
1. It can be shown in [11, 17] that all previous combina-
tion rules (Dempster, Yager, Dubois & Prade, Smets) can
be obtained from Inagaki’s formula (8) with a proper choice
of weighting factorswm(.). Inagaki also derived from (8) a
particular class of combination rules for which the ratio be-
tween the mass of any two subsetsA andB (different from
the frameΘ) must be the same before and after the distribu-
tion of the mass of the empty set (see [10] for more details).

• Classic DSm fusion rule (DSmC)[17]: Within the DSmT
framework and when the free DSm modelMf (Θ) holds,
the conjunctive consensus, called the DSm classic rule (we
will use the acronym DSmC in the sequel), is performed on
G = DΘ. DSmC of two independent3 sources associated
with m1(.) andm2(.) is thus given by (2). SinceG is closed
under∪ and∩ set operators, DSmC guarantees thatm(.) is a
proper belief assignment,i. e. m(.) : G → [0, 1]. DSmC is
commutative, associative and can always be used for the fu-
sion of sources involving fuzzy concepts whenever the free
DSm model holds. This rule is directly and easily extended
for the combination ofs > 2 independent sources [17].

• Hybrid DSm fusion rule (DSmH) [17]: DSmH general-
izes DSmC and is no longer equivalent to Dempster’s rule.
DSmH is actually a direct extension of Dubois & Prade’s
rule [5] from the power-set2Θ to the constrained hyper-
power setDΘ to take into account the possible dynamic-
ity of the frameΘ. It works for any models (the free DSm
model, Shafer’s model or any other hybrid models) when
manipulatingprecisegeneralized (i. e. defined overDΘ) or
eventually classical (i. e. defined over2Θ) basic belief as-
signments. A complete description of this combination rule
is given in [17].

3 The Adaptive Combination Rule

A new class of combination rules - a mixing between the
conjunctive rule∧ and the disjunctive rule∨ (defined re-
spectively by (2) and (3)) was proposed for evidence theory
in [6]. Hence, we assume Shafer’s model and thus work on
the power set(G = 2Θ). The genericAdaptive Combi-
nation Rule (ACR) betweenm1(.) andm2(.) is defined by
mACR(∅) = 0 and∀A ∈ G∗ by

mACR(A) = α(k12)m∨(A) + β(k12)m∧(A) (9)

whereα andβ are functions of the conflictk12 = m∧(∅)
from [0, 1] to [0, +∞[. mACR(.) must be a normalized bba
(we assume here a closed world) and a desirable behaviour
of ACR is to act more like the disjunctive rule∨ whenever
k12 is close to1 (i. e. at least one source is unreliable),
while it should act more like the conjunctive rule∧, when
k12 becomes close to0 (i. e. both sources are reliable).
Hence, the three following conditions should be satisfied by
the weighting functionsα andβ :

3While independence is a difficult concept to define in all theories man-
aging epistemic uncertainty, we consider that two sources of evidence are
independent (i. e. distinct and noninteracting) if each leaves one totally
ignorant about the particular value the other will take.



(C1) α is increasing withα(0) = 0 andα(1) = 1;

(C2) β is decreasing withβ(0) = 1 andβ(1) = 0.

(C3) α(k12) = 1 − (1 − k12)β(k12)

The Condition (C3) is given by the necessity of themACR

to be a bba (
∑

A∈G mACR(A) = 1).
It has been shown however in [6] that (C1) is actually a di-
rect consequence of (C2) and (C3) and becomes irrelevant.
This class of ACR can be stated from (9), for any functionβ

satisfying (C2) and forα given by condition (C3).

Here are some important remarks on the class of ACR as
presented in [6] :

1. The class of ACR is a particular case of Inagaki’s gen-
eral class of combination rules with weighting factors
expressed as (see [6] for proof)

wm(A) =
1 − β(k12)

k12
[m∨(A) − m∧(A)]

+β(k12)m∨(A)

(10)

2. wm(A) drawn from ACR can be negative in (10),i. e.
wm(A) < 0 ∀A ∈ G∗ such that

m∧(A) > m∨(A)[1 +
k12β(k12)

1 − β(k12)
]

Thus, ACR defined previously may be viewed as an
extension of Inagaki’s rules (8).

3. The ACR creates a bba with focal elements chosen
from the focal elements produced by the conjunctive
or the disjunctive combination rules (FACR = F1∧2∪
F1∨2). Inagaki’s general class of combination rules
can distribute the mass of the empty set (k12) to any
subset ofΘ, thus is more general than the ACR, but
this is not necessarily an asset.

4. The combination ofm1(.) andm2(.) using the ACR
leads to apartial positive reinforcement of the belief
for the focal elements common to bothF1 andF2.

It can easily be shown that the ACR preserves the neutral
impact of the vacuous belief in the fusion processes.

A symmetric ACR (SACR for short),i. e. with symmetric
weightings form∧(.) andm∨(.), such thatα(k12) = 1 −
β(1 − k12), was also introduced in [6]. This choice was
imposed by a particular behaviour for the ACR. The SACR
is defined bymSACR(∅) = 0 and∀A ∈ G∗ by

mSACR(A) = α0(k12)m∨(A) + β0(k12)m∧(A) (11)

where

α0(k12) =
k12

1 − k12 + k2
12

β0(k12) =
1 − k12

1 − k12 + k2
12

(12)

In [6], the authors show the uniqueness of SACR.

4 Proportional Conflict Redistribution

4.1 Principle of PCR

Instead of applying a direct transfer of partial conflicts onto
partial uncertainties as with DSmH rule, the idea behind the
Proportional Conflict Redistribution (PCR) rule [18, 21] is
to transfer conflicting masses (total or partial) proportion-
ally to non-empty sets involved in the model according to
all integrity constraints. The general principle of PCR rules
is to :

1. calculate the conjunctive rule of the belief masses of
sources ;

2. calculate the total or partial conflicting masses ;

3. redistribute the conflicting mass (total or partial) pro-
portionally on non-empty sets involved in the model
according to all integrity constraints.

The way the conflicting mass is redistributed yields ac-
tually to five versions of PCR rules, denoted PCR1-PCR5
which have been presented in [18, 21]. These PCR fusion
rules work for any degree of conflictk12 ∈ [0, 1] or k12...s ∈
[0, 1], for any DSm models (Shafer’s model, free DSm model
or any hybrid DSm model) and both in DST and DSmT
frameworks for static or dynamical fusion problematics. We
present below only the most sophisticated proportional con-
flict redistribution rule (corresponding to PCR5 in [18, 21]
but denoted here just PCR) since this rule is what we feel
the most efficient PCR fusion rule developed so far.

4.2 Explicit formula for PCR for two sources

The PCR rule redistributes the partial conflicting mass to
the elements involved in the partial conflict, considering the
conjunctive normal form of the partial conflict. PCR is what
we think the most mathematically exact redistribution of the
conflicting mass obatined after the conjunctive rule. PCR
rule preserves the neutral impact of the vacuous belief as-
signment because the mass of the focal elementΘ cannot
be involved in the conflict. SinceΘ is a neutral element for
the intersection (conflict),Θ gets no mass after the redis-
tribution of the conflicting mass. We have also proven the
continuity property of the PCR result with continuous vari-
ations of bbas to combine in [18]. PCR rule for two sources
is given by:mPCR(∅) = 0 and∀X ∈ G∗

mPCR(X) = m∧(X) +
∑

Y ∈G\{X}
c(X∩Y )=∅

[
m1(X)2m2(Y )

m1(X) + m2(Y )
+

m2(X)2m1(Y )

m2(X) + m1(Y )
] (13)

wherec(X) is the canonical form4 (conjunctive normal) of
X and where all denominators aredifferent from zero. If a
denominator is zero, that fraction is discarded. The general
PCR formula fors ≥ 2 sources is given in [18].

4The canonical form is the conjunctive normal form, also known as con-
junction of disjunctions in Boolean algebra, which is unique and is its sim-
plest form. For example ifX = (A∩B)∩ (A∪B ∪C), c(X) = A∩B.



5 Illustrative examples

5.1 A simple two-source example

• Example 1: Let us takeΘ = {A, B} of exclusive
elements (Shafer’s model), and the following bbas:

A B A ∪ B

m1(.) 0.6 0 0.4
m2(.) 0 0.3 0.7

m∧(.) 0.42 0.12 0.28

The conflicting mass isk12 = m∧(A∩B) and equals
m1(A)m2(B) + m1(B)m2(A) = 0.18. Therefore
A andB are the only focal elements involved in the
conflict. Hence according to the PCR hypothesis only
A andB deserve a part of the conflicting mass and
A ∪ B does not deserve. With PCR, one redistributes
the conflicting massk12 = 0.18 to A andB propor-
tionally with the massesm1(A) andm2(B) assigned
to A andB respectively. Letx be the conflicting mass
to be redistributed toA, andy the conflicting mass
redistributed toB, then

x

0.6
=

y

0.3
=

x + y

0.6 + 0.3
=

0.18

0.9
= 0.2

hencex = 0.6 · 0.2 = 0.12, y = 0.3 · 0.2 = 0.06.
Thus, the final result using the PCR rule is











mPCR(A) = 0.42 + 0.12 = 0.54

mPCR(B) = 0.12 + 0.06 = 0.18

mPCR(A ∪ B) = 0.28

With SACR,α0(0.18) ≈ 0.211 andβ0(0.18) ≈ 0.962
and therefore










mSACR(A) = α0 · 0 + β0 · 0.42 ≈ 0.404

mSACR(B) = α0 · 0 + β0 · 0.12 ≈ 0.116

mSACR(A ∪ B) = α0 · 1 + β0 · 0.28 ≈ 0.480

We summarize in the following table the previous re-
sults and the results obtained from other rules pre-
sented in Section 2 (three decimals approximations).

A B A ∪ B

mDS 0.512 0.146 0.342
mDP 0.420 0.120 0.460
mDSmH 0.420 0.120 0.460
mY 0.420 0.120 0.460
mIna 0.560 0.160 0.280
mSACR 0.404 0.116 0.480
mPCR 0.540 0.180 0.280

Note that in this particular 2D case DSmH, Dubois
& Prade’s and Yager’s rules coincide. They do not
coincide in general when|Θ| > 2. ACR provides
very close results as DSmH, DP and Y. Inagaki’s op-
timal combination rule was used in this example (see
[10] for more details). Smets’ and DSmC rules have

not been included in this table since they are based
on different models (open-world and free-DSm model
respectively). They cannot be compared formally to
the other rules since Shafer’s model does not hold
anymore. Within DSmC one keeps separately all the
masses committed to partial conflicts while within Smets’
rule all partial conflicts are reassigned to the empty set
interpreted as all missing hypotheses.

• Example 2: Let us modify a little bit the previous
example and consider now the following bbas:

A B A ∪ B

m1(.) 0.6 0 0.4
m2(.) 0.2 0.3 0.5

m∧(.) 0.50 0.12 0.20

The conflicting massk12 = m∧(A ∩ B) as well as
the distribution coefficientsx andy for the PCR rule
and the weighting coefficientsα0 ≈ 0.211 andβ0 ≈
0.962 for the SACR rule remain the same as in the
previous example. Thus, the result obtained using the
PCR rule is:











mPCR(A) = 0.50 + 0.12 = 0.620

mPCR(B) = 0.12 + 0.06 = 0.180

mPCR(A ∪ B) = 0.20 + 0 = 0.200

Using SACR rule, the result of the combination is:










mSACR(A) = α0 · 0.12 + β0 · 0.50 ≈ 0.506

mSACR(B) = α0 · 0 + β0 · 0.12 ≈ 0.116

mSACR(A ∪ B) = α0 · 0.88 + β0 · 0.20 ≈ 0.378

All fusion rules based on Shafer’s model are used in
this example and the results are presented in the fol-
lowing table (three decimals approximations).

A B A ∪ B

mDS 0.609 0.146 0.231
mDP 0.500 0.120 0.380
mDSmH 0.500 0.120 0.380
mY 0.500 0.120 0.380
mIna 0.645 0.155 0.200
mSACR 0.506 0.116 0.378
mPCR 0.620 0.180 0.200

In this example SACR is very close to DP, Y and
DSmH rules while PCR is more close to DS and Ina-
gaki’s rule.

• Example 3: Let’s go further modifying this time the
previous example and considering the following bbas:

A B A ∪ B

m1(.) 0.6 0.3 0.1
m2(.) 0.2 0.3 0.5

m∧(.) 0.44 0.27 0.05



The conflicting massk12 = m∧(A ∩ B) = 0.24 =
0.18+0.06 = m1(A)m2(B)+m1(B)m2(A) is now
different from the two previous examples, which means
that m2(A) = 0.2 andm1(B) = 0.3 did make an
impact on the conflict. ThereforeA and B are the
only focal elements involved in the conflict and thus
only A andB deserve a part of the conflicting mass.
PCR redistributes the partial conflicting mass 0.18 to
A andB proportionally with the massesm1(A) and
m2(B) (let x1 andy1 be the conflicting mass to be
redistributed toA andB, respectively) and also the
partial conflicting mass 0.06 toA andB proportion-
ally with the massesm2(A) andm1(B) (let x2 and
y2 be the conflicting mass to be redistributed toA and
B, respectively). The distribution coefficientsx1 and
y1 are those computed in the two previous examples
(x1 = 0.12 andy1 = 0.06). To compute the second
pair of distribution coefficients, one has:

x2

0.2
=

y2

0.3
=

x2 + y2

0.2 + 0.3
=

0.06

0.5
= 0.12

whencex2 = 0.2·0.12 = 0.024 andy2 = 0.3·0.12 =
0.036. Thus, the result obtained using the PCR rule is:











mPCR(A) = 0.44 + 0.12 + 0.024 = 0.584

mPCR(B) = 0.27 + 0.06 + 0.036 = 0.366

mPCR(A ∪ B) = 0.05 + 0 = 0.05

Since the conflict isk12 = 0.24, the weighting coef-
ficients for the SACR becomeα0 ≈ 0.294 andβ0 ≈
0.930 and the result is:










mSACR(A) = α0 · 0.12 + β0 · 0.44 ≈ 0.445

mSACR(B) = α0 · 0.09 + β0 · 0.27 ≈ 0.277

mSACR(A ∪ B) = α0 · 0.79 + β0 · 0.05 ≈ 0.278

All fusion rules based on Shafer’s model are used in
this example and the results are presented in the fol-
lowing table (three decimals approximations).

A B A ∪ B

mDS 0.579 0.355 0.066
mDP 0.440 0.270 0.290
mDSmH 0.440 0.270 0.290
mY 0.440 0.270 0.290
mIna 0.588 0.362 0.050
mSACR 0.445 0.277 0.278
mPCR 0.584 0.366 0.050

One clearly sees thatmDS(A ∪ B) gets some mass
from the conflicting mass althoughA ∪ B does not
deserve any part of the conflicting mass (according to
PCR hypothesis) sinceA ∪ B is not involved in the
conflict (onlyA andB are involved in the conflicting
mass). Dempster’s rule appears to us less exact than
PCR and Inagaki’s rules. PCR result is very close to
Inagaki’s result but upon our opinion is more exact.
SACR follows behaviours of DP, Y and DSmH.

5.2 Zadeh’s example

We compare here the solutions for the well-known Zadeh’s
example [33] provided by several fusion rules. A detailed
presentation with more comparisons can be found in [17,
18]. Let us consider the frameΘ = {A, B, C}, the Shafer’s
model and the two following belief assignments :

m1(A) = 0.9 m1(B) = 0 m1(C) = 0.1

m2(A) = 0 m2(B) = 0.9 m2(C) = 0.1

The total conflicting mass is high since it is

m1(A)m2(B) + m1(A)m2(C) + m2(B)m1(C) = 0.99

All fusion rules based on Shafer’s model are used in this
example and the results are presented in the following table

mDS mY mDP mDSmH

C 1 0.01 0.01 0.01
A ∪ B 0 0 0.81 0.81
A ∪ C 0 0 0.09 0.09
B ∪ C 0 0 0.09 0.09
A ∪ B ∪ C 0 0.99 0 0

mIna mSACR mPCR

A 0 0 0.486
B 0 0 0.486
C 1 ≈ 0.0101 0.028
A ∪ B 0 ≈ 0.8099 0
A ∪ C 0 ≈ 0.0900 0
B ∪ C 0 ≈ 0.0900 0

We can see that Dempster’s rule yields the counter-intuitive
result (see justifications in [33, 4, 30, 27, 17]) which reflects
the minority opinion. The Dubois & Prade’s rule (DP) [4]
based on Shafer’s model provides in this Zadeh’s example
the same result as DSmH, because DP and DSmH coincide
in all static fusion problems5. SACR is very close to DP and
DSmH since the conflict is close to 1 and the SACR acts
more like the disjunctive rule (according to the definition
hypothesis). PCR acts more like a mean operator over the
two bbas and is similar to Murphy’s rule [14].

5.3 Target classification example

In this section we study a simple test scenario of target iden-
tification. Several pieces of evidential information coming
from an ESM (Electronic Support Measures) analyzing a
combat scene are sequentially combined at a fusion centre.
The 135 targets to be potentially identified are listed in a
Platform Data Base (PDB), according to 22 features. One of
these features is the emitters on board for each target. Hence
we have,Θ = {θ1, . . . , θ135}.

The following simulation test was randomly generated
considering that the probability of false alarm of the ESM is
0.3, which means that 3 times over 10 the emitter reported
does not belong to the observed target. Objectθ48 is the

5DP rule has been developed for static fusion only while DSmH is more
general since it works for any models as well as for static anddynamic
fusion.



0 20 40 60 80 100 120
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Objects in data−base

B
et

P

Final BetP using DS

0 20 40 60 80 100 120
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

B
et

P

Objects in data−base

Final BetP using DP

0 20 40 60 80 100 120 140
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4
Final BetP using PCR

B
et

P

Objects in data−base
0 20 40 60 80 100 120

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Objects in data−base

Final BetP using SACR

B
et

P

Figure 1: Test scenario of target identification fusion ESM reports with a probability of false alarm of 0.3.

observed object and it is the ground truth. We built two sets
of emitters - the setX having only the emitters ofθ48 and the
setY having emitters used on objects similar toθ48 which
are not inX . Randomly, we choose an emitter fromX 7
times of 10 and fromY 3 times of 10. We generated 25
such emitters (the repetitions were allowed) and each piece
of information was modelled in evidence theory using the
following bba:m0(A) = 0.8 andm0(Θ) = 0.2 whereA is
the subset ofΘ corresponding to the received information (i.
e. each element ofA owns the emitter reported by the ESM).
The successive bbasmt, mt+1 are combined using different
combination rules, and the decision on the most probable
observed target is taken following the maximum of pignistic
probability6 criterion (max BetP) [23].

The final pignistic probabilities obtained using DS, DP,
PCR and SACR after 25 combination steps are shown in Fig-
ure 1. Figure 2 shows a comparative temporal evolution of
the pignistic probability of Singletonθ48 during the fusion
process. In our data base, the difference between objectsθ48

andθ49 is only given by one emitter. Thus, we expect Sin-
gletonθ48 to have a maximum BetP, butθ49 must be pro-
vided as a possible option for the identification. Using all
four decision rules, we identify the Singletonθ48, which is
our ground truth. However, using DS, the final BetP gives
almost all credibility to Singletonθ48 without giving any
chances to other Singletons, which is in opposition with our
expectations. DP, SACR and PCR give to Singletonθ49 a
high probability, which is however smaller than the proba-
bility of Singletonθ48. In the case of PCR, the choice be-
tween Singletonsθ48 andθ49 is made with more difficulty
than in the case of SACR and DP.

6The pignistic probability (BetP) was introduced by Smets in[23]
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Figure 2: Evolution of the pignistic probability of Singleton
θ48 using different combination rules.

6 Conclusion

We discussed here two new and interesting combination rules
for evidence theory: (1) the class of adaptive combination
rules (ACR) with its particular case the symmetric adaptive
combination rule (SACR) and (2) the proportional conflict
redistribution rule (PCR). PCR can also be used in DSm
free model or in any hybrid model. These two new com-
bination rules are able to cope with conflicting information
contrary to the classic Dempster’s rule. Some simple exam-
ples and a target classification example were presented to
show their interest in defense application. Both SACR and
PCR were compared to some classical rules showing their
ability to combine high conflicting information in a new ro-
bust and better way than conventional rules used so far.
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