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Abstract—This paper defines and implements a non-Bayesian
fusion rule for combining densities of probabilities estimated
by local (non-linear) filters for tracking a moving target by
passive sensors. This rule is the restriction to a strict probabilistic
paradigm of the recent and efficient Proportional Conflict Redis-
tribution rule no 5 (PCR5) developed in the DSmT framework
for fusing basic belief assignments. A sampling method for
probabilistic PCR5 (p-PCR5) is defined. It is shown that p-
PCR5 is more robust to an erroneous modeling and allows to
keep the modes of local densities and preserve as much as
possible the whole information inherent to each densities to
combine. In particular, p-PCR5 is able of maintaining multiple
hypotheses/modes after fusion, when the hypotheses are too
distant in regards to their deviations. This new p-PCR5 rule has
been tested on a simple example of distributed non-linear filtering
application to show the interest of such approach for future
developments. The non-linear distributed filter is implemented
through a basic particles filtering technique. The results obtained
in our simulations show the ability of this p-PCR5-based filter
to track the target even when the models are not well consistent
in regards to the initialization and real cinematic.
Keywords: Filtering, Robust estimation, non-Bayesian fu-
sion rule, PCR5, Particle filtering.

I. INTRODUCTION

Bayesian inference is a powerful principle for modeling
and manipulating probabilistic information. In many cases,
Bayesian inference is considered as an optimal and legitimate
rule for inferring such information. Bayesian filters are typi-
cally regarded as optimal filters [1], [2], [5].

However, Bayesian methods need strong hypotheses, in par-
ticular about the information prior. A degradation of the
performance of Bayesian filter occurs if the filter is not
correctly initialized or updated, in accordance to the models
in use. Being given a model of the system kinematic and
of the measurement process, the main issue is to develop
filtering methods which are sufficiently robust against the bias
at the initialization as well as error in modeling. In this paper,
a non-Bayesian rule for fusing the probabilistic information
is proposed. This rule, denoted p-PCR5, is the restriction

to the probabilistic paradigm of the Proportional Conflict
redistribution rule no.5 (PCR5) which has been proposed
in [8] for combining basic belief assignments. p-PCR5 is
also an extension of discrete PCR5 version to its continuous
probabilistic counterpart.

PCR5 has been first established for combining evidences (i.e.
discrete belief assignments) in the DSmT framework. In partic-
ular, it has been designed in order to cope with highly conflict-
ing and uncertain information. This rule could be considered
in a new probabilistic paradigm by restricting the basic belief
assigment involved to only probabilistic belief assignment1

and directly extended to densities of probabilities. This rule
in non-Bayesian by nature. Although Bayesian techniques are
widely well known and used in target tracking community
(including authors works in tracking), it is interesting to see
how such new approach can perform to estimate its real
interest and potentiality. Surprisingly, it turns out through our
works, that such approach is robust to an erroneous modeling:
in particular, it is able of maintaining multiple hypotheses,
when they are too distant2 for fusion. The resulting p-PCR5-
based filter happens to be essentially non-linear, and has been
implemented in our simulation using particle filtering tech-
niques. In particular, the p-PCR5 multisensor filter developed
here is based on a quite simple and direct implementation in
terms of particles drawing and resampling. We will show the
robustness of such elementary version of p-PCR5 filter, even
in case of poor initialization of the filter.

1The denomination probabilistic belief assignment is prefered to Bayesian
belief assignment, generally used in the literature, since we consider that
Probability and Bayesian inference are distinguishable notions.

2A rigorous definition the notion of ‘distance’ here is not so easy to
establish. This distance is essentially characterized by the distance between the
means of the laws in regards to the deviations. But we also take into account
the direction of the deviation. For example, let be given two uncertainty
ellipses with high eccentricity and orthogonal orientations. If these ellipses
intersect at their extremities (the union forms a corner or a � instead of a
cross), we will consider that the laws tend to be distant. This definition is not
investigated further in the paper.



Section II introduces the PCR5 rules, and establishes some
results about probabilistic PCR5. A sampling method is de-
duced. Section III compares the results of the Bayesian rule
and of probabilistic PCR5 on a simple example. On the basis
of this comparison, some arguments about the robustness of
PCR5 are given. Section IV implements PCR5 on small track-
ing applications (only the filtering aspects are considered).
Distributed filtering on bearing-only sensors is considered.
Section V concludes.

II. PCR5 FORMULA FOR DENSITIES

A. Definition and justification of PCR5

The Proportional Conflict Redistribution rule no. 5 (PCR5)
of combination comes from the necessity to manage precisely
and efficiently the partial conflicts when combining conflicting
and uncertain information expressed in terms of (quantitative)
discrete belief assignments. It has been proved useful and
powerful in several applications where it has been used [8].

Let be given an universe of events Θ . A distribution of
evidence over Θ is characterized by means of a basic belief
assignment (bba) m : P(Θ) → IR+ such that:

m(∅) = 0 and
∑

X⊂Θ

m(X) = 1 ,

where P(Θ) is the set of subset of Θ.3

A bba typically represents the knowledge, which can be both
uncertain and imprecise, that a sensor provides about its belief
in the true state of the universe. The question then arising is
How to fuse the bba’s related to multiple sensor responses?
The main idea is to corroborate the information of each sensor
in a conjunctive way.
Example. Let A, B ⊂ Θ and let’s assume two sources with
basic belief assignments m1 and m2 such that m1(A) =
0.6, m1(A∪B) = 0.4 and m2(B) = 0.3, m2(A∪B) = 0.7 .
The fused bba is then characterized in a conjunctive way by:

m12(A ∩ B) = m1(A)m2(B) = 0.18 ,
m12(A) = m1(A)m2(A ∪ B) = 0.42 ,
m12(B) = m1(A ∪ B)m2(B) = 0.12 ,
m12(A ∪ B) = m1(A ∪ B)m2(A ∪ B) = 0.28 .

The conjunctive consensus works well when there is no
possibility of conflict. Now, make the hypothesis A∩B = ∅ .
Then, it is obtained m12(∅) = 0.18, which is not an acceptable
result for a conventional interpretation of ∅ as a contradiction.
Most existing rules solve this issue by redistributing the
conflict m12(∅) over the other propositions. In PCR5, the
partial conflicting mass m1(A)m2(B) is redistributed to A
and B only with the respective proportions xA = 0.12 and
xB = 0.06 , according to the proportionalization principle:

xA

m1(A)
=

xB

m2(B)
=

m1(A)m2(B)
m1(A) + m2(B)

=
0.18
0.9

= 0.2 .

Basically, the idea of PCR5 is to transfer the conflicting mass
only to the elements involved in the conflict and proportionally
to their individual masses.

Some theoretical considerations and justifications already

3In the general case, bba could also be defined over hyper-power sets
(Dedekind’s lattice) [8].

briefly aforementioned led to the following PCR5 combination
rule. Being given two bbas m1 and m2, the fused bba mPCR5

according to PCR5 is defined by:

mPCR5(X) = m12(X)

+
∑

Y ∈P(Θ)
X∩Y =∅

[
m1(X)2m2(Y )

m1(X) + m2(Y )
+

m2(X)2m1(Y )
m2(X) + m1(Y )

] (1)

where m12(·) corresponds to the conjunctive consensus:

m12(X) �
∑

X1,X2∈P(Θ)
X1∩X2=X

m1(X1)m2(X2) .

N.B. If a denominator in (1) is zero, the fraction is discarded.

B. Definition of probabilistic PCR5 (p-PCR5)

In [8], Dezert and Smarandache proposed also a probabilis-
tic version of the PCR5 rule (1) by restricting the bbas m1

and m2 to discrete probabilities P1 and P2 which are called
then probabilistic belief assignments/masses1. Probabilistic
belief masses are bbas, which focal elements4 consist only
in elements of the frame Θ, i.e. the singletons only. When
dealing with probabilistic belief assignments m1 ≡ P1 and
m2 ≡ P2, the PCR5 formula (1) reduces to:

PPCR5(X) = P1(X)
∑
Y ∈Θ

P1(X)P2(Y )
P1(X) + P2(Y )

+ P2(X)
∑
Y ∈Θ

P2(X)P1(Y )
P2(X) + P1(Y )

(2)

1) Extension of p-PCR5 on continuous propositions: The
previous discrete p-PCR5 formula is now extended to densities
of probabilities of random variables. Formula (2) is thus
adapted for the fusion of continuous densities p1 and p2:

p12(x) � pPCR5(x) = p1(x)
∫

Θ

p1(x)p2(y)
p1(x) + p2(y)

dy

+ p2(x)
∫

Θ

p2(x)p1(y)
p2(x) + p1(y)

dy .

(3)

2) Properties: In this paragraph, some properties of the
(continuous) p-PCR5 are derived, which are useful for prac-
tical manipulations. In particular, it is proved that the fused
density p12 is a true density of probability.

a) Expectation: The expectation of a function according
to the fused probability p12 is expressed from the initial
probabilities p1 and p2:∫

Θ

p12(y)f(y, z) dy =
∫ ∫

Θ2
p1(y1)p2(y2)

× p1(y1)f(y1, z) + p2(y2)f(y2, z)
p1(y1) + p2(y2)

dy1dy2

(4)

4Focal elements are elements of P(Θ) having a strictly positive mass.



Proof.∫
Θ

p12(y)f(y, z) dy =
∫ ∫

Θ2

(
p2
1(y1)p2(y2)

p1(y1) + p2(y2)
f(y1, z)

+
p2
2(y1)p1(y2)

p2(y1) + p1(y2)
f(y1, z)

)
dy1dy2

=
∫ ∫

Θ2

p2
1(y1)p2(y2)

p1(y1) + p2(y2)
f(y1, z)dy1dy2

+
∫ ∫

Θ2

p2
2(y1)p1(y2)

p2(y1) + p1(y2)
f(y1, z)dy1, dy2

=
∫ ∫

Θ2

p2
1(y1)p2(y2)

p1(y1) + p2(y2)
f(y1, z)dy1dy2

+
∫ ∫

Θ2

p2
2(y2)p1(y1)

p2(y2) + p1(y1)
f(y2, z)dy2dy1 .

���

Corollary. The density p12 is actually probabilitic, since it is
derived

∫
Θ

p12(y) dy = 1 by taking f = 1 .
b) Alternative rule definition: Let δ[y = z] be the dirac

of variable y over z. Then:

p12(z) =
∫ ∫

Θ2
p1(y1)p2(y2)π(z|y1, y2) dy1dy2 ,

where π(z|y1, y2) =
p1(y1)δ[y1 = z] + p2(y2)δ[y2 = z]

p1(y1) + p2(y2)
.

(5)
Proof.
Apply lemma 1 to the dirac distribution f(y, z) = δ[y = z] .
���

Corollary [Monte-Carlo method]. Being able to sample p1 and
p2, then it is possible to sample p12 by means of the following
process (let z be the sample to be generated):

1) Generate y1 according to p1 and y2 according to p2,
together with their evaluations p1 and p2,

2) Generate θ ∈ [0, 1] according to the uniform law,
3) If θ < p1(y1)

p1(y1)+p2(y2)
, then set z = y1 else set z = y2 .

It is seen subsequently that p-PCR5 is not a linear process.
As a consequence, its manipulation is essentially addressed
by means of Monte-Carlo method, and the previous sampling
method is widely implemented in the applications.

The next section is devoted to a comparison of p-PCR5 and
Bayesian rules on very simple examples.

III. BAYES VERSUS P-PCR5; WHITENED P-PCR5 RULE

A. Bayesian fusion rule

In this section, we are interested in the fusion of two inde-
pendent estimators by means of the Bayesian inference. Such
fusion has to take into account the prior about the state of the
system. Subsequently, this prior will be chosen to be uniform.
Although this is just a particular case of application, it will
be sufficient for our purpose, i.e. the illustration of essential
differences between the Bayesian and PCR5 approaches.

1) General case: In Bayesian filter, the estimator is ex-
plained by means of the posterior probability p(x|z1, z2)
conditionally to the observation z1 and z2. Notice that this
posterior estimation should not be confounded with the true
state of the system. Now, our purpose here is to derive
a rule for deriving the global estimator p(x|z1, z2) from
the partial estimators p(x|z1) and p(x|z2). Applying Bayes’
rule, one gets p(x|z1, z2) ∝ p(z1, z2|x)p(x) .5 To go fur-
ther in the derivation, it is assumed here the conditional
independence between the two probabilistic sources/densities,
i.e. p(z1, z2|x) = p(z1|x)p(z2|x) . As a consequence,
p(x|z1, z2) ∝ p(z1|x)p(z2|x)p(x) , and then:

p(x|z1, z2) ∝ p(x|z1)p(x|z2)
p(x)

. (6)

So, in order to compute p(x|z1, z2), it is needed both p(x|z1),
p(x|z2) and the prior p(x) . If one assumes uniform prior for
p(x), and using notations p12Bayes = p(·|z1, z2), p1 = p(·|z1)
and p2 = p(·|z2), the Bayes’ fusion formula (6) becomes:

p12Bayes(x) ∝ p1(x)p2(x) . (7)

2) Gaussian subcase: We investigate here the solution
of the problem when p1 and p2 are Gaussian distributions.
So let’s suppose for simplicity p1(x) and p2(x) mono-
dimensional Gaussian distributions given by:

p1(x) =
1

σ1

√
2π

e
− 1

2
(x−x̄1)2

σ12 and p2(x) =
1

σ2

√
2π

e
− 1

2
(x−x̄2)2

σ22

In absence of prior information, one assumes as usual p(x)
uniform. The Bayesian rule requires to compute (7). Then, it
is easily shown that p12Bayes is Gaussian:

p12Bayes(x) =
1

σBayes

√
2π

e
− 1

2
(x−x̄bayes)2

σBayes
2

,

with σ2
Bayes = σ2

1σ2
2

σ2
1+σ2

2
and x̄Bayes = σ2

Bayes

(
x̄1
σ2
1

+ x̄2
σ2
2

)
.

When σ1 = σ2 = σ, it is implied then:

σ2
Bayes(x) =

σ2

2
and x̄Bayes =

x̄1 + x̄2

2
.

The theoretical plots and those obtained with Monte Carlo
simulation are given in figures 1, 2 and 3. These figures make
the comparison with the p-PCR5 fused densities. This com-
parison will be discussed subsequently. While the Bayesian
estimator is optimal (it minimizes the variance of the error
estimation), it appears also that it replaces the original modes
in p1 and p2 by a unique mode in p12Bayes . When the original
modes are distant2 like in figure 2 (for example, owing to a
bad initialization of the filters), it may be interesting to keep
the original modes in the fused density until it is possible to
decide. This is what p-PCR5 does.

5p(α|β) ∝ γ means “p(α|β) is proportional to γ for β fixed”.



B. Fusion based on PCR5 for Gaussian distributions

The same Gaussian distribution, p1 and p2, are considered,
but are now fused by p-PCR5 rule (3), thus resulting in density
p12 . The fused densities are both computed, figures 1 and 2,
and sampled, figure 3. Direct computations are expensive, and
are obtained in two steps:

• Compute Is(x) =
∫ ps(x)ps̄(y)

ps(x)+ps̄(y)dy, where s ∈ {1, 2} and
s̄ ∈ {1, 2} \ {s} ,

• Then compute p12(x) = p1(x)I1(x) + p2(x)I2(x) .

It appears clearly that computed and sampled densities match
well, thus confirming the rigthness of our sampling method.
Now, contrariwise to the Bayesian rule, it is noticed two
different behaviors (which are foreseeable mathematically):

• When the densities p1 and p2 are close2, p12 act as an
amplifier of the information by reducing the variance.
However, this phenomena is weaker than for P12Bayes.
p-PCR5 is thus able to amplify the fused information, but
is less powerful than the Bayesian rule in this task.

• When the densities p1 and p2 are distant2, p12 keeps
both modes present in each density and preserves the
richness of information by not merging both densities
into only one (unimodal) Gaussian density. This is a very
interesting and new property from a theoretical point of
view, which presents advantages for practical applications
as shown in the following simple tracking example.

In regards to these differences, it is thus foreseeable that the
p-PCR5 should be more robust to potential errors.

C. Whitened p-PCR5 rule

It has been seen that the p-PCR5 fusion of the same densities
p1 = p2 will result in an amplified density p12. Of course,
this is not practicable when the densities p1 and p2 are related
to correlated variables. Consider for example that the state
y are measured by z1 and z2. The (distributed) posterior
probabilities are ps(y) = p(y|zs) ∝ p(y)p(zs|y) for s = 1, 2 .
It happens that the variables estimated by p1 and p2 are
correlated, so that p-PCR5 should not be applied directly.
In particular, the fusion of p1 and p2 by means of p-PCR5
results in a density p12 stronger than the prior p over y, even
when there is no informative measure, i.e. p(zs|y) = p(zs) !
In order to handle this difficulty, we propose a whitened p-
PCR5 rule, producing a fused density pwhitePCR5 from the updated
information only:

pwhitePCR5(y) =
∫ ∫

Θ2
p1(y1)p2(y2)π(y|y1, y2) dy1dy2 ,

where π(y|y1, y2) =
p(y1|z1)

p(y1)
δ[y1 = y] + p(y2|z2)

p(y2) δ[y2 = y]
p(y1|z1)

p(y1)
+ p(y2|z2)

p(y2)

.

(8)
In (8), the proportion p(y|zs)

p(y) should be considered as the
information intrinsically obtained from sensor s. It happens
that the whitened p-PCR5 does not change the prior when
there is no informative measure, i.e. pwhitePCR5(y) = p(y) when
p(zs|y) = p(zs) for s = 1, 2 .
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Figure 1. p-PCR5 fusion versus Bayesian fusion (theoretical)
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Figure 2. p-PCR5 fusion versus Bayesian fusion (theoretical)

IV. A DISTRIBUTED SEQUENTIAL FILTERING APPLICATION

A. Theoretical setting

A target is moving according to a known Markov prior law.
Let yt be the state of the target at time t. It is assumed:

p(y1:t+1) = p(yt+1|yt)p(y1:t) .

In order to estimate the state of the target, S = 2 sensors are
providing some measurements. Denote zs

t be the measurement
of the state yt by sensor s. The measure is characterized by the
law p(zs

t |yt), which is known. It is assumed that the measure
are made independently, conditionally to a given state:

p(z1:S
t |yt) =

S∏
s=1

p(zs
t |yt) .

Our purpose is to derive or approximate the optimal estimator,
p(yt+1|z1:S

1:t+1) , from the distributed retroacted estimators,
p(yt+1|z1:S

1:t , zs
t+1), related to sensors s. There is a Bayesian
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Figure 3. p-PCR5 fusion versus Bayesian fusion (based on 10000 samples)

approach to this problem, and we propose some comparison
with a p-PCR5 approach and a whitened p-PCR5 approach.

1) Distributed Bayesian filter: It is derived from:

p(yt:t+1|z1:S
1:t ) = p(yt+1|yt)p(yt|z1:S

1:t ) , (9)

p(yt:t+1|z1:S
1:t , zs

t+1) ∝ p(zs
t+1|yt+1)p(yt:t+1|z1:S

1:t ) , (10)

p(yt:t+1|z1:S
1:t+1) ∝

„ SY
s=1

p(yt+1|z1:S
1:t , zs

t+1)

p(yt+1|z1:S
1:t )

«
p(yt:t+1|z1:S

1:t ) . (11)

This approach is unstable, when some components of the
target state are non-observable; for example, adaptations of the
method are necessary [2] for bearing only sensors. However,
the method will be applied as it is here to bearing only sensors,
in order to compare to the robustness of the PCR5 approach.

2) p-PCR5 filter: It is derived from (9), (10) and:

p(yt+1|z1:S
1:t+1) =

Z
y1:S

t+1

„ SY
s=1

p(ys
t+1|z1:S

1:t , zs
t+1)

«
π(yt+1|y1:S

t+1)dy1:S
t+1

where π(yt+1|y1:S
t+1) =

PS
s=1 p(ys

t+1|z1:S
1:t , zs

t+1)δ[yt+1 = ys
t+1]PS

s=1 p(ys
t+1|z1:S

1:t , zs
t+1)

,

(12)

and p(ys
t+1|z1:S

1:t , zs
t+1) is an instance of p(yt+1|z1:S

1:t , zs
t+1),

obtained by just replacing yt+1 by ys
t+1 .

It is noticed that this filter is necessary suboptimal, since it
makes use of the p-PCR5 rule on correlated variables. More
precisely, the outputs ys

t+1 of the local filters are in fact
related to the same prior estimation at time t + 1. The fusion
without correction by p-PCR5 implies a redundancy of the
prior estimation. The whitened p-PCR5 filter will resolve this
difficulty. By the way, it is seen that the p-PCR5 filter still
works experimentally on the considered examples.

3) Whitened p-PCR5 filter: It is derived from (9), (10) and:

p(yt+1|z1:S
1:t+1) =

Z
y1:S

t+1

„ SY
s=1

p(ys
t+1|z1:S

1:t , zs
t+1)

«
π(yt+1|y1:S

t+1)dy1:S
t+1

where π(yt+1|y1:S
t+1) =

PS
s=1

p(ys
t+1|z1:S

1:t ,zs
t+1)

p(ys
t+1|z1:S

1:t )
δ[yt+1 = ys

t+1]

PS
s=1

p(ys
t+1|z1:S

1:t ,zs
t+1)

p(ys
t+1|z1:S

1:t )

.

(13)
Again, ys

t+1 is just an instance of yt+1 for sensor s .

These filters have been implemented by means of particles.
The sampling of p-PCR5 has been explained yet, but it is not
the purpose of this paper to explain all the theory of particle
filtering; a consultation of the literature, e.g. [7], is expected.

B. Scenario and tests
1) Scenario and simulation results for passive multi-sensor

target tracking: In order to test the p-PCR5 fusion rule, we
simulate the following scenario: in a 2-dimensional space,
two independent passive sensors are located in (0,100) and
(100,0) in Cartesian coordinates. These sensors provide a noisy
azimuth measurement (0.01 rad. normal noise) on the position
of a moving target. We associate a tracking particle filter to
each sensor. The motion model is the following :

ẋt+1 = ẋt + 0.1 ∗ N(0, 1)
ẋt+1 = ẋt + 0.1 ∗ N(0, 1)
xt+1 = xt + dt ∗ ẋt + 0.3 ∗ N(0, 1)
yt+1 = yt + dt ∗ ẏt + 0.3 ∗ N(0, 1)

(14)

where dt = 1 time unit and N(0,1) is the normal distribution.
In our simulations, each local particle filter is implemented by means
of 200 particles. At every time step, we proceed to the fusion of the
local posterior densities and then re-inject the fused state density
into each local filter (feedback loop). Three different paradigms are
considered for the fusion: Bayesian, p-PCR5 and whitened p-PCR5
rules. These filters try to estimate both the mobile position and
speed of the target which is assumed to follow a quasi-constant
velocity model. It is noticed that we are dealing directly with both
the observable and non-observable components of the target state
(each sensor is concerned). In particular, notice that this infers an
additional perturbation to the basic particle Bayesian filter, even if
there is a feedback.

2) A simple example: In this first example, the filters are well
initialized (we give them good starting speed and position). The
mobile follows a non-linear trajectory (figure 4), in order to show
the capability of this distributed filter to converge. On this example,
the Bayesian filter manages to track the target with some difficulties
during the last curve in figure 4. On the same example, p-PCR5 and
whitened p-PCR5 rules have been tested with success. While both
filters have to reestimate the speed direction at each turn, it appears
that this reestimation is more difficult for p-PCR5. This difference is
also particularly apparent during the last curve. Figure 5 displays the



Figure 4. Averaged trajectories using different tracking methods.

(a) Timestep 160

(b) Timestep 170

Figure 5. Particle clouds for whitened p-PCR5 in the last curve.

particle cloud of the whitened PCR-5 filter during and after the last
curve. The variance rises during the curve, resulting in the cross-like
cloud of sub-figure 5(a), which is characteristic to the p-PCR5 fusion:
the branches correspond to the direction the sensors are looking
at. Then, the p-PCR5, by amplifying the zone where the filters are
according to see the object, allows the process to converge again
toward the object real position in an expansion-contraction pattern
(figure 5(b)). In more difficult cases, with poor initialization for
instance (see figure 6), both p-PCR5 and whitened p-PCR5 manage
to follow the target, while the Bayesian filter diverges in about 33
percent of the cases.

Next sections investigate more thoroughly the properties of the
whitened p-PCR5 filtering.

3) Whitened p-PCR5 robustness against poor initialization:
In order to test the capability of (whitened) p-PCR5 to recover from
erroneous measurements of the local estimations, we considered two
scenarios in which the filters are differently and badly initialized. In
these scenarios, the real trajectory of the object is the same: it starts
at (200, 0) and moves toward (200, 150) at a constant speed (0, 1).

Table I
INITIALIZATION DATA

x y x speed y speed

First Filter 1 190 10 0 0

example Filter 2 210 10 0 0

Second Filter 1 190 10 0.1 -1

example Filter 2 210 10 0.5 1.5

In the first scenario (figure 7), the first filter, which sensor is
placed at (0, 100), is initialized at position (190, 10) and at speed
(0, 0). The second filter, which sensor is at (100, 0), is initialized
at position (210, 10) and at the same speed (figure 7(a)). As the
estimated positions are far from the real one (in regards to the noise
models) and both sensors are looking at the object from a remote
position, the particle cloud quickly spread horizontally (figure 7(b)).
Then the (whitened) PCR5 begins to find zones where both filters
estimate a non-negligible probability of presence and amplifies them
until convergence (figure 7(c)). Though the particle cloud still seems
to be fairly spread (because of sensors remote position), the global

Figure 6. Averaged trajectories using different tracking methods. Poor
initialization : null speed and 10 units away starting position.



(a) Timestep 1

(b) Timestep 10

(c) Timestep 20

(d) Timestep 60

Figure 7. The real mobile starts at (200, 0) and moves upward at constant
speed (0, 1); poor filters initialization.

estimate is very close from the real position and speed, and will
remain so until the last time step (figure 7(d)).

Our second example (figure 8) is a limit case: the initialization
is quite worse (see table I), since our motion model assumes nearly
constant speed and therefore makes it hard to recover from such
erroneous and contradictory speed initialization. An interesting point
is that, for a tight prediction noise, p-PCR5 sometimes does not
converge on this example, while whitened p-PCR5 usually does.
Artificially raising the prediction noise solves this problem for
‘standard’ p-PCR5, showing its trend to over-concentrate the particle
cloud.

4) Whitened p-PCR5 versus mean: As seen before, the PCR5-
fusion of two probabilistic densities amplifies the areas where both
densities have a non-negligible value. Otherwise, it usually works
like just averaging the two densities. In order to measure the impact
of the amplification, we reprocessed the first example of previous
subsection while using the mean, p12 = p1+p2

2
, instead of p-PCR5.

The result (figure 9) is self explanatory: the same expansion as with
PCR5 occurs (figure 7), but contraction never appears.

5) Conclusions: The results presented here have clearly shown
that p-PCR5, and especially whitened p-PCR5, filters are more robust
than the basic Bayesian filter. However, it is clear that Bayesian
filters are the best, when the priors are correctly defined and the
variables are locally observable (notice that there are adaptations of
the basic Bayesian filter to non-observable variables [2]). The real
interest of p-PCR5 is that it does not need prior knowledges about
the antedating local particle filters: just apply the method and obtain
consistent results!

V. CONCLUSIONS

This paper has investigated a new fusion rule, p-PCR5, for fusing
probabilistic densities. This rule is derived from the PCR5 rule for
fusing evidences. It has a simple interpretation from a sampling point
of view. p-PRC5 has been compared to the Bayesian rule on a simple
fusion example. Then, it has been shown that p-PCR5 was able
to take into account multiple hypotheses in the fusion process, by
generating multiple modes. Thus, more robustness of p-PCR5 were
foreseeable in comparison to Bayes’ rule. This robustness has been
tested successfully on examples of distributed target tracking. It is
expected that this new rule will have many applications, in particular
in case of filtering with incomplete models.
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(a) Timestep 1

(b) Timestep 10

(c) Timestep 20

(d) Timestep 60

Figure 8. The real mobile starts at (200, 0) and moves upward at constant
speed (0, 1); bad filters initialization.

(a) Timestep 1

(b) Timestep 30

(c) Timestep 45

Figure 9. Using mean instead of p-PCR5. Red dots are the positions of
the particles after fusion. The real mobile starts in (200,0) at time step 0 and
moves at a constant speed of (0,1).


