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Abstract – The main objective of this paper is to 

investigate the impact of the quality of attribute data 

source on the performance of a target tracking 

algorithm. An array of dense scenarios arranged 

according to the distance between closely spaced targets 

is studied by different confusion matrices. The used 

algorithm is Generalized Data Association (GDA-MTT) 

algorithm for multiple target tracking processing 

kinematic as well as attribute data. The fusion rule for 

attribute data is based on Dezert-Smarandache Theory 

(DSmT). Besides the main goal a comparison is made 

between the cited above algorithm and an algorithm with 

Kinematic based only Data Association (KDA-MTT). 

The measures of performance are evaluated using 

intensive Monte Carlo simulation.  

Keywords: Tracking, data association, estimation, 

Dezert-Smarandache Theory (DSmT), fusion rules. 

 

 1 Introduction  
 

Target tracking of closely spaced targets is a challenging 

problem. The kinematic information is often insufficient 

to make correct decision which observation to be 

associated to some existing track. A new approach 

presented in [16] describes Generalized Data Association 

(GDA) algorithm incorporating attribute information. The 

presented results are encouraging, but it is important to 

study the algorithm performance for more complex 

scenarios with more maneuvering targets and different 

levels of quality of attribute data source. It is important to 

know the level of quality of the used attribute detection to 

assure robust target tracking in critical, highly conflicting 

situations. The goal of this paper is by using Monte Carlo 

simulation to determine the sufficient level of quality of 

attribute measurements that for given standard deviations 

of the kinematic measurements (in our case azimuth and 

distance) to assure allowable miscorrelations. 

2 Problem formulation 
 

Classical target tracking algorithms consist mainly of two 

basic steps: data association to associate proper 

measurements (usually kinematic measurement  kz ) 

representing either position, distance, angle, velocity, 

accelerations etc.) with correct targets; track filtering to 

estimates and predict the state of targets once data 

association has been performed. The first step is very 

important for the quality of tracking performance since its 

goal is to associate correctly observations to existing 

tracks. The data association problem is very difficult to 

solve in dense multitarget and cluttered environment. To 

eliminate unlikely (kinematic-based) observation-to-track 

pairings, the classical validation test [3,7] is carried on the 

Mahalanobis distance  

,)()()( 1'2    kSkkd jjj      (1) 

where 

)()(ˆ)( kzkzk jj   is the difference 

between  the predicted position )(ˆ kz  and the thj   

validated measurement )(kz j
, S  is the innovation 

covariance matrix,   is a threshold constant defined from 

the table of the chi-square distribution [3]. Once all the 

validated measurements have been defined for the 

surveillance region, a clustering procedure defines the 

clusters of the tracks with shared observations. Further the 

decision about observation-to-track associations within the 

given cluster with n  existed tracks and m  received 

measurements is considered. The Converted Measurement 

Kalman Filter (CMKF) [5] coupled with a classical 

Interacting Multiple Model (IMM) for maneuvering target 

tracking is used to update the targets’ state vectors. In the 

CMKF algorithm the classical linearized conversion is 

used as the value of validation indicator for unbiased 

filtering, proposed in [11] 

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 is less than 0.01 

in our scenario. The GDA-MTT improves data association 

process by adding attribute measurements (like amplitude 

information or RCS (radar cross section) [#16-7] ), or 

eventually as in [6], target type decision coupled with 

confusion matrix to classical kinematic measurements to 

increase the performance of the MTT system. When 

attribute data is available, the generalized (kinematic and 

attribute) likelihood ratios are used to improve the 

assignment. The GNN approach is used in order to make a 
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decision for data association on integral criterion base. 

The used GDA approach consists in choosing a set of 

assignments  ij  for n ,  1,  i   and  m,1,  j  , 

that assures maximum of the total generalized likelihood 

ratio sum by solving the classical assignment problem 

 amin
n

1

m

1j ij  i ij , 

where  

  jiLRgen ,logaij   

with   

     jiLRjiLRjiLR akgen ,,,  , 

 where  jiLRk ,  and  jiLRa ,  are kinematic and attribute 

likelihood ratios respectively, and 
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Or, when the assignment matrix ][ ijaA   is constructed its 

elements ija  take the following values [12]:  
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The solution of the assignment matrix is the one that 

minimizes the sum of the chosen elements. We solve the 

assignment problem by realizing the extension of Munkres 

algorithm, given in [9]. As a result one obtains the optimal 

measurements to tracks association. Once the optimal 

assignment is found, i.e. the correct association is 

available, then standard tracking filter is used depending 

on the dynamics of the tracking targets.  

 

2.1 Kinematic Likelihood Ratios for GDA 
 

The kinematic likelihood ratios  jiLRk ,  involved into ija  

are easy to obtain because they are based on the classical 

statistical models for spatial distribution of false alarms 

and for correct measurements [5].  jiLRk ,  is evaluated 

as:               falsetruek LFjiLFjiLR /,,  , 

 where 
trueLF  is the likelihood function that the 

measurement j  originates from a target (track) i  and 

falseLF  is the likelihood function that the measurement j  

originates from a false alarm. At any given time k , 
trueLF  

is defined as 

   kLFkLF
r

l lltrue  


1
 , 

 where r  is the number of the models (in our case of two 

nested models r  = 2 are used for CMKF-IMM,  kl  is 

the probability (weight) of the model l  for the scan k , 

 kLFl
 is the likelihood function that the measurement j  

originates from target (track) i  according to the model l , 

i.e.  
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falseLF  is defined as 
cfafalse VPLF / , where faP  is the 

false alarm probability and cV  is the resolution cell 

volume chosen as in [6] as  


zn

i iic RV
1

12 . In our 

case, 2nz   is the measurement vector size and iiR  are 

sensor error standard deviations for azimuth   and 

distance D  measurements. 

 

2.2.Attribute Likelihood Ratios for GDA 

 
The major difficulty to implement GDA-MTT depends on 

the correct derivation of coefficients ija , and more 

specifically the attribute likelihood ratios  jiLRa ,  for 

correct association between measurement j  and target i  

based only on attribute information. When attribute data 

are available and their quality is sufficient, the attribute 

likelihood ratio helps a lot to improve MTT performance. 

In our case, the target type information is utilized from 

RCS attribute measurement through fuzzification 

interface. A particular confusion matrix is constructed to 

model the sensor’s classification capability. 

The approach for deriving  jiLRa ,  within DSmT 

[10,14,15] is based on relative variations of pignistic 

probabilities [15] for the target type hypotheses, jH  (j=1 

for Fighter, j=2 for Cargo), included in the frame 2  

conditioned by the correct assignment. These pignistic 

probabilities are derived after the fusion between the 

generalized basic belief assignments of the track’s old 

attribute state history and the new attribute/ID observation, 

obtained within the particular fusion rule. It is proven that 

this approach outperforms most of the well known ones 

for attribute data association. It is defined as : 
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i.e.  ii TZP  ˆ|*  is obtained by forcing the attribute 

observation mass vector to be the same as the attribute 

mass vector of the considered real target, i.e. 

   ..
iTZ mm  . The decision for the right association relies 

on the minimum of expression (3). Because the 

generalized likelihood ratio genRL  is looking for the 

maximum value, the final form of the attribute likelihood 

ratio is defined to be inverse proportional to the  *Pi  

with i defining the number of the track, i.e. 

   *

ia P/1j,iLR 
. 
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3 Numerical experiments’ frame and 

results 
 

3.1 Experiments’ frame 
 

For the experiments we use an extension of the program 

packet TTLab [13], written in MatLab. This extension 

takes into account the attribute information. A program-

human interface facilitates the changing of the design 

parameters of the algorithms.  

The simulation scenario consists of twenty five air targets 

(Fighter and Cargo) moving in three groups from North-

West to South-East with constant velocity of 170[m/sec]. 

The stationary sensor is at the origin with 5scanT  [sec], 

measurement standard deviations 0.3[deg] and 100[m] for 

azimuth and range respectively. The headings of the 

central group are 135[deg] from North and for the left and 

right groups are 150[deg] and 120[deg] respectively. 

During the scans from 15th to 17th and from 48th  to 50th 

the targets of the left and right groups perform maneuvers 

with transversal acceleration 4.4[
2sec/m ]. The targets 

are closely spaced especially in the middle part of their 

trajectories. The scenario is shown on figure 1. 
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Figure 1 : Multitarget  scenario with 25 targets  

 

The typical tracking performances for KDA-MTT and 

GDA-MTT algorithms are shown on figures 2 and 3 

respectively.  
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Figure 2 : Typical performance with KDA-MTT  
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Figure 3 : Typical performance with GDA-MTT 

 

The Track Purity performance metrics is used to examine 

the ratio of the correct associations. Track purity is 

considered as a ratio of the number of correct observation-

to-track associations (in case of detected target) over the 

total number of all possible associations during the 

scenario tracking.  

Our aim in these experiments is to investigate what level 

of classifier accuracy we need in a particular scenario with 

the given separation between closely spaced targets. 

Recalling that the confusion matrix (CM) specifies the 

prior accuracy of the classifier we perform consecutive 

experiments starting with CM corresponding to the highest 

accuracy and ending with a matrix close to real life.  

Beforehand, we have implemented a series of experiments 

with highest accuracy CM and different separations of the 

targets starting with prohibited close separation 

(approximately res5.1d  ; here res  is residual 

standard deviation, ranging from 260[m] at the beginning 

of the trajectory to 155[m])[2]. With these experiments we 

try to find out the particular target’s separation which 

insures good results in term of tracks’ purity metrics.  

Besides the algorithm processing attribute data on the base 

of Proportional Conflict Redistribution Rule  number 5 

(PCR5)  from DSm theory simultaneously the same 

tracking algorithm is run with the kinematic data 

processing only. 

 

3.2 Numerical results  

 

We started our experiments with series of runs with 

different target separation and confusion matrix  

 











995.0005.0

005.0995.0
CM  . 

 

Hereafter, because of symmetry we will show the first row 

of the matrix only. All the values in the tables below are 

averaged over the 50 Monte Carlo runs. At a distance of 

300[m] between targets the results are extremely 

discouraging for both the kinematic only and kinematic 

and attribute data used (the first row of table 1). There is 

no surprise because this separation corresponds to less 

than res5.1  . This row stands out with remarkable ratio 

of ‘attribute’ to ‘kinematic’ percents of tracks’ purity. In 
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the ‘kinematic’ case less than one tenth of tracks are 

processed properly while with using the attribute data 

almost two thirds of targets are not lost. Nevertheless, the 

results are poor and unacceptable from the practical point 

of view. In the next rows we increase gradually the 

distance between targets reaching separation of 600[m]. 

This distance corresponds to res5.2   and the results are 

good enough especially for the DSmT based algorithm.  

 

Table 1: Pd=0.995,   CM(0.995, 0.005) 

 

Distance [m] 
Track purity [%] 

GDA (PCR5)  KDA 
300 57.99 8.65 

350 74.47 12.43 

400 87.45 21.17 

450 93.24 35.47 

500 95.94 56.12 

550 96.74 74.74 

600 97.76 86.40 

 

The next step is to choose this medium separation size 

which ensures highly acceptable results. We take the 

distance of 450[m] because it is in the middle of the table 

and its results are very close to that of larger distances. 

Now we start our runs with confusion matrix 

(0.995;0.005) corresponding to highest accuracy and 

gradually change its elements to more realistic values 

(table 2). In this table the tracks’ purity data for 

‘kinematic’ only algorithm are omitted because they do 

not depend on confusion matrix values. Now we choose 

the threshold of 85% for tracks’ purity value above which 

could be said that the results are satisfying enough. 

Actually, the choice of threshold is a matter of an expert 

assessment and strongly depends on the particular 

implementation.It can be seen from the table that the last 

row stepping from the top with tracks’ purity value above 

the chosen threshold is the row with CM with elements 

(0.96;0.04). So that, if our task is to track targets separated 

at normalized distance approximately res5.1   to res3  

we have to ensure classifier with mentioned above 

confusion matrix. As a comparison could be remained the 

value of tracks’ purity ratio for the ‘kinematic’ algorithm 

for this separation – 35.47%.  

Table 2 Track purity results with different confusion 

matrices for scenario with distance 450[m] 

 

Distance [m] 450 

Confusion Matrix Track 

Purity 
 0.995  0.005 93.24 

 0.99   0.01 91.51 

 0.98   0.02 89.53 

 0.97   0.03 86.83 

 0.96   0.04 85.26 

 0.95   0.05 82.48 

 0.94   0.06 79.41 

 0.93   0.07 75.38 

 0.92   0.08 75.25 

 0.91   0.09 74.27 

 0.90   0.10 70.69 

Some additional experiments have been performed with 

continuing change of the elements of CM worsening the 

classifier accuracy and trying to answer the question how 

looks the CM which do not influence the value of tracks’ 

purity ratio, i.e. when the ‘attribute’ algorithm gives the 

same results as ‘kinematic’ one for the chosen separation. 

The results can be seen in table 3. Even for the values of 

elements of CM close to the natural limit values of 

(0.5;0.5) the investigated ratio remains slightly better (the 

last row of table 3) than that of ‘kinematic’ algorithm. 

 
Table 3 :  Distance =450[m] , PCR5 algorithm 

 

Distance [m] 450  

Confusion Matrix Track Purity 
0.995   0.005 93.24 

0.95    0.05 82.48 

0.90    0.10 70.69 

0.80    0.20 52.04 

0.70    0.30 46.90 

0.60    0.40 43.01 

0.55    0.45 42.20 

 

After correct association is made the classical IMM 

Kalman filtering algorithm is used to diminish position 

errors. The figures 4 and 5 shows the errors along axes X 

and Y with  and without filtering. It can be seen the effect 

of significant reduction of the sensor errors after filtering. 

On figure 4 is presented the result of more precise model 

1, and on figure 2 is the result of model 2 with bigger 

values for errors. 
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Figure 4 : Monte Carlo estimation of errors  

along axes x and y for model 1 
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Figure 5 :  Monte Carlo estimation of errors  

along axes x and y for model 2 

 

On figure 6 the result for distance errors for the two 

models is presented. It can be seen that the errors for the 

more precise first model the errors are lower. 



 19 

0 10 20 30 40 50 60
40

50

60

70

80

90

100

110

scans

d
is

ta
n

c
e
 e

rr
o

rs
 f

o
r 

1
-s

t 
a
n

d
 2

-n
d

 m
o

d
e
ls

model1

model2

 
Figure 6 : Monte Carlo estimation of distance  

errors for first and second models  

Conclusions 
In this paper a series of experiments have been performed 

aiming to investigate the influence of some circumstances 

and values of some particular parameters on performance 

capability of multiple target tracking algorithm processing 

both kinematic and attribute data. The algorithm is based 

on Global Nearest Neighbour-like approach and uses 

Munkres algorithm to resolve the generalized association 

matrix. The principles of Dezert-Smarandache theory of 

plausible and paradoxical reasoning to utilize attribute 

data are applied. The results show that even in dense 

target scenarios and realistic accuracy of attribute data 

classifier the algorithm performance meets requirements 

concerning its practical implementation. Beside this 

inference, the results once more underline the advantage 

of used algorithm utilizing both kinematic and attribute 

data over that one working with kinematic data only. 
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