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Abstract—In this paper we extend the new family of (quanti-
tative) Belief Conditioning Rules (BCR) recently developed in
the Dezert-Smarandache Theory (DSmT) to their qualitative
counterpart for belief revision. Since the revision of quantitative
as well as qualitative belief assignment given the occurrence of
a new event (the conditioning constraint) can be done in many
possible ways, we present here only what we consider as the
most appealing Qualitative Belief Conditioning Rules (QBCR)
which allow to revise the belief directly with words and linguistic
labels and thus avoids the introduction of ad-hoc translations of
quantitative beliefs into quantitative ones for solving the problem.
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I. INTRODUCTION

In this paper, we propose a simple arithmetic of linguistic
labels which allows a direct extension of quantitative Belief
Conditioning Rules (BCR) proposed in the DSmT [2], [3]
framework to their qualitative counterpart. Qualitative beliefs
assignments are well adapted for manipulated information
expressed in natural language and usually reported by human
expert or AI-based expert systems. A new method for comput-
ing directly with words (CW) for combining and condition-
ing qualitative information is presented. CW, more precisely
computing with linguistic labels, is usually more vague, less
precise than computing with numbers, but it is expected to
offer a better robustness and flexibility for combining uncertain
and conflicting human reports than computing with numbers
because in most of cases human experts are less efficient
to provide (and to justify) precise quantitative beliefs than
qualitative beliefs.

Before extending the quantitative DSmT-based conditioning
rules to their qualitative counterparts, it will be necessary to
define few but new important operators on linguistic labels and
what is a qualitative belief assignment. Then we will show
though simple examples how the combination of qualitative
beliefs can be obtained in the DSmT framework.

II. QUALITATIVE OPERATORS AND BELIEF ASSIGNMENTS

Since one wants to compute directly with words (CW)
instead of numbers, we define without loss of generality a
finite set of linguistic labels L̃ = {L1, L2, . . . , Ln} where
n ≥ 2 is an integer. L̃ is endowed with a total order
relationship ≺, so that L1 ≺ L2 ≺ . . . ≺ Ln. To work on a

close linguistic set under linguistic addition and multiplication
operators, one extends L̃ with two extreme values L0 and
Ln+1 where L0 corresponds to the minimal qualitative value
and Ln+1 corresponds to the maximal qualitative value, in
such a way that L0 ≺ L1 ≺ L2 ≺ . . . ≺ Ln ≺ Ln+1

where ≺ means inferior to, or less, or smaller (in quality)
than, etc. Therefore, one will work on the extended ordered
set L of qualitative values L = {L0, L1, L2, . . . , Ln, Ln+1}.
The qualitative addition and multiplication of linguistic labels,
which are commutative, associative, and unitary operators, are
defined as follows - see Chapter 10 in [3] for details and
examples :

• Addition : if i + j < n + 1, Li + Lj = Li+j otherwise
Li + Lj = Ln+1.

• Multiplication : Li × Lj = Lmin{i,j}

Let’s consider a finite and discrete frame of discernment
Θ = {θ1, . . . , θn} for the given problem under consideration
where the true solution must lie in; its model M(Θ) defined by
the set of integrity constraints on elements of Θ (i.e. free-DSm
model, hybrid model or Shafer’s model) and its corresponding
hyper-power set denoted DΘ; that is, the Dedekind’s lattice on
Θ [2] which is nothing but the space of propositions generated
with ∩ and ∪ operators and elements of Θ taking into account
the integrity constraints (if any) of the model. A qualitative
basic belief assignment (qbba) also called qualitative belief
mass is a mapping function qm(.) : DΘ 7→ L. In the sequel,
all qualitative masses not explicitly specified in the examples,
are by default (and for notation convenience) assumed to take
the minimal linguistic value L0.

III. QUASI-NORMALIZATION OF QUALITATIVE MASSES

There is no way to define a normalized qm(.), but a
qualitative quasi-normalization [3] is nevertheless possible if
needed as follows:

a) If the previous defined labels L0, L1, L2, . . ., Ln, Ln+1

from the set L are equidistant, i.e. the (linguistic) distance
between any two consecutive labels Lj and Lj+1 is
the same, for any j ∈ {0, 1, 2, . . . , n}, then one can
make an isomorphism between L and a set of sub-
unitary numbers from the interval [0, 1] in the following
way: Li = i/(n + 1), for all i ∈ {0, 1, 2, . . . , n + 1},
and therefore the interval [0, 1] is divided into n + 1
equal parts. Hence, a qualitative mass, qm(Xi) = Li,



is equivalent to a quantitative mass m(Xi) = i/(n + 1)
which is normalized if∑

X∈DΘ

m(X) =
∑

k

ik/(n + 1) = 1

but this one is equivalent to∑
X∈DΘ

qm(X) =
∑

k

Lik
= Ln+1

In this case we have a qualitative normalization, similar
to the (classical) numerical normalization.

b) But, if the previous defined labels L0, L1, L2, . . ., Ln,
Ln+1 from the set L are not equidistant, so the interval
[0, 1] cannot be split into equal parts according to the
distribution of the labels, then it makes sense to consider a
qualitative quasi-normalization, i.e. an approximation of
the (classical) numerical normalization for the qualitative
masses in the same way:∑

X∈DΘ

qm(X) = Ln+1

In general, if we don’t know if the labels are equidistant
or not, we say that a qualitative mass is quasi-normalized
when the above summation holds.

IV. QUANTITATIVE BELIEF CONDITIONING RULES (BCR)

Before presenting the new Qualitative Belief Conditioning
Rules (QBCR) in the next section, it is first important and
necessary to briefly recall herein what are the (quantitative)
Belief Conditioning Rules (BCR) and what was the
motivation for their development in DSmT framework and
also the fundamental difference between BCR and Shafer’s
Conditioning Rule (SCR) proposed in [1].

So, let’s suppose one has a prior basic belief assignment
(bba) m(.) defined on hyper-power set DΘ, and one finds out
(or one assumes) that the truth is in a given element A ∈ DΘ,
i.e. A has really occurred or is supposed to have occurred. The
problem of belief conditioning is on how to revise properly the
prior bba m(.) with the knowledge about the occurrence of A.
Simply stated: how to compute m(.|A) from the knowledge
available, that is with any prior bba m(.) and A ?

A. Shafer’s Conditioning Rule (SCR)

Until very recently, the most commonly used conditioning
rule for belief revision was the one proposed by Shafer [1]
and referred here as Shafer’s Conditioning Rule (SCR). The
SCR consists in combining the prior bba m(.) with a specific
bba focused on A with Dempster’s rule of combination for
transferring the conflicting mass to non-empty sets in order to
provide the revised bba. In other words, the conditioning by
a proposition A, is obtained by SCR as follows :

mSCR(.|A) = [m⊕mS ](.) (1)

where m(.) is the prior bba to update, A is the conditioning
event, mS(.) is the bba focused on A defined by mS(A) = 1

and mS(X) = 0 for all X 6= A and ⊕ denotes the Dempster’s
rule of combination [1].

The SCR approach based on Dempster’s rule of combination
of the prior bba with the bba focused on the conditioning
event remains subjective since actually in such belief revision
process both sources are subjective and SCR doesn’t manage
properly the objective nature/absolute truth carried by the
conditioning term. Indeed, when conditioning a prior mass
m(.), knowing (or assuming) that the truth is in A, means
that we have in hands an absolute (not subjective) knowledge,
i.e. the truth in A has occurred (or is assumed to have
occurred), thus A is realized (or is assumed to be realized)
and this is (or at least must be interpreted as) an absolute
truth. The conditioning term ”Given A” must therefore be
considered as an absolute truth, while mS(A) = 1 introduced
in SCR cannot refer to an absolute truth actually, but only to
a subjective certainty on the possible occurrence of A from
a virtual second source of evidence. The advantage of SCR
remains undoubtedly in its simplicity and the main argument
in its favor is its coherence with conditional probability when
manipulating Bayesian belief assignment. But in our opinion,
SCR should better be interpreted as the fusion of m(.) with a
particular subjective bba mS(A) = 1 rather than an objective
belief conditioning rule. This fundamental remark motivated
us to develop a new family of BCR [3] based on hyper-
power set decomposition (HPSD) explained briefly in the next
section. It turns out that many BCR are possible because
the redistribution of masses of elements outside of A (the
conditioning event) to those inside A can be done in n-ways.
This will be briefly presented right after the next section.

B. Hyper-Power Set Decomposition (HPSD)

Let Θ = {θ1, θ2, . . . , θn}, n ≥ 2, a model M(Θ) associated
for Θ (free DSm model, hybrid or Shafer’s model) and its
corresponding hyper-power set DΘ. Let’s consider a (quanti-
tative) basic belief assignment (bba) m(.) : DΘ 7→ [0, 1] such
that

∑
X∈DΘ m(X) = 1. Suppose one finds out that the truth

is in the set A ∈ DΘ \ {∅}. Let PD(A) = 2A ∩ DΘ \ {∅},
i.e. all non-empty parts (subsets) of A which are included
in DΘ. Let’s consider the normal cases when A 6= ∅ and∑

Y ∈PD(A) m(Y ) > 0. For the degenerate case when the truth
is in A = ∅, we consider Smets’ open-world, which means that
there are other hypotheses Θ′ = {θn+1, θn+2, . . . θn+m}, m ≥
1, and the truth is in A ∈ DΘ′ \{∅}. If A = ∅ and we consider
a close-world, then it means that the problem is impossible.
For another degenerate case, when

∑
Y ∈PD(A) m(Y ) = 0, i.e.

when the source gave us a totally (100%) wrong information
m(.), then, we define: m(A|A) , 1 and, as a consequence,
m(X|A) = 0 for any X 6= A. Let s(A) = {θi1 , θi2 , . . . , θip

},
1 ≤ p ≤ n, be the singletons/atoms that compose A (for
example, if A = θ1 ∪ (θ3 ∩ θ4) then s(A) = {θ1, θ3, θ4}). The
Hyper-Power Set Decomposition (HPSD) of DΘ \ ∅ consists
in its decomposition into the three following subsets generated
by A:



• D1 = PD(A), the parts of A which are included in the
hyper-power set, except the empty set;

• D2 = {(Θ \ s(A)),∪,∩} \ {∅}, i.e. the sub-hyper-power
set generated by Θ \ s(A) under ∪ and ∩, without the
empty set.

• D3 = (DΘ \ {∅}) \ (D1 ∪D2); each set from D3 has in
its formula singletons from both s(A) and Θ \ s(A) in
the case when Θ \ s(A) is different from empty set.

D1, D2 and D3 have no element in common two by two and
their union is DΘ \ {∅}.

Simple example of HPSD: Let’s consider Θ = {θ1, θ2, θ3} with
Shafer’s model (i.e. all elements of Θ are exclusive) and let’s
assume that the truth is in θ2∪θ3, i.e. the conditioning term is
θ2∪θ3. Then one has the following HPSD: D1 = {θ2, θ3, θ2∪
θ3}, D2 = {θ1} and D3 = {θ1 ∪ θ2, θ1 ∪ θ3, θ1 ∪ θ2 ∪ θ3}.
More complex and detailed examples can be found in [2].

C. Belief conditioning rules (BCR)
Since there exists actually many ways for redistributing the

masses of elements outside of A (the conditioning event) to
those inside A, several BCR have been proposed recently in
[3]. Due to space limitation, we will not browse here all the
possibilities for doing these redistributions and all BCR but
one just presents here a typical and interesting BCR, i.e. the
BCR number 17 (i.e. BCR17) which does in our opinion the
most refined redistribution since:
- the mass m(W ) of each element W in D2 ∪ D3 is
transferred to those X ∈ D1 elements which are included
in W if any proportionally with respect to their non-empty
masses;
- if no such X exists, the mass m(W ) is transferred in a
pessimistic/prudent way to the k-largest element from D1

which are included in W (in equal parts) if any;
- if neither this way is possible, then m(W ) is indiscriminately
distributed to all X ∈ D1 proportionally with respect to their
nonzero masses.

BCR17 is defined by the following formula (see [2], Chap.
9 for detailed explanations and examples):

mBCR17(X|A) = m(X) ·

[
SD1 +

∑
W∈D2∪D3

X⊂W

S(W ) 6=0

m(W )
S(W )

]

+
∑

W∈D2∪D3

X⊂W, X is k-largest
S(W )=0

m(W )/k (2)

where ”X is k-largest” means that X is the k-largest (with
respect to inclusion) set included in W and

S(W ) ,
∑

Y ∈D1,Y⊂W

m(Y )

SD1 ,

∑
Z∈D1,

or Z∈D2 | @Y ∈D1 with Y⊂Z

m(Z)

∑
Y ∈D1

m(Y )

A simple example for BCR17: Let’s consider Θ = {θ1, θ2, θ3}
with Shafer’s model (i.e. all elements of Θ are exclusive) and
let’s assume that the truth is in θ2 ∪ θ3, i.e. the conditioning
term is A , θ2 ∪ θ3. Then one has the following HPSD:

D1 = {θ2, θ3, θ2 ∪ θ3}, D2 = {θ1}

D3 = {θ1 ∪ θ2, θ1 ∪ θ3, θ1 ∪ θ2 ∪ θ3}.

Let’s consider the following prior bba: m(θ1) = 0.2,
m(θ2) = 0.1, m(θ3) = 0.2, m(θ1 ∪ θ2) = 0.1,
m(θ2 ∪ θ3) = 0.1 and m(θ1 ∪ θ2 ∪ θ3) = 0.3.

With BCR17, for D2, m(θ1) = 0.2 is transferred propor-
tionally to all elements of D1, i.e. xθ2

0.1 = yθ3
0.2 = zθ2∪θ3

0.1 =
0.2
0.4 = 0.5 whence the parts of m(θ1) redistributed to θ2, θ3

and θ2 ∪ θ3 are respectively xθ2 = 0.05, yθ3 = 0.10, and
zθ2∪θ3 = 0.05. For D3, there is actually no need to transfer
m(θ1 ∪ θ3) because m(θ1 ∪ θ3) = 0 in this example; whereas
m(θ1 ∪ θ2) = 0.1 is transferred to θ2 (no case of k-elements
herein); m(θ1 ∪ θ2 ∪ θ3) = 0.3 is transferred to θ2, θ3 and
θ2 ∪ θ3 proportionally to their corresponding masses:

xθ2

0.1
=

yθ3

0.2
=

zθ2∪θ3

0.1
=

0.3
0.4

= 0.75

whence xθ2 = 0.075, yθ3 = 0.15, and zθ2∪θ3 = 0.075. Finally,
one gets

mBCR17(θ2|θ2 ∪ θ3) = 0.10 + 0.05 + 0.10 + 0.075 = 0.325
mBCR17(θ3|θ2 ∪ θ3) = 0.20 + 0.10 + 0.15 = 0.450
mBCR17(θ2 ∪ θ3|θ2 ∪ θ3) = 0.10 + 0.05 + 0.075 = 0.225

which is different from the result obtained with SCR, since
one gets in this example:

mSCR(θ2|θ2 ∪ θ3) = 0.25
mSCR(θ3|θ2 ∪ θ3) = 0.25
mSCR(θ2 ∪ θ3|θ2 ∪ θ3) = 0.50

More complex and detailed examples can be found in [2].

V. QUALITATIVE BELIEF CONDITIONING RULES (QBCR)
In this section we propose two Qualitative belief condition-

ing rules (QBCR) which extend the principles of quantitative
BCR in the qualitative domain using the operators on linguistic
labels defined in section II. We consider from now on a
general frame Θ = {θ1, θ2, . . . , θn}, a given model M(Θ)
with its hyper-power set DΘ and a given extended ordered
set L of qualitative values L = {L0, L1, L2, . . . , Lm, Lm+1}.
The prior qualitative basic belief assignment (qbba) taking its
values in L is denoted qm(.). We assume in the sequel that
the conditioning event is A 6= ∅, A ∈ DΘ, i.e. the absolute
truth is in A.



A. Qualitative Belief Conditioning Rule no 1 (QBCR1)

The first QBCR, denoted QBCR1, does the redistribution
of masses in a pessimistic/prudent way, as follows:

• transfer the mass of each element Y in D2 ∪D3 to the
largest element X in D1 which is contained by Y ;

• if no such X element exists, then the mass of Y is
transferred to A.

The mathematical formula for QBCR1 is then given by:
• If X /∈ D1,

qmQBCR1(X|A) = Lmin ≡ L0 (3)

• If X ∈ D1,

qmQBCR1(X|A) = qm(X) + qS1(X, A) + qS2(X, A)
(4)

where the addition operator involved in (4) corresponds to the
addition operator on linguistic labels defined in section II and
where the qualitative summations qS1(X, A) and qS2(X, A)
are defined by:

qS1(X, A) ,
∑

Y ∈D2∪D3

X⊂Y

X=max

qm(Y ) (5)

qS2(X, A) ,
∑

Y ∈D2∪D3

Y ∩A=∅

X=A

qm(Y ) (6)

qS1(X, A) corresponds to the transfer of qualitative mass of
each element Y in D2 ∪D3 to the largest element X in D1

and qS2(X, A) corresponds to the transfer of the mass of Y
is to A when no such largest element X in D1 exists.

B. Qualitative Belief Conditioning Rule no 2 (QBCR2)

The second QBCR, denoted QBCR2, does a uniform redis-
tribution of masses, as follows:

• transfer the mass of each element Y in D2 ∪D3 to the
largest element X in D1 which is contained by Y (as
QBCR1 does);

• if no such X element exists, then the mass of Y is
uniformly redistributed to all subsets of A whose (qual-
itative) masses are not L0 (i.e. to all qualitative focal
elements included in A).

• if there is no qualitative focal element included in A, then
the mass of Y is transferred to A.

The mathematical formula for QBCR2 is then given by:
• If X /∈ D1,

qmQBCR2(X|A) = Lmin ≡ L0 (7)

• If X ∈ D1,

qmQBCR2(X|A) = qm(X) + qS1(X, A)
+ qS3(X, A) + qS4(X, A) (8)

where the addition operator involved in (8) corresponds to the
addition operator on linguistic labels defined in section II and
where the qualitative summations qS1(X, A) is defined in (5),
qS3(X, A) and qS4(X, A) by:

qS3(X, A) ,
∑

Y ∈D2∪D3

Y ∩A=∅

qF 6=0

qm(Y )
qF

(9)

qS4(X, A) ,
∑

Y ∈D2∪D3

Y ∩A=∅

X=A,qF =0

qm(Y ), (10)

where qF , Card{Z|Z ⊂ A, qm(Z) 6= L0} and represents
the number of qualitative focal1 elements of A, or cardinal of
A, with respect to qm(.).

Scalar division of linguistic label: For the complete deriva-
tion of (8) we need to define the scalar division of labels
involved in (9). We propose the following definition:

Li

j
, L[ i

j ] (11)

for all i ≥ 0 and j > 0 where [ i
j ] is the integer part of i

j ,
i.e. the largest integer less than or equal to i

j . For example,
L5
3 = L[ 53 ] = L1, or L6

3 = L[ 63 ] = L2, etc.

VI. EXAMPLES FOR QBCR1 AND QBCR2

Let’s consider the following set of ordered linguistic labels
L = {L0, L1, L2, L3, L4, L5, L6} (for example, L1, L2, L3,
L4 and L5 may represent the values: L1 , very poor,
L2 , poor, L3 , medium, L4 , good and L5 , very good,
where the symbol , means by definition). The addition and
multiplication tables corresponds respectively to Tables I and
II.

+ L0 L1 L2 L3 L4 L5 L6

L0 L0 L1 L2 L3 L4 L5 L6

L1 L1 L2 L3 L4 L5 L6 L6

L2 L2 L3 L4 L5 L6 L6 L6

L3 L3 L4 L5 L6 L6 L6 L6

L4 L4 L5 L6 L6 L6 L6 L6

L5 L5 L6 L6 L6 L6 L6 L6

L6 L6 L6 L6 L6 L6 L6 L6

Table I
ADDITION TABLE

1An element X is a qualitative focal element of qm(.), if qm(X) 6= L0.



× L0 L1 L2 L3 L4 L5 L6

L0 L0 L0 L0 L0 L0 L0 L0

L1 L0 L1 L1 L1 L1 L1 L1

L2 L0 L1 L2 L2 L2 L2 L2

L3 L0 L1 L2 L3 L3 L3 L3

L4 L0 L1 L2 L3 L4 L4 L4

L5 L0 L1 L2 L3 L4 L5 L5

L6 L0 L1 L2 L3 L4 L5 L6

Table II
MULTIPLICATION TABLE

A. Example 1

Let’s consider the frame Θ = {A,B,C, D} with the hybrid
model corresponding to the Venn diagram on Figure 1. We
assume that the prior qualitative bba qm(.) is given by:

qm(A) = L1, qm(C) = L1, qm(D) = L4

and the qualitative masses of all other elements of GΘ take the
minimal value L0. This qualitative mass is quasi-normalized
since L1 + L1 + L4 = L1+1+4 = L6 = Lmax.
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Figure 1. Venn Diagram for the hybrid model of Example 1

If we assume that the conditioning event is the proposition
A ∪ B, i.e. the absolute truth is in A ∪ B, the hyper-
power set decomposition (HPSD) is obtained as follows:
D1 is formed by all parts of A ∪ B, D2 is the set
generated by {(C,D),∪,∩}\∅ = {C,D,C ∪D,C ∩D}, and
D3 = {A∪C,A∪D,B∪C,B∪D,A∪B∪C,A∪(C∩D), . . .}.

The qualitative mass of element D is transferred to D ∩ (A∪
B) = B ∩ D according to the model, since D is in the set
D2∩D3 and the largest element X in D1 which is contained by
element D is B∩D. Whence qmQBCR1(B∩D|A∪B) = L4,
while qmQBCR1(D|A ∪ B) = L0. The qualitative mass of
element C, which is in D2 ∪ D3, but C has no intersection
with A ∪ B (i.e. the intersection is empty), is transferred to
the whole A ∪ B. Whence qmQBCR1(A ∪ B|A ∪ B) = L1,
while qmQBCR1(C|A∪B) = L0. Since the truth is in A∪B,
then the qualitative masses of the elements A and B, which
are included in A ∪ B, are not changed in this example, i.e.
qmQBCR1(A|A ∪ B) = L1 and qmQBCR1(B|A ∪ B) =
L0. One sees that the resulting qualitative conditional mass,
qmQBCR1(.) is also quasi-normalized since

L4 + L0 + L1 + L0 + L1 + L0 = L6 = Lmax

In summary, one gets the following qualitative conditioned
masses with QBCR12:

qmQBCR1(B ∩D|A ∪B) = L4

qmQBCR1(A ∪B|A ∪B) = L1

qmQBCR1(A|A ∪B) = L1

Analogously to QBCR1, with QBCR2 the qualitative mass
of the element D is transferred to D ∩ (A ∪ B) = B ∩ D
according to the model, since D is in D2∪D3 and the largest
element X in D1 which is contained by D is B∩D. Whence
qmQBCR2(B∩D|A∪B) = L4, while qmQBCR2(D|A∪B) =
L0. But, differently from QBCR1, the qualitative mass of C,
which is in D2 ∪D3, but C has no intersection with A ∪ B
(i.e. the intersection is empty), is transferred A only since
A ∈ A ∪ B and qm1(A) is different from zero (while other
sets included in A ∪ B have the qualitative mass equal to
L0). Whence qmQBCR2(A|A ∪ B) = L1 + L1 = L2, while
qmQBCR2(C|A∪B) = L0. Similarly, the resulting qualitative
conditional mass, qmQBCR2(.) is also quasi-normalized since
L4+L0+L2+L0 = L6 = Lmax. Therefore the result obtained
with QBCR2 is:

qmQBCR2(B ∩D|A ∪B) = L4

qmQBCR2(A|A ∪B) = L2

B. Example 2

Let’s consider a more complex example related with military
decision support. We assume that the frame Θ = {A,B,C, D}
corresponds to the set of four regions under surveillance be-
cause these regions are known to potentially protect some dan-
gerous enemies. The linguistic labels used for specifying qual-
itative masses belong to L = {L0, L1, L2, L3, L4, L5, L6}.
Let’s consider the following prior qualitative mass qm(.)
defined by:

qm(A) = L1, qm(C) = L1, qm(D) = L4

All other masses take the value L0. This qualitative mass is
quasi-normalized since L1+L1+L4 = L1+1+4 = L6 = Lmax.
We assume that the military headquarter has decided to bomb
in priority region D because there was a high qualitative
belief on the presence of enemies in zone D according to the
prior qbba qm(.). But let’s suppose that after bombing and
verification, it turns out that the enemies were not in D. The
important question the headquarter is now face to is on how
to revise its prior qualitative belief qm(.) knowing that the
absolute truth is now not in D, i.e. D̄ (the complement of
D) is absolutely true. The problem is a bit different from the
previous one since the conditioning term D̄ in this example
does not belong to the hyper-power set DΘ. In such case,
one has to work actually directly on the super-power set3 as

2Only non minimal linguistic values are given here since all the masses of
other elements (i.e. non focal elements) take by default the value L0.

3The super-power SΘ is the Boolean algebra (Θ,∩,∪, C) where C denotes
the complement, while hyper-power set DΘ corresponds to (Θ,∩,∪).



proposed in [3] (Chap. 8). D̄ belongs to DΘ only if Shafer’s
model (or for some other specific hybrid models - see case 2
below) is adopted, i.e. when region D has no overlap with
regions A, B or C. The truth is not in D is in general (but
with Shafer’s model or with some specific hybrid models) not
equivalent to the truth is in A ∪ B ∪ C but with the truth is
in D̄. That’s why the following two cases need to be analyzed:

• Case 1: D̄ 6= A ∪B ∪ C.
If we consider the model represented in Figure 2, then it
is clear that D̄ 6= A ∪B ∪ C.
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Figure 2. Venn Diagram for case 1

The Super-Power Set Decomposition (SPSD) is the fol-
lowing:

– if the truth is in A, then D1 is formed by all non-
empty parts of A;

– D2 is formed by all non-empty parts of Ā;
– D3 is formed by what’s left, i.e. D3 = (SΘ \
{∅})\ (D1∪D2); thus D3 is formed by all elements
from SΘ which have the form of unions of some
element(s) from D1 and some element(s) from D2,
or by all elements from SΘ that overlap A and Ā.

In our particular example: D1 is formed by all non-empty
parts of D̄; D2 is formed by all non-empty parts of D;
D3 = {A,B, C, A ∪D,B ∪D,A ∪B, . . .}.

a) Using QBCR1: one gets:

qmQBCR1(A ∩ D̄|D̄) = L1

qmQBCR1(C ∩ D̄|D̄) = L1

qmQBCR1(D̄|D̄) = L4

b) Using QBCR2: one gets

qmQBCR2(A ∩ D̄|D̄) = L1 +
1
2
L4

= L1 + L[ 42 ] = L3

qmQBCR2(C ∩ D̄|D̄) = L1 +
1
2
L4 = L3

Note that with both conditioning rules, one gets quasi-
normalized qualitative belief masses. The results indicate
that zones A and C have the same level of qualitative
belief after the conditioning which is normal. QBRC1
however, which is more prudent, just commits the higher
belief to the whole zone A ∪ B ∪ C which represents

actually the less specific information, while QBRC2
commits equal beliefs to the restricted zones A ∩ D̄ and
C ∩ D̄ only. As far as only the minimal surface of the
zone to bomb is concerned (and if zones A ∩ D̄ and
C ∩ D̄ have the same surface), then a random decision
has to be taken between both possibilities. Of course
some other military constraints need to be taking into
account in the decision process in such situation if the
random decision choice is not preferred.

• Case 2: D̄ = A∪B∪C. This case occurs only when D∩
(A∪B∪C) = ∅ as for example to the following model4.
In this second case, ”the truth is not in D” is equivalent
to ”the truth is in A ∪ B ∪ C”. The decomposition is
the following: D1 is formed by all non-empty parts of
A ∪ B ∪ C; D2 = {D}; D3 = {A ∪ D,B ∪ D,C ∪
D,A ∪ B ∪ D,A ∪ C ∪ D,B ∪ C ∪ D,A ∪ B ∪ C ∪
D, (A ∩B) ∪D, (A ∩B ∩ C) ∪D, ...}.
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Figure 3. Venn Diagram for case 2

a) Using QBCR1: one gets

qmQBCR1(A|D̄) = L1

qmQBCR1(C|D̄) = L1

qmQBCR1(A ∪B ∪ C|D̄) = L4

b) Using QBCR2: one gets

qmQBCR2(A|D̄) = L3

qmQBCR2(C|D̄) = L3

Same concluding remarks as for case 1 can be drawn for
the case 2. Note that in this case, there is uncertainty in the
decision to bomb zone A or zone C because they have the
same supporting belief. The only difference with respect to
case 1, it that the zone to be bomb (whatever the one chosen
- A or C) will remain larger than in case 1 because D has no
intersection with A, B and C for this model.

C. Example 3

Let’s modify the previous example for examining what
happens when using an unconventional bombing strategy.
Here we still consider four zones under surveillance, i.e.
Θ = {A,B, C, D} and L = {L0, L1, L2, L3, L4, L5, L6} but

4This condition is obviously also satisfied for Shafer’s model, i.e. when all
regions are well separate/distinct.



with the following prior quasi-normalized qualitative basic
belief mass qm(.):

qm(A) = L1, qm(C) = L3, qm(D) = L2

All other qualitative masses take the value L0. Such prior
suggests normally/rationally to bomb in priority the zone C
since it is the one carrying the higher belief on the location
of enemies. But for some unknown reasons (military, political
or whatever) let’s assume that the headquarter has finally
decided to bomb D first. Let’s examine how will be revised
the prior qm(.) with QBCR1 and QBCR2 in such situation
for the two cases:

• Case 1: D̄ 6= A ∪B ∪ C.

a) Using QBCR1: qm(A) = L1 is transferred to A∩D̄,
since A∩ D̄ is the largest element from D̄ which is
included in A, so we get qmQBCR1(A ∩ D̄|D̄) =
L1; and similarly qm(C) = L3 is transferred to
C ∩ D̄, since C ∩ D̄ is the largest element from D̄
which is included in C, so we get qmQBCR1(C ∩
D̄|D̄) = L3; Also, qm2(D) = L2 is transferred
to D̄ since no element from D̄ is included in D,
therefore qmQBCR1(D̄|D̄) = L2. Analogously, this
qualitative conditioned mass qmQBCR1(.) is quasi-
normalized since L1 + L3 + L2 = L6 = Lmax. In
summary, with QBCR1 one gets in this case:

qmQBCR1(A ∩ D̄|D̄) = L1

qmQBCR1(C ∩ D̄|D̄) = L3

qmQBCR1(D̄|D̄) = L2

a) Using QBCR2: qm(A) = L1 is transferred to
A ∩ D̄, and qm(C) = L3 is transferred to C ∩ D̄.
Since no qualitative focal element exists in D̄, then
qm(D) = L2 is transferred to D̄, and we get the
same result as for QBCR1.

• Case 2: D̄ = A ∪B ∪ C.

a) Using QBCR1: the qualitative masses of A, B, C do
not change since they are included in A∪B∪C where
the truth is. The qualitative mass of D becomes
zero (i.e. it takes the linguistic value L0) since D
is outside the truth, and qm(D) = L2 is transferred
to A ∪B ∪ C. Hence:

qmQBCR1(A|D̄) = L1

qmQBCR1(C|D̄) = L3

qmQBCR1(A ∪B ∪ C|D̄) = L2

This resulting qualitative conditional mass is also
quasi-normalized.

b) QBCR2, the qualitative mass of D becomes (linguis-
tically) zero since D is outside the truth, but now
qm(D) = L2 is equally split to A and C since
they are the only qualitative focal elements from D1

which means all parts of A ∪B ∪C, therefore each
of them A and C receive (1/2)L2 = L1. Hence:

qmQBCR2(A|D̄) = L1 + (1/2)L2

= L1 + L2/2 = L1 + L1 = L2

qmQBCR1(C|D̄) = L3 + (1/2)L2

= L3 + L2/2 = L3 + L1 = L4

Again, the resulting qualitative conditional mass is
quasi-normalized.

As concluding remark, we see that even if a uncon-
ventional bombing strategy is chosen first, the results
obtained by QBCR rules 1 or 2 are legitimate and
coherent with intuition since they commit the higher
belief in either C ∩ D̄ (case 1) or C (case 2) which is
normal because the prior belief mass in C was the higher
one before bombing D.

D. Example 4

Let’s complicate a bit the previous example by working
directly with a prior qm(.) defined on the super-power set SΘ

(see the previous Footnote 3), i.e. the complement is allowed
among the set of propositions to deal with. As previously, we
consider four zones under surveillance, i.e. Θ = {A,B,C, D}
and L = {L0, L1, L2, L3, L4, L5, L6}. The following prior
qualitative basic belief mass qm(.) is extended from the hyper-
power set to the super-power set, i.e. qm(.) : SΘ → L:

qm(A) = L1, qm(C) = L1, qm(D) = L2

qm(C ∪D) = L1, qm(C ∩ D̄) = L1

All other qualitative masses take the value L0. This qualitative
mass is quasi-normalized since

L1 + L1 + L2 + L1 + L1 = L1+1+2+1+1 = L6 = Lmax

We assume that the military headquarter has decided to bomb
in priority region D because there was a high qualitative
belief on the presence of enemies in D according to the prior
qbba qm(.). But after bombing and verification, it turns out
that the enemies were not in D (same scenario as for example
2). Let’s examine the results of the conditioning by the rules
QBCR1 and QBCR2 for the cases 1 and 2:

• Case 1: D̄ 6= A ∪B ∪ C.

a) Using QBCR1: qm(A) = L1 is transferred to A∩D̄,
since A ∩ D̄ is the largest element (with respect to
inclusion) from D̄ which is included in A. qm(C) =
L1 is similarly transferred to C ∩ D̄, since C ∩ D̄
is the largest element from D̄ which is included in
C. qm(C ∪ D) = L1 is also transferred to C ∩ D̄
since C ∩ D̄ is the largest element from D̄ which
is included in C ∪ D. qm(D) = L2 is transferred



to D̄ since no element from D̄ is included in D. In
summary, we get:

qmQBCR1(A ∩ D̄|D̄) = L1

qmQBCR1(C ∩ D̄|D̄) = qm(C ∩ D̄) + qm(C)
+ qm(C ∪D)

= L1 + L1 + L1 = L3

qmQBCR1(D̄|D̄) = L2

All others are equal to L0. The resulting quali-
tative conditioned mass is quasi-normalized since
L1 + L3 + L2 = L6 = Lmax.

b) Using QBCR2: Similarly as for QBCR1, qm(A) =
L1 is transferred to A ∩ D̄; also qm(C) = L1 and
qm(C ∪ D) = L1 are transferred to C ∩ D̄. But
now, differently, qm(D) = L2 is equally split to the
focal elements of D̄, but only C ∩ D̄ is focal for D̄,
so C ∩ D̄ receives the whole qualitative mass of D.
Finally we get:

qmQBCR2(A ∩ D̄|D̄) = L1

qmQBCR2(C ∩ D̄|D̄) = qm(C ∩ D̄) + qm(C)
+ qm(C ∪D) + qm(D)

= L1 + L1 + L1 + L2 = L5

All others are equal to L0. The resulting qualitative
conditioned mass is quasi-normalized since
L1 + L5 = L6 = Lmax.

The results obtained by QBCR1 and QBCR2 are
coherent with rational human reasoning since after
bombing zone D we get, in such case, a higher belief in
finding enemies in C ∩ D̄ than in A∩ D̄ which is normal
due to the prior information we had before bombing D.
QBRC2 is more specific than QBRC1. Say differently,
QBRC1 is more prudent than QBRC2 in the revision of
the masses of belief.

• Case 2: D̄ = A ∪B ∪ C.

a) Using QBCR1: qm(C ∪ D) = L1 is transferred to
C since C is the largest element (with respect to
inclusion) from A∪B∪C which is included in C∪D.
qm(C ∩ D̄) = qm(C) since C ∩ (A ∪B ∪C) = C.
qm(D) = L2 is transferred to A ∪ B ∪ C since no
element from A ∪ B ∪ C is included in D, so the
qualitative mass of D becomes zero (i.e. it takes the
linguistic value L0). Thus we finally obtain:

qmQBCR1(A|D̄) = L1

qmQBCR1(C|D̄) = qm(C) + qm(C ∪D)
+ qm(C ∩ D̄)

= L1 + L1 + L1 = L3

qmQBCR1(A ∪B ∪ C|D̄) = L2

All others are equal to L0. The resulting quali-
tative conditioned mass is quasi-normalized since
L1 + L3 + L2 = L6 = Lmax.

b) Using QBCR2: qm(C∪D) = L1 and qm(C∩D̄) =
L1 are similarly as in QBRC1 transferred to C. But
qm(D) = L2 is equally split among the focal quali-
tative elements of D̄ = A∪B ∪C, which are A and
C, so each of them receive 1/2 · L2 = L2/2 = L1.
Whence

qmQBCR2(A|D̄) = qm(A) +
1
2
qm(D)

= L1 +
1
2
L2 = L1 + L1 = L2

qmQBCR1(C|D̄) = [qm(C) + qm(C ∪D)

+ qm(C ∩ D̄)] +
1
2
qm(D)

= [L1 + L1 + L1] + L1 = L4

All others are equal to L0. The resulting qualitative
conditioned mass is quasi-normalized since
L2 + L4 = L6 = Lmax.

The results obtained by QBCR1 and QBCR2 are again
coherent with rational human reasoning since after
bombing zone D we get, in such case, a higher belief
in finding enemies in C than in A which is normal due
to the prior information we had before bombing D and
taking into account the constraint of the model.

VII. CONCLUSIONS

In this paper, we have designed two Qualitative Belief
Conditioning Rules in order to revise qualitative basic belief
assignments and we presented some examples to show how
they work. QBCR1 is more prudent than QBCR2 because
the revision of the belief is done in a less specific transfer
than for QBCR2. We use it when we are less confident in
the source. While QBCR2 is more optimistic and refined;
we use it when we are more confident in the source. Of
course, the qualitative conditioning process is less precise than
its quantitative counterparts because it is based on a rough
approximation, as it normally happens when working with lin-
guistic labels. Such qualitative methods present however some
interests for manipulating information and beliefs expressed
in natural language by human experts and can be helpful for
high-level decision support systems.
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