Enrichment of Qualitative Beliefs
for Reasoning under Uncertainty

Xinde Li and Xinhan Huang
Intelligent Control and Robotics Laboratory
Department of Control Science and Engineering
Huazhong University of Science and Technology
Wuhan 430074, China
Email:xdI825@163.com

Abstract—This paper deals with enriched qualitative belief
functions for reasoning under uncertainty and for combining in-
formation expressed in natural language through linguistic labels.
In this work, two possible enrichments (quantitative and/or qual-
itative) of linguistic labels are considered and operators (addition,
multiplication, division, etc) for dealing with them are proposed
and explained. We denote them ge-operators, ge standing for
”qualitative-enriched” operators. These operators can be seen
as a direct extension of the classical qualitative operators (g-
operators) proposed recently in the Dezert-Smarandache Theory
of plausible and paradoxist reasoning (DSmT). g-operators are
also justified in details in this paper. The quantitative enrichment
of linguistic label is a numerical supporting degree in [0, c0),
while the qualitative enrichment takes its values in a finite
ordered set of linguistic values. Quantitative enrichment is less
precise than qualitative enrichment, but it is expected more close
with what human experts can easily provide when expressing
linguistic labels with supporting degrees. Two simple examples
are given to show how the fusion of qualitative-enriched belief
assignments can be done, and a simulation application is given to
show its advantage in rough navigation map building of mobile
robot.

Keywords: Information fusion, Qualitative beliefs, DSmT,
DST.

I. INTRODUCTION

Qualitative methods for reasoning under uncertainty have
gained more and more attention by Information Fusion
community, especially by the researchers and system
designers working in the development of modern multi-source
systems for defense, robotics and so on. This is because
traditional methods based only on quantitative representation
and analysis are not able to completely satisfy adequately the
need of the development of science and technology integrating
at higher fusion levels human beliefs and reports in complex
systems. Therefore qualitative knowledge representation
becomes more and more important and necessary in next
generations of (semi) intelligent automatic and autonomous
systems.

For example, Wagner et al. [16] consider that although
recent robots have powerful sensors and actuators, their
abilities to show intelligent behavior is often limited because
of lacking of appropriate spatial representation. Ranganathan
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et al. [11] describe a navigation system for a mobile robot
which must execute motions in a building, the environment
is represented by a topological model based on a Generalized
Voronoi Graph (GVG) and by a set of visual landmarks. A
qualitative self-localization method for indoor environment
using a belt of ultrasonic sensors and a camera is proposed.
Moratz et al. [6] point out that qualitative spatial reasoning
(QSR) abstracts metrical details of the physical world,
of which two main directions are topological reasoning
about regions and reasoning about orientations of point
configurations. So, because concrete problems need a
combination of qualitative knowledge of orientation and
qualitative knowledge of distance, they present a calculus
based on ternary relations where they introduce a qualitative
distance measurement based on two of the three points.
Duckham et al. [4] explore the development and the use of
a qualitative reasoning system based on a description logic
for providing the consistency between different geographic
data sets. Their research results suggest that further work
could significantly increase the level of automation for many
geographic data integration tasks.

Recently, Smarandache and Dezert in [14] (Chap. 10)
give a detailed introduction of major works for qualitative
reasoning under uncertainty. Among important works in this
field, one must mention George Polya who first attempted in
1954 to find a formal characterization of qualitative human
reasoning [10], then followed by Lotfi Zadeh’s works [19],
[20]. Later, Wellman [17] proposed a general characterization
of qualitative probability to relax precision in representation
and reasoning within the probabilistic framework, in order
to develop Qualitative Probabilistic Networks (QPN). Wong
and Lingras [18] have proposed a method for generating
basic belief functions from preference relations between
each pair of propositions be specified qualitatively based
on Dempster-Shafer Theory (DST) [12]. Parsons [7], [8]
then proposed a qualitative Dempster-Shafer Theory, called
Qualitative Evidence Theory (QET) by using techniques
from qualitative reasoning. This approach seems however
to have been abandoned by Parsons in favor of qualitative
probabilistic reasoning (QPR) [9]. In 2004, Brewka et



al. [2] have proposed a Qualitative Choice Logic (QCL),
which is a propositional logic for representing alternative,
ranked options for problem solutions. This logic adds to
classical propositional logic a new connective called ordered
disjunction, that is, if possibleA, but if A is not possible
then at least B. The semantics of qualitative choice logic
is based on a preference relation among models. Very
recently, Badaloni and Giacomin [1] integrate the ideas of
flexibility and uncertainty into Allen’s interval-based temporal
framework and define a new formalism, called 7A7%*, which
extends classical Interval Algebra (I1A) to express qualitative
fuzzy constraints between intervals.

In [14], Smarandache and Dezert introduce a definition
of qualitative basic belief assignment (gbba or just gm -
standing for qualitative mass), and they propose an extension
of quantitative fusion rules developed in DSmMT framework
for combining directly gbba’s without mapping linguistic
labels into numbers, and thus computing directly with
words. Such extension (mainly the qualitative extension of
DSmC, DSmH and PCR5 rules - see [14]) is based on the
definition of new operators (addition, multiplication, etc) on
linguistic labels which are called g-operators. In this work, we
propose to enrich the original definition of qualitative basic
belief assignment (gbba) into two possible different ways,
quantitatively and qualitatively. These enrichments yields to
the definition new linguistic operators for these new types of
enriched gbba’s. We will denote them ge-operators.

The first gbba enrichment consists in associating a
quantitative (numerical) supporting degree in [0,00) given
a body of evidence/source to each linguistic label. Such
enrichment allows to take into account and mix (when
available) some numerical extra knowledge about the
reliability/trustability of the linguistic label committed to
propositions of the frame of discernment. The second possible
enrichment is purely qualitative in order to fit more closely
with what human experts are expected to provide in reality
when enriching their linguistic labels using natural language.

This paper is organized as follows: In section Il, we remind
briefly the basics of DSmT. In section Il we present and
justify in details the g-operators, in order to get ready for
introducing new enriched qualitative-enriched (ge) operators
in sections 1V. In section V, we illustrate through very simple
examples how these operators can be used for combining
enriched qualitative beliefs. Concluding remarks are then given
in VII.

Il. BAsICS OF DSMT FOR QUANTITATIVE BELIEFS

Let © = {61,02,---,0,} be a finite set of n elements
0;, i =1,...,n assumed to be exhaustive. © corresponds to
the frame of discernment of the problem under consideration.
In general (unless introducing some integrity constraints), we
assume that elements of © are non exclusive in order to
deal with vague/fuzzy and relative concepts [13]. This is the

so-called free-DSm model which is denoted by M/(©). In
DSmT framework, there is no need to work on refined frame
O,y consisting in a (possibly finer) discrete finite set of
exclusive and exhaustive hypotheses which is usually referred
as Shafer’s model M%(©) in literature, because DSm rules
of combination work for any models of the frame, i.e. the
free DSm model, Shafer’s model or any hybrid model. The
hyper-power set (Dedekind’s lattice) D® is defined as the set
of all compositions built from elements of © with U and N
(© generates D® under U and N) operators such that

a) @,91,92,"' ,Qn ED@.

b) If A,Bc D®, then ANB € D® and AU B € D°.

¢) No other elements belong to D®, except those obtained

by using rules a) or b).

A (quantitative) basic belief assignment (bba) expressing
the belief committed to the elements of D® by a given
source/body of evidence S is a mapping function m(-):
D® — [0, 1] such that:

m(f) =0 > om(A)=1 (1)

AeD®

Elements A € D® having m(A) > 0 are called focal
elements of the bba m(.). The general belief function and
plausibility functions are defined respectively in almost the
same manner as within the DST [12], i.e.

Bel(A)= Y m(B) &)
BeD®,BCA
Pi(A)= Y. m(B) 3)

BeD® ,BNA#D

The main concern in information fusion is the combina-
tion of sources of evidence and the efficient management of
conflicting and uncertain information. DSmMT offers several
fusion rules, denoted by the generic symbol @, for combining
basic belief assignments. The simplest one, well adapted when
working with the free-DSm* model M/ (©) and called DSmC
(standing for DSm Classical rule) is nothing but the conjunc-
tive fusion operator of bba’s defined over the hyper-power set
D®. Mathematically, DSmC for the fusion of & > 2 sources
of evidence is defined by 1 s (e)(0) = 0 and VA # ) € D°,

(>

maqs o) (A) = [m1 @ - @ myl(A)
k
mause(A) = Y J]ms(X0) 4

X1, ,X,eD® s=1
X1N-NXp=A

When working with hybrid models and/or Shafer’s model
M?O(©), other rules for combination must be used for taking
into account integrity constraints of the model (i.e. some
exclusivity constraints and even sometimes no-existing con-
straints in dynamical problems of fusion where the model and
the frame can change with time). For managing efficiently

LWe call it free because no integrity constraint is introduced in such model.



the conflicts between sources of evidence, DSmT proposes
mainly two alternatives to the classical Dempster’s rule of
combination [12] for working efficiently with (possibly) high
conflicting sources. The first rule proposed in [13] was the
DSm hybrid rule (DSmH) of combination which offers a
prudent/pessimistic way of redistributing partial conflicting
mass. The basic idea of DSmH is to redistribute the partial
conflicting mass to corresponding partial ignorance. For ex-
ample: let’s consider only two sources with two bba’s m4(.)
and ma(.), if ANB = 0 is an integrity constraint of the model
of © and if my(A)ma(B) > 0, then my(A)mo(B) will be
transferred to AU B through DSmH. The general formula for
DSmH is quite complicated and can be found in [13] and is
not reported here due to space limitation. DSmH is actually a
natural extension of Dubois & Prade’s rule of combination
[3] which allows also to work with dynamical changes of
the frame and its model. A much more precise fusion rule,
called Proportional Conflict Redistribution rule no. 5 (PCR5)
has been developed recently in [14] for transferring more
efficiently all partial conflicting masses. Basically, the idea of
PCR5 is to transfer the conflicting mass only to the elements
involved in the conflict and proportionally to their individual
masses. For example: let’s assume as before only two sources
with bba’s m1(.) and ma(.), AN B = () for the model of ©
and my(A) = 0.6 and mz(B) = 0.3. Then with PCR5, the
partial conflicting mass mq(A)mq(B) = 0.6-0.3 = 0.18 is
redistributed to A and B only with the following proportions
respectively: z4 = 0.12 and xp = 0.06 because the propor-
tionalization requires

T A . B - ml(A)mg(B) - 0.18 -
my(A)

= = = =0.2
mg(B) ml(A) + m2(B) 0.9

General PCR5 fusion formula for the combination of & > 2

sources of evidence can be found in [14].

I1l. EXTENSION OF DSMT FOR QUALITATIVE BELIEFS

In order to compute with words (i.e. linguistic labels) and
qualitative belief assignments instead of quantitative belief
assignments? over G©, Smarandache and Dezert have defined
in [14] a qualitative basic belief assignment gm(.) as a
mapping function from G© into a set of linguistic labels
L={Ly,L, Ly} where L ={Ly,---,L,} is afinite set of
linguistic labels and where n > 2 is an integer. For example,
L, can take the linguistic value “poor”, Lo the linguistic value
“good”, etc. L is endowed with a total order relationship <,
sothat L1 < Ly < --- < L,. To work on a true closed
linguistic set L under linguistic addition and multiplication
operators, Smarandache and Dezert extended naturally L with
two extreme values Lo = Lmin and Lp11 = Lmax, Where
Lo corresponds to the minimal qualitative value and L,
corresponds to the maximal qualitative value, in such a way
that Lo < Ly < Ly < --- < L, < L,.1, where < means

2@G© s the generic notation for the hyper-power set taking into account
all integrity constraints (if any) of the model. For example, if one considers
a free-DSm model for © then G© = D®. If Shafer’s model is used instead
then G© = 29 (the classical power-set).

inferior to, or less (in quality) than, or smaller than, etc. Labels
Ly, Ly, Lo, ..., Ly, L,y are said linguistically equidistant
if: Li+1 — L, = L; — L;_q forall i = 1,2,....n where
the definition of subtraction of labels is given in the sequel
by (11). In the sequel L; € L are assumed linguistically
equidistant® labels such that we can make an isomorphism
between L = {Lg,L1,Lo,...,L,, Lyyq} and {0,1/(n +
1),2/(n+1),...,n/(n+1),1}, defined as L, = i/(n + 1)
forall : =0,1,2,...,n,n + 1. Using this isomorphism, and
making an analogy to the classical operations of real numbers,
we are able to define the following qualitative operators (or
g-operators for short):
« g-addition of linguistic labels
J i+J
n+1 n+1_n—|—1_Lz+] ©®)
but of course we set the restriction that ¢ +j < n+1; in
the case when i + j > n + 1 we restrict L ; = Lp41.
So this is the justification of the qualitative addition we
have defined.
o g-multiplication of linguistic labels
a) Since L; x L; = g - -5 = % the
best approximation would be L.y /(n+1)], Where [z]
means the closest integer to z, i.e.

Li+L;=

Li x Lj = Lii.j)/(ns1) ©)

For example, if we have Lo, Ly, Lo, L3, L4, Ls,
corresponding to respectively 0, 0.2, 0.4, 0.6, 0.8, 1,
then Lo - Ly = Li2.3)/5) = Lis/5) = Loy = L,
using numbers: 0.4 - 0.6 = 0.24 =~ 0.2 = L4; also
Ls- L3 = L[(33)/5] = L[9/5] = L[1.8] = Lo; using
numbers 0.6 - 0.6 = 0.36 ~ 0.4 = Ls.

b) A simpler approximation of the multiplication, but
less accurate (as proposed in [14]) is thus

L; x Lj = Liin{s,5) (7)

« Scalar multiplication of a linguistic label
Let a be a real number. We define the multiplication of
a linguistic label by a scalar as follows:

a-L;= 7(1-2' ~ Lpa-i
n+1 L—[a-i]

« Division of linguistic labels
a) Division as an internal operator: /: L x L — L. Let
j # 0, then

Li/L; = {L[<+/1;>< +1)]

if [a-i] >0,
otherwise.

®)

if{(i/7) - (n+ 1] <n+1,
otherwise.
9)
The first equality in (9) is well justified because when
[(i/§) - (n4+1)] < n+1, one has
_i/(n+1) _ (i/j) - (n+1)

L’:/Lj*j/(nﬂ) T+l

3If the labels are not equidistant, the g-operators still work, but they are
less accurate.

= Li(i/j)-(n+1)]



For example, if we have Lo, Ly, Lo, L3, L4, Ls,
corresponding to respectively 0, 0.2, 0.4, 0.6, 0.8, 1,
then: Ll/Lg = L[(1/3)5] = L[5/3] = L[1.66} ~ Ls.
L4/L2 = L[(4/2).5] = L{2.5] = Lpax = Ls since
10 > 5.

b) Division as an external operator: @ : L x L, — R™T.
Letj # 0. Since L;@oL; = (i/(n+1))/(j/(n+1)) =
i/7, we simply define

L;oL; Zl/j (10)

Justification of b): when we divide say L,/L; in the
above example, we get 0.8/0.2 = 4, but no label
is corresponding to number 4 which is not even in
the interval [0, 1], hence in the division as an internal
operator we need to get as response a label, so in our
example we approximate it to L.« = Ls, Which is
a very rough approximation! So, depending on the
fusion combination rules, it might better to consider
the qualitative division as an external operator, which
gives us the exact result.

o g¢-subtraction of linguistic labels: — : L x L — {L,—L},

Loy [ i
! T —Lj,i if 1< 7.

.y
t=J 11)

where —L = {7L17 7L2, ey —L,, 7Ln+1}. The q-
substraction above is well justified since when i > j,
one has L; — L; = -7 — -4 = =4,

The above qualitative operators are logical, justified due
to the isomorphism between the set of linguistic equidistant
labels and a set of equidistant numbers in the interval [0, 1].
These qualitative operators are built exactly on the track
of their corresponding numerical operators, so they are
more mathematical than the ad-hoc definition of qualitative
operators proposed so far in the literature. They are similar to
the PCR5 combination numerical rule with respect to other
fusion combination numerical rules based on the conjunctive
rule. But moving to the enriched label qualitative operators
the accuracy decreases.

There is no way to define a normalized ¢m(.), but a qual-
itative quasi-normalization [14], [15] is nevertheless possible
when considering equidistant linguistic labels because in such
case, gm(X;) = L;, is equivalent to a quantitative mass
m(X;) =14/(n + 1) which is normalized if

dom(X)=) ir/(n+1)=1
XeD® k
but this one is equivalent to
> gm(X)=> Li =Lnp
XeD® k

In this case, we have a qualitative normalization, similar to the
(classical) numerical normalization. But, if the previous labels
Lo, L1, Lo, ..., Ly, L,11 from the set L are not equidistant,
so the interval [0, 1] cannot be split into equal parts according

to the distribution of the labels, then it makes sense to consider
a qualitative quasi-normalization, i.e. an approximation of the
(classical) numerical normalization for the qualitative masses
in the same way:

Y am(X) = Lot
XeD®
In general, if we don’t know if the labels are equidistant or
not, we say that a qualitative mass is quasi-normalized when
the above summation holds. In the sequel, for simplicity,
one assumes to work with quasi-normalized qualitative basic
belief assignments.

From these very simple qualitative operators, it is thus
possible to extend directly the DSmH fusion rule for
combining qualitative basic belief assignments by replacing
classical addition and multiplication operators on numbers
with those for linguistic labels in DSmH formula. In a similar
way, it is also possible to extend PCR5 formula as shown
with detailed examples in [14] and in section V of this paper.
In the next section, we propose new qualitative-enriched (ge)
operators for dealing with enriched linguistic labels which
mix the linguistic value with either quantitative/numerical
supporting degree or qualitative supporting degree as well.
The direct qualitative discounting (or reinforcement) is
motivated by the fact that in general human experts provide
more easily qualitative values than quantitative values when
analyzing complex situations.

In this paper, both quantitative enrichments and qualitative
enrichments of linguistic labels are considered and unified
through same general ge-operators. The quantitative enrich-
ment is based directly on the percentage of discounting (or
reinforcement) of any linguistic label. This is what we call a
Type 1 of enriched labels. The qualitative enrichment comes
from the idea of direct qualitative discounting (or reinforce-
ment) and constitutes the Type 2 of enriched labels.

IV. ge-OPERATORS

We propose to improve the previous g-operators for dealing
now with enriched qualitative beliefs provided from human
experts. We call these operators the ge-operators. The basic
idea is to use “enriched”-linguistic labels denoted L;(e;),
where ¢; can be either a numerical supporting degree in
[0,00) or a qualitative supporting degree taken its value
in a given (ordered) set X of linguistic labels. L;(¢;) is
called the qualitative enrichment* of L;. When ¢; € [0, 00),
L;(e;) is called an enriched label of Type 1, whereas when
e, € X, Li(e;) is called an enriched label of Type 2. The
(quantitative or qualitative) quantity e; characterizes the
weight of reinforcing or discounting expressed by the source
when using label L; for committing its qualitative belief
to a given proposition A € G®. It can be interpreted as a
second order type of linguistic label which includes both

4Linguistic labels without enrichment (discounting or reinforcement) as
those involved in g-operators are said classical or being of Type 0.



the linguistic value itself but also the associated degree
of confidence expressed by the source. The values of ¢;
express the expert’s attitude (reinforcement, neutral, or
discounting) to a certain proposition when using a given
linguistic label for expressing its qualitative belief assignment.

For example with enriched labels of Type 1, if the label
L; = Ly(1) represents the linguistic variable Good, then
L1 (ey) represents either the reinforced or discounted L, value
which depends on the value taken by ;. In this example, €;
represents the (numerical) supporting degree of the linguistic
value L; = Good. If ¢; = 1.2, then we say that the linguistic
value L; = Good has been reinforced by 20% with respect
to its nominal/neutral supporting degree. If ¢; = 0.4, then it
means that the linguistic value L, is discounted 60% by the
source.

With enriched labels of Type 2, if one chooses by example
X = {NB,NM,NS,0,PS,PM,PB}, where elements
of X have the following meaning: NB £ *“negative big”,
NM £ “negative medium”, NS £ *“negative small”,
O £ *“neutral” (i.e. no discounting, neither reinforcement),
PS £ *“positive small”, PM %= *“positive medium” and
PB “positive big”. Then, if the label L; £ L,(0)
represents the linguistic variable Good, then L1 (e1), €1 € X,
represents either the qualitative reinforced or discounted L,
value which depends on the value taken by ¢; in X. ¢; = O
means a neutral qualitative supporting degree corresponding
to e, = 1 for enriched label of Type 1. ¢; represents
the qualitative supporting degree of the linguistic value
L, = Good. If ¢, = PS, then we say that the linguistic value
L, = Good has been reinforced a little bit positively with
respect to its nominal/neutral supporting degree. If ¢, = N B,
then it means that the linguistic value L, is discounted
slightly and negatively by the source.

1> 1l

We denote by L(¢) any given set of (classical/pure) linguis-
tic labels L = {L1, Lo, ..., L,} endowed with the supporting
degree property (i.e. discounting, neutral and/or reinforce-
ment). In other words,

L(e) = {Li(e1), La(ea), .., Ln(en)}

represents a given set of enriched linguistic labels®. We
assume the same order relationship < on L(e) as the one
defined on L. Moreover we extend L(e) with two extreme
(minimal and maximal) enriched qualitative values Lg(e)
and L,+1(e) in order to get closed under ge-operators
on L(e) 2 {Lo(e),L(e), Lny1(e)}. For working with
enriched labels (and then with qualitative enriched basic
belief assignments), it is necessary to extend the previous
g-operators in a consistent way. This is the purpose of our
new ge-operators.

5In this formal notation, the quantities €1, ..., e, represent any values
in [0, c0) if the enrichment is quantitative (Type 1), or values in X is we
consider an qualitative enrichment (Type 2).

An enriched label L;(¢;) means that the source has
discounted (or reinforced) the label L; by a quantitative or
qualitative factor ;. Similarly for L;(e;). So we use the
g-operators for L;, L; labels, but for confidences we propose
three possible versions: If the confidence in L; is ¢; and the
confidence in L; is ¢;, then the confidence in combining L;
with L; can be:

a) either the average, i.e. (¢; +€;)/2;

b) or min{e;, €;};

c) or we may consider a confidence interval as in statistics,
SO We gt [€min, Emax)s Where epin = min{e;,e;} and
emax = max{e;, ¢;}; if ¢, = ¢; then the confidence
interval is reduced to a single point, «;.

In the sequel, we denote by “c” any of the above resulting
confidence of combined enriched labels. All these versions
coincide when ¢; = ¢; = 1 (for Type 1) or when¢; =¢; = O
(for Type 2), i.e. where there is no reinforcement or no
discounting of the linguistic label. However the confidence
degree average operator (case a) ) is not associative, so in
many cases it’s inconvenient to use it. The best among these
three, more prudent and easier to use, is the min operator.
The confidence interval operator provides both a lower and
a upper confidence level, so in an optimistic way, we may
take at the end the midpoint of this confidence interval as a
confidence level.

The new extended operators allowing working with
enriched labels of Type 1 or Type 2 are then defined by:

o ge-addition of enriched labels

L, if i+j>n+1,
Li(€i)+Lj(€j): . +1(C) 7 -] n
i+j(c) otherwise.
(12)
« ge-multiplication of linguistic labels

a) As direct extension of (6), the multiplication of
enriched labels is defined by

Li(e;) x Lj(e5) = Liij) /1y (¢)  (13)

b) as another multiplication of labels, easier, but less
exact:

Lz(Gz) X Lj(ej) = Lmin{i.,j}(c)

o Scalar multiplication of a enriched label Let a be a
real number. We define the multiplication of an enriched
linguistic label by a scalar as follows:

(14)

Liq.q(€i)
L_ [a-i] (€i)

« ge-division of enriched labels

if [@a-4] >0,

15
otherwise. (19

a - Li(ei) ~ {



a) Division as an internal operator: Let j # 0, then

_ {Ln+1(c)
LiGi/j)-(n+1)) ()

if [(i/4) - (n+1)] >n+1,
otherwise.

Ll(el)

Lj(e;)

(16)

b) Division as an external operator: Let j = 0, then we

can also consider the division of enriched labels as
external operator too as follows:

Li(ei) @ Lj(e;) = (i/j)supp(c) 7

The notation (i/j)supp(cy Means that the numerical
value (i/7) is supported with the degree c.

o ge-subtraction of enriched labels

Li*j (C) if
—Lj,i(C) if

Li(e:) — Lj(e;) = { L2 (18)
i<j.

These ge-operators with numerical confidence degrees are con-
sistent with the classical qualitative operators when e¢; = e; =
1 since ¢ =1 and L;(1) = L; for all 4, and the ge-operators
with qualitative confidence degrees are also consistent with
the classical qualitative operators when e, = e¢; = O (this is
letter “O”, not zero, hence the neutral qualitative confidence
degree) since ¢ = O (neutral).

V. EXAMPLES OF QPCR5 FUSION OF QUALITATIVE BELIEF
ASSIGNMENTS

A. Qualitative masses using quantitative enriched labels

Let’s consider a simple frame © = {A, B} with Shafer’s
model (i.e. AN B = (), two qualitative belief assignments
gm1(-) and gms(-), the set of ordered linguistic labels L =
{Lo,L1,Lo,L3,L4,L5,Ls}, n =5, enriched with quantita-
tive support degree (i.e. enriched labels of Type 1). For this
example the (prudent) min operator for combining confidences
proposed in section IV (case b) ) is used, but other methods
a) and c) can also be applied.We consider the following gbba
summarized in the Table I: Note that gm;(-) and gmo(-) are

A B AUB ANB
qgm1(-) L1(0.3) L2(1.1) L3(0.8)
gma(-) | La(0.6) L2(0.7)  Lo(1)
gmi2(-) | L3(0.3) L2(0.7) Lo(0.8) | L1(0.3)
Table |

gm1 (), gma(-) AND gmi2(-) WITH QUANTITATIVE ENRICHED LABELS

quasi-normalized since Ly + Lo + Lg = Ly + Lo + Lo =
Lg = Lpyax. The last raw of Table I, corresponds to the result
gm12(-) obtained when applying the qualitative conjunction

rule. The values for gm2(-) are obtained as follows:

gmaz(A4) = gmi(A)gma(A) + gmi(A)gma(AU B)

+ gma(A)gmq (AU B)

= L1(0.3)L4(0.6) + L1(0.3) Lo (1)
+ L4(0.6)L5(0.8)

= Li(1.4)/6)(min{0.3,0.6}) 4 Ly(o.1) /6] (min{0.3,1})
+ Li4-3)/6) (min{0.6,0.8})

= L1(0.3) 4+ Lo(0.3) + L2(0.6)

= Li4o40(min{0.3,0.3,0.6}) = L3(0.3)

gmiz(B) = gm1(B)gma(B) + gm(B)gma(A U B)

+ gma(B)gm1 (AU B)

= Lo(1.1)Lo(0.7) + Lo (1.1)Lo(1)
+ Ly(0.7)L3(0.8)

= Lj(2.2)/6)(min{1.1,0.7}) 4 Ly(2.0) /6] (min{1.1,1})
+ Li(2.3) /6] (min{0.7,0.8})

= L, (0.7) + Lo(1) + L1 (0.7)

= Lipor1(min{0.7,1,0.7}) = Ly(0.7)

gmi2(AU B) = gqm1 (AU B)gma(A U B)
— Ly(0.8)Lo(1)
= L[(3»O)/6] (mm{()& 1}) = Lo(OS)

and the conflicting qualitative mass by

gmi2(0) = gmi2(AN B)
= qm1(A)gma(B) + gma(A)gma(B)
= L1(0.3)L2(0.7) + L4(0.6) Lo(1.1)
= Li(1.2)/6)(min{0.3,0.7})
+ Lia-2)/6) (min{0.6,1.1})
= Lo(0.3) + Ly1(0.6)
= Lo4+1(min{0.3,0.6}) = L1(0.3)

The resulted qualitative mass, g¢mi2(-), is also quasi-
normalized since L3 + Lo + Lo + L1 = Lg = Lax.

According to gPCR5 (see [14]), we need to redistribute
the conflicting mass L;(0.3) to the elements involved in the
conflict, A and B, thus:

a) gmq(A)gma(B) = L1(0.3)L2(0.7) = L(0.3) is redis-
tributed back to A and B proportionally with respect to
their corresponding qualitative masses put in this partial
conflict, i.e. proportionally with respect to L;(0.3) and
L2(0.7). But, since L(0.3) is the null qualitative label
(equivalent to zero for numerical masses), both A and B
get Lo with the minimum confidence, i.e. Ly(0.3).

b) qmg(A)qml(B) = L4(06)L2(11) = L1(06) is redis-
tributed back to A and B proportionally with respect to
their corresponding qualitative masses put in this partial



conflict, i.e. proportionally with respect to L,(0.6) and
Ly(1.1), i.e.

ta___ys___ L.(06)
L4(0.6)  Ly(1.1)  L4(0.6) + Lo(1.1)
L1(0.6 .
B L6Eo.6) = Li(1/6).6)(min{0.6,0.6})
= L1(0.6)
whence

TpA = L4(O6) . Ll (06)
= L[(4.1)/6} (min{0.6, 0.6}) = L1(0.6)

yp = L2(1.1) - L1(0.6)
= Li(2.1y/6)(min{1.1,0.6}) = Lo(0.6)
Thus, the result of the gPCR5 fusion of gm () with gma(-)
is given by
gmpcrs(A) = L3(0.3) + Lo(0.3) + x4
= L3(0.3) + Lo(0.3) 4+ L1(0.6)
= L340+1(min{0.3,0.3,0.6}) = L4(0.3)

quCRS(B) = L2(07) + L0(03) + YB
= L2(0.7) + Ly(0.3) 4+ Lo(0.6)
= L2+0+0(min{0.7, 03, 06}) = LQ(OS)
qmpCR5(A U B) = L0(08)
gmpcrs(ANB) = Lo = Lo(1)

This qualitative PCR5-combined resulting mass is also quasi-

normalized® since L, + Lo + Lo + Lo = Lg = Liax.

B. Qualitative masses with qualitative-enriched labels

Using qualitative supporting degrees (i.e. enriched labels
of Type 2) taking their values in the linguistic set X =
{NB,NM,NS,0, PS,PM,PB}, with NB < NM <
NS < O < PS < PM < PB we get similar result for
this example. So, let’s consider © = {4, B} with Shafer’s
model and ¢gm,(-) and gma(-) chosen as in Table Il The

A B AUB
gmi(-) | Li(NB)  L2(PS) L3(NS)
qma(-) | La(NM) La(NS)  Lo(O)

Table Il

gm1(+), gma(-) WITH QUALITATIVE ENRICHED LABELS

qualitative conjunctive and PCR5 fusion rules are obtained
with derivations identical to the previous ones, since NB <
NM < NS <O < PS < PM < PB and we associated
NB = 0.3 or lesss NM = [0.5,0.6], NS = [0.7,0.8],
O = 1land PS = 1.1. The minimum operator on X (qualitative
degrees) works similarly as on R* (quantitative degrees). Thus,
finally one gets results according to Table III.

6The confidence level/degree in the labels does not matter in the definition
of quasi-normalization.

A B AUB | ANB
qmia() | Ls(NB) La(NS) Lo(NS) | Li(NB)
gmpcrs() | La(NB) Ly(NB) Lo(NS) [ Lo(O)

Table 111
RESULT OBTAINED WITH QUALITATIVE CONJUNCTIVE AND PCR5 FUSION
RULES

V1. APPLICATION IN MOBILE ROBOT MAP BUILDING

Map building under unknown environments has been one
of the principal issues in the field of intelligent mobile robot.
In fact, a variety of map building methods based on more or
less quantitative and precise measurements of self locations
have been proposed for this purpose [5]. However, we humans
are able to build a rough navigation map of the environment
in our minds, even if we are given only qualitative and
fragmented spatial information such as “Object A is near to
B”, “A is seen on the right of B from C” and so on. So we
can describe spatial information from the point of view of
qualitative-enriched label.

To simplify the problem, here we suppose that in the system
there are two focal elements included in the frame of discern-
ment, that is, © = {6y, 6.}, then its hyper power-set is D® =
{61, 02,06, M06,0, U0}, hereinto, 6, represents the qualitative
attribute “near” and 65 represents “far”, 6;N05 represents “near
and far”, 6; U6, represents the ignorance of current status due
to not enough information. Seven qualitative enriched ordered
labels ordered are, that is, L = {Lq(€), L1(€), -, Lg(e)} Is
used to express the qualitative belief degree. Let’s consider ten
sources of evidence with qualitative enriched labels obtained
from the perceptive information according to Table IV. Here
we adopted qualitative enriched DSmC combinational rule
and PCRS5 rule described in last section to combine all the
ten sources. The fusion process is simulated through Matlab
program. The final fusion result is shown in the last row of
Table IV and on Fig.1. Here is our analysis of simulation
results:

1) On Fig.1, X-axis represents 4 elements included in hyper
power-set, where 1 — ©;, 2 — O3, 3 — 61 N by,
4 — 601 U 5. Y-axis represents the classical label value
such as 0 +— Lg,1+ Ly,---,5+ Ls,6 — Lg. Z axis
represents the enriched value e x 100 after fusion’.

2) The result shows that the qualitative enriched combina-
tion rule has very good convergence characters. Because
gm(61) is Le(0.4), which represents the biggest label,
whereas, the other belief assignments all are Ly(e), then
we can know clearly the obstacle is near to robot.

3) The qualitative enriched combination rule has very
good quasi-normalization character, this is because we
add the quasi-normalization step, for example, S1
Ls, Ly, Lo, Lo; S2 : Lo, Lo, Lo, Lo in the above system?®,

"Here ¢ is magnified 100 multiples, so that it is shown more clearly on
Fig.1
8to simplify the problem, € is ignored temporarily



if no quasi-normalization step, then the combinational
result between two sources is S. : Lg, Ly, Ly, Lg. if
adopting quasi-normalization step(while(> i > 6),{i =
[&8],50d)), ie. Lisxs), Ljixe), Lysxs), Lo , then the fu-
sion result is S. : Ly, L1, L1, L.

4) The qualitative enriched labels have more information
than classical qualitative labels, which can reflect the

qualitative information precisely.

A B ANB AUB
ami() | L1(06) L2(14)  Lo(0.54) | L3(0.6)
ama() | La(13) L2007 Lo(14) | Lo(0.9)
gms() | L3(0.4)  L1(13)  Lo(0.9) | L2(0.6)
ama() | L2(0.7)  La(1.6)  L2(0.9) | Lo(2.0)
ams() | L1(04)  Lo(18)  Ly(1.8) | Li(L5)
gme() | L2(0.5) L1(1.2)  L2(1.2) | L1(0.7)
gmn() | L(14)  L3(1.3)  Li(15) | L1(0.8)
qms() | Ls(1.3)  L1(1.6)  Lo(1.2) | Lo(0.7)
gmo() | La(1.4) L1(1.5)  L1(0.9) | Lo(0.8)
amio() | L3(1.8) Li(15)  L.(0.9) | Li(1.4)

am() | Le(04) To(04) Lo(1.0) | Lo(0-4)
Table IV

10 EVIDENCE SOURCES AND THE COMBINATIONAL RESULT WITH
QUANTITATIVE ENRICHED LABELS

* O % +
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60 qm(elu 92)
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Figure 1. The final fusion result of qualitative evidence sources

VIlI. CONCLUSION

With the recent development of qualitative methods for rea-
soning under uncertainty developed in Artificial Intelligence,
more and more experts and scholars have great interest on
qualitative information fusion, especially those working in
the development of modern multi-source systems for defense,
robot navigation, mapping, localization and path planning
and so on. In this paper, we have proposed two possible
enrichments (quantitative and/or qualitative) of linguistic la-
bels and a simple and direct extension of the g-operators
developed in the DSmT framework. We have also shown
how to fuse qualitative-enriched belief assignments which
can be expressed in natural language by human experts.

Two illustrating examples have been presented in details to
explain how our qualitative-enriched operators (ge-operators)
and qualitative PCR5 rule of combination work. A simulation
application is given to show its advantage in mobile robot
navigation map building. Some researches in real robotics of
the application of ge-operators (with quantitative or qualitative
supporting degrees) are under progress and will be presented
in a forthcoming publication.
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