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Abstract—We propose a new method to track maneuvering
ground targets and correct the ground tactical situation. The
method developed in this work improves the performances of
Structured-Branching Multiple Hypothesis Tracker (SB-MHT)
and reduces the incorrect track deletions in tracks maintenance
with a new Track Segment Association (TSA) algorithm tak-
ing into account both kinematic and classification information.
The performances of this method are quantified on a realistic
simulated scenario involving twenty maneuvering ground targets
observed by an airborne with a Ground Moving Target Indicator
(GMTI) sensor and Unattended Ground Sensor (UGS).

I. INTRODUCTION

Ground tracking algorithms are used in a special environ-
ment: the high traffic density and the large number of false
alarms, that brings about a significant data quantity, the strong
and fast target maneuvers which compromise target tracking
due to the association problem and the terrain elevation that
generates undetected areas in which ground targets cannot
be detected. In a Ground Moving Target Indicator (GMTI)
surveillance context, we propose to use the road network
information as a prior information in order to improve the
tracking quality. Under the assumption that the targets are
evolving on the road network and using a Bayesian approach,
the event that the target state belongs to a road segment (i.e.
the position is on the road segment and the velocity in the road
segment direction) can be taken into account in the tracker as
proposed in [1].

Because of the ground target proximity and the sensor
precision, the kinematic discrimination is usually not suffi-
cient to maintain the correct association between tracks and
measurement and that is why the classification information
(when good enough) based on target identification features
is also useful to improve the tracking performances [2]–
[5]. The adaptation of Bar-Shalom’s and Gokberk approach
[6] to the Structured-Branching Multiple Hypothesis Tracker
(SB-MHT) [2] has been proposed in [7] with the use of Dezert-
Smarandache Theory (DSmT) to update and to modify the
assignment cost where the feature information was provided
by an aerial EO/IR system.

In applications, the use of the tracker is always limited in
time due to the Unnamed Aerial Vehicle (UAV) performances
(maneuvers, autonomy, . . . ) and the classification information
given by the GMTI sensor. Usually, the proportion of well-
classified tracks obtained after the fusion between GMTI
tracks and EO/IR UAV detections is very small. To palliate the
track breakage and the weak track classification, we propose

in this paper a new approach to solve the Track Segment
Association (TSA) problem presented recently by Zhang and
Bar-Shalom in [8] by using classification information obtained
with several Unattended Ground Sensor (UGS) distributed
over a big area surveillance that are able to provide a well-
classification information about targets.

II. MOTION AND OBSERVATION MODELS

A. Constrained motion model

The target state at the current time tk is defined in the local
horizontal plane of the Topographic Coordinate Frame (TCF)
by the vector:

x(k) = [x(k) ẋ(k) y(k) ẏ(k)]
T (1)

The target state of a target moving on the road segment s is
xsk and follow a dynamic model Mi as explained in [9] and
we adapt the level of the dynamic model’s noise based on
the length of the road segment s, see [10], [11] for a detailed
presentation of our ground target tracking algorithms on road
networks.

B. MTI and UGS observation models

1) MTI report segment: The Moving Target Indicator (MTI)
measurement zMTI

k at the current time tk is given in the
TCF by Bizup and Brown Alternative Extended Kalman Filter
(AEKF) measurement equation [12]

zMTI
k = [xk yk ρ̇k]′ = HMTI

k · xk + wMTI
k (2)

where (xk, yk) is the location of the MTI report in the local
frame (O,X, Y ) and ρ̇k is the associated range radial velocity
measurement, and the observation matrix is

HMTI
k =

 1 0 0 0
0 0 1 0

0 ∂ρ̇k
∂ẋ 0 ∂ρ̇k

∂ẏ

 (3)

and where wMTI
k is a zero-mean white Gaussian noise vector

with a covariance RMTI
k approximated by

RMTI
k =

 σ2
x σ2

xy 0
σ2

xy σ2
y 0

0 0 σ2
ρ̇

 (4)

σ2
ρ̇ is the standard deviation of the modified range radial

velocity and σ2
xy is the cross-covariance.



Each MTI report is characterized both with the location and
velocity information and also with the attribute information
and the probability that it is correct. We denote CMTI the
frame of discernment on target ID based on MTI data which
is assumed to be constant over the time and consists in a finite
set of exhaustive and exclusive elements representing the
possible states of the target classification. In this paper, CMTI

is defined as {Tracked vehicle, Wheeled vehicle, Rotary
wing aircraft}. We denote by zMTI?

k the extended MTI
measurements including both kinematic part and attribute
part defined by zMTI?

k , {zMTI
k , ck, P (ck)}, where P (ck)

represent the diagonal terms of the “confusion matrix”
Ck = [ci,jk ] of the classification algorithm assumed to be
used with ck ∈ CMTI . The element ci,jk of Ck matrix is the
likelihood of the true class i when the classifier output is j,
see [6] for details. Generally in practice, only the diagonal
elements of Ck are known, and so the off-diagonal terms of
Ck are chosen at a same value in [0; 1] such that the sum of
each column of Ck is equal to one.

2) UGS report segment: We use a video EO/IR sensor
and an acoustic sensor fixed on a Unattended Ground Sensor
(UGS). The UGS measurement zUGS at the current time tk
is given in the TCF by the equation

zUGSk = [x(k) y(k)]′ = HUGS
k · x(k) + wUGS

k (5)

with the video sensor observation matrix given by

HUGS
k =

(
1 0 0 0
0 0 1 0

)
(6)

The white noise Gaussian process wUGS
k is centered and has

a known covariance RUGS
k given by the ground station.

We denote zUGS?k the extended video measurements includ-
ing both kinematic part and attribute part defined ∀ck ∈ CUGS
by zUGS?k , {zUGSk , ck, P (ck)}. The attribute type of the
Unattended Ground Sensor (UGS) sensors allow to achieve a
better (refined) classification than the Moving Target Indicator
(MTI) sensors and that is why the size of the classification
frame CUGS is bigger than the size of the frame CMTI . The
frames of discernments for target classifications are based on
a taxonomy presented in the following subsection.

C. Taxonomy for target classification

The symbology 2525C [13] is used to describe the links
between the different classification sets CMTI and CUGS . We
use the same taxonomy presented in the paper [7].

For notation convenience, the measurements sequence
Zk,l = {Zk−1,n, zjk} represents a possible set of measure-
ments generated by the target up to time k. Zk,l consists
in a subsequence Zk−1,n of measurements up to time k − 1
and a validated measurement zjk available at time k associated
with the track T k,l. At the current time k, the track T k,l is
represented by a sequence of the state estimates.

D. Multiple ground target tracker

The main steps of Structured-Branching Multiple Hypothe-
sis Tracker (SB-MHT) (see Chap.16 of [2]) coupled with Vari-
able Structure Interacting Multiple Model under Constraint
(VS IMMC) [1] are

1) Track confirmation and the track maintenance of
SB-MHT: when the new set of measurements is re-
ceived, a standard gating procedure [2] is applied vali-
date MTI reports for track pairings. The existing tracks
are updated with VS IMMC and extrapolated confirmed
tracks are formed. When the track is not updated with
MTI reports, the stop-model is activated.

2) Track Score: The Log-Likelihood Ratio (LLR) used as
the track score of a track T k,l is Lk,l = Lk−1,n+∆Lk,l
where ∆Lk,l and L(0) are given in [2], [7]. The Sequen-
tial Probability Ratio Test (SPRT) [14] is then used to
set up the track status (tentative, confirmed or deleted).

3) Track Clustering: all the tracks that are linked by a
common measurement are put in a same cluster to limit
the number of hypotheses and to reduce the complexity
of tracking system. The result of the clustering process
is a list of tracks that are interacting.

4) Track Pruning: For each track, the a posteriori prob-
ability is computed and a classical N-Scan pruning
approach [2] is used to select the confirmed and delete
the most unlikely tracks. In the constrained ground target
tracking context, a modified N-Scan pruning approach is
necessary in order to select the Nk best tracks on each
road section.

5) Track Deletion: SPRT is used to delete the unlikely
hypotheses among the Nk hypotheses. The tracks are
then updated and projected on the road network. A merg-
ing technique selecting the most probable tracks with
common measurements is use to reduce the memory
storage.

E. Target type tracker

The target type tracker [6] is used to improve the perfor-
mance of the data association in the SB-MHT. The principle
consists to compute the posterior class probability vector at
time tk using the classifier output by

βk,l =
PJ ⊗ βk−1,n

P ′Jβk−1,n
(7)

where PJ is the likelihood function of the subset J corre-
sponding to the list of attributes that characterize the element
ck of the frame CMTI , βk−1,n is the prior probability pro-
vided by the previous updated track T k−1,n and ⊗ is the
Schur-Hadamard product. At time t0, one takesβ0 = PJ . In
assuming kinematic and classification observations indepen-
dent, the augmented LLR for zMTI?

k or zUGS?k is given by
Lk,l = Lk−1,n + ∆Lk,l + ∆Lck,l with ∆Lck,l = log(

P ′Jβk−1,n

P ′Jβe
)

and where e defines an extraneous target. ∆Lck,l = 0 if the
track is not associated to a measurement at the current time
tk. Finally the updated target type ĉk,l of the track T k,l is



chosen as the maximum probability of updated classification
vector (7). However, if this probability is not superior to 0.7,
we use the taxonomy 2525C presented in [7] to choose the
target class that satisfies this condition.

III. TRACK SEGMENT ASSOCIATION

A. Problem formulation

In TSA problem, we want to associate a current track with
an old track set in presence of false tracks (the tracker is not
perfect and false tracks can appear in dense clutter area). Based
on previous works on [8], [15], we propose to solve the track
segment association by taking into account the road network
and an Interacting Multiple Model (IMM)-smoother. Two track
sets are considered: an old track set Ok which contains the
terminated track (“dead” or “stopped” tracks) at time tk due to
lack of measurement, and a current track set Ck which contains
current updated tracks (the stop model is not activated) at time
tk. The sets Ok and Ck are updated at each sensor scan time
by the following TSA process summarized in [8]:

1) Track sets selection: we select the set Ck of current
tracks and the tracks set Ok.

2) Smoothing: the tracks contained in Ok and in Ck are
smoothed.

3) Track correlation: a retrodiction and prediction process
are respectively done on tracks contained in Ck and
old tracks contained in Ok. At each scan time, track
segments are associated based on a cost function.

4) Track assignment: the Auction algorithm [2] is used to
solve the track segment association problem.

B. TSA Algorithm without target classification

1) Track sets selection: An updated track T k,l at time
tk is defined by T k,l , {x̂lt|t,P

l
t|t, t = kli, . . . , k}. Its

initialization time is noted tkli . Starting from the empty set,
the set Ck of confirmed tracks is built sequentially. In the set
Ok, there are all terminated tracks since the beginning of the
surveillance mission the deleted tracks T kme ,m, are defined
with a termination time tkme and a start time tkmi . An old
track is defined by T kme ,m , {x̂lt|t,P

l
t|t, t = kmi , . . . , k

m
e }

The times tke and tki are not necessarily the same for each
track contained in Ok−1. The current old track set Ok is based
on the previous set Ok−1 updated with the current deleted
tracks. The tracks deleted by the SB-MHT at the current time
tk are added to set Ok. To palliate the track discontinuity due
to the stop-model activation, we also add to Ok all the stopped
tracks. If a stopped track present in Ok−1 is moving at time tk,
it is withdrawn from Ok and added to Ck. In our simulation,
a track is declared as “stopped” if the confirmed track has a
stop-model probability greater than 0.9.

2) IMM fixed-lag smoother: To improve tracking perfor-
mances and to take into account all the measurements of
a track available in a sliding window, we use a Rauch
Tung Striebel (RTS) IMM smoothing algorithm. The forward
recursion is performed using the VS IMMC algorithm. The
backward recursion keeps the selected model set of the track

and imitates the IMM estimator in the forward direction. See
[10], [16], [17] for details.

3) Track correlation:
a) Retrodiction and association: From each starting time

tkli of each track T k,l, we use a back propagation equation of
a constant velocity model. For each track T k,l, a sequence
of retrodicted states is obtained at previous times for each
deleted tracks of Ok. The set of candidate track pairs for TSA
is obtained according to a two-steps procedure:
• Step 1 (velocity gating): we associate the current track with
old tracks if the maximum ground target speeds are below
vmax. The set of pairing tracks satisfying this condition is
defined by

Φv = {(T k
l
i,l, T ko,m) |

|x̂l
kc|kli

− x̂mkc|ko |
tki − tko

≤ vmax,

and
|ŷl
kc|kli

− ŷmkc|kc |
tki − tko

≤ vmax} (8)

where T k,l ∈ Ck, T ko,m ∈ Ok, tkmi < tko < tkme with tkc =
t
kl
i
−tko

2 . (x̂l
.|kli
, ŷl
.|kli

) is the retrodicted location of the track
T k,l and (x̂mkc|ko , ŷ

m
kc|ko) is the predicted location of the track

T ko,m. This is the approach used in [8] where the track pairing
of the old track T kme ,m is done at each time {tkmi , . . . , tkme }
and not only at the time end tkme .
• Step 2: A χ2

n test (n being the state vector dimension)
is used to select the pairs in Φv to reduce the complexity.
At time tkc the difference between the retrodicted tracks of
T kli,l, (T k,l ∈ Ck) and predicted tracks of T ko,m, (T kme ,m ∈
Ok) is defined by ∆l,m

kc
= x̂l

kc|kli
− x̂mkc|ko with the covariance

Pl,mkc = Pl
kc|kli
−Pmkc|ko . The new set of track pairing candidate

is defined as

Φs = {(T k
l
i,l, T ko,m) such that

(∆l,m
kc

)T [Pl,mkc ]−1(∆l,m
kc

) ≤ χ2
n(1−Q)} (9)

with (T kli,l, T ko,m) ∈ Φv , tkmi < tko < tkme , and tkc =
t
kl
i
−tko

2 , and where Q is a fixed tail probability.
b) Track assignment: After applying the gating (9), we

obtain a set of track pairs candidates between current track
in Ck and deleted or stopped tracks in Ok. The association
is formulated as a 2-D assignment problem with the binary
assignment variables

a(T k
l
i,l, T ko,m) =

{
1 track T kli,l originates from T ko,m

0 otherwise.
(10)

The track segment association cost c(T kli,l, T ko,m) is

c(T k
l
i,l, T ko,m) =

{
− log

N (∆l,m
kc

;0,Pl,m
kc

)

µ , (T kli,l, T ko,m) ∈ Φs

− log(1− PDs), otherwise.
(11)

where µ is given by the spatial density of the extraneous tracks
in the state space and PDs

is the probability that a target is



tracked [8]. The optimal set of track pairs (optimal assignment)
is obtained by minimizing the cost

C =

Mc∑
l=1

No∑
m=1

a(T k
l
i,l, T ko,m)c(T k

l
i,l, T ko,m) (12)

under the constraints:{∑Mc

l=1 a(T kli,l, T ko,m) = 1,m = 1, . . . , No∑No

m=1 a(T kli,l, T ko,m) = 1, l = 1, . . . ,Mc

(13)

where Mc and No are respectively the number of current
associated tracks and the number dead associated tracks. This
assignment problem is solved by the Auction algorithm [2].

C. TSA Algorithm with target classification

We introduce the track classification information in the
Track Segment Association (TSA) process to increase the dis-
crimination between the old and current tracks. Two methods
are presented for such purpose.

1) Track classification gating: this first method is the
easiest. We propose to add a new test in the track pairing
test (9). This test consists to validate only the track with the
same classification level between a current track T k,l and a
old track T kme ,m. So, we add the following new condition
Ĉlassk,l = Ĉlasskme ,m in (9). In practice, it is more efficient
to choose the updated type at the current time tk for the track
T k,l even if the kinematic test is done on the initial smoothed
state at time tkli .

2) Track classification scoring: the second method consists
to modify the cost association presented in (11) by introducing
a track classification cost. After the pairing test (9) between
the current track T k,l and the old track T kme ,m, the track class
vectors βkli,l and βkme ,m are compared based on the Bhat-
tacharyya distance c(βk,l, βkme ,m) = − log

∑√
βk,l · βkme ,m.

The expression of the global cost association is same as
in (11), except that the term − log(N (∆l,m

kc
; 0,Pl,mkc )/µ) is

replaced by − log(N (∆l,m
kc

; 0,Pl,mkc )/µ) + c(βk,l, βkme ,m) if
(T kli,l, T ko,m) ∈ Φs.

IV. SIMULATION AND RESULTS

Here we show the impact of the classification information
in the TSA algorithm for multiple ground target tracking. Our
results are based on a Monte-Carlo simulation with 100 runs.
The scenario duration is limited to 10 minutes.

A. Measures of performance

The classical Measures Of Performance (MOP) have been
used in simulations to evaluate the TSA algorithm: the
Track Segment Purity (TSP), the Mean Track Life (MTL)
and the Percentage of Correct Classification (PCC) which
are defined by TSP = (1/N)

∑N
l=1 n(T k,l)/nT , MTL =

(1/N)
∑N
l=1 l(T k,l)/lT , PCC = (1/N)

∑N
l=1 nc(T k,l)/lT k,l

where N is the number of tracks associated to the same
target, n(T k,l) is the number of measurements of the track
T k,l generated by the target associated to the track, nT is
the number of measurements in the track T k,l, l(T k,l) is

length of the track T k,l associated to the target, and lT is
the length of the target trajectory, nc(T k,l) is the number of
correct classification of the track T k,l associated to a target,
and lT k,l is the length of tre track T k,l.

B. Scenario description

1) Targets description: We consider 20 targets that are able
to maneuver (acceleration, deceleration, stop), pass and cross
the others targets. The relations between target type, the target
classification set and the taxonomy 2525C are given in the
table I. We recall that the frame of discernment CUGS is
similar to C2525C .

Target Target type Target class in CMTI Target class in C2525C
1 TWINGO Wheeled Compact Automobile
2 Citroen xsara Wheeled Midsize Automobile
3 Small Bus Wheeled Small Bus
4 Renault Scenic Wheeled Sedan Automobile
5 Peugeot 206 Wheeled Compact Automobile
6 Laguna II Wheeled Midsize Automobile
7 Van Wheeled Van
8 Large Bus Wheeled Large Bus
9 4x4 TOYOTA Wheeled Jeep Medium
10 civilian heavy truck Wheeled Large Box Truck
11 Midsize Bus Wheeled Small Bus
12 civilian heavy truck Wheeled Large Box Truck
13 VBL Wheeled Light Wheeled
14 VAB Tracked Medium Tracked
15 VAB Tracked Medium Tracked
16 Renault Scenic Wheeled Sedan Automobile
17 AMX-30 Tracked Heavy Tracked
18 AMX-30 Tracked Heavy Tracked
19 TWINGO Wheeled Compact Automobile
20 Military Van Wheeled Bus

Table I: Correspondence between target type and target
classification in CMTI and C2525C .

2) Sensor parameters: The GMTI sensor is located at
(−40km, 40km) in the TCF and is moving at 5km in
altitude. The sampling period is fixed at 0.25Hz (i.e. 4
seconds), the azimuth standard deviation is 0.001rad, the
range standard deviation is 10m and the range rate standard
deviation is 1m.s−1. The detection probability is fixed to 0.9
with a Minimal Detectable Velocity (MDV) equal to 1m.s−1.
The false alarm probability is equal to 10−7. The diagonal
elements of confusion matrix of each class of CMTI are 0.8,
0.7 and 0.9. Fig. 1 shows the cumulated MTI reports.

Every 3 minutes, the UAV changes its trajectory and cut-
off the GMTI sensor during 40 seconds. The parameters of the
UGS are simplified and characterized by a standard deviation
equal to 2m, a false alarm probability fixed to 10−9, and
a sampling time fixed to 1Hz. An illustration of the sensor
area coverage is given on the figure 2. The UGS are always
activated. Each detection is provided with the diagonal element
of the confusion matrix CUGS equal to 0.8. The other terms
of the column are equi-distributed in the manner that the sum
without the diagonal element is equal to 0.2.

3) Filter parameters of VS IMMC SB-MHT:
a) VS IMMC parameters: We use two constant velocity

(CV) models: a CV model Ms,1 with plant noise parameters
σd = 0.1m.s−2, σn = 0.1m.s−2 to track targets moving on
the road, a CV model Ms,2 with parameters σn = 1m.s−2,
σn = 0.5m.s−2 to palliate the target maneuvers, and a
stop-model Ms,0 with parameters σd = 0.1m.s−2, σn =
0.05m.s−2 for Ms,0. For the unconstrained motion models



Figure 1: Cumulated MTI reports.

Figure 2: Cumulated reports of the UGS 7, 8, 9 and 10.

M1, M2 and M0, we use the parameters σ = 0.1m.s−2,
σ = 2m.s−2 and σ = 0.5m.s−2 respectively. The initial
model probabilities is µ(0) = [0.9 0.1 0]T and the transition
probability matrix

π =

0.9 0.095 0.005
0.3 0.65 0.15
0.1 0.6 0.3

 (14)

b) SB-MHT parameters:
• For the track initialisation: each MTI report at every

scan is considered as a new track. The initialised track
is declared as “tentative track”. The MTI reports are
validated with a classical gating procedure (a Chi2 test
with a probability of gating equal to Pg = 0.95).

• For the track termination step, a track is declared as
“deleted track” if the probability of the stop-model is
greater than 0.9, and if the track is not associated to
measurements during 30seconds.

• For the track association step: a track is associated to a
report if the MTI report is validated according the pre-
vious test (with a gating probability equal to Pg = 0.95
for unconstrained tracks and Pg = 0.99 for constrained
tracks), and if the maximum velocity allowed for a ground
target is less than 35m.s−1.

• In the hypothesis generation step of the Multiple Hypoth-
esis Tracker (MHT): the threshold used to keep a track

XXXXXAlgo.
Target

1 2 3 4 5 6 7 8 9 10

TSP 0.56 0.77 0.68 0.67 0.92 0.67 0.76 0.74 0.76 0.64TSA alone PCC 0 0 0 0 0 0 0 0 0 0

TSP 0.70 0.80 0.88 0.61 0.90 0.69 0.87 0.79 0.81 0.94TSA scoring PCC 0.41 0.61 0.44 0.47 0.29 0.37 0.08 0.43 0.59 0.03

TSP 0.74 0.89 0.83 0.84 0.93 0.80 0.86 0.80 0.88 0.94TSA gating PCC 0.45 0.62 0.35 0.61 0.31 0.58 0.11 0.55 0.77 0.03
``````Algorithm

Target
11 12 13 14 15 16 17 18 19 20

TSP 0.50 0.85 0.59 0.69 0.58 0.79 0.58 0.76 0.65 0.53TSA alone PCC 0 0 0 0 0 0 0 0 0 0

TSP 0.90 0.88 0.79 0.81 0.76 0.72 0.68 0.80 0.52 0.43TSA scoring PCC 0.44 0.40 0.21 0.67 0.70 0.41 0.21 0.22 0.02 0.29

TSP 0.93 0.87 0.86 0.82 0.96 0.83 0.68 0.69 0.77 0.86TSA gating PCC 0.62 0.42 0.40 0.61 0.66 0.55 0.22 0.20 0.03 0.59

Table II: MOP of the TSA algorithm without class information.

hypothesis is fixed to 0.01, and the track is maintained
if its global track probability is greater than 0.1. The
number of scans before the N-Scan pruning process is
equal to 3.

• For the TSA algorithm, the smoothing process is realized
every minute.

C. Analysis of the results

To evaluate the impact of the classification information
introduced in the TSA algorithm, we test the VS IMMC
SB-MHT with three TSA versions: the first version is a TSA
algorithm without classification information represented in
red color, the second version is a TSA algorithm including
the classification distance in the cost function (presented in
III-C2) represented in blue color, and the third version is a
TSA algorithm including the classification gating procedure
(presented in III-C1) represented in yellow color. We recall
the results are based on a 100 runs Monte-Carlo simulation.

The figure 3 represents the average MTL of each target.
We observe that globally the introduction of classification
information improves the performance of the track segment
association algorithm because the length of tracks with respect
to the length trajectory of the associated target is greater
with the classification information (blue and yellow bars) than
without (red bars).

Figure 3: Mean Track Life (MTL) of each target.

We observe also a large difference of performances between
the tracks associated to the targets 19 and 20. This difference



is due to the UGS illumination of the targets. In fact, the UGS
provide a better classification information and the target 20 is
illuminated by this sensor type during 15 seconds. According
the UGS sampling time, the illumination duration is very
sufficient to obtain a good and precise estimation of the class.
The target 19 is never illuminated by the UGS sensor but
it evolves at the proximity of the target 20. So, when the
TSA algorithm is executed, the targets 19 and 20 are well
discriminated in class information. A similar remark applies
for the targets that have a correct class estimator due to a long
illumination time by UGS sensors. However, the gating proce-
dure doesn’t take into account the sensor type uncertainty. We
reveal also the limits of the gating procedure because the MTL
of the TSA algorithm with the gating procedure is inferior to
TSA algorithm with the scoring procedure. In addition, the
table II shows the TSP and PCC of tracks associated to each
target. Introduction of the classification information improves
the association between tracks and measurements originated
from the corresponding target. In fact, the TSP of the TSA
algorithm without class information is inferior to the TSA
algorithms with scoring and gating class information expected
for the targets 16, 19 and 20. The TSP values for those
targets are higher than TSP values with scoring technique.
This phenomenon is due to bad classification results because
the target type is not discriminant, or because the targets are
not illuminated sufficiently by a UGS. The introduction of the
class cost decreases the performances of the TSA algorithm if
the class likelihood can’t select the good class or discriminate
the targets in the same cluster. So, if an ambiguity occurs on
the track class, or if the tracks are not illuminated by UGS
we recommend to not use the class information in the cost
function, otherwise the TSA performances will degrade.

V. CONCLUSIONS

We have presented a complete process to track multiple
ground targets with airborne GMTI sensors. The first step is
to track maneuvering targets in a complex ground environ-
ment with the only information in target location and range
radial velocity. We have proposed, in the first part, to adapt
the Interacting Multiple Model (IMM) algorithm by taking
into account the road network and the Structured-Branching
Multiple Hypothesis Tracker (SB-MHT) to obtain several
association scenarii in road intersection. In this paper, we focus
on the Track Segment Association (TSA) algorithm in order to
associate the track segments obtained by after several fly paths.
In fact, when the airborne GMTI sensors observes an area of
interest, the Unnamed Aerial Vehicle (UAV) maneuvers after
few minutes to obtain a new trajectory in order to conserve its
capacity to observe its surveillance area. During the maneuvers
and due to sensor constraint the GMTI sensor is shut down.
The tracker is reinitialized to avoid track association errors. To
improve the track continuity we have studied and developed
a Track Segment Association (TSA) algorithm. However, due
to the ground targets density and targets proximity, the Track
Segment Association (TSA) algorithm is perfectible because
the cost function is based only on kinematic information. That

is why it appears interesting to deploy Unattended Ground
Sensor (UGS) sensors and to develop methods to deal with
the uncertain and imprecise identification information of the
observed target. We have proposed to modelize the classi-
fication information for each sensor type and introduce the
classification information in the log-likelihood function in the
Structured-Branching Multiple Hypothesis Tracker (SB-MHT)
and also in the cost function of the Track Segment Association
(TSA) algorithm. Our results show that the introduction of
classification improves the track segment association and the
track continuity between several fly paths whenever the target
are well illuminated by Unattended Ground Sensor (UGS)
when several targets evolve in close formation. Our future
research works will consist to: 1) use other cost functions
for the TSA algorithm by introducing the entropic distance
and evaluate the performances obtained, 2) detect the conflicts
between the segment association and let the operator to take
a decision, 3) use the conflict detector and the UGS location
to automatically differ the TSA algorithm execution, 4) study
the problem of UGS deployment by taking into account the
contextual information, and 5) work on the signal processing
to improve the GMTI classification information.
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