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Abstract — In this paper we show how to correct
and improve the Belief Interacting Multiple Model fil-
ter (BIMM) proposed in 2009 by Nassreddine et al.
for tracking maneuvering targets. QOur improved al-
gorithm, called PCR-BIMM s based on results devel-
oped in DSmT (Dezert-Smarandache Theory) frame-
work and concerns two main steps of BIMM: 1) the
update of the basic belief assignment of modes which is
done by the Proportional Conflict Redistribution Rule
no. & rather than Smets’ rule (conjunctive rule); 2)
the global target state estimation which is obtained from
the DSmP probabilistic transformation rather than the
commonly used Pignistic transformation. Monte-Carlo
simulation results are presented to show the perfor-
mances of this PCR-BIMM filter with respect to clas-
sical IMM and BIMM filters obtained on a very simple
maneuvering target tracking scenario.

Keywords: Tracking, IMM
BIMM, DSmT.
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1 Introduction

In Fusion 2009 international conference, Nassreddine,
Abdallah, and Denceux [13] have proposed an inter-
esting idea to extend the classical Interacting Multiple
Models (IMM) filter with belief function theory in order
to deal with an unknown and variant motion models.
Their algorithm is based on the classical/historical be-
lief function theory developed by Shafer in 1976 [14],
known as Dempster-Shafer Theory (DST) and requires
both Smets’ rule, i.e. the conjunctive fusion rule equiv-
alent to the non normalized Dempster’s rule, and the
probabilistic pignistic transformation. This algorithm
is called Belief Interacting Multiple Model algorithm
(BIMM). According to authors results, BIMM algo-
rithm outperforms classical IMM algorithm at least in
the vehicle localization problem studied in their works.
These appealing results and the possible extension of
IMM in belief function theory framework motivates our
interest to analyze and evaluate this new BIMM filter.
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A deep analysis of the paper yields to the following
comments:

1. The derivation of the predicted prior basic belief
assignment of modes in Step 1 of BIMM algorithm
was clearly wrong in [13] as proved in the sequel.
This mistake implies a serious doubt on the validity
of the results presented in [13].

2. The simulations results presented in [13] cannot
be verified precisely, nor reproduced, because some
settings parameters (like ; discounting factors) re-
quired for the BIMM filter have not be provided
by the authors and the essential step 9 of the algo-
rithm was not detailed enough.

3. Tt is known (see Chapter 1 of [15] Vol. 3) that
the conjunctive rule does not perform efficiently in
a sequential fusion process because the empty set
is an absorbing element for the conjunctive fusion
rule. Therefore, in order to implement successfully
the BIMM filter, some ad-hoc numerical techniques
are necessary (or some extra normalization steps)
in the BIMM algorithm in order to prevent the
mass of belief committed to empty set to become
close to one and make Smets’ rule responding to
new information. This serious problem has unfor-
tunately not been discussed in [13].

From the theoretical point of view, it is quite surpris-
ing that one gets better performances with the BIMM
(which proceeds with less specific information since it
deals with non Bayesian basic belief assignments) than
with the classical Bayesian IMM filter (which deals with
more specific information, i.e. with Bayesian basic be-
lief assignments). The first purpose of this work is
to verify if the conclusions given in [13] are valid on
a very simple reproducing maneuvering target track-
ing scenario. We want also to see if a more justified
Belief-based IMM algorithm can be developed to im-
prove the BIMM algorithm and to evaluate it to get
a fair comparison of its performance with respect to



classical IMM filter. The improvement of the BIMM
algorithm we propose in this paper is based on ad-
vanced theoretical results obtained in the development
of Dezert-Smarandache Theory (DSmT) of information
fusion [15]. This paper is organized as follows: After a
brief recall of classical (fixed structure) IMM algorithm
given in section 2, one presents in section 3 the Belief
IMM algorithm and its flaws. Motivations for the im-
provement of the BIMM filter is presented in section
4 with the presentation of the main steps of our new
algorithm called PCR-BIMM filter (Proportional Con-
flict Redistribution-based BIMM). In section 5, we ex-
amine the performances of the IMM, and PCR-BIMM
on a very simple tracking scenario through Monte-Carlo
results. Conclusions and perspectives for further inves-
tigations are given in section 6.

2 Classical IMM algorithm

The IMM filter is one of the most used algorithm for
tracking maneuvering targets and was developed origi-
nally by Henk Blom in eighties [5, 6, 2]. The IMM filter
is a recursive filter with a low complexity and has been
proved very efficient in many real-data tracking appli-
cations [4] and many extensions of IMM have been de-
veloped since its original publication for dealing with
multitarget-multisensor case, cluttered environments,
etc, see [12] for a good survey of Multiple Models tech-
niques. The classical IMM algorithm considers a hybrid
Multiple Models (MM) system which obeys one of a fi-
nite number r of dynamic models M;, i =1,...,r and
estimates the posterior mode probabilities from their
prior probabilities and target measurements (Bayesian
framework). Its specificity is that IMM mixes hypothe-
ses with depth 1 only at the start of each cycle and thus
has a low complexity of order O(r), while providing
same performances as the more effective Generalized
Pseudo-Bayesian estimator of order 2. We briefly recall
the principle of classical IMM filter, see [3, 4] for more
details with examples. A hybrid MM system is charac-
terized by two state variables: 1) the base-state variable
x(k) of dimension n, including the position, velocity,
etc. of the target, and 2) a modal-state M;(k) belong-
ing to a known finite set M, (k) = {M;(k),i=1,...,7}
of r possible dynamic models for the target during its
motion. For simplicity of presentation, we consider only
a fixed-structure IMM, i.e. M,(k) = M, is invariant
with time. Variable-structure IMM is possible and has
been introduced by Xiao-Rong Li in [10, 11]. The hy-
brid system is described by the equations!

x(k) = F[M(k)|x(k — 1) + v[k — 1, M (k)]

2(k) = H[M (k)x(k) + wlk, M (k)]

where M (k) is the mode in effect during the sampling
period ending at time k belonging in M,.. x(k) and

1 For simplicity, we assume here linear systems.

z(k) are the target state and observation vectors. The
set of all available measurements up to k is denoted
Z*. F[M(k)] and H[M (k)] are known matrices de-
pending on the dynamic model M (k). The statistics
of the process and observation noises v[k — 1, M (k)]
and w(k, M (k)] can differ from mode to mode. Usually
one considers v[k — 1, M (k) = M;] ~ N(v;,Q;) and
wlk, M (k) = M;] ~ N(w;,R;) with known covariance
matrices Q; and R; respectively. The Mode jump pro-
cess is modeled as a Makov chain with known a priori
probabilities P{M (0) = M} = p;(k = 0) and known
transition probabilities P{M (k) = M;|M(k — 1) =
M;} = m;. A cycle of the classical IMM algorithm
(k — 1) — k consists in the following steps:

e Step O (Initialization at & = 0): Definition of dy-
namic and observation matrices, choice of process and
observation noise levels, sampling period, initialization
of the filters adapted to each mode, choice of the prior
mode probabilities P; and the transition probability
matrix Py £ [m; = P{M,;(k)|M;(k — 1)})’ assumed
known and time-invariant.

e Step 1 (Interaction-mixing (5 = 1,...,r)): Mixing
of the previous cycle mode-conditioned state estimates
%x;(k — 1|k — 1) and covariance, using the mixing prob-
abilities y;;(k — 1|k — 1), to initialize the current cycle
of each mode-conditioned filter X)(k — 1|k —1). This is
done by

X (k—1]k—1) = iui‘j(kz—1|k—1)5(i(k—1|k:—1) (1)

PO 1k 1) = 3 gy (b 1k )Pk 1[5~ 1)

— [xi(k — 1|k — 1) = %) (k — 1|k — 1)]-
xi(k — 1k —1) = x3(k = 1]k - 1)]'} (2)

where the elements p;;(k — 1|k —1) of the mixing prob-
ability (vertical) vector py_q 1 ([M;(k)) = [pi;(k —
1|k —1),i=1,...r] are calculated by
pit(k = 1k = 1) & P{M;(k — 1)|M; (k), 2"~}
1 (k)

with
py (k) £ P{M;(k)|Z""'} = Z%‘Mz‘(’f -1 4

The equation (4) can be written more concisely as:

pip () =Pe () (5)

where P} = [m;;] and p,_,(.) represents the (vertical)
vector of prior probability of modes, i.e.

pis () = [POL(R=1)|Z5] = [y (k=1) ...y (k1))



and p,; (.) represents the (vertical) vector of predicted
prior probability of modes
[P(M;(R)|ZM1) = [y (k) - (R))

e Step 2 (Mode conditioned filter): From prior
mixed statistics %) (k— 1|k —1) and PY(k—1|k—1) and
the target measurement z(k), one calculates X;(k|k)
and P, (k|k) for each possible mode in effect (r filters
running in parallel) by a specific filter matched to mode
Mj, typically a Kalman filter if the dynamic and obser-
vation system are linear, or Extended Kalman Filter
(EKF) to deal with linear or non linear equations, or
any other sophisticated filters if necessary for dealing
for example with miss-detections and false alarms [3].
The likelihood Aj(k) of the filter j is assumed to be
Gaussian with

By () =

Aj(k) = L exp”?

2z (k)S;
(2m)""2/1S; ()]

(k)zZ; (k) (6)

where 7;(k) £ z(k) — 2;(k|k — 1) is the innovation and
S;(k) is the covariance of the innovation provided by
the filter j.

e Step 3 (Mode probability update): The probability
w;(k) of each mode j for j =1,...,r is calculated by

= P{M;(k)|Z*} = A /ZA

15 (k)
(7)
e Step 4 (Global estimation for output purpose):

The global estimate %x(k|k) and the covariance of esti-
mation error P(k|k) are given by:

ZMJ
ZMJ

- [Xj(klk) — X(k[k)] - [x

x(k|k) = )%; (k|k) (8)

P(k|k) = WP, (k|k)

i (klk) = x(k[K)]'} (9)
3 Belief-based IMM algorithm

In 2009, Nassreddine et al. have proposed in [13]
an extension of classical IMM filter in the framework
of Dempster-Shafer Theory (DST) [14] for dealing with
an unknown and variant motion models. The idea was
to select a set of candidate models?, and then esti-
mate a current basic belief assignment (bba) defined
on the power-set of this set of models based on the fu-
sion of bba’s built from measurement likelihoods with
the predicted bba of the models using Smets’ rule® de-
noted @. From the result of Smets’ fusion, the mixed

2Corresponding to the so-called frame of discernment and usu-
ally denoted © in DST.

3Smet’s rule is nothing but the non normalized Dempster’s
rule of combination, i.e. the conjunctive rule.

state of classical IMM filter is replaced with the pignis-
tic averaging of the mode-conditioned state estimates.
This new extension of IMM filter was called BIMM
(Belief-based IMM) since it uses belief function theory
to represent the uncertainty in the switches between
the modes. This section presents succinctly the prin-
ciple of the BIMM filter. We justify also our motiva-
tion for developing a new Belief-based IMM algorithm.
The steps of BIMM are actually very close to the steps
of classical IMM, except that predicted and updated
mode probabilities are estimated from pignistic proba-
bilities derived from a basic belief assignment updated
with the conjunctive rule of combination. The main
changes of BIMM concern the Step 1 and the Step 3
of IMM algorithm. The frame of discernment chosen
in BIMM coincides with the set of possible models, i.e.
Ok) = M,(k) = {M;(k),i = 1,...,7r}. Instead of
computing recursively the mixed p;;(.) and updated
w;(.) probabilities with egs. (3) and (4) as done with
the classical IMM, one deals with bba’s defined on the
power-set 2€ of the frame of discernment. Mathemati-
cally, a normal bba m(.) is defined? as a mapping from

© — [0,1] such that m(0) = 0 and >, cpe m(A4) = 1.
A is a focal element of m(.) if m(A) > 0. Any discrete
probability measure can be interpreted as a special be-
lief function, called Bayesian belief [14] whose focal el-
ements are singletons of 2©. Any belief function with
a bba m(.) can be approximated into subjective prob-

ability measure thanks to the pignistic transformation
[17] defined for all M; € ©(k) by

>

A€29|ANM,;=M,;

m(A)

(10)

where |A| is the cardinality of A.

The steps of BIMM proposed in [13] are®:

e Step O (Initialization at & = 0): Definition of dy-
namic and observation matrices, choice of process and
observation noise levels, sampling period, initialization
of the filters adapted to each mode. The prior proba-
bilities of modes {P; = P{M(0) = M;},j =1,...,r}
used in IMM, are replaced® by the vacuous belief as-
signment m(©(k =0) = My UMaU...UM,) =1. The
probability transition matrix P; = [m;;] is replaced by
a bba transition matrix” M, £ [m;;] having a very sim-
ple structure defined by the r implication rules: ” R;: if
M (k) = M;(k) then M (k+1) = M;(k+1)” with known
belief coefficients §5; € [0,1] for ¢ = 1,2,...,r with
Bi = m(Mi(k + 1)|M;(k)) and 1 — 3; = m(O(k + 1) =
My U...UM,.(k+1)|M;k)).

4We use boldface letters to denote vectors or matrices.

5We use a more classical notation generally adopted in the
tracking community.

6Note that this initialization can also be done by taking
m(M;(k = 0) = P; as well if one considers that prior proba-
bilities of modes is accurate enough.

7Called switching mass function in [13].



e Step 1 (Interaction-mixing): The mixing probability
pi)j(k — 1]k — 1) are calculated as follows:

1. The derivation of probabilities vector p, (.) =
[y (k) ... py (k)] in classical IMM is replaced by
the derivation of the predicted bba m, (.) given by

(11)

2. The derivation of probabilities p;;(k — 1|k — 1) £
P{M;(k — 1)|M;(k),Z*='} is replaced by the
derivation of bba my_q,_1(.) thanks to the Gen-
eralized Bayesian Theorem (GBT) [18]. More pre-
cisely,

m, (.) 2 M; -my_(.)

my,_ 1 ([M;(k)) =

(@ P OE Mk — 1))](|M; (R) O
(12)

where + ©(k — 1) x O(k) is the ballooning exten-
sion [18] of the bba on the Cartesian product frame
©(k — 1) x ©(k), and where | ©(k — 1) represents
the marginalization operation of the bba on the
frame ©(k —1). See [18], for details and examples.

3. The derivation of the mixing probability ,;(k —
1|k — 1) = P{M;(k — 1)|M;(k), Z*=1} of classical
IMM is replaced by the pignistic probability drawn
from my,_ )51 (.|M;(k)), that is:

pij(k — 1|k — 1) = Bet P{M;(k — 1)|M;(k), Z*~'}

where BetP{.} is calculated with the transforma-
tion (10) using my,_yx—1(.|M;(k)) given by (12).

xY(k—1|k —1) and PY(k — 1|k — 1) are calculated as in
IMM Step 1.

e Step 2: Same as IMM Step 2.

e Step 3 (Mode bba update): The updated bba mg(.)
of modes is computed from the conjunctive combination
of the predicted bbam,_,(.) givenin (11) with observed
bba’s® my ;(.), 5 =1,2,...r by

m(.) = [my1@...0m,0m, ]|(.) (13)
where the observed bba’s my ;(.) for j = 1,...,r are
given? by [13]:

my,j(Mj(k)) =0
i (VL (k) = ay(1 = RA, (k) (14)
M (O) =1 a(1— RA; (k)

oy is a discounting coefficient associated with the like-
lihood of the mode M;(k) and R is a normalization
constant.

8We mean that the bba my ;(.) is built from the likelihood
A (k) which depends on the mode Mj (k) and on the observation
available z(k).

9This is Appriou’s model no. 1 in [1].

e Step 4 (Global estimation for output purpose):
The global estimate %(k|k) and the covariance of
estimation error P(k|k) are given as in step 4 of clas-
sical IMM by taking u;(k) = BetP{M;(k)|Z*} where
BetP{M;(k)|Z*} is the pignistic probability that the
mode M; is effective at time k. BetP{M;(k)|Z*}
is computed from the updated bba my(.) given by (13).

A mistake in Step 1 of BIMM filter: The afore-
mentioned Step 1 of BIMM algorithm described with an
example in [13] is clearly incorrect because the deriva-
tion of the predicted bba m, (.) by (5) is wrong be-
cause the sum of masses of focal elements is not equal
to one. It is easy to verify from example in [13]
when considering only two models, when taking 6 =
My(k)|My(k — 1)) and B2 = mMa(k)|M2(k — 1)) =
taking the prior bba my_1(.) = [m(0) = 0 m(M;(k —
1)) = 0.45 m(Ma(k—1)) = 0.20 m(M;(k— 1)U Mz (k —
1)) = 0.35)". Applying the wrong formula (11), one gets
precisely:

1 0 0 0 0 0 0
0 09 O 0.1 0.45(  10.4400 ” 0.44
0 0 0.89 0.11| |0.20 0.2165 0.21
0 O 0 1 0.35 0.3500 0.35
—_—— Y N——
M, my_1(.) m, (.) Result in [13]

One can see that the sum of components of m, (.)
equals 1.0065 !!! This mistake is not due to round-
ing approximation of the result, but to a more serious
mistake in the choice of the transition matrix M;. This
mistake actually comes from the confusion in indices of
the classical IMM transition matrix. It is easy to ver-
ify that the correct transition matrix must be actually
taken as the transpose of M;. Therefore, the correct
derivation of m, (.) must be done by

my ()2 M- my_ () (15)

For the example 1 of [13], one will get correctly

1 0 0 O 0 0
0 0.9 0 0] |045[ 0.4050
0 0 089 0] |0.20 0.1780
0 0.1 0.11 1] (0.35 0.4170
N———
M; my_1(.) m; (.)

Remarks on BIMM filter: The BIMM is based
on twol® pillars: 1) the conjunctive rule of combina-
tion, and 2) the pignistic transformation to approxi-
mate a bba into a subjective probability measure be-
cause. These two pillars are disputable because:

10Actually, Smets’ Generalized Bayesian Theorem (GBT)
could be also considered as the third pillar of BIMM.



1. The efficiency of Smets’ rule for combining bba’s
is very questionable in this belief-based extension
of IMM because it has been already proved in [15],
Vol. 3, and specially in sequential Target Type
Tracking problem [7] that such rule doesn’t per-
form well in general for mode change detection.
Smets’ rule doesn’t respond to new information
since very quickly all the mass of belief concen-
trates on the empty set. See example in [15], Vol.
3, Chap. 1, freely downloadable from the web and
not reported here due to space limitation.

2. The real interest and efficiency of the pignistic
transformation is also disputable because there ex-
ists other probabilistic transformations which per-
form better than BetP in term of probabilistic in-
formational content, in particular the DSmP trans-
formation developed in [15], Vol. 3, Chap 1 & 3
and also in [8].

3. The justification for the use of Appriou’s model no.
1 in step 3 of BIMM is missing and probably other
(and maybe better) models could be developed to
derive the updated bba myg(.). This question has
not been investigated in this paper and will be a
source for future research.

Interest of BIMM w.r.t. IMM: The potential ad-
vantage of the belief-based IMM approach is to offer
some robustness of the filter when replacing the strong
constraint on the knowledge of probability of transitions
mi; (usually based on ad-hoc assumptions on the mean
sojourn time of the target in each mode) by a more flex-
ible constraint on the transitions based on (very sim-
ple and less specific) uncertain implication rules. With
BIMM, one can also relax the knowledge of the prior
probabilities of the modes by starting the tracking di-
rectly with a vacuous belief prior of the modes. Of
course, if one has good reasons to use a given prior
of modes, this can be done easily in belief-based IMM
approach which is also a nice features of such filter.

4 PCR-BIMM algorithm

To preserve the potential advantages of BIMM and
to overcome its aforementionned problems, we propose
to keep its general structure as a belief-based extension
of classical IMM but we replace Smets’ rule by the more
effective Proportional Conflict Redistribution rule no.
5 (PCR5), or eventually the more simple PCR, rule no.
6 (PCR6), and to replace the pignistic transformation
by the more effective DSmP transformation to estimate
modes probabilities required in the IMM filter. We call
this new algorithm, the PCR-BIMM filter. Before giv-
ing the sketch of our PCR-BIMM filter, we just recall
what are the PCR5 fusion rule and the DSmP trans-
formation. All details, justifications with examples on
PCR5 and DSmP can be found freely from the web in
[15], Vols. 2 & 3 and will not be reported here.

4.1 PCR5 and PCR6 fusion rules

In DSmT (Dezert-Smarandache Theory) framework,
the Proportional Conflict Redistribution Rule no. 5
(PCR5) is used generally to combine bba’s. PCR5
transfers the conflicting mass only to the elements in-
volved in the conflict and proportionally to their indi-
vidual masses, so that the specificity of the informa-
tion is entirely preserved in this fusion process. Let
m1(.) and ma(.) be two independent!! bba’s, then the
PCRS5 rule is defined as follows (see [15], Vol. 2 for
full justification and examples): mpcogs(@) = 0 and
VX €29\ {0}

mpers(X) = > ma(X1)ma(Xa)+

m1(X)2m2(;(2) mQ(X)le(XQ)
XZZ@@ [m1 (X) + mQ(XQ) mQ(X) + ml(XQ) (16)
XoNnX=0

where all denominators in (16) are different from zero.
If a denominator is zero, that fraction is discarded. Ad-
ditional properties of PCR5 can be found in [9]. Exten-
sion of PCR5 for combining qualitative bba’s can be
found in [15], Vol. 2 & 3. All propositions/sets are
in a canonical form. A variant of PCR5, called PCR6
has been proposed by Martin and Osswald in [15], Vol.
2, for combining s > 2 sources. The general formu-
las for PCR5 and PCR6 rules are given in [15], Vol. 2
also. PCR6 coincides with PCR5 when one combines
two sources. The difference between PCR5 and PCR6
lies in the way the proportional conflict redistribution
is done as soon as three or more sources are involved
in the fusion. For example, let’s consider three sources
with bba’s m1(.), ma(.) and m3(.), AN B = for the
model of the frame ©, and my(A4) = 0.6, ma(B) = 0.3,
ms(B) = 0.1. With PCR5 the partial conflicting mass
m(A)ma(B)ms(B) = 0.6 - 0.3 -0.1 = 0.018 is redis-
tributed back to A and B only with respect to the
following proportions respectively: xiCR5 = 0.01714
and z§CR5 = (0.00086 because the proportionalization
requires

oL CRS _ pLORS _ m1(A)ma(B)ms(B)
mi(A)  ma(B)ms(B)  mi(A) + ma(B)ms(B)
PCR5 PCR5 0.018
thatis -A %5 _ ~ 0.02857
BB 706 0.03 _ 0.6+0.03

s oH O = 0.60 - 0.02857 ~ 0.01714
rEOR5 = 0.03 - 0.02857 ~ 0.00086

With the PCR6 fusion rule, the partial conflicting mass
my(A)ma(B)ms(B) = 0.6 - 0.3 - 0.1 = 0.018 is redis-
tributed back to A and B only with respect to the fol-

lowing proportions respectively: z5¢%6 = 0.0108 and

11.e. each source provides its bba independently of the other
sources.



xECR6 = 0.0072 because the PCR6 proportionalization
is done as follows:

dhOR0 o™ wpG™ _ mu(A)ma(B)ms(B)

mi(A)  ma(B)  ms(B)

that is

gPORS B xggRs - xg%RG B 0.018 oot
0.6 0.3 0.1 0.6+0.3+0.1

thus

2hCRE — 0.6.0.018 = 0.0108
2EGRS = 0.3-0.018 = 0.0054

5% =0.1-0.018 = 0.0018

and therefore with PCR6, one gets finally the following
redistributions to A and B:

PCR6
2HCR6 =0.0108
{x§0R6 = 2551 + 255 = 0.0054 4 0.0018 = 0.0072

From the implementation point of view, PCR6 is much
more simple to implement than PCR5. For conve-
nience, Matlab codes of PCR5 and PCR6 fusion rules
can be found in [15, 16].

4.2 The DSmP transformation

The DSmP probabilistic transformation is a seri-
ous alternative to the classical pignistic transformation
which allows to increase the probabilistic information
content (PIC), i.e. to minimize the Shannon entropy,
of the approximated subjective probability measure
drawn from any bba. Justification and comparisons of
DSmP(.) w.r.t. BetP(.) and to other transformations
can be found in details in [8, 15], Vol. 3, Chap. 3.
DSmP transformation is defined'? by DSmP.(0) = 0
and VX €29\ {0} by

> m(Z)+e-C(XNY)

ZCXNY
c(z)=1
DSmP(X)= Y m(Y)
ye2e Z m(Z) +e-C(Y)
ZCY
c(2)=1
(17)

where C(X NY) and C(Y') denote the cardinals of the
sets X NY and Y respectively; € > 0 is a small number
which allows to reach a highest PIC value of the ap-
proximation of m(.) into a subjective probability mea-
sure. Usually ¢ = 0, but in some particular degen-
erate cases, when the DSmP._o(.) values cannot be
derived, the DSmP.~o values can however always be
derived by choosing € as a very small positive number,
say € = 1/1000 for example in order to be as close as
we want to the highest value of the PIC. The smaller e,
the better /bigger PIC value one gets. When e = 1 and
when the masses of all elements Z having C(Z) =1 are
zero, DSmP._1(.) = BetP(.).

12Here we work on classical power-set, but DSmP can be de-
fined also for working with other fusion spaces, hyper-power sets
or super-power sets if necessary.

4.3 Sketch of PCR-BIMM

We briefly summarize the five steps of our PCR-
BIMM filter.

" my(A) +ma(B) +m3(B) ® Step 0 (Initialization at k = 0): Same as Step 0 of

BIMM.
e Step 1 (Interaction-mixing): Same as Step 1 of
BIMM except that the predicted bba m, (.) is com-
puted by (15) instead of (11), that is
my ()2 M, - myi() (18)
and the derivation of the mixing probability s, ;(k —
1k — 1) = P{M;(k — 1)|M;(k),ZF"'} of classical
IMM is replaced by the DSmP probability drawn from
mk_l‘k_l(.|Mj(k)), that is:

pij(k — 1|k — 1) = DSmP(M;(k — 1)|M;(k), Z*1)

where DSmP,.(.) is calculated with the transformation
(17) using my,_q),—1(.|M;(k)) given by (12).
e Step 2: Same as IMM Step 2.
e Step 3 (Mode bba update): The updated bba mg(.)
of modes is computed from the PCR5 (or eventually
PCR6) rule, denoted @, of the predicted bba m, ,(.)
given in (15) with bba’s my ;(.), 7 =1,2,...7 by
my(.) =[my; ®...&my, ®m,_,](.) (19)
where the observed bba’s my ;(.) for j = 1,...,r are
given as in BIMM by (14).
e Step 4 (Global estimation for output purpose): The
global estimate x(k|k) and the covariance of estimation
error P(k|k) are given as in step 4 of classical IMM
by taking u;(k) = DSmP.{M;(k)|Z*} computed from
the updated bba my(.) by (17).

Remark: This preliminary version of PCR-BIMM is
perfectible because it still shares several points with
BIMM!3. In particular, the Step 3 of PCR-BIMM cal-
culates, as in BIMM, my ;(.) with a model based on
likelihoods A (k) whose strong justification is missing.
Further investigations will be done to improve this step
3, as well as the Step 1 to get better performances of
PCR-BIMM (if possible) in a future research.

5 Simulation results

In this section, we present the application of the
PCR-BIMM to a ground target tracking problem. We
consider a vehicule localized in (1000m, 5000m) in the
cartesian referential (X,Y’). We simulate a ground sen-
sor located in (0,0) which is able to detect the moving
target in range p and azimut . The gaussian mea-
surement noise is supposed to be white and centered
with the covariances o, = 20m and o9 = 0.008 rad.
The sampling time is fixed to 2 seconds. For tracking
the ground target we only consider two motion models.

131In particular, the GBT is still used in Step 2 of PCR-BIMM.
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Figure 1: True target trajectory and estimated trajec-
tories.

A constant velocity motion model called CV 1, with a
small noise ocy, = 1m.s™2 and another constant ve-
locity motion model called CV 2, with a bigger noise
ocv, = 4m.s~2 to palliate the target maneuver. The
initial state for each IMM, BIMM!'* and PCR-BIMM is
the true initial target state x(0). The transition Matrix
P, is equal to :

(20)

P, — { 0.95 0.05 ]

0.05 0.95

and the mass transition matrix M; for the BIMM and
PCR-BIMM is same as in the paper [13]. The initial
motion model mass is represented by the vacuous mass
function.

To compare the performances between the algorithms
we used the root mean square error (RMSE) in loca-
tion and velocity (figure 2) and the mean of the motion
models probability obtained with 100 Monte-Carlo runs
(figures 3, 4, 5). The first remark is, there is no signif-
icant improvement by using the belief function in the
IMM. In fact, the RMSE of the IMM, BIMM and PCR-
BIMM are globally the same. However, we can observe
a short difference of the PCR-BIMM error after the tar-
get maneuvers between the time intervals [20, 30] and
[40,50]. This observation carries along the second re-
mark: the motion model transition duration is longer
with the IMM (figure 3) and BIMM (figure 4) than the
PCR-BIMM (figure 5). Then with the taken parame-
ters for this simulation, the PCR-BIMM appears to be
a good and fast detector of the motion models transi-
tion. However, its computed motion models probability
is inferior to the probability obtained with the IMM and
BIMM. More investigations need to be done to see if it
is possible (and how) to improve PCR-BIMM in order
to preserve both the good performance of the maneuver

140Our BIMM implementations uses algorithm described in sec-
tion 3 with (15) and additional normalization step mg(.) in (7)
since otherwise the BIMM algorithm doesn’t work at all due to
the problem mentioned in section 2.

detection and in the same time and get higher proba-
bility when the target is moving in the same mode.
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Figure 2: Root Mean Square Error.
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6 Conclusions

In this paper, we have examined in details the re-
cent BIMM algorithm and have corrected a mistake
in it, and also identified some of its limitations. To
palliate the problems of BIMM algorithm, we have de-
veloped a more efficient belief-based algorithm, called
PCR-BIMM, based on the Proportional Conflict Re-
distribution fusion rule and on the DSmP probabilistic
transformation to replace the conjunctive rule and the
pignistic transformation used in BIMM. The derivation
of the predicted bba of modes done incorrectly in BIMM
is also fixed in our PCR-BIMM filter. The perfomances
of PCR-BIMM with respect to the (corrected) BIMM
and to the classical IMM have been evaluated from a
simple maneuvering target tracking scenario through
Monte-Carlo simulations. The results obtained in this
paper show the ability of the PCR-BIMM to track ma-
neuvering targets and also to improve the maneuver
detection. It is important to note that such PCR-
BIMM filter can be considered as more robust than
IMM since PCR-BIMM requires less specific prior in-
formation than IMM. Nevertheless, PCR-BIMM pro-
vides globally the same RMS estimation errors perfor-
mances as those obtained with the classical IMM which
requires more specific prior information. Application of
PCR-BIMM for tracking multiple maneuvering ground
targets in a battlefield surveillance context is under in-
vestigation and results will be published in forthcoming
papers.
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