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Abstract—In the usual multiple target tracking systems, detec-
tions associated to the targets are considered as issued from a
single point source. This hypothesis is true if the size of the sensor
resolution cells is bigger than the size of the target and if there
is only one target in the resolution cell. Due to the increasing
resolution capabilities of modern sensors this hypothesis is
considered valid for the small targets (like ground vehicles).
However, in real situations observed with modern GMTI (Ground
Moving Target Indicator) sensors we cannot neglect the sensor
resolution phenomenon: for littoral surveillance applications, the
large targets (or extended targets) can generate more than one de-
tection at a time; in addition for ground surveillance applications
the distance between the individual targets can often be less than
the size of the resolution cell which produces only one detection
for a group of targets. On those considerations, we must adapt
our individual targets’ tracking algorithm with the extended and
group tracking algorithms. In this paper, we test a very simple
hybridization between a multiple target tracking algorithm and
the recent bayesian approach for extended object tracking and
group tracking represented by a random symmetrical positive
definite matrix.

Keywords: Group tracking, data association, Kalman fil-
tering, GMTI sensor.

I. INTRODUCTION

Most of the trackers developed in ground stations are based
on the assumption that the tracked objects are considered
as point sources. It implies that the size of the target (or
extension) is neglected with respect to the sensor resolution.
Thanks to modern sensors, the resolution increases (i.e. the
size of resolution cells diminishes) and the previous assump-
tion is no longer valid; because of the short range applications,
different scattering centers can be associated to the same
targets. As an example, in maritime surveillance applications,
super-tankers can generate several detections and a different
number of detections at each scan. The relative scattering
centers location can vary as well. On the other hand, the
limited sensor resolution results in a fluctuating number of
detections for a group where the targets evolve within a closed
space. Therefore, the tracking of individual targets based on
single measurement association is no an efficient solution since
we cannot estimate the state of a target with a fluctuating
number of validated detections. The new challenge is to deal
with extended targets, groups of targets as well as individual
targets as the same time maintaining the track continuity with
an acceptable precision.

Several Bayesian solutions exist in the literature to address
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the data association problem with extended targets or convoys.
In the paper [1], the authors propose a sensor resolution
model and consider this as another association hypothesis
which is naturally evaluated with a classical MHT (Multiple
Hypotheses Tracker). Another approach has been presented
recently in [2] to extend the resolution model, given for two
partially unresolved targets, for the case of an arbitrary number
of targets. In [3], the authors introduced a tracking algorithm
that captures group tracks by using an IMM-JPBDAF (inter-
cating multiple model with a joint probabilistic and believe
data association filter) approach and a multiple validation gate
model with road networks to distinguish group members based
on movements, while the group JBPDAF approach used target
IDs to capture group tracks. On the other hand, the PHD
(Probability Hypothesis Density) filter is described in [4] as a
method for tracking a large number of targets with an unknown
number of targets moving in a closely space. This work has
been adapted in [S5] to track individual targets in a close
formation by taking into account the road network information.
Starting from these approaches, we have also proposed a
solution [6] to hybridize the MHT with a GMCPHD (Gaussian
Mixture Cardinalized Probability Hypothesis Density) filter in
order to track the targets with an airborne GMTI (Ground
Moving Target Indicator) sensor and to detect the convoys in
civilian traffic. We must cite also the research works based
on sequential Monte-Carlo methods, for example in [7], for
tracking targets in close formation.

In this paper, we are interested by tracking both extended
targets and individual targets based on GMTI sensor for
ground battlefield and maritime surveillance. Airborne GMTI
sensors are able to cover a large surveillance area for a few
hours or more if several sensors are in activity. Several refer-
ences exist for the MGT (Multiple Ground Target tracking)
using contextual information with MTI reports for GMTI
sensors [8], [9]. The main results are the improvement of
the track precision and track continuity. Our algorithm [10]
is built with several concepts inspired by this literature. Based
on road segment positions, dynamic motion models under
road constraint are built and an optimized projection of the
estimated target states is used to maintain the track on the road.
A VS-IMM (Variable Structure Interacting Multiple Models)
filter is set up with a set of constrained models to deal with
the target’s maneuvers on the road. The set of models used
in the variable structure is adjusted sequentially according to
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target positions and to the road network topology.

This paper is organized as follows: we start with a short
presentation of the motion and measurement models. Then we
describe quickly the Bayesian extended object formulation. A
short description of our multiple target tracking algorithm and
its basic hybridization with the group tracking algorithm is also
presented. The paper is completed by illustrations obtained
with simulated data for a ground scenario and real GMTI data
for a maritime scenario.

II. MOTION AND MEASUREMENT MODELS
A. GIS description

The GIS (Geographical Information System) used in this
work contains both the segmented transportation network (road
and railway) and the DTED (Digital Terrain Elevation Data).
Each road segment expressed in WGS84 is converted in a
Topographic Coordinate Frame (denoted TCF). The TCF is
defined according to the origin O in such a way that the axes
X, Y and Z are respectively oriented towards the local East,
North and Up directions. The target tracking process is carried
out in the TCF.

B. Constrained motion model

The target state at the current time ¢, is defined in the local
horizontal plane of the TCF:

x(k) = (x(k) @(k) y(k) 9(k))’ M

where (z(k),y(k)) and (z(k),y(k)) define respectively the
target location and velocity in the local horizontal plane. The
dynamics of the target evolving on the road are modelled
by a first-order differential system. The target state on the
road segment s is defined by x(k) where (z(k), ys(k)) and
(25(k),ys(k)) are respectively the target position and velocity
on the road segment s

The event that the target is on road segment s is noted by
es(k) = {x(k) € s}. Given the event e4(k) and according to
a motion model M;, the estimation of the target state can be
improved by considering the road segment s. It follows:

Xs(k) =Fsi(T) - x5(k — 1) + T(T) - vs,(k) 2)

where 7' is the sampling time, F,; is the state transition
matrix associated with the road segment s and adapted to a
motion model M;, v, ;(k) is a white Gaussian random vector
with covariance matrix Q; ;(k) chosen in such a way that the
standard deviation along the road segment is higher than the
standard deviation in the orthogonal direction. It is defined by:

2 ’

Qw(k) = RGS : (00d 0—07%) ‘Rgﬁ. 3)
where Ry_ is the rotation matrix associated with the direction
s defined in the plane (O,X,Y) of the road segment s.
The matrix I'(T") is defined in [11]. If s = O the model is
unconstrained.

To improve the modeling for targets moving on a road
network, we have proposed in [10] to adapt the level of the

dynamic model’s noise based on the length of the road segment
s. The idea is to increase the standard deviation o,, defined in
(3) to take into account the error on the road segment location.
After the state estimation by a Kalman filter, the state estimate
is then projected according to the road constraint eg(k). This
process is detailed in [10].

C. GMTI measurement model

According to the NATO GMTI format [12], the MTI reports
received at the fusion station are expressed in the WGS84
coordinates system. The MTI reports must be converted in the
TCF. A MTI measurement z at the current time ¢, is given in
the TCF by:

z(k) = (x(k) y(k) p(k))’ )

where (z(k),y(k)) is the location of the MTI report in the
local frame (O, X,Y). p(k) is the associated range radial
velocity measurement. Because the range radial velocity is
correlated to the MTI location components, the use of an
extended Kalman filter (EKF) is not suitable. We use an
alternative form of the EKF (called AEKF) presented in [13].
The AEKF measurement equation is given by:

z(k) = Ha(k) - x(k) + wa (k) )

where wo (k) is a zero-mean white Gaussian noise vector with
a covariance R(k) (given in [10]) and Hy (k) is defined by:

1 0 0 0

H, (k) = 0 0 1 0 (6)
0 9p(k) 0 9p(k)
% dy

Because Doppler ambiguities arise in cluster (generated by a
convoy for example) we adapt the previous observation model
with the observation matrix H; (k) and the associated noise
w1 (k) if the tracked target belongs to the target clusters.

1000
Hi(k)=[ 0 0 1 0 (7)
000 0

For notational convenience, the measurement sequence Zkil
represents a possible set of measurements generated by the
target up to time k (i.e., there exists a subsequence n and
a measurement j such that Z¥! = {ZF-Lr 20 (k)})
associated with the track 75!, At the current time k, the track
T*! is represented by a sequence of the state estimates. z’ (k)
is the j** measurement available at time k among m;, validated
measurements around the target measurement prediction.

D. Modelling of the extended object measurement

A Bayesian approach proposed by Koch in [14] for tracking
extended objects and group of targets considers both: the
kinematic state of the centroid, and the extension X (k) which
is a symmetric positive definite random matrix. According
to the extension X(k) of dimension 2 x 2, we are able to
obtain at the current time ¢; the shape, size and orientation of
the extended object. Let Y (k) = {z7(k),Vj € {1,...,ny}
be the set of nj; measurements generated by the extended
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target at time t;. The centroid measurement set Z(k) and the
corresponding scattering matrix Z(k) are given by:

DRI ®
Z(k) = > _(a(k) — 2 (k) (2(k) =2/ (k)) )

The likelihood of the set Y (k) is obtained by taking into
account the kinematic part, the extension, and the number of

measurements:
Nk

P(Y (k) g, 3, X)) = H N (2’ (k). x(k), 6Xk + R(k))

(10)
where A/ denotes the normal density and (3 is a scaling factor.
x(k) is the kinematic centroid state given in (1). We see that
the covariance measured extension depends on the predicted
extension and the sensor error. In fact we choose immediately
this way as described in [15], because:

- the extension could not be sufficient to compensate for
the maneuver due to the agility of the tracked object;

- we have, in critical cases, extended targets generating
only two measurements (n; < 2) and if we respect the
extended covariance (9) the measurement’s error cannot
be ignored.

So, in contrary to Koch’s initial work [14], it appears that no
conjugate prior can be found for the likelihood of R.(k). Thus
we will propose in the next part some approximations.

III. BAYESIAN EXTENDED OBJECT TRACKING

In this section, we present the predicted and updated equa-
tions of an extended target. The details of the hypotheses and
approximations necessary to understand the approach are not
detailed in this paper, the reader can refer to the papers [14],
[15] for further details.

A. Kinematic update step

As described in [15], the updated estimate of the uncon-
strained centroid xg(k) is calculated by using a standard
Kalman filter. The equations are obtained by considering that
the object extension X (k) is known and is replaced by its
prediction X (k|k — 1). Hence, we have

xo(klk) = %o(k|k—1)+K(k)(Z(k)—H; (k)x(k|k—1)) (11)

Po(klk) = Po(klk — 1) - K(k)S(k)K'(k)  (12)
with the innovation covariance matrix
S(k) = (k)P (klk — DEEG (k) + 20 =1 g3
and with Kalman gain '
K(k) = P(k|k — 1)H, (k)S ' (k) (14)

The predicted covariance of a single measurement is given by

(15)

Z(klk — 1) = Z(k) + R(k)

B. Extension update step

To update the extension (the random matrix X), we must
use Cholesky factorization of the predicted extension in order
to maintain the symmetric positive definite structure.

X(klk —1) = X(k|k — DY2(X(k|k — 1)Y2)  (16)

By denoting N(k|k — 1) the covariance associated with the
centroid location, one introduces the fact that the extension
depends on the predicted extension, the covariance N(k\k— 1),
and the covariance Z(k|k — 1) in such a way that:

X (k|k) = ai(am_lxuc\k—1)+N(k|k-1)+2(k|k_1))
K|k (17
with
N(k|k —1) =X (k|k — 1)*2S(k|k — 1) Y?N(k|k — 1)
(S(k|k — 1)71/2) (X (k|k — 1)"/2)’

(18)

where
N(k[k — 1) =(Z(k) — Hi(k)%Xo(k|k — 1)) (19)
(Z(k) — Hy(k)%o(k|k — 1))’

and
Y (klk —1) =X(k|k — 1)Y2Z(k|k — 1) Z(k|k — 1)

(Z(k|k —1)712) (X (k|k — 1)Y/2)'
(20)

The extension parameter « is assumed to follow the equation

Qlk = Qglp—1 T Nk 2n

From the innovation matrix N(k|k — 1) it is possible to
estimate an unknown measurement error covariance, even
in the case of point-source targets or with extension of a
completely unresolved group of targets (i.e. when ng < 1).

C. Prediction step

It is assumed that the estimates for centroid kinematics and
extension are independent. We recall that the centroid of the
extension is unconstrained. The predicted equations of the
centroid and covariance are respectively given for the motion
model M., by:

Xo(klk — 1) = Fo ez (T)Xo(k — 1|k — 1) (22)
Po(klk — 1) = Fo 0 (T)Po(k — 1k — 1)F e (T
+ QO,ew(k) (23)

The motion model M., is specially adapted to modelling the
extension dynamics. If we assume that the extension does not

change over time, we can take
X(klk—1)=X(k—-1]k—1) 24)

In [15] the authors remark that the variance of the extension
is proportional to 1/(ay; — 2) for very large ay;, as well
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as when ay;, becomes close and greater to 2. The authors
assume an exponential increase of the variance according to

agjk—1 =2+ exp(=T/7)(ag-1k-1 — 2) (25)

where 7 denotes a time constant related to the agility in which
the target could change its extension over time.

D. Data association

The goal of this work is to study Koch’s Bayesian extended

object tracking algorithm in a real context where the ex-
tended target evolves in a cluttered environment with multiple
ground targets. The data association problem between the
measurements arises naturally in such a difficult context. In
a first approach, we propose to extend the NNSF (Nearest
Neighbour Standard Filter) applied to measurement subset data
association. In [16], a more robust approach using a PMHT
(Probabilistic Multi-Hypothesis Tracking) and the estimation
of the ellipsoidal shape and kinematics of each target is
proposed.
The convoy is manually initialised by the selection of a
measurement subset. Then, for all measurement validated by
a statistical test (gating), we build all possible measurements
subsets according to the maximal distance of resolution d,s
(see figure 1). The set Z, (k) of validated measurements at the
current time is composed of p measurement subsets such that
Zy(k) = {S1US2U...US,}. Starting from those subsets,
we calculate the likelihood (26) of the extended object for
each partition ({S1},{S1 U Sa},...,{S1USyU...US,}).
This likelihood and the terms Var[Ay;_;] and Ayj,_; are
detailed in [15]. It is a combination between the statistical
distance of the extended object state and the measurement
centroid, and the statistical distance of the predicted extension
and the measured extension. Afterwards, the most probable
partition of subsets is chosen as the most representative
measurement subsets of the extended object. The likelihood
of S; is mathematically given by [15] to be :

As, o N(2(k), H (k)%o(k|k — 1), S(k))|2m Var[Ay ]|~

1 _
X etr(—iA;ﬂk_lVar[Ak‘k,l] 1A1€|k‘71)
(26)

In the case where the extension grows we assume that the
convoy is separating. So for each measurement subset con-
tained in the most probable partition, new extended objects
are automatically created.

A flowchart of the extended target tracking algorithm (called
ETT) is given in the upper part of figure 2.

IV. MULTIPLE TARGET TRACKING ALGORITHM

In this section, we describe quickly our MGT tracker
used for tracking multiple ground targets. It is based on an
IMM (Interacting Multiple Model) for tracking maneuvering
targets by taking into account the contextual information. This
algorithm with a variable structure is well adapted to track
several targets in cluttered environments.

)
]

o]
[ e I *
a5

Figure 1.  Validation and measurement subsets creation according to the
resolution distance dyes.

A. VS IMM under Constraint

The IMM is an algorithm for combining state estimates
arising from multiple models filter to get a better global state
estimate when the target is in a maneuver mode. In section
II-B, a constrained motion model 7 to a road segment s, noted
M, was defined. Here we extend the segment constraint to
the different dynamic models (among a set of r + 1 motion
models) that a target can follow. The model indexed by r = 0
corresponds to the stop model. When the target moves from
one segment to the next, the set of dynamic models usually
changes. In a conventional IMM estimator [8], the likelihood
of a possible track [ up to time k, denoted 7%, is given by

A (k) = plzy(R)[MI(K), 250"} - (kb — 1) 27)
=0

where 7 = {0,1,...,mg} is the index of the current mea-
surement, ¢+ = {0,1,...,7} is the index of the possible
modes, ZK—17 ig the subsequence of measurements associated
with the track 75! and p;(k|k — 1) is the predicted model
probabilities [11]. The motion model likelihood contained in
the sum function of (27) takes into account the perception
of the target respecting the contextual information (terrain
obscuration, Doppler blindness,. .. ). Its expression is given in
[17].

The steps of the IMM under road segment constraint are
the same as for the classical IMM as described in [11].

Despite the road segment constraint, the predicted state
could give a local estimate under another road segment than
the segment associated with the motion model (a road turn
for example). The change to another road segment causes
the generation of a new constrained motion model. In [10],
we have proposed an approach to activate the set of most
probable road segments. We consider » + 1 oriented graphs
which depend on the road network topology. For each graph
i,1={0,1,...,7}, each node is a constrained motion model
M}. The nodes are connected to each other according to
the road network configuration. In [10], the activation of the
motion model at the current time depends on the position
in the local predicted states &}  (k|k — 1) of the track T*".
Consequently, we obtain a finite set of » + 1 motion models
constrained to a road section (we recall that a road section is
a set of connected road segments).

B. Multiple target tracking

For the MGT problem, we use the TO-MHT (Track Oriented
Multiple Hypotheses Tracking) presented in [18]. When the
new measurements set Z(k) is received, a standard gating
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procedure is applied in order to validate MTI reports to track
pairings. The existing tracks are updated with VS-IMMC
(Variable Structure - Interacting Multiple Model under Con-
straint) and the extrapolated and confirmed tracks are formed.
More details can be found in chapter 16 of [18]. In order
to address the association problem, we need a probabilistic
expression for the evaluation of the track formation hypotheses
that includes all aspects of the data association problem. It is
convenient to use the log-likelihood ratio (LLR) or a track
score of a track 7% which can be expressed at current time
k in the following recursive form:

LY(k) = L*(k — 1) + AL (k) (28)
with
l
ALY (k) = log (A(k)> (29)
A fa
and
L(0) = log (%> (30)
)\fa + )\nt

where Ay, and ), are respectively the false alarm rate and the
new target rate per unit of surveillance volume and A'(k) is
the likelihood given in (27). The LLR of each track is used to
evaluate all compatible scenarios generated in each cluster. The
tracks are pruned according to the association scenario prob-
ability and the global track probability. Surviving constraint
tracks are tested to select (if SPRT - Sequential Probability
Ratio Test - is satisfied) the most probable constrained tracks.
Surviving tracks are updated and presented to the operator.
A flowchart of the MGT is represented in the bottom part of
figure 2.

C. Basic hybridization solution

In order to take into account both the extended target
tracking algorithm and the multiple target tracking algorithm,
we propose a basic approach based on the assumption that
an individual target is not detected if it is in same resolution
cell as the extended object. So each measurement that belongs
to the most probable partition (validated by the track of the
extended object) is considered as the detection of the extended
object. Then, no individual track is initialized with those
measurements and the existing individual tracks score are
modified. In fact, for each track present in the same resolution
cell as the extended track, we modify its perception probability
and therefore its track score (28). The modification of the track
score brings a modification of the track association scenario.
The interactions between the ETT and MGT algorithms are
represented by the red arrows in figure 2.

V. ILLUSTRATIONS ON SIMULATED AND REAL DATA

We test our simple hybridization approach with simulated
GMTI data (for the ground scenario) and real GMTI data (for
the maritime scenario).
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Figure 2. Design of an hybridization approach.
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A. Illustration on simulated data

In the scenario, we try to track a convoy in civilian traffic.
For this, we consider that the convoy is composed of 9 targets
(1 to 9). It is moving on the road network and maneuvre
at each intersection (deceleration, turn and acceleration). The
distance between each vehicle of the convoy varies and can
be up to 150 m. At the end of the scenario, the convoy
separates into sub-convoys which leave the road network to
stop on several strategic positions (figure 3). The rest of
the 20 individual vehicles are moving on the road network
(acceleration, deceleration and stop). The GMTI sensor is
moving at 10 km away from the centre of the area (figure
3). The sampling interval is 7" = bs, with 10m, 0.001rad
and 1m - s~! range, cross-range and range-rate measurement
standard deviation respectively. The false alarm rate is high
1076 false alarm per unit of volume. The detection probability
is fixed at 0.9 expected for the targets in the convoy where it
is fixed at 0.7 to simulate the sensor resolution. The occlusion
masks due to terrain elevation or Doppler obscuration (the
minimal detectable velocity is 1m-s~1) are taken into account.

The VS-IMMC TO-MHT has good performances for track-
ing all individual manoeuvring targets on the road network
(figure 4)and is a well known result with this algorithm. The
convoy, called “Group : 27, is manually initialized and the
hybrid algorithm tracks the convoy with a variable number
of detections (figure 5). The ellipse in blue represents the
extension of the object. Despite the complex scenario in which
one ground target is passing the convoy with another target in
the proximity of the end of the convoy and the convoy is ma-
noeuvring at each intersection (deceleration, acceleration), the
algorithm chooses the correct partition of measurements. Track
82 at time ¢t = 291s is approaching the convoy (figure 6).
According to the modification of the perceivability probability
of the track 82 and the good selection of measurement partition
for the convoy, the continuity of track 82 is maintained (figure
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GMTI sensor

Figure 3. Trajectory of the convoy (left) and sensor trajectory and surveil-
lance area with cumulated MTTI reports (right).

Figure 4. Tactical situation at time ¢t = 156s.

7). The same observation can be made for tracks 29 and 31
which pass the convoy. The group is well tracked despite of
the big group maneuvre in the map center (figure 8). However
we observe a weakness in the algorithm when the convoy is
separating. The separation is quick and the main sub-convoy,
has the same direction and extension direction than previously.
So the most probable partition is the measurement subset of the
main sub-convoy and 2 individual tracks (because of ground
target proximity) are initialized for the 3 vehicles of the other
sub-convoy.
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Figure 5. Convoy initialization and tracking at time ¢t = 156s.

Figure 6. Tactical situation at time ¢ = 291s.

B. Validation on real data

In this section, we test the previous approach on real
data obtained with an operational airborne GMTI sensor. The
GMTI sensor is moving away from its area of interest and
observes for two minutes the tactical situation assessment
(Figure 9). Several remarks must be made on the observed
MTI reports as shown in Figure 10:

1) the chosen scenario is not convenient for a GMTI
sensor because the area on the upper part of the map
is an industrial area which causes a high number of
false alarms, building occlusion result in many missed
detection.

2) the operational need is also to analyse the maritime
threat assessment. So we can see, according the cumu-
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Figure 8. Tactical situation at time ¢ = 751s (left part) and at time ¢t = 796s
(right part).

lated MTI reports, a boat arriving in the harbour. This
boat is an extended target because we detect, regularly,
at most two MTI reports for this target.

3) we observe a large number of false alarms on the coast
due to the backwash. We can also see that the movement
of buoys generates detections in the harbour.

In this scenario, we keep the parameters used in the previous
section. We have initialized manually the track associated with
the boat entering the harbour and a track of a group of targets
issued from the localized set of false alarms generated by the
backwash. We obtain the following results: the boat is well-
tracked in a critical case where the number of associated MTI
reports does not exceed 2 at each scan (see Figure 11). The
ellipse in white represents the extension of the object. When
two MTI reports are associated with the extended target, we

\ GMTI senser trajectery

Area of interest

Sensor area coverage

Figure 9. Sensor trajectory and surveillance area.

backwash

Figure 10. Cumulated MTI reports.

take into account the measurement matrix R(k) for updating
the extension matrix X (k|k). If there is only one MTI report
associated to the target, we use the mean of the innovation
matrix N(k|k — 1) described in III-A. On figure 11, we
compare our results for tracking this extended target based
on our hybrid approach with respect to the MTT approach.
The tracking of a small extended target (small with respect
to the sensor resolution cell) is not satisfying because the
MTT algorithm tries to obtain the most probable sequence of
measurements with the assumption that the target generates
at most one measurement. We recall that the backwash is
considered as a group of targets. The size of the false alarm
area generated by the backwash is well-estimated as shown in
figure 12. We observe also a weak variation of the movement
of this group. Comparing with the MTT approach (figure 13),
we observe that the extension used in this paper destroys all
new tracks initialized by the MTT. The buoys are tracked as
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Figure 11. Comparison of the boat tracking with the extension approach
(left part) and the MTT approach (right part).

a static object with the usual MTT.

VI. CONCLUSION

This paper evaluates the feasibility of an hybridization so-
lution between an usual MTT and the extended target tracking
approach proposed initially by Koch. The results obtained on
simulated data and real data show that the proposed algorithm
could be a satisfactory approach to track extended targets
(as well as localized clusters of false alarms) and individual
targets and to avoid the excessive track generation in a cluster.
However, more investigations are required to develop a more
robust approach to evaluate and maintain several association
scenarios for the extended object. In addition a better hy-
bridization solution to update the individual tracks in a convoy
could be proposed based on the work in [2]. In future work, we
will evaluate the performances of our approach with measures
of performance based on Monte-Carlo simulations and real
ground data for the technical validation. In addition, a more
ambitious project should consider additional information, such
as HRRR (High Range Radar Resolution) or video attributes
(correlated with MTI reports), in order to refine the hypotheses
evaluation and correct the current situation.
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