
Overview of Dempster-Shafer and Belief Function Tracking Methods 
 

Erik Blasch1, Jean Dezert2, B Pannetier2 
 

1Air Force Research Laboratory, Information Directorate, Rome, NY, 13441 
2The French Aerospace Lab, F-91761 Palaiseau, France. 

 
 

 
ABSTRACT 

 

Over the years, there have been many proposed methods in set-based tracking. One example of set-based methods is the use 
of Dempster-Shafer (DS) techniques to support belief-function (BF) tracking. In this paper, we overview the issues and 
concepts that motivated DS methods for simultaneous tracking and classification/identification. DS methods have some 
attributes, if applied correctly; but there are some pitfalls that need to be carefully avoided such as the redistribution of the 
mass associated with conflicting measurements. Such comparisons and applications are found in Dezert-Smarandache 
Theory (DSmT) methods from which the Proportional Conflict Redistribution (PCR5) rule supports a more comprehensive 
approach towards applying evidential and BF techniques to target tracking. In the paper, we overview two decades of 
research in the area of BF tracking and conclude with a comparative analysis of Bayesian, Dempster-Shafer, and the PCR5 
methods.  
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1. INTRODUCTION  
 

Humans and machines are typically trained for specific missions and/or scenarios [1].  One such case is classification of a 
moving target [2]. To integrate the benefits of human reasoning with machine methods, popular techniques of information 
fusion [3], target tracking [4], and pattern classification [5] are used.   
 
When the human approaches the target, either the target is moving, the human is moving, or both are moving [6]. 
Cognition, the act of directing attention to sensory information, can be used by the human to fuse track and identify (ID) 
information as a perception of a set of moving targets. Dynamic cognitive multitarget-multisensor fusion under uncertainty 
requires target selection which can be formulated as a belief filtering problem in which sensed target states and identities 
are represented as current situational beliefs. The objective of the human is to 1) abstract number of tracks from the 
tracking environment, 2) assess confidence levels from the target classification algorithm, and 3) integrate the information 
for real-time beliefs of the number and types of targets from a plausible set of targets through an interactive display [7]. 
 
Multitarget tracking and ID is a subset of sensor fusion, which includes selecting sensors [8], sensor recognition policies, 
and tracking algorithms for a given set of mission requirements [9] for situational awareness [10, 11].  For example, in a 
typical tactical aircraft, the onboard sensors are active radar, electro-optical/infrared (EO/IR), and navigation sensors, with 
each sensor having a variety of modes in which it can operate and features it can detect.  Figure 1 shows the case of EO/IR 
targets. The EO/IR sensor makes kinematic measurements to detect, track, and classify objects of interest while reducing 
user workload. In a dynamic and uncertain environment, a sensor manager, such as a human, must fuse the track and 
classification information to ID the correct target at a given time and can aid tracking algorithms by determining a set of 
tracks to follow and aid classification algorithms by constraining the set of plausible targets.  

 
Figure 1. (a) Electro/Optical (EO) image and (B) Infrared (IR) image of targets [12].  



Multitarget tracking in the presence of clutter has been investigated through the use of data association algorithms [1]. 
Likewise, other multisensor fusion algorithms have focused on tracking targets from multiple look sequences [13]. One 
inherent limitation of current algorithms is that the number of targets needs to be known a priori. While tracking 
algorithms can speculate on the number of targets, the cognition of the number of targets can be afforded to the user. The 
human is presented both the tracking information and the accrued evidence for each target type as a confidence measure.  
Once the human has an ID belief in the number of targets, the tracking algorithm can be updated. The human must then 
cognitively determine from the set of targets how many, what type, and which target goes with which track [14]. 
Additionally, the human has the ability to eliminate those targets that are not plausible which reduces the number of tracks 
and the set of pose templates from which the classification algorithm must search. 
 
This paper presents a summary of DS methods in the last two decades. By introducing the operator or image analyst for 
cognitive fusion, it may offer a means to control some aspects of the computational burdens experienced by analytical data 
association techniques while improving track quality for multitarget tracking and ID in the presence of clutter. Section 2 
overviews many applications of DS tracking. Section 3 describes DST methods while Section 4 compares the DST 
methods to Bayesian formulations. Section 5 presents a contemporary approach using the proportional conflict 
redistribution rule (PCR5) which is compared to the other methods in Section 6.  Section 7 draws some conclusions.    

2. TRACKING METHODS USING DEMPSTER-SHAFER THEORY 
One of the earliest known works in applying Dempster-Shafer (DS) methods to target tracking was by Jean Dezert for 
navigation [15], where the sensor is moving and the targets are stationary. The emergence of the benefits of DS methods 
were applied by Robin Murphy for robotic scene analysis [16].  Building on Murphy’s work, the DS methods were then 
applied to other robotic applications [17, 18, 19], albeit real-time control was still superior with Bayesian methods. At the 
same time, Johan Schubert applied DS methods for determining the number of tracks through the support and plausibility 
functions for the linking of submarine targets between tracks [20]. 
 
A few tracking and identification algorithms have been proposed for air-target tracking [21] and ground target tracking 
[22, 23] that extend Bayes’ rule for identification where the most probable target is selected when there is incomplete 
knowledge. For instance, there are times when unknown targets might be of interest that are not known at algorithm 
initiation. At other times, there are unknown number of targets to track or targets not trained for classification. One way to 
study the problem is the interaction of the human and the machine working synergistically - since the sensors are 
extensions of the human’s processing. The set theory approach to HRR target classification was proposed by Mitchell and 
Westerkamp and termed a Statistical feature based classifier (STaF) for air-target tracking [24]. In addition, Blasch [25, 
26, 27] presented a feature-based set-theory approach for ground target tracking.  In both cases, classification and tracking, 
a set of features and a set of targets was investigated by extending the STaF algorithm as a belief filter for radar profiles 
analysis from which a plausible set of tracks and targets are made available to the user at each time instant [28].  
 
Given the ability to track individual targets using advances in DS theory for target identify and classification, methods 
were then developed for tracking a group of targets. In this case, the like targets could be grouped together based on 
common characteristics [29, 30, 31]. Additionally, Li [32] investigated methods for convex optimization for enhanced ID 
processing. Using a combination of belief filtering and data association improved analysis of maneuvering targets [33, 34]. 
Other group tracking methods were postulated for cluster-to-track fusion [35]. Finally, the benefits of DS methods 
provided complementary information to tracking through Kalman weighting [36], mutual aiding [37] and pose estimation 
[38]. 
 
Beginning in 2005, efforts were made to extend traditional DS tracking methods [39] to that of advanced techniques using 
the proportional conflict redistribution rule (PCR5) [40]. Other tracking methods included multisensor [41], activity 
analysis [42], and out-of-sequence methods [43]. Also, at that time, methods of combining DS with nonlinear tracking 
methods such as the particle filter [44] and the unscented Kalman filter [45] were developed. Finally, a fusion rule based 
on DS methods was used to solve the association problem in target tracking [46]. 
 
With the demonstrated performance of many applications of DS techniques, research continued in the exploration of DS 
rules for classification to improve track accuracy [47] and maneuvering targets [48]. Multisensor techniques were applied 
for heterogeneous sensor measurements [49], such as DS tracking with unattended ground sensor measurements [50]. 
Currently, efforts are sought for tracking performance evaluation with DS techniques for tracking and identification 
improvement [51, 52, 53]. Further assessment includes combinations with non-linear tracking methods [54] and 



association of track segments [55].  More recent results have applied the developments from DS tracking from radar 
towards that of image processing [56, 57].  Throughout the many demonstrations of the successes of DS tracking, we now 
discuss DS methods, compare DST with Bayesian methods, and conclude with belief functions (BF) such as the 
contemporary PCR5 method for target tracking. 

3. BASICS OF DEMPSTER-SHAFER (DST) THEORY 
The Dempster-Shafer (DS) theory of evidence was devised as a means of dealing with imprecise evidence [58, 59] and has 
been applied to target classification [60].  Evidence concerning an unknown target is represented as a nonnegative set 
function m : P(U) → [0,1], where P(U) denotes the set of subsets of the finite universe U such that m(∅) = 0 and ΣS⊆U m(S) 
= 1.  The set function m is called a mass assignment and models a range of possible beliefs about propositional hypothesis of 
the general form PS =Δ  “object is in S1” where m(S) is the weight of belief in the hypothesis PS. The quantity m(S) usually 
interprets as the degree of belief that accrues in S, but to no proper subset of S.  The weight of belief m(U) attached to the 
entire universe is called the weight of uncertainty and models our belief in the possibility that the evidence m in question is 
completely erroneous. The quantities 

 Belm(S)  =Δ  ∑
O ⊆ S

  
  m(O)  (1) 

 Plm(S)  =Δ  ∑
O ∩ S ≠ ∅

  
       m(O)  (2) 

 
are called the belief and plausibility of the evidence, respectively and m(O) is the mass assignment for object O.  The 
relationships Belm(S) ≤ Plm(S) and Belm(S) = 1 – Plm (Sc)  are true identically and the interval [Belm(S),Plm (S)] is called the 
interval of uncertainty, (IOUm). Knowing that Belm(S) → [0,1] and Plm(S) → [0,1], three relationships exist. The first is a 
direct use of Belm(S) to accept and Plm(S) to reject measurements. Another method is to use the interval of certainty (IOC) 
defined as [1, 1] – [Belm(S), Plm(S)] using interval subtraction. For example, [1, 1] - [0.8,0.9] = [1-0.9,1-0.8] = [0.1, 0.2]. 
Using the lower bound Belm(S) and upper bounds Plm(S) of the interval, we can assign a confidence measure Cm = 1 +  Belm
(S) - Plm(S) = 1 + 0.8 – 0.9 = 0.9.  Finally, the IOUm = [Belm(S), Plm(S)] can be mapped to a Gaussian distribution for belief-
based track tracking, using the IOUm center as the mean, μ, rescaling the bounds to a Normal distribution and tacking the 
estimates (mean and variance).  For example, μm = (0.8+0.9)/2 = 0.85.  As another example, assume low belief with many 
measurements plausible, then Belm(S) = 0.3 and Plm(S) = 0.9, where Cm = 0.6 is lower and the mean is μm = 0.6. 
 

The mass assignment can be recovered from the belief function via the Mo..bius transform: [61] 

 m(S) =Δ  ∑
O ⊆ S

  
  (-1) |S - O|  Belm (O)  . (3) 

 
The set intersection quantity 

 (m ⊕ n) (S)  =Δ  
1

1 - K ∑
X ∩ Y = S

  
  m(X(O)) n(Y(O))  (4) 

is called Dempster’s rule of combination, where K =Δ  ∑
X(O) ∩ Y(O) = ∅

  
  m(X(O)) n(Y(O)) is called the conflict between the evidence m 

and evidence n. 
 
In the finite-universe case, the Dempster-Shafer theory (DST) coincides with the theory of independent, non empty subsets of 
U (see [62, 63]; or for a dissenting view, see [64]).  Given a mass assignment m, it is always possible to find a random subset 
Σ of U such that m(S) = p(Σ = S).  In this case, Belm(S) = p(Σ ⊆ S) = βΣ(S) and Plm(S) = p(Σ ∩ S ≠ 0) = ρΣ(S) where βΣ and 
ρΣ are the belief and plausibility measures of Σ, respectively.  Likewise, we can construct independent random subsets, Σ, Λ 
of U such that m(S) = p(Σ = S) and n(S) = p(Λ = S) for all S ⊆ U.  Then, it is easy to show that  
 



 (m ⊕  n)(S) = p(Σ ∩ Λ | Σ ∩ Λ ≠ 0) (5) 

for all S ⊆ U.  Thus, an intersection of overlapping sets can be fused to generate a global set confidence, where confidence is 
defined on the range [1, 1] - [Belm,Plm] and uncertainty is [Belm,Plm].  As comparative to the optimal approach, the next 
section provides a comparison of the set theory approach to that of traditional Bayesian analysis. 
 

4. DEMPSTER-SHAFER VERSUS BAYESIAN THEORY 
Recently, Dezert [65] has shown that Dempster’s rule is consistent with probability calculus and Bayesian reasoning if and 
only if the prior P(X) is uniform. However, when the P(X) is not uniform, then Dempster’s rule gives a different result.  Both 
Yen [66] and Mahler [67, 68] developed methods to account for non-uniform priors. Others have also tried to compare Bayes 
and DST methods [69, 70, 71, 72, 73, 74, 75]. Assuming that we have multiple measurements Z = {Z1, Z2, …} for object O 
being tracked, Bayesian and DS methods are developed next. 
 
Assuming conditional independence, one has the Bayes method: 
 

 P(X | Z1  I  Z2)  =  
P(X | Z1) P(X | Z2) / P(X)

  ∑
i = 1

 N
    P(Xi | Z1) P(Xi | Z2) / P(X i)

 (6) 

 
With no information from Z1 or Z2, then P(X | Z1, Z2) = P(X). Without Z2, then P(X | Z1, Z2) = P(X | Z1) and without Z1, then 
P(X | Z1, Z2) = P(X | Z2). Using Dezert’s formulation, then the denominator can be expressed as a normalization coefficient: 
 

 m12 (∅)   =   1  −  ∑
X i ; X j |  X i I X j

 
    P(Xi | Z1) P(Xi | Z2)  (7) 

 
Using this relation, then the total probability mass of the conflicting information is  
 

 P(X | Z1  I  Z2)  =   
1

 1  −  m12 (∅)  •  P(X | Z1) P(X | Z2)  (8) 

 
which corresponds to Dempster’s rule of combination using Bayesian belief masses with uniform priors. When the prior’s 
are not uniform, then Dempster’s rule is not consistent with Bayes’ Rule.  For example, let m0 (X) = P(X), m1 (X) = P(X | Z1), 
and m2 (X) = P(X | Z2), then  
 

 m(X)   =  
m0 (X)  m1 (X)  m2 (X)

 1 −   m012 (∅)    =   
P(X)   P(X | Z1)   P(X | Z2) 

 ∑
i = 1

 N
    P(X i)   P(Xi | Z1)   P(Xi | Z2) 

 (9) 

 
Thus, methods are needed to deal with non-uniform priors and appropriately redistribute the conflicting masses. 
 

5. DEZERT-SMARANDACHE THEORY (DSmT) 
Recent advances in DS methods include Dezert-Smarandache Theroy (DSmT).  DSmT is an extension to the Dempster-
Shafer method of evidential reasoning which has been detailed in numerous papers and texts: Advances and applications of 
DSmT for information fusion (Collected works), Vols. 1-3 [76]. In 2002, Dezert [77] introduced the methods for the 
reasoning and in 2003, presented the hyper power-set notation for DSmT [78]. Recent applications include the DSmT 
Proportional Conflict Redistribution rule 5 (PCR5) applied to target tracking. Other applications of DSmT can be found in 
the list of references at (http://www.onera.fr/staff/jean-dezert/) . 
 
The key contributions of DSmT are the redistributions of masses such that no refinement of the frame Θ is possible unless a 
series of constraints are known. For example, Shafer’s model [79] is the most constrained DSm hybrid model in DSmT.   



Since Shafer’s model, authors have continued to refine the method to more precisely address the combination of conflicting 
beliefs [80, 81, 82] and generalization of the combination rules [83, 84]. An adaptive combination rule [85] and rules for 
quantitative and qualitative combinations [86] have been proposed. Recent examples for sensor applications include 
electronic support measures, [87, 88], physiological monitoring sensors [89], and seismic-acoustic sensing [90].  
 
Here we use the Proportional Conflict Redistribution rule no. 5 (PCR5) and no. 6 (PCR6) and the Dezert-Smarandache 
Probability (DSmP) selections which are discussed below. We replace Smets’ rule [80] by the more effective PCR5 or 
eventually the more simple PCR6 and replace the pignistic transformation by the more effective DSmP transformation to 
estimate target classification probabilities. All details, justifications with examples on PCR5 and PCR6 fusion rules and 
DSmP transformation can be found freely from the web in the DSmT compiled texts [76], Vols. 2 & 3. 

 

5.1. PCR5 and PCR6 fusion rules 
In the DSmT framework, the PCR5 is used generally to combine the basic belief assignment (bba)’s. PCR5 transfers the 
conflicting mass only to the elements involved in the conflict and proportionally to their individual masses, so that the 
specificity of the information is entirely preserved in this fusion process. Let m1(.) and m2(.) be two independent bba’s, then 
the PCR5 rule is defined as follows (see [76], Vol. 2 for full justification and examples): mPCR5(∅) = 0 and ∀X ∈ 2Θ \ {∅}, 
where ∅ is the null set and 2Θ is the power set: 

 mPCR5 (X)  =  ∑
X1; X2 ∈ 2 Θ

X1 I X2 = X

 

   m1(X1) + m2(X2)    + ∑
X2 ∈ 2 Θ

X2 I X = ∅

 

       ⎣
⎡

⎦
⎤ m1(X1) 2 m2(X2)

 m1(X1) + m2(X2)  +  
 m1(X1) m2(X2) 2
 m1(X1) + m2(X2)  

 

`(10)

 

 
where I is the interesting and all denominators in the equation above are different from zero. If a denominator is zero, that 
fraction is discarded. Additional properties and extensions of PCR5 for combining qualitative bba’s can be found in [76], 
Vol. 2 & 3. All propositions/sets are in a canonical form. A variant of PCR5, called PCR6 has been proposed by Martin and 
Osswald in [91], Vol. 2, for combining more than 2 sources. PCR6 coincides with PCR5 when one combines two sources. 
The difference between PCR5 and PCR6 lies in the way the proportional conflict redistribution is done as soon as three or 
more sources are involved in the fusion. For example, let’s consider three sources with bba’s m1(.), m2(.), and m3(.), A ∩ B = 
∅ for the model of the frame Θ, and m1(A) = 0.6, m2(B) = 0.3, and m3(B) = 0.1. With PCR5 the partial conflicting mass 
m1(A) m2(B) m3(B) = (0.6)(0.3)(0.1) = 0.018 is redistributed back to A and B only with respect to the following proportions 
respectively: xA

PCR5 = 0.01714 and xB
PCR5 = 0.00086 because the proportionalization is: 

 

           
xA

PCR5

 m1(A)  = 
xB

PCR5

 m2(B) m3(B) = 
m1(A) m2(B) m3(B)

 m1(A) + m2(B) m3(B) (11) 

 

that is       
xA

PCR5

 0.6   = 
xB

PCR5

 (0.3)(0.1) = 
0.018

 0.6 + 0.03 ≈ 0.02857 

 
thus        xA

PCR5 = 0.60 (0.02857) ≈ 0.01714 
  xB

PCR5 = 0.03 (0.02857) ≈ 0.00086 
 
With the PCR6 fusion rule, the partial conflicting mass m1(A) m2(B) m3(B) = (0.6)(0.3)(0.1) = 0.018 is redistributed back to A 
and B only with respect to the following proportions respectively: xA

PCR6 = 0.0108 and xB
PCR6 = 0.0072 because the PCR6 

proportionalization is done as follows: 
 

 
xA

PCR6

 m1(A)  = 
xB;2

PCR6

m2(B)   = 
xB;3

PCR6

m3(B)  = 
m1(A) m2(B) m3(B)

 m1(A) + m2(B) + m3(B) (12) 
 
that is        
 

 
xA

PCR6

 0.6   = 
xB;2

PCR6

 0.3  =  
xB;3

PCR6

 0.1   = 
0.018

 0.6 + 0.3 + 0.1 ≈ 0.018 
 
thus 



xA
PCR6    = (0.6) (0.018) = 0.0108 

xB,2
PCR6 = (0.3) (0.018) = 0.0054 

xB,3
PCR6 = (0.1) (0.018) = 0.0018 

 
and therefore with PCR6, one gets finally the following redistributions to A and B: 
 

xA
PCR6    = (0.6) (0.018) = 0.0108 

 
xB

PCR6    = xB,2
PCR6  +  xB,3

PCR6 = 0.0054 + 0.0018 = 0.0072 
 
From the implementation point of view, PCR6 is simpler to implement than PCR5. For convenience, Matlab codes of PCR5 
and PCR6 fusion rules can be found in [76]. It is worth noting that there is a strong relationship between PCR6 rule and the 
averaging fusion rule which is commonly used to estimate the probabilities in the classical frequentist interpretation of 
probabilities. Such a probability estimate cannot be obtained using DS rule, nor the PCR5 rule and that is why we 
recommend to use PCR6 when combining more than two basic belief masses altogether [92]. 

5.2. The DSmP Transformation 
The DSmP probabilistic transformation is an alternative to the classical pignistic transformation which allows us to increase 
the probabilistic information content (PIC), i.e. to minimize the Shannon entropy, of the approximated subjective probability 
measure drawn from any bba. Justification and comparisons of DSmP(.) with respect to BetP(.) and to other transformations 
can be found in details in [93, 76 Vol. 3, Chap. 3].  
 
BetP: The pignistic transformation probability, denoted BetP, offers a compromise between maximum of credibility Bel and 
maximum of plausibility Pl for decision support. The BetP transformation is defined by BetP(∅) = 0 and ∀X ∈ GΘ \ {∅}by 

 BetP(X)    =  ∑
Y ∈ G Θ

 

       
CM(X I Y)

 CM(Y)
  m(Y)         (13) 

 

where GΘ corresponds to the hyper-power set including all the integrity constraints of the model (if any). GΘ = 2Θ  if one 
adopts Shafer’s model for Θ and GΘ = DΘ (Dedekind’s lattice) if one adopts the free DSm model for Θ [76].  CM(Y) denotes 
the DSm cardinal of the set Y, which is the number of parts of Y in the Venn diagram of the model M of the frame Θ under 
consideration [76, Book 1, Chap. 7]. The BetP reduces to the Transferable Belief Model (TBM) when GΘ reduces to classical 
power set 2Θ when one adopts Shafer’s model. 
 
DSmP transformation is defined by DSmPε(∅) = 0 and ∀X ∈ GΘ \ {∅} by: 

 DSmPε(X)    =  ∑
Y ∈ G Θ

 

       

  ∑
Z ⊆ X I Y
C(Z)  = 1

 

   m(Z) + ε • C(X I Y)

  ∑
Z ⊆ Y

C(Z)  = 1

 

   m(Z) + ε • C(Y) 

        m(Y) (14) 

 
where C(X ∩ Y) and C(Y) denote the cardinals of the sets  X ∩ Y and Y respectively; ε ≥ 0 is a small number which allows to 
reach a highest PIC value of the approximation of m(.) into a subjective probability measure, and Z is the new evidence. 
Usually ε = 0, but in some particular degenerate cases, when the DSmPε=0(.) values cannot be derived, the DSmPε>0 values 
can however always be derived by choosing ε as a very small positive number, say ε = 1/1000 for example in order to be as 
close as we want to the highest value of the PIC. The smaller ε, the better/bigger PIC value one gets. When ε = 1 and when 
the masses of all elements Z having C(Z) = 1 are zero, DSmPε=1(.) = BetP(.).  



6. COMPARATIVE RESULTS OF DS, BAYES, AND PCR5-BASED TRACKING 
Here we simulate two scenarios of the three rules: Bayesian, Dempster-Shafer, and PCR5 rules of combination. For each 
scenario, we assume that the target information is collected from a sensor that is precise in the position measurements, but 
the uncertainty in either the sensor position accuracy or the classification information results in a confusion matrix (CM) 
formulation. With a two object representation being tracked (e..g, the standard fighter/cargo example), we have CM = [O1 
O2; O2 O1]. In the first scenario, the target classification is CM = [0.75 0.25; 0.25 0.75], and the belief mass 
results are shown in Figure 2. 
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Figure 2. (a) Object 1 and (b) Object 2 tracking and identification results. CM = [0.75 0.25; 0.25 0.75] 

 
Figure 2 demonstrates that while there is uncertainty in the object tracking and classification, both the DS and Bayesian 
methods are close. The PCR5 results in better accuracy. Both DS and Bayesian methods have difficulty when the 
measurements change and suffer from a prior evidence biasing. In the next scenario, we decrease the sensor 
classification/ID accuracy; which results in more conflict in the analysis.  For the Scenario 2 sensor model, we use CM = 
[0.65 0.35; 0.35 0.65]. 
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Figure 3. (a) Object 1 and (b) Object 2 tracking and identification results. CM = [0.65 0.35; 0.35 0.65]. 

 
Figure 3 illustrates differences between the three methods. DS tracking methods are able to improve over standard 
Bayesian methods when there is conflict in the measurements (Fig 3a scan 10 to 20). However, as shown in Figure 3, the 
PCR5 demonstrates an ability to track and ID the target when the measurement information is conflicting and changing 
(Fig 3a scan 25 to 50).  The simple example illustrates the power of the PCR5 rule over standard DS and Bayesian 
methods to deal with conflicting, imprecise, and variations in target measurements for target tracking. 



7. CONCLUSIONS 
Conventional tracking techniques have difficulty in identifying targets when the number of targets is not known a priori., 
the targets are maneuvering, and there is conflict in the measurements. Throughout the last two decades, numerous 
researchers have explored Dempster-Shafer (DS) evidential (i.e., belief function) reasoning to solve the requirements of 
simultaneous tracking and identification. This paper has provided a literature review of most of the available publications 
that utilize the DS method in target, group/cluster, and multisensor tracking. Through a review of Bayesian, DS, and PCR5 
formulations; we presented a simulated comparative example to demonstrate the current state-of-the-art methods such as 
DSmT research [94]. The PCR5 method can be extended to nonlinear tracking and ID algorithms, coordinated with users 
for assisted tracking, and can enhance conventional covariance and information filter formulations [95]. The presented 
PCR5 technique demonstrates promise for multitarget tracking problems and warrants further exploration with real-world 
data where environmental effects, occlusions, lost sensor data, and unknown targets [96] are standard.    
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