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Abstract - In this paper we consider and analyze the behav-
ior of two combinational rules for temporal/sequential attribute
data fusion for target type estimation. Our comparative analysis
is based on Dempster’s fusion rule proposed in Dempster-Shafer
Theory (DST) and on the Proportional Conflict Redistribution
rule no. 5 (PCR5) recently proposed in Dezert-Smarandache
Theory (DSmT). We show through very simple scenario and
Monte-Carlo simulation, how PCR5 allows a very efficient Tar-
get Type Tracking and reduces drastically the latency delayfor
correct Target Type decision with respect to Demspter’s rule. For
cases presenting some short Target Type switches, Demspter’s
rule is proved to be unable to detect the switches and thus to
track correctly the Target Type changes. The approach proposed
here is totally new, efficient and promising to be incorporated in
real-time Generalized Data Association - Multi Target Tracking
systems (GDA-MTT) and provides an important result on the
behavior of PCR5 with respect to Dempster’s rule. The MatLab
source code is also provided in the paper.

Keywords: Target Type Tracking, Dezert-Smarandache Theory,
DSmT, PCR5 rule, Demspter’s rule.

1 Introduction

The main purpose of information fusion is to produce
reasonably aggregated, refined and/or complete granule
of data obtained from a single or multiple sources with
consequent reasoning process, consisting in using evidence
to choose the best hypothesis, supported by it. Data
Association (DA) with its main goal to partitioning ob-
servations into available tracks becomes a key function of
any surveillance system. An issue to improve track main-
tenance performances of modern Multi Target Trackers
(MTT) [1, 2], is to incorporate Generalized Data1 Asso-
ciation (GDA) in tracking algorithms [15]. At each time

∗This work is partially supported by the Bulgarian National
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1Data being kinematics and attribute.

step, GDA consists in associating current (attribute and
kinematics) measurements with predicted measurements
(attributes and kinematics) for each target. GDA can be
actually decomposed into two parts [15]: Attribute-based
Data Association (ADA) and Kinematics-based Data
Association (KDA). Once ADA is obtained, the estimation
of the attribute/type of each target must be updated using a
proper and an efficient fusion rule. This process is called
attribute trackingand consists in combining information
collected over time from one (or more) sensor to refine
the knowledge about the possible changes of the attributes
of the targets. We consider here the possibility that the
attributes tracked by the system can change over time, like
the color of a chameleon moving in a variable environment.
In some military applications, target attribute can change
since for example it can be declared as neutral at a given
scan and can become a foe several scans later; or like in
the example considered in this paper, a tracker can become
mistaken when tracking several closely-spaced targets and
thus could eventuallytrack sequentially different targets
observing that way a true sequence of different types of
targets. In such case, although the attribute of each target
is invariant over time, at the attribute-tracking level the
type of the target committed to the (hidden unresolved)
track varies with time and must be tracked efficiently
to help to discriminate how many different targets are
hidden in the same unresolved track. Our motivation for
attribute fusion is inspired from the necessity to ascertain
the targets’ types, information, that in consequence has an
important implication to enhance the tracking performance.
Combination rules are special types of the aggregation
methods. To be useful, one system has to provide a way to
capture, analyze and utilize through the fusion process the
new available data (evidence) in order to update the current
state of knowledge about the problem under consideration.

Dempster-Shafer Theory (DST) [9] is one of the widely
framework used in the area of target tracking when one
wants to deal with uncertain information and take into
account attribute data and/or human-based information



into modern tracking systems. DST, thanks to belief
functions, is well suited for representing uncertainty and
combining information, especially in case of low conflicts
between the sources (bodies of evidence) with high beliefs.
When the conflict increases2 and becomes very high (close
to 1), Dempster’s rule yields unfortunately unexpected
or what authors feel counter-intuitive results [16, 10].
Dempster’s rule also presents difficulties in its implemen-
tation/programming because of unavoidable numerical
rounding errors due to the finite precision arithmetic of our
computers.

To overcome the drawbacks of Dempster’s fusion rule
and in the meantime extend the domain of application
of the belief functions, we have proposed recently a new
mathematical framework, called Dezert-Smarandache
Theory (DSmT) with a new set of combination rules,
among them the Proportional Conflict Redistribution no.
5 which proposes a sophisticated and efficient solution
for information fusion as it will be showed further. The
basic idea of DSmT is to work on Dedekind’s lattice
(called Hyper-Power Set) rather than on the classical power
set of the frame as proposed in DST and, when needed,
DSmT can also take into account the integrity constraints
on elements of the frame, constraints which can also
sometimes change over time with new knowledge. Hence
DSmT deals with uncertain, imprecise and high conflicting
information for static and dynamic fusion as well [10, 3, 4].

In the next section we present briefly the basics of DST
and DSmT. We recall the principles of Dempster’s and
PCR5 fusion rules. In section 3, we present the Target Type
Tracking problem and examine two solutions to solve it;
first solution being based on Dempster’s rule and the sec-
ond one based on PCR5. In section 4, we evaluate both so-
lutions on a very simple academic but checkable3 example
and provide a comparative analysis on Target Type Track-
ing performances obtained by Dempster’s rule and PCR5.
Concluding remarks are given in section 5.

2 Basics on DST and DSmT

Shafer’s model, denoted hereM0(Θ), in DST [9] consid-
ersΘ = {θ1, . . . , θn} as a finite set ofn exhaustive and
exclusive elements representing the possible states of the
world, i.e. solutions of the problem under consideration.
Θ is called theframe of discernmentby Shafer. In DSmT
framework [10], one starts with the free DSm model
Mf (Θ) whereΘ = {θ1, . . . , θn} (called simply frame) is
only assumed to be a finite set ofn exhaustive elements4.
If one includes some integrity constraints inMf (Θ), say
by consideringθ1 andθ2 truly exclusive (i.e.θ1 ∩ θ2 = ∅),
then the model is saidhybrid. When we include all
exclusivity constraints on elements ofΘ, Mf (Θ) reduces

2Which often occurs in Target Type Tracking problem as it will
be showed in the sequel.

3Our MatLab source code is provided in appendix to help the
reader to check by him/herself the validity of our results.

4The exclusivity assumption is not fundamental in DSmT be-
cause one wants to deal with elements which cannot be refined
into precise finer exclusive elements - see [10] for discussion.

to Shafer’s modelM0(Θ) which can be viewed actually
as a particular case of DSm hybrid model. Between the
free-DSm model and the Shafer’s model, there exists a
wide class of fusion problems represented in term of DSm
hybrid models whereΘ involves both fuzzy continuous
hypothesis and discrete hypothesis.

Based onΘ and Shafer’s model, thepower setof Θ,
denoted2Θ, is defined as follows:

1) ∅, θ1, . . . , θn ∈ 2Θ.

2) If X, Y ∈ 2Θ, thenX ∪ Y belong to2Θ.

3) No other elements belong to2Θ, except those obtained
by using rules 1) or 2).

In DSmT and without additional assumption onΘ but
the exhaustivity of its elements (which is not a crucial as-
sumption), we define thehyper-power set, i.e. Dedekind’s
lattice,DΘ as follows:

1’) ∅, θ1, . . . , θn ∈ DΘ.

2’) If X, Y ∈ DΘ, thenX ∩ Y andX ∪ Y belong toDΘ.

3’) No other elements belong toDΘ, except those ob-
tained by using rules 1’) or 2’).

When Shafer’s modelM0(Θ) holds, DΘ reduces to
the classical power set2Θ. Without loss of generality,
we denotesGΘ the general set on which will be defined
the basic belief assignments (or masses), i.e.GΘ = 2Θ

if Shafer’s model is adopted whereasGΘ = DΘ if some
other (free or hybrid) DSm models are preferred depending
on the nature of the problem.

From a frameΘ, we define a (general) basic belief as-
signment (bba) as a mappingm(.) : GΘ → [0, 1] associated
to a given source, says, of evidence as

ms(∅) = 0 and
∑

X∈GΘ

ms(X) = 1 (1)

ms(X) is the gbba ofX committed by the sources. The
elements ofG having a strictly positive mass are called
focal elementsof sources. The setF of all focal elements
is thecore(or kernel) of the belief function of the sources.

The belief and plausibility of any propositionX ∈ GΘ

are defined5 as:

Bel(X) ,
∑

Y ⊆X

Y ∈GΘ

m(Y ) and Pl(X) ,
∑

Y ∩X 6=∅
Y ∈GΘ

m(Y ) (2)

These definitions remain compatible with the classical
Bel(.) and Pl(.) functions proposed by Shafer in [9]
whenever Shafer’s model is adopted for the problem under
consideration sinceGΘ reduces to2Θ.

A wide variety of rules exists for combining basic be-
lief assignments [8, 11, 14] and the purpose of this pa-
per is not to browse and compare all these rules, but only

5The index of the source has been omitted for simplicity.



show that the two main rules used with DST and DSmT
approaches so far perform very differently on a very sim-
ple Target Type Tracking example. Let’s now present the
major differences between the two theories for combin-
ing sources of evidences. In DST framework, the fusion
rule proposed by Glenn Shafer for combining several inde-
pendent6 source of evidences is Demspter’s rule, while in
DSmT, several rule have been proposed; mainly the DSm
Hybrid rule, denoted (DSmH) which is a direct extension
of Dubois & Prade’s rule of combination [6] for working on
DΘ with dynamic fusion, and the recent and attractive Pro-
portional Conflict Redistribution rule no. 5 (PCR5) [12].
The DSm Hybrid rule consists just in transferring the par-
tial conflicts onto the partial ignorances7, while as it will be
seen, PCR5 redistributes the partial conflicting mass only
to the elements involved in that partial conflict and propor-
tionally with respect to the masses each element put in the
partial conflict considering the conjunctive normal form of
the partial conflict. No matter if the conflicting mass is big
or small, PCR5 mathematically does a better redistribution
of the conflicting mass than Dempster’s rule and other rules
since PCR5 goes backwards on the tracks of the conjunc-
tive rule. For this reason, we only consider the PCR5 fu-
sion rule in our comparative analysis with Dempster’s rule.
Both rules (Dempster’s and PCR5) are mainly based on the
conjunctive consensus operator defined for two-source case
(which can be directly generalized forN > 2 sources) by:

m12(X) =
∑

X1,X2∈GΘ

X1∩X2=X

m1(X1)m2(X2) (3)

Thedegree of conflict(total conflict) between two sources
represented bym1(.) andm2(.) is defined by

k12 =
∑

X1,X2∈GΘ

X1∩X2=∅

m1(X1)m2(X2) (4)

The total conflictk12 is thus nothing but the sum of all
partial conflicts. Ifk12 is close to0, the bbasm1(.) and
m2(.) are almost not in conflict, while ifk12 becomes close
to 1, the two sources are almost in total conflict.

From now on, we assume (without loss of generality)
in the following presentation that the sources of evidence
are equally reliable, otherwise a discounting preprocessing
has to be applied first to each source according classical
discounting method proposed in [9].

2.1 Dempster’s combination rule

Dempster’s rule has been proposed by Shafer in his Math-
ematical Theory of Evidence, usually referred also as
Dempster-Shafer Theory [9] to combine sources of evi-
dence. Because the Shafer’s model is used in DST,GΘ =

6While independence is a difficult concept to define in all theo-
ries managing epistemic uncertainty, we consider that two sources
of evidence are independent (i.e. distinct and non-interacting) if
each leaves one totally ignorant about the particular valuethe other
will take.

7Partial ignorance being the disjunction of elements involved
in the partial conflicts.

2Θ. Dempster’s combination rule for two sources is defined
by mD(∅) , 0 and∀X ∈ 2Θ \ {∅} by

mD(X) =
1

1 − k12
m12(X) (5)

wherem12(X) andk12 are respectively defined by (3) and
(4). Dempster’s rule can be directly extended for the com-
bination ofN independent and equally reliable sources of
evidence and its major interest comes essentially from its
commutativity and associativity properties [9]. Dempster’s
rule corresponds to the normalized conjunctive rule by uni-
formly reassigning the mass of total conflict onto all focal
elements through the conjunctive operator. From theoreti-
cal point of view, Dempster’s rule cannot be used only when
k12 = 1 because only in that case the division by zero oc-
curs (which is mathematically not defined). From a practi-
cal point of view however, Dempster’s rule is also difficult
to use as soon as the conflict becomes very high (very close
to one as in our applications) because the division by a very
small number with finite precision processors yields round-
ing errors which can provide very instable/unexpected re-
sults.

2.2 PCR5 combination rule

Instead of distributing equally the total conflicting mass
onto elements of2Θ as within Dempster’s rule through
the normalization step, or transferring the partial conflicts
onto partial uncertainties as within DSmH rule, the idea be-
hind the Proportional Conflict Redistribution rules [12] is
to transfer conflicting masses (total or partial) proportion-
ally to non-empty sets involved in the model according to
all integrity constraints. The general principle of PCR rules
is then to :

1. calculate the conjunctive rule of the belief masses of
sources ;

2. calculate the total or partial conflicting masses ;

3. redistribute the conflicting mass (total or partial) pro-
portionally on non-empty sets involved in the model
according to all integrity constraints.

The way the conflicting mass is redistributed yields actually
to several versions of PCR rules [12]. These PCR fusion
rules work for any degree of conflict in[0, 1], for any DSm
models (Shafer’s model, free DSm model or any hybrid
DSm model) and both in DST and DSmT frameworks
for static or dynamical fusion problems. We just now
present only the most sophisticated proportional conflict
redistribution rule no. 5 (PCR5) since this rule is what we
feel the most efficient PCR fusion rule proposed8 so far.

8A new PCR6 rule has been developed very recently by Martin
and Osswald [7] but will not be presented and discussed here since
it coincides with PCR5 for the two-source case in our application.



The PCR5 combination rule for only two sources9 is de-
fined by [12]:mPCR5(∅) = 0 and∀X ∈ GΘ \ {∅}

mPCR5(X) = m12(X)+

∑

Y ∈GΘ\{X}
c(X∩Y )=∅

[
m1(X)2m2(Y )

m1(X) + m2(Y )
+

m2(X)2m1(Y )

m2(X) + m1(Y )
] (6)

wherem12(X) corresponds to the conjunctive consensus
on X between the two sources and where all denomi-
nators are different from zero andc(X) is the canonical
form10 of X , i.e. its simplest form (for example if
X = (A ∩ B) ∩ (A ∪ B ∪ C), c(X) = A ∩ B). If a
denominator is zero, that fraction is discarded.

No matter how big or small is the conflicting mass,
PCR5 mathematically does a better redistribution of the
conflicting mass than Dempster’s rule and other rules since
PCR5 goes backwards on the tracks of the conjunctive
rule and redistributes the partial conflicting masses only to
the sets involved in the conflict and proportionally to their
masses put in the conflict, considering the conjunctive nor-
mal form of the partial conflict. PCR5 is quasi-associative
and preserves the neutral impact of the vacuous belief
assignment.

In short summary, the main differences between DST
and DSmT are (1) the model on which one works with, and
(2) the choice of the combination rule.

3 The Target Type Tracking Problem

3.1 Formulation of the problem

The Target Type Tracking Problem can be simply stated as
follows:

• Let k = 1, 2, ..., kmax be the time index and consider
M possible target typesTi ∈ Θ = {θ1, . . . , θM} in the
environment; for exampleΘ = {Fighter, Cargo}
and T1 , Fighter, T2 , Cargo; or Θ =
{Friend, Foe, Neutral}, etc.

• at each instantk, a target of true typeT (k) ∈ Θ
(not necessarily the same target) is observed by an
attribute-sensor (we assume a perfect target detection
probability here).

• the attribute measurement of the sensor (say noisy
Radar Cross Section for example) is then processed
through a classifier which provides a decisionTd(k)
on the type of the observed target at each instantk.

9A general expression of PCR5 for an arbitrary number (s >

2) of sources can be found in [4].
10The canonical form is introduced here explicitly in order to

improve the original formula given in [10] for preserving the neu-
tral impact of the vacuous belief massm(Θ) = 1 within com-
plex hybrid models. Actually all propositions involved in formu-
las are expressed in their canonical form, i.e. conjunctivenormal
form, also known as conjunction of disjunctions in Boolean alge-
bra, which is unique.

• The sensor is in general not totally reliable and is char-
acterized by aM × M confusion matrix

C = [cij = P (Td = Tj |TrueTargetT ype = Ti)]

Question: How to estimateT (k) from the sequence
of declarations done by the unreliable classifier up to
time k, i.e. how to build an estimatorT̂ (k) =
f(Td(1), Td(2), . . . , Td(k)) of T (k) ?

3.2 Proposed issues

We propose in this work two methods for solving the
Target Type Tracking Problem. Both methods assume
same Shafer’s model for the frame of Target TypesΘ and
also use the same information (vacuous belief assignment
as prior belief and same sequence ofmeasurements, i.e.
same set of classifier declarations to get a fair comparative
analysis). The proposed issues are based on the combina-
tion of belief functions.

The principle of our estimators is based on the sequen-
tial combination of the current basic belief assignment
(drawn from classifier decision, i.e. ourmeasurements)
with the prior bba estimated up to current time from all past
classifier declarations. In the first approach, the Demspter’s
rule is used for estimating the current Target type, while in
the second approach we use PCR5.

Here is how our Target Type Tracker (TTT) works:

• a) Initialization step (i.e.k = 0). Select the target type
frameΘ = {θ1, . . . , θM} and set the prior bbam−(.)
as vacuous belief assignment, i.em−(θ1∪. . .∪θM ) =
1 since one has no information about the first target
type that will be observed.

• b) Generation of the current bbamobs(.) from
the current classifier declarationTd(k) based on
attribute measurement. At this step, one takes
mobs(Td(k)) = cTd(k)Td(k) and all the unassigned
mass1−mobs(Td(k)) is then committed to total igno-
ranceθ1 ∪ . . . ∪ θM .

• c) Combination of current bbamobs(.) with prior bba
m−(.) to get the estimation of the current bbam(.).
Symbolically we will write the generic fusion opera-
tor as⊕, so thatm(.) = [mobs ⊕ m−](.) = [m− ⊕
mobs](.). The combination⊕ is done according either
Demspter’s rule (i.e.m(.) = mD(.)) or PCR5 rule
(i.e. m(.) = mPCR5(.)).

• d) Estimation of True Target Type is obtained from
m(.) by taking the singleton ofΘ, i.e. a Target Type,
having the maximum of belief (or eventually the max-
imum Pignistic Probability11 [10]).

• e) setm−(.) = m(.); do k = k + 1 and go back to
step b).

11We don’t provide here the results based on Pignistic Probabil-
ities since in our simulations the conclusions are unchanged when
working with max. of belief or max. of Pign. Proba.



4 Simulations results

In order to evaluate the performances of both estimators
and have a fair comparative analysis of the Dempster’s and
PCR5 fusion rules, we did a set of Monte-Carlo simulations
on a very simple scenario for a 2D Target Type frame, i.e.
Θ = {(F )ighter, (C)argo} for two classifiers, a good one
C1 and a poor oneC2 corresponding to the following con-
fusion matrices:

C1 =

[

0.95 0.05
0.05 0.95

]

and C2 =

[

0.75 0.25
0.25 0.75

]

In our scenario we consider that there are two closely-
spaced targets: one cargo and one fighter. Due to circum-
stances, attribute measurements received are predominately
from one or another, and both target generates actually one
single (unresolved kinematics) track. In the real world, the
tracking system should in this case maintain two separate
tracks: one for cargo and one for fighter, and based on the
classification, allocate the measurement to the proper track.
But in difficult scenario like this one, there is no way in ad-
vance to know the true number of targets because they are
unresolved and that’s why only a single track is maintained.
Of course, the single track can further be split into two sep-
arate tracks as soon as two different targets are declared
based on the attribute tracking. This is not the purpose of
our work however since we only want to examine how work
PCR5 and Dempster’s rules for Target Type Tracking. To
simulate such scenario, a true Target Type sequence over
120 scans was generated according figure 1 below. The se-
quence starts with the observation of a Cargo Type (i.e. we
call it Type 2) and then the observation of the Target Type
switches three times onto Fighter Type (we call it Type 1)
during different time duration (20 s, 10 s and 5 s). As a
simple analogy, tracking the target type changes committed
to the same (hidden unresolved) track can be interpreted as
tracking color changes of a chameleon moving in a tree on
its leaves and on its trunk.

10 20 30 40 50 60 70 80 90 100 110 120
0.5

1

1.5

2

2.5
Sequence of True Target Type

Scan number

T
ar

ge
t T

yp
e:

 1
=

F
ig

ht
er

, 2
=

C
ar

go

Fig. 1: Sequence of True Target Type (Groundthruth)

Our simulation consists in 1000 Monte-Carlo runs and
we compute and show in the sequel the averaged perfor-
mances of the two fusion rules. At each time stepk the de-
cisionTd(k) is randomly generated according to the corre-
sponding row of the confusion matrix of the classifier given

the true Target Type (known in simulations). Then the al-
gorithm presented in the previous section is applied. The
MatLab source code of our simulation is provided in ap-
pendix for convenience.

4.1 Results for classifier 1

Figures 2 and 3 show the belief masses obtained by our
Target Type Trackers based on Demspter’s rule (red curves
-x-) and PCR5 rule (blue curves -o-). It can be seen that
the TTT based on Dempster’s rule and for a very good
classifier is unable to track properly the quick changes
of target type. This phenomenon is due to the too long
integration time necessary to the Demspter’s rule for
recover true belief estimation.

Demspter’s rule presents a very long latency delay
(about 18 s as we can see during the first type switch) when
almost all the basic belief mass is committed onto only one
element of the frame. PCR5 rule can quickly detect the type
changes and properly re-estimates the belief masses con-
trariwise to Dempster’s rule. So in this configuration the
TTT based on Demspter’s rule works almost blindly since
it is unable to detect the fighter in most of scans where the
true target type is a Fighter. Figures 2 and 3 show clearly
the efficiency of PCR5 rule with respect to Demspter’s rule.
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Fig. 2: Belief mass for Cargo Type forC1

4.2 Results for classifier 2

Figures 4 and 5 show the belief masses obtained by our TTT
based on Demspter’s rule (red curves) and PCR5 rule (blue
curves) with classifier 2. Paradoxically, we can observe that
the Demspter’s rule seems to work better with a poor clas-
sifier than with a good one, because we can see from the
red curves that Dempster’s rule in that case produces small
change detection peaks (with always an important latency
delay although). This phenomenon is actually not so sur-
prising and comes from the fact that the belief mass of the
true type has not well been estimated by Dempster’s rule
(since the mass is not so close to its extreme value) and
thus the bad estimation of Target Type facilitates the abil-
ity of Dempster’s rule to react to new incoming informa-
tion and detect changes. When from Demspter’s rule, one
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obtains an over-confidence onto only one focal element of
the power-set, it then becomes very difficult for the Demp-
ster’s rule to readapt automatically, efficiently and quickly
to any changes of the state of the nature which varies with
the time and this behavior is very easy to check either an-
alytically or through simple simulations. The major reason
for this unsatisfactory behavior of Dempster’s rule can be
explained with its main weakness: counterintuitive averag-
ing of strongly biased evidence, which in the case of poor
classifier is not valid. We can see the ability of PCR5 to
track Target Type and detect the short Type changes even
when using a poor classifier. More examples with sensitiv-
ity analysis including results for other fusion rules can be
found n [5].
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5 Conclusions

Two Target Type Trackers (TTT) have been proposed and
compared in this paper. Our trackers are based on two com-
binational rules for temporal attribute data fusion for target
type estimation: 1) Dempster’s rule drawn from Dempster-
Shafer Theory (DST) and 2) PCR5 rule drawn from Dezert-
Smarandache Theory (DSmT). Our comparative analysis
shows through a very simple scenario and Monte-Carlo
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Fig. 5: Sequence of beliefs for Fighter Type forC2

simulation that PCR5 allows a very efficient Target Type
Tracking, reducing drastically the latency delay for correct
Target Type decision, while Dempster’s rule demonstrates
risky behavior, keeping indifference to the detected target
type changes. The temporal fusion process utilizes the new
knowledge in an incremental manner and hides the possi-
bility for arising bigger conflicts between the new coming
and the previous updated evidence. Dempster’s rule cannot
detect quickly and efficiently target type changes, and thus
to track them correctly. It hides the risk to produce counter-
intuitive and non adequate results. Our PCR5-based Tar-
get Type Tracker is totally new, efficient and promising to
be incorporated in real-time Generalized Data Association
- Multi Target Tracking systems (GDA-MTT). It provides
an important result on the behavior of PCR5 with respect to
Dempster’s rule.
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Appendix: MatLab TM source code for Target Type Tracker
% T arge t Type T racke r : ( c ) J . Dezer t , 2006
c l o s e a l l ; c l e a r a l l ; c l c ;
RandSeed =2006;rand ( ’ s t a t e ’ , RandSeed ) ;% Cte seed
% RandSeed=sum (100∗ c l o c k ) ; rand ( ’ s t a t e ’ , RandSeed ) ;
NMC=1000; % Number o f Monte−Carlo runs
%CM=[0.95 0 . 0 5 ; 0 . 0 5 0 . 9 5 ] ; % C l a s s i f i e r 1
CM=[0 .75 0 . 2 5 ; 0 . 2 5 0 . 7 5 ] ; % C l a s s i f i e r 2
% True T arge t Type sequence ( Type1=F igh te r , Type2=Cargo )
kmax=120; TargetType ( 1 : kmax ) = 2 ; TargetType ( 2 1 : 4 0 ) = 1 ;
TargetType ( 6 1 : 7 0 ) = 1 ; TargetType ( 9 1 : 9 5 ) = 1 ;
MCmDSF=ze ros( 1 , kmax ) ;MCmDSC=ze ros( 1 , kmax ) ;
MCmPCR5F=ze ros( 1 , kmax ) ; MCmPCR5C=ze ros( 1 , kmax ) ;
f o r r un no =1:NMC
mHDS= [ 0 . 0 0 .0 1 . 0 ] ; mHPCR5=mHDS;
mDS F=ze ros( 1 , kmax ) ; mDSC=ze ros( 1 , kmax ) ;
mPCR5F=ze ros( 1 , kmax ) ; mPCR5C=ze ros( 1 , kmax ) ;
f o r k =1:kmax ; % Loop on scans

i f ( rand<=CM( TargetType ( k ) , TargetType ( k ) ) )
s w i t c h TargetType ( k ) , case 1 ,m=[CM( 1 , 1 ) 0 .0 CM( 1 , 2 ) ] ; case 2 ,m= [ 0 . 0 CM( 2 , 2 ) CM( 2 , 1 ) ] ;end
e l s e
s w i t c h TargetType ( k ) , case 1 ,m= [ 0 . 0 CM( 2 , 2 ) CM( 2 , 1 ) ] ; case 2 ,m=[CM( 1 , 1 ) 0 .0 CM( 1 , 2 ) ] ;end
end

% Demspter ’ s Fus ion Rule
NF1=mHDS( 1 )∗m(1)+mHDS( 1 )∗m(3)+mHDS( 3 )∗m( 1 ) ;
NF=NF1+mHDS( 2 )∗m(2)+mHDS( 2 )∗m(3)+mHDS( 3 )∗m(2)+mHDS( 3 )∗m( 3 ) ;
mDS( 1 ) = (mHDS( 1 )∗m(1)+mHDS( 1 )∗m(3)+mHDS( 3 )∗m( 1 ) ) / NF ;
mDS( 2 ) = (mHDS( 2 )∗m(2)+mHDS( 2 )∗m(3)+mHDS( 3 )∗m( 2 ) ) / NF ;
mDS( 3 ) = (mHDS( 3 )∗m( 3 ) ) / NF;

% PCR5 Fus ion Rule
PCM1=mHPCR5( 1 )∗m( 2 ) ; x1 =0; y1 =0;
i f (PCM1>0.0) , x1=mHPCR5( 1 )∗ ( PCM1 / ( mHPCR5(1 )+m( 2 ) ) ) ; y1=m( 2 )∗ (PCM1 / ( mHPCR5(1 )+m( 2 ) ) ) ;end
PCM2=mHPCR5( 2 )∗m( 1 ) ; x2 =0; y2 =0;
i f (PCM2>0.0) , x2=mHPCR5( 2 )∗ ( PCM2 / ( mHPCR5(2 )+m( 1 ) ) ) ; y2=m( 1 )∗ (PCM2 / ( mHPCR5(2 )+m( 1 ) ) ) ;end
mPCR5( 1 ) = (mHPCR5( 1 )∗m(1)+mHPCR5( 1 )∗m(3)+mHPCR5( 3 )∗m( 1 ) ) + x1+y2 ;
mPCR5( 2 ) = (mHPCR5( 2 )∗m(2)+mHPCR5( 2 )∗m(3)+mHPCR5( 3 )∗m( 2 ) ) + y1+x2 ;
mPCR5(3 )=mHPCR5( 3 )∗m( 3 ) ;
mDS F( k )=mDS ( 1 ) ; mDSC( k )=mDS ( 2 ) ; % Storage o f r e s u l t
mPCR5F ( k )=mPCR5 ( 1 ) ; mPCR5C( k )=mPCR5 ( 2 ) ; % Storage o f r e s u l t
mHDS=mDS;mHPCR5=mPCR5;% Propaga t i on f o r t h e n e x t scan

end ; % o f scan loop
MCmDSF=MCmDSF+mDS F ;MCmDSC=MCmDSC+mDSC ;
MCmPCR5F=MCmPCR5F+mPCR5F ;MCmPCR5C=MCmPCR5C+mPCR5C ;
end ; % o f Monte Car lo runs
MCmDSF=MCmDSF/NMC;MCmDSC=MCmDSC/NMC;
MCmPCR5F=MCmPCR5F /NMC;MCmPCR5C=MCmPCR5C/NMC;% P l o t t i n g S i m u l a t i o n r e s u l t s
f i g u r e ( 1 )
p l o t ( [ 1 : kmax ] , TargetType−1, ’−∗k ’ , [ 1 : kmax ] ,MCmDSC, ’−xr ’ , [ 1 : kmax ] ,MCmPCR5C, ’−ob ’ )
l egend( ’ G round t ru th ’ , ’ Demspter ’ ’ s r u l e ’ , ’PCR5 r u l e ’ )
t i t l e ( ’ E s t i m a t i o n of b e l i e f ass i gnment f o r Cargo Type ’ )
x l a b e l ( ’ Scan number ’ ) ;y l a b e l ( ’m(C) ’ ) , pause, p r i n t −depsc2 Cargo
f i g u r e ( 2 )
p l o t ( [ 1 : kmax] ,2− TargetType , ’−∗k ’ , [ 1 : kmax ] ,MCmDSF, ’−xr ’ , [ 1 : kmax ] ,MCmPCR5F , ’−ob ’ )
l egend( ’ G round t ru th ’ , ’ Demspter ’ ’ s r u l e ’ , ’PCR5 r u l e ’ )
t i t l e ( ’ E s t i m a t i o n of b e l i e f ass i gnment f o r F i g h t e r Type ’ )
x l a b e l ( ’ Scan number ’ ) ;y l a b e l ( ’m( F ) ’ ) , pause, p r i n t −depsc2 F i g h t e r
f i g u r e ( 3 ) , p l o t ( [ 1 : kmax ] , TargetType , ’−∗k ’ )
t i t l e ( ’ Sequence of True T a r g e t Type ’ )
x l a b e l ( ’ Scan number ’ ) ;y l a b e l ( ’ T a r g e t Type : 1= F i g h t e r , 2= Cargo ’ ) ;a x i s ( [ 1 kmax 0 .5 2 . 5 ] )
p r i n t −depsc2 S c e n a r i o


