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Abstract - This paper introduces the notion of qual-
itative belief assignment to model beliefs of human
experts expressed in natural language (with linguis-
tic labels). We show how qualitative beliefs can be
efficiently combined using an extension of Dezert-
Smarandache Theory (DSmT) of plausible and para-
doxical quantitative reasoning to qualitative reason-
ing. We propose a new arithmetic on linguistic la-
bels which allows a direct extension of classical DSm
fusion rule or DSm Hybrid rules. An approrimate
qualitative PCR5 rule is also proposed jointly with
a Qualitative Average Operator. We also show how
crisp or interval mappings can be used to deal indi-
rectly with linguistic labels. A very simple example
is provided to illustrate our qualitative fusion rules.

Keywords: Qualitative Information Fusion, Computing
with Words (CW), Dezert-Smarandache Theory (DSmT).

1 Introduction

Since fifteen years qualitative methods for reasoning
under uncertainty developed in Artificial Intelligence
are attracting more and more people of Information
Fusion community, specially those working in the de-
velopment of modern multi-source! systems for de-
fense. Their aim is to propose solutions for pro-
cessing and combining qualitative information to take
into account efficiently information provided by human
sources (or ”semi-intelligent” expert systems) and usu-
ally expressed in natural language rather than direct
quantitative information. George Polya was one of the
first mathematicians to attempt a formal characteriza-
tion of qualitative human reasoning in 1954 [24], then
followed by Zadeh [38]-[43]. The interest of qualita-
tive reasoning methods is to help in decision-making
for situations in which the precise numerical methods
are not appropriate (whenever the information/input
are not directly expressed in numbers). Several for-
malisms for qualitative reasoning have been proposed
as extensions on the frames of probability, possibility
and/or evidence theories [2, 8, 5, 35, 11, 40, 43, 37].
The limitations of numerical techniques are discussed
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n [20]. We browse here few main approaches. A de-
tailed presentation of theses techniques can be found
in [22]. In [32], Wellman proposes a general character-
ization of ”qualitative probability” to relax precision
in representation and reasoning within the probabilis-
tic framework. His basic idea was to develop Qualita-
tive Probabilistic Networks (QPN) based on a Qual-
itative Probability Language (QPL) defined by a set
of numerical underlying probability distributions. The
major interest of QPL is to specify the partial rank-
ings among degrees of belief rather than assessing their
magnitudes on a cardinal scale. Such method cannot
be considered as truly qualitative, since it belongs to
the family of imprecise probability [31] and probabil-
ity bounds analysis (PBA) methods [10]. Some ad-
vances have been done by Darwiche in [5] for a sym-
bolic generalization of Probability Theory; more pre-
cisely, Darwiche proposes a support (symbolic and/or
numeric) structure which contains all information able
to represent and conditionalize the state of belief. Dar-
wiche shows that Probability Theory fits within his
new support structure framework as several other theo-
ries, but Demspter-Shafer Theory doesn’t fit in. Based
on Demspter-Shafer Theory [26] (DST), Wong and Lin-
gras [36] propose a method for generating a (numerical)
basic belief functions from preference relations between
each pair of propositions be specified qualitatively. The
algorithm proposed doesn’t provide however a unique
solution and doesn’t check the consistency of quali-
tative preference relations. Bryson and al. [4, 14]
propose a procedure called Qualitative Discriminant
Procedure (QDP) that involves qualitative scoring, im-
precise pairwise comparisons between pairs of proposi-
tions and an optimization algorithm to generate consis-
tent imprecise quantitative belief function to combine.
Very recently, Ben Yaglane in [1] has reformulated the
problem of generation of quantitative (consistent) be-
lief functions from qualitative preference relations as
a more general optimization problem under additional
non linear constraints in order to minimize different un-
certainty measures (Bezdek’s entropy, Dubois & Prade
non-specificity, etc). In [16, 17], Parsons proposes a
qualitative Dempster-Shafer Theory, called Qualita-
tive Evidence Theory (QET), by using techniques from
qualitative reasoning [2]. Parsons’ idea is to use quali-
tative belief assignments (gba), denoted here gm(.) as-



sumed to be only 0 or 4+, where + means some un-
known value between 0 and 1. Parsons proposes, using
operation tables, a very simple arithmetic for qualita-
tive addition + and multiplication x operators. The
combination of two (or more) gba’s then actually fol-
lows the classical conjunctive consensus operator based
on his qualitative multiplication table. Because of im-
possibility of qualitative normalization, Parsons uses
the un-normalized version of Dempster’s rule by com-
mitting a qualitative mass to the empty set following
the open-world approach of Smets [30]. This approach
cannot deal however with truly closed-world problems
because there is no issue to transfer the conflicting
qualitative mass or to normalize the qualitative belief
assignments in the spirit of DST. An improved ver-
sion of QET has been proposed [16] for using refined
linguistic quantifiers as suggested by Dubois & Prade
in [9]. The fusion of refined qualitative belief masses
follows the un-normalized Dempster’s rule based on
an underlying numerical interval arithmetic associated
with linguistic quantifiers. Actually, this refined QTE
fits directly within DSmT framework since it corre-
sponds to imprecise (quantitative) DSmC fusion rule
[27, 6]. From 1995, Parsons switched back to quali-
tative probabilistic reasoning [21] and started to de-
velop Qualitative Probabilistic Reasoner (QPR). Re-
cently, the author discussed about the flaw discovered
in QPR and gave some issues with new open questions
[23]. In Zadeh’s paradigm of computing with words
(CW) [40]-[43] the combination of qualitative/vague
information expressed in natural language is done es-
sentially in three steps: 1) a translation of qualita-
tive information into fuzzy membership functions, 2)
a fuzzy combination of fuzzy membership functions;
3) a retranslation of fuzzy (quantitative) result into
natural language. All these steps cannot be uniquely
accomplished since they depend on the fuzzy operators
chosen. A possible issue for the third step is proposed
in [37]. In this paper we propose a simple arithmetic of
linguistic labels which allows a direct extension of clas-
sical (quantitative) combination rules proposed in the
DSmT framework into their qualitative counterpart.

2 Qualitative Operators

Computing with words (CW) and qualitative informa-
tion is more vague, less precise than computing with
numbers, but it offers the advantage of robustness if
done correctly since :

7 It would be a great mistake to suppose that vague
knowledge must be false. On the contrary, a vague
belief has a much better chance of being true than a
precise one, because there are more possible facts that
would verify it.”

Bertrand Russell [25].

We propose in this section a general arithmetic for
computing with words (i.e. with linguistic labels).

Let’s consider a finite frame © = {6,...,6,} of

n (exhaustive) elements 6;, i = 1,2,...,n, with an
associated model M(©) on © (either Shafer’s model
M°(©), free-DSm model M7 (0), or more general any
Hybrid-DSm model [27]). A model M(O) is defined
by the set of integrity constraints on elements of ©
(if any); Shafer’s model M"(©) assumes all elements
of © truly exclusive, while free-DSm model M7(©)
assumes no exclusivity constraints between elements
of the frame ©.

Let’s define a finite set of linguistic labels

s Lim}

where m > 2 is an integer. L is endowed with a total
order relationship <, so that L4 < Ly < ... < L,,. To
work on a close linguistic set under linguistic addition
and multiplication operators, we extends L with two
extreme values Loy and L,,+1 where Ly corresponds to
the minimal qualitative value and L,,;; corresponds
to the maximal qualitative value, in such a way that

L={Ly, Lo,...

L0~<L1-<L2~<...-<Lm-<Lm+1

where < means: inferior to, or less than, or smaller
than, etc.

From now on, we work on extended ordered set L of
qualitative values

L ={Lo,L, L1} ={Lo,L1,La, ..., Ly, L1}

The qualitative addition and multiplication opera-
tors are respectively defined in the following way?:

e Addition :

Ly, ifi+j< 1,

o (1)
ifi+5>m+1.

Lm+17

e Multiplication :

Li X Lj = Lyingi 5y (2)
These two operators are well-defined, commutative,
associative, and unitary (Lo is the unit element
for addition, while L,,41 is the unit element for
multiplication). L is closed under + and x.

If L is not an exhaustive set of qualitative labels,
then other labels may exist in between the initial
ones, so we can work with labels and numbers - since
a refinement of L is possible. When mapping from L
to crisp numbers or intervals, Ly = 0 and L,,+1 = 1,
while 0 < L; < 1, for all 4, as crisp numbers, or L;
included in [0, 1] as intervals/subsets.

2We think it is better to define the multiplication x
of L; X Lj by Lmingi,;3 because multiplying two numbers
a and b in [0,1] one gets a result which is less than each
of them, the product is not bigger than both of them as
Bolanos et al. did in [3] by approximating L; X L; = L;1; >
max{L;, L;}. While for the addition it is the opposite:
adding two numbers in the interval [0, 1] the sum should be
bigger than both of them, not smaller as in [3] case where
L; + Lj = IIliIl{Li7 Lj} < max{Li, Lj}.



3 Qualitative Belief Assignment

We define a qualitative belief assignment (gba),
and we call it qualitative mass, a mapping function
gm(.) : G® — L where G® corresponds the space
of propositions generated with N and U operators
and elements of © taking into account the integrity
constraints of the model. For example if Shafer’s
model is chosen for ©, then G® is nothing but the
classical power set 2© [26], whereas if free DSm
model is adopted G® will correspond to Dedekind’s
lattice (hyper-power set) D® [27]. Note that in this
qualitative framework, there is no way to define
normalized gm(.), but qualitative quasi-normalization
is still possible as seen further. Using the qualitative
operations defined previously we can easily extend the
combination rules from quantitative to qualitative. In
the sequel we will consider s > 2 qualitative belief
assignments gmq(.),...,qms(.) defined over the same
space G® and provided by s independent® sources
S1,...,95, of evidence.

Important note: The addition and multiplication op-
erators used in all qualitative fusion formulas in next
sections correspond to qualitative addition and quali-
tative multiplication operators defined in (1) and (2)
and must not be confused with classical addition and
multiplication operators for numbers.

4 Qualitative Conjunctive Rule

The qualitative Conjunctive Rule (qCR) of s > 2
sources is defined similarly to the quantitative conjunc-
tive consensus rule, i.e.

> JTemixw) (3)

X1,..,X,€29 i=1
X1 AX.=Xx

qmqcr(X) =

The total qualitative conflicting mass is given by

> Iemixi)

Xy,...,X,€2% i=1
X1N...NX =0

Kl...s =

5 Qualitative DSm Classic rule

The qualitative DSm Classic rule (¢DSmC) for s > 2
is defined similarly to DSm Classic fusion rule [27] as
follows : gmgpsmc () = Lo and for all X € D® \ {0},

> J[emx) @)

X1y, X, €D 1=1
XiM...NX.=X

gmgpsmc(X) =

3We consider that several sources of evidence are in-
dependent (i.e. distinct and non-interacting) if each leaves
one totally ignorant about the particular (qualitative) value
the others will provide.

6 Qualitative DSm Hybrid rule

The qualitative DSm Hybrid rule (qDSmH) is defined
similarly to quantitative DSm hybrid rule [27] as fol-
lows: qmgpsmu(0) = Lo and for all X € G\ {0}

amqpsmi(X) 2 6(X) - [a81(X) + aS2(X) + aSs(X)]
()
where ¢(X) is the characteristic non-emptiness func-
tion of a set X, i.e. ¢(X) = Lpyq if X ¢ @ and
#(X) = Lo otherwise, where @ = {@n,0}. 0O is
the set of all elements of D® which have been forced
to be empty through the constraints of the model M
and 0 is the classical/universal empty set. ¢S1(X) =
amqpsmc(X), q52(X), ¢93(X) are defined by

> [T am:(x3)

X1,X2,...,X.€D® i=1
X1NX2N...N X=X

gS1(X) = (6)

wx0s Y e @
X1,X5,...,X€0 i=1
[U=X]V[UEDN(X=I)]

¢S3()& > Jlemx) ®)

X1,Xs2,...,XpeD® i=1
X1UXoU...UX =X
X1NXa2N...NX:€0

with U £ u(X;)U...Uu(X) where u(X) is the union
of all 6; that compose X, I; £ 60, U...U#, is the total
ignorance. Any set X involved in formulas is expressed
in its canonical form, i.e. its simplest form (for exam-
pleif X = (ANB)N(AUBUC) then its canonical form
is X = AN B). ¢51(X) is nothing but the gDSmC rule
for s independent sources based on M7(0); ¢Sy(X)
is the qualitative mass of all relatively and absolutely
empty sets which is transferred to the total or relative
ignorances associated with non existential constraints
(if any, like in some dynamic problems); ¢S3(X) trans-
fers the sum of relatively empty sets directly onto the
canonical disjunctive form of non-empty sets. gDSmH
generalizes qDSmC and works for any models when
manipulating qualitative belief assignments.

7 Qualitative Average Operator

The Qualitative Average Operator (QAO) is an exten-
sion of Murphy’s numerical average operator [13]. But
here we define two types of QAQ’s:
a) A pessimistic (cautious) one :
QAOp(Li, Lj) = LL%J (9)

where |z] means the lower integer part of x, i.e.
the greatest integer less than or equal to x;

a) An optimistic one :
QAO,(L;,Lj) = Ly (10)

where [z] means the upper integer part of z, i.e.
the smallest integer greater than or equal to x.

QAO can be generalized for s > 2 qualitative sources.



8 A simple example

Let’s consider the following set of ordered linguistic la-
bels L = {Lg, L1, Lo, L3, Ly, L5} (for example, Ly, Lo,
L3 and L, may represent the values: L; £ very poor,
Lo & poor, Lz = good and L, £ very good, where =
symbol means by definition), then addition and multi-
plication tables are

Table 2: Multiplication table

The tables for QAO,, and QAO, operators are

Table 4: Table for QAO,

Let’s consider now a simple two-source case with a
2D frame © = {61, 65}, Shafer’s model for ©, and gba’s
expressed as follows:

gmi(01) = L1, qmy(02) = Ly, qmi(6,U0) =L,

qma(01) = Lz, qma(02) = L1, qma(61Ub) = Ly

8.1 Qualitative Fusion of gba’s

e Fusion with qCR: According to qCR combina-
tion rule (3), one gets the result in Table 5, since

gmqgcr(01) = qmy(01)gmo(01)
+ gmq(01)gmeo (61 U 6s)
+ qma(01)gmy (01 U 62)
= (L1 X L) + (L1 x Lo) + (L2 x L)
=Li+Li+Li=Liy1y1=1Ls

qmqcor(02) = qgma(02)gma(02)
+ gmq(02)gmeo (61 U 6)
+ gma(02)gm1 (61 U 6s)
= (L3 x Ly) + (L3 x L) + (L1 x L)
=Li+ Lo+ Li=Liyoy1 =14

gmqer(61 U O2) = gmy (01 U b2)gma (01 U 62)
=L xLy=14

qmqor (D) £ Kia = qmi(61)gma(62) + gma(62)gmo(61)

:(LlXL1)+(L2XL3):L1+L2:L3

In summary, on gets

01 6,
qml() L1 L3 L1
gma(.) Ly L, L,
qmgcr(.) | Lz L4 L, L3 Lo

Table 5: Fusion with qCR

e Fusion with qDSmC: If we accepts the free-
DSm model instead Shafer’s model, according to
qDSmC combination rule (4), one gets the result
in Table 6,

0, 0o 6,U0, O 6,N60
qml() L1 L3 L1
qma(.) Ly I Lo
gmgpsmc(.) | Ly La Ly Lo Ls

Table 6: Fusion with gDSmC

e Fusion with qDSmH: Working with Shafer’s
model for ©, according to qDSmH combination
rule (5), one gets the result in Table 7.

01 O 61 U0, 1] 01N 0Oy
qma () L1 Lg L1
gma(.) Ly L, Loy
qmgpsmu(.) | Ls Ly Ly Lo Lo

Table 7: Fusion with gDSmC

since qmqDS'mH(al U 92) =L;+Ls=Ly.



e Fusion with QAQO: Working with Shafer’s model
for ©, according to QAO combination rules (9)
and (10), one gets the result in Table 8.

01 6o 61U0,
qml(-) Ly Ls Ly
gma(.) Ly, L, Ly

meAop () L1 Lg Ll
qmaqao, () Ly Ly Ly

Table 8: Fusion of gba’s with QAQO’s

e Fusion with qPCR5: In classical/quantitative
DSmT framework, the Proportional Conflict Re-
distribution rule no. 5 has been proven to pro-
vide very good and coherent results for combin-
ing (quantitative) belief masses [27, 28, 29, 12, 7].
We recall briefly the quantitative PCR5 combina-
tion rule for only two sources: mpcpgs(f) = 0 and

VX € GO\ {0}

mpcors(X) = mia(X)+

miq (X)2m2 (Y) mao (X)le (Y)
[ + ]
YEGZ(_)E{X} mi(X) +m2(Y)  ma(X) +mi(Y)
XNy =0

(11)

where mjo(X) corresponds to the quantitative
conjunctive consensus on X between the two
sources and where all denominators are different
from zero. If a denominator is zero, that fraction
is discarded. Quantitative PCR5 rules proposes
a better redistribution of the conflicting mass
than other rules since it goes backwards on the
tracks of the conjunctive rule and redistributes
the partial conflicting masses only to the sets
involved in the conflict and proportionally to
their masses put in the conflict, considering the
conjunctive normal form of the partial conflict.

When dealing with qualitative beliefs and using
Demspter-Shafer Theory (DST), we can not nor-
malize, since it is not possible to divide linguistic
labels by linguistic labels. Previous authors have
used the un-normalized Dempster’s rule, which
actually is equivalent to the Conjunctive Rule in
Shafer’s model and respectively to DSm conjunc-
tive rule in hybrid and free DSm models. Follow-
ing the idea of (quantitative) PCR5 fusion rule
(11), we can however use an ad-hoc approxima-
tion for a qualitative version of PCR5 (denoted
qPCR5), i.e. by transferring the qualitative par-
tial masses

a) qmg (91)(]7712(92) =LixLy=1;to 01 and 92
in equal parts (i.e. proportionally to L; and
Ly respectively, but L; = L;); hence %Ll
should go to each of them.

b) qm2(91)qm1(02) = L2 X L3 = L2 to 01 and
0> proportionally to Ly and Lg respectively;

but since we are not able to do an exact pro-
portionalization of labels, we approximate
through transferring %LQ to 67 and %Lg to
05.

Summing a) and b) we get: %Ll + %Lg ~ L,
which represents the partial conflicting qualitative
mass transferred to ¢, and %Ll—i‘%LQ ~ Lo, which
represents the partial conflicting qualitative mass
transferred to 0. Here we have mixed qualitative
and quantitative information.

Hence we will finally get:

61 0 0,060 0 60;N0by
qma(.) Ly Lj Ly
gma(.) Ly L Lo

qmgpcrs(.) | La  Ls L, Lg Lo

Table 9: Fusion with qPCR5

Fore the reason that we can not do a normal-
ization (neither previous authors on qualitative
fusion rules did), we propose for the first time
the possibility of quasi-normalization (which
is an approximation of the normalization), i.e.
instead of dividing each qualitative mass by a
coefficient of normalization, we subtract from each
qualitative mass a qualitative coefficient (label)
of quasi-normalization in order to adjust the sum
of masses.

Subtraction on L is defined in a similar way to the
addition:

Lioj,  ifi>j;
Li—Lj:{ A AN $ 1)

Lo, if i < j;

L is closed under subtraction as well.

The increment in the sum of fusioned qualitative
masses is due to the fact that multiplication on
L is approximated by a larger number, because
multiplying any two numbers a, b in the interval
[0, 1], the product is less than each of them, or we
have approximated the product a x b = min{a, b}.

Using the quasi-normalization (subtracting L),
one gets with qDSmH and qPCRS5, the following
quasi-normalized masses (we use x symbol to spec-
ify the quasi-normalization):

01 02 6,U0 D H1Nb,
qma(.) Ly L3 L,
gma(.) Ly Iy Lo

amypsmu() | L2 Ls Ls Ly Ly
qmypors() | Ls  La Ly Ly Ly

Table 10: Fusion with quasi-normalization



8.2 Fusion with a crisp mapping

If we consider the labels as equidistant, then we can di-
vide the whole interval [0,1] into five equal parts, hence
mapping the linguistic labels L; onto crisp numbers as
follows:

LO = 07 L1 = 02, L2 = 04, L3 = 06,
L4 (g 087 L5 — 1

Then the gba’s gm4(.) and gms(.) reduce to classical
(precise) quantitative belief masses mq(.) and ma(.).
In our simple example, one gets

mq (91) =0.2

m1(92) =0.6 m1(91 U 92) =0.2

m2(01) =04 m2(92) =0.2 m2(91 U 92) =04

We can apply any classical (quantitative) fusion
rules. For example, with quantitative Conjunctive
Rule, Dempster-Shafer (DST), DSmC, DSmH, PCR5
and Murphy’s (Average Operator - AO) rules, one gets
the following results:

0, 02 61 U 0
ma () 0.2 0.6 0.2
ma(.) 0.4 0.2 0.4
mpsme(.) | 0.24 0.40 0.08
mpsr(-) | ~0.333 ~0.555 ~ 0.112
mpers(l) | 0356  0.564  0.080
on(.) 0.3 0.4 0.3
and
0 01Nn6b,

ml()

TI”LQ()

mCR(.) 0.28 0

mDsmc(.) 0 0.28

mpsr(.) 0 0

mpsmu(-) | 0 0

mPCR5(') 0 0

on(.) 0 0

Table 11: Fusion through a crisp mapping

Important remark: The mapping of linguistic labels
L; into crisp numbers z; € [0, 1] is a very difficult prob-
lem in general since the crisp mapping must generate
from qualitative belief masses ¢m;(.), i = 1,...,s, a
set of complete normalized precise quantitative belief
masses m;(.), 1 = 1,...,s (i.e. a set of crisp numbers
in [0,1] such > ycqemi(X) =1,Vi=1,...,5). Ac-
cording to [33, 34], such direct crisp mapping function
can be found/built only if the gba’s satisfy a given
set of constraints. Generally a crisp mapping function
and gba’s generates for at least one of sources to com-
bine either a paraconsistent (quantitative) belief as-
signments (if the sum of quantitative masses is greater
than one) or an incomplete belief assignment (if the
sum of masses is less than one). A issue would be in

such cases to make a (quantitative) normalization of
all paraconsistent and incomplete belief assignments
drawn from crisp mapping and gba’s before combin-
ing them with a quantitative fusion rule. The normal-
ization of paraconsistent and incomplete bba’s reflects
somehow the difference in the interpretations of labels
used by the sources (i.e. each source carries its own
(mental/internal) representation of the linguistic label
he/she uses when committing qualitative beliefs on any
given proposition). It is possible to approximate the
labels by crisp numbers of by subunitary subsets (in
imprecise information), but the accuracy is arguable.

8.3 Fusion with an interval mapping

An other issue to avoid the direct manipulation of
qualitative belief masses, is to try to assign intervals
assign intervals or more general subunitary subsets to
linguistic labels in order to model the vagueness of
labels into numbers. We call this process, the interval
mapping of gba’s. This approach is less precise than
the crisp mapping approach but is a quite good
compromise between qualitative belief fusion and
(precise) quantitative belief fusion.

In our simple example, we can easily check that the
following interval mapping

Lo — [0,0.1), Ly ~— [0.1,0.3), Ly — [0.3,0.5),
L3 — [0.5,0.7), Ly — [0.7,0.9), Ls — [0.9,1]

allows us to build two set of admissible* imprecise
(quantitative) belief masses:

mi(6) =1[0.1,0.3)  mi(6:)=1[0.3,0.5)
mi(0y) = [0.5,0.7)

mi (6, Ubs) =1[0.1,0.3)

mi(6y) = [0.1,0.3)
mi (6, Ubs) = [0.3,0.5)

These two admissible imprecise belief assignments
can then be combined with (imprecise) combination
rules proposed in [27] and based on the following op-
erators for interval calculus: If X;,A5,..., X, are real
sets, then their sum is:

D

k=1,...,n

Xe={x]ax= Z Ty X1 € X1y .o, Xy € Xy}
k=1,....n

while their product is:

H Xe={z|z= H T, T1 € X1, ..., xn € Xy}

k=1,....,n

k=1,....n

The results obtained with an interval mapping for
the different (quantitative) rules of combination are
summarized in next tables®.

4 Admissibility condition means that we can pick up at
least one number in each interval of an imprecise belief mass
in such a way that the sum of these numbers is one (see [27]
for details and examples). For example, m1(.) is admissible



0, 02
[0.1,0.3) [0.5,0.7)
[0.3,0.5) 0.1,0.3)

[0.09,0.45) [0.21,0.65)

[0.09,0.45) [0.21,0.65)

mEgmm(-) | [0.09,0.45)  [0.21,0.65)
I [0.15,0.64) [0.30,0.90)
[0.2,0.4) [0.3,0.5)

6, U0,
0.1,0.3)
[0.3,0.5)
[0.03,0.15)
[0.03,0.15)
[0.19,0.59)
[0.03,0.15)
0.2,0.4)

0 01 N0y

[0.16, 0.44) 0
Mpsme(-) 0 [0.16,0.44)
T 0 5
méCRs(-) 0 0
mho(.) 0 0

Table 12: Fusion Results with interval mapping

9 Conclusion

We have extended in this article the use of DSmT from
quantitative to qualitative belief assignments. In order
to apply the fusion rules to qualitative information, we
defined the +, x, and even — operators working on
the set of linguistic labels. Tables of qualitative cal-
culations are presented and examples using the corre-
sponding qualitative-type Conjunctive, DSm Classic,
DSm Hybrid, PCR5 rules, and qualitative-type Aver-
age Operator. We also mixed the qualitative and quan-
titative information in an attempt to refine the set of
linguistic labels for a better accuracy. Since a normal-
ization is not possible because the division of labels
does not work, we introduced a quasi-normalization
(i.e. approximation of the normalization). Then map-
pings were designed from qualitative to (crisp or inter-
val) quantitative belief assignments.
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