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Abstract—Grid map offers a useful representation of the
perceived world for mobile robotics navigation. It will play a
major role for the safety (obstacle avoidance) of next generations
of terrestrial vehicles, as well as for future autonomous navigation
systems. In a grid map, the occupancy state of each cell represents
a small piece of information of the surrounding area of the
vehicle. The state of each cell must be estimated from sensors
measurements and classified in order to get a complete and
precise perception of the dynamic environment where the vehicle
moves. So far, the estimation and the grid map updating have
been done using fusion techniques based on the probabilistic
framework, or on the classical belief function framework thanks
to an inverse model of the sensors and Dempster-Shafer rule of
combination. Recently we have shown that PCR6 rule (Propor-
tional Conflict Redistribution rule #6) proposed in DSmT (Dezert-
Smarandache Theory) did improve substantially the quality of
grid map with respect to other techniques, especially when the
quality of available information is low, and when the sources of
information appear as conflicting. In this paper, we go further
and we analyze the performance of the improved version of
PCR6 with Zhang’s degree of intersection. We will show through
different realistic scenarios (based on a LIDAR sensor) the benefit
of using this new rule of combination in a practical application.
Keywords: Information fusion, grid map, cell occupancy,
perception, belief functions, DSmT, PCR6, ZPCR6.

I. INTRODUCTION

Occupancy Grids (OG) are often used for intelligent vehicle
environment perception and navigation, which requires tech-
niques for data fusion, localization and obstacle avoidance. As
OGs manage a representation of the environment that does
not make any assumption on the geometrical shape of the
detected elements, they provide a general framework to deal
with complex perception conditions. In our previous works, we
did focus on the use of a multi-echo and multi-layer LIDAR
system in order to characterize the dynamic surrounding
environment of a vehicle driving in common traffic conditions.
The perception strategy involved map estimation and scan
grids [1], [2] based either on the classical bayesian framework,
or on classical evidential framework based on Dempster-Shafer
theory (DST) [3] of belief functions. The map grid acts as a
filter that accumulate information and allows to detect moving
objects. A comparative analysis of performances of these
approaches has already been published recently in [4].

In dynamic environments, it is crucial to have a good
modeling of the information flow in the data fusion process
in order to avoid adding wrong implicit prior knowledge that

will need time to be forgotten. In this context, evidential OG
are particularly interesting to make a good management of
the information since it is possible to explicitly make the
distinction between non explored and the cells that support
moving objects.

The idea of using the probabilistic framework to estimate the
grid occupancy has been popularized by Elfes in his pioneered
works in 1990’s [8]. Later, the idea has been extended with
the fuzzy logic theory framework by Oriolo et al. [10], and in
parallel with the belief function (evidential) framework as well
[11]–[15]. Most of the aforementioned research works dealt
only with acoustic sensors (i.e SONAR). Recently, DSmT has
also been applied for the perception of the environment with
acoustic sensors as reported in [16]–[18].

The aim of this paper is to analyze the performance of the
improved version of PCR6 taking into account Zhang’s degree
of intersection of focal elements (called ZPCR6 rule), which
has been presented in details in the companion paper [7] in a
realistic perception problem using a LIDAR sensor. We show
how the environment perception with non acoustic sensors can
be done, and compare the performances of different fusion
rules (Bayesian, Dempster-Shafer, PCR6 and ZPCR6) in terms
of accuracy of grid map estimation.

This paper is organized as follows. After a short presentation
of the basics of belief functions and rules of their combination
based on DST and DSmT in the next section, we will present
the inverse sensor models fusion based architecture in section
III. In section IV, we present an illustrating scenario for envi-
ronment perception including a mobile object with a platform
equipped with a LIDAR, and we compare our new realistic
simulation results with those obtained by the probabilistic and
the classical belief-based approaches. We will show how static
and mobile objects are extracted from the occupancy grid map
using digital image processing. Finally, conclusion and outline
perspectives are given in section V.

II. BASICS OF BELIEF FUNCTIONS AND THEIR FUSION

Dempster-Shafer theory (DST) of evidence has been de-
veloped by Shafer in 1976 from Dempster’s works [3]. DST
is known also as the theory of belief functions and it is
mainly characterized by a frame of discernment (FoD), sources
of evidence represented by basic belief assignment (BBA),
belief (Bel) and plausibility (Pl) functions, and Dempster’s



rule denoted DS1 rule of combination in the sequel. DST has
been modified and extended into Dezert-Smarandache theory
[6] (DSmT) to work with quantitative or qualitative BBA and
to combine the sources of evidence in a more efficient way
thanks to new proportional conflict redistribution (PCR) fusion
rules – see [19]–[22] for discussion and examples.

A. Belief functions

Let us consider a finite discrete FoD Ω = {ω1, ω2, . . . , ωn},
with n > 1, of the fusion problem under consideration and its
fusion space GΩ, which can be chosen either as the power-
set 2Ω, the hyper-power set2 DΩ, or the super-power set SΩ

depending on the model that fits with the problem [6]. A
BBA associated with a given source of evidence is defined
as the mapping m(.) : GΩ → [0, 1] satisfying m(∅) = 0
and

∑
A∈GΩ m(A) = 1. The quantity m(A) is called mass of

belief of A committed by the source of evidence. Belief and
plausibility functions are defined by

Bel(A) =
∑
B⊆A
B∈GΩ

m(B) and Pl(A) =
∑

B∩A6=∅
B∈GΩ

m(B). (1)

The degree of belief Bel(A) given to a subset A quantifies the
amount of justified specific support to be given to A, and the
degree of plausibility Pl(A) quantifies the maximum amount
of potential specific support that could be given to A. If for
some A ∈ GΩ, m(A) > 0 then A is called a focal element
of the BBA m(.). When all focal elements are singletons and
GΩ = 2Ω then the BBA m(.) is called a Bayesian BBA [3]
and its corresponding belief function Bel(.) is homogeneous
to a (possibly subjective) probability measure, and one has
Bel(A) = P (A) = Pl(A), otherwise in general one has
Bel(A) ≤ P (A) ≤ Pl(A), ∀A ∈ GΩ. The vacuous BBA
representing a totally ignorant source is defined as mv(Ω) = 1.

B. Fusion rules

Many rules have been proposed in the literature in the past
decades (see [6], Vol. 2 for a detailed list of fusion rules)
to combine efficiently several distinct sources of evidence
represented by the BBA’s m1(.), m2(.), . . . , ms(.) (s ≥ 2)
defined on same fusion space GΩ. In this paper, we focus
only on DS rule because it has been historically proposed in
DST and it is still widely used in applications, and on the PCR
rule no. 6 (i.e., PCR6) proposed in DSmT because it provides
a very interesting alternative of DS rule, even if PCR6 is more
complex to implement in general than DS rule.

In DST framework, the fusion space GΩ equals the power-
set 2Ω because Shafer’s model of the frame Ω is assumed,
which means that all elements of the FoD are exhaustive and

1DS acronym standing for Dempster-Shafer since Dempster’s rule has been
widely promoted by Shafer in the development of his mathematical theory of
evidence [3].

2which corresponds to a Dedekind’s lattice, see [6] Vol. 1.

exclusive. The DS combination of the BBA’s m1(.) and m2(.),
is defined by taking mDS

1,2 (∅) = 0, and for all X 6= ∅ by in 2Ω

mDS
1,2 (X) ,

1

1−m1,2(∅)
∑

X1,X2∈2Ω

X1∩X2=X

2∏
i=1

mi(Xi), (2)

where the numerator of (2) is the mass of belief on the
conjunctive consensus on X . The denominator 1−m1,2(∅) is
a normalization constant. The total degree of conflict between
the two sources of evidences is classically defined by

m1,2(∅) ,
∑

X1,X2∈2Ω

X1∩X2=∅

2∏
i=1

mi(Xi). (3)

According to Shafer [3], the two sources are said to be in
total conflict if m1,2(∅) = 1. In this case the combination
of the sources by DS rule cannot be done because of the
mathematical 0/0 indeterminacy. mDS

1,2 (.), when it is mathe-
matically defined, is a true normalized belief mass function
as defined in Section II-A. The vacuous BBA mv(Ω) = 1
is a neutral element for DS rule. This rule is commutative
and associative, and the formula (2) can be easily generalized
for the combination of any number s (s > 2) of sources of
evidences. DS rule remains the milestone fusion rule of DST.

The doubts of the validity of DS rule has been discussed
by Zadeh [28]–[30] based on a very simple example with
two highly conflicting sources of evidences. Since the 1980’s,
different authors criticized the behavior and the justification
of such a DS rule. More recently, Dezert et al. in [19], [20]
have shown disputable behaviors of DS rule even in low
conflicting cases due to serious flaws in logical foundations
of DST [21]. To overcome the limitations and problems of
DS rule of combination, a new family of PCR rules have
been developed in the DSmT framework. We present the most
elaborate one, i.e. the PCR6 fusion rule, which has been used
in our perception application for grid occupancy estimation.

In PCR rules, instead of following the DS normalization
(the division by 1−m1,2(∅)), we transfer the conflicting mass
only to the elements involved in the conflict and proportionally
to their individual masses, so that the specificity of the
information is entirely preserved. The general principle of PCR
consists: 1) to apply the conjunctive rule, 2) to calculate the
total or partial conflicting masses, 3) then redistribute the (total
or partial) conflicting mass proportionally on non-empty sets
according to the integrity constraints one has for the frame
Ω. Because the proportional transfer can be done in different
ways, there exist several versions of PCR rules of combination.
For example, Smarandache and Dezert [6] Vol. 2, Chap. 1
proposed PCR5 rule, and Martin and Osswald in [6] Vol.
2, Chap. 2 proposed PCR6 rule. because PCR6 was more
stable than PCR5 in term of decision for combining s > 2
sources of evidence. When only two sources are combined,
PCR6 and PCR5 fusion rules coincide, but they differ as soon
as more than two sources have to be combined altogether.
Recently, it has been proved in [22] that only the PCR6 rule



is consistent with the averaging fusion rule which allows to
estimate the empirical (frequentist) probabilities involved in
a discrete random experiment. For Shafer’s model of FoD3,
PCR6 fusion of two BBA’s m1(.) and m2(.) is defined by
mPCR6

1,2 (∅) = 0 and for all X 6= ∅ in 2Ω

mPCR6
1,2 (X) =

∑
X1,X2∈2Ω

X1∩X2=X

m1(X1)m2(X2)

+
∑

Y ∈2Ω\{X}
X∩Y=∅

[
m1(X)2m2(Y )

m1(X) +m2(Y )
+

m2(X)2m1(Y )

m2(X) +m1(Y )
], (4)

where all denominators in (4) are different from zero. If a
denominator is zero, that fraction is discarded4. All proposi-
tions/sets are in a canonical form [6]. Very basic Matlab codes
of PCR rules can be found in [6], [23] and from the toolboxes
repository on the web [27]. Like the averaging fusion rule,
the PCR6 fusion rule is commutative but not associative. The
vacuous belief assignment is a neutral element for this rule.

The PCR6 rule of combination (as well as DS rule) use only
part of the whole information available (i.e., the values of the
masses of belief only), and they do not exploit the cardinalities
of focal elements entering in the fusion process. Because the
cardinalities of focal elements are fully taken into account
in the computation of the measure of degree of intersection
between sets, we have recently proposed to improve PCR6
rules using this measure in the companion paper [7]. The basic
idea is to replace any conjunctive product by its discounted
version thanks to the measure of degree of intersection D when
the intersection of focal elements is not empty. The product
of partial (or total) conflicting masses are not discounted by
the measure of degree of intersection because the degree of
intersection between two (or more) conflicting focal elements
always equals zero, that is if X∩Y = ∅, then D(X,Y ) = 0. In
[7], we have shown in different examples why Zhang’s degree
of intersection [31], denoted DZ(X1, . . . , Xs), is more inter-
esting than classical Jaccard’s degree [32]. DZ(X1, . . . , Xs)
is mathematically defined by

DZ(X1, . . . , Xs) ,
|X1 ∩X2 ∩ . . . ∩Xs|
|X1| · |X2| · . . . · |Xs|

, (5)

where |X1 ∩ X2 ∩ . . . ∩ Xs| is the cardinality of the inter-
section of the focal elements X1, X2,. . . , Xs, and |X1|, |X2|,
. . . |Xs| their cardinalities. The improved version of PCR6 with
Zhang’s degree of intersection (called ZPCR6 rule) is easy to

3that is when GΩ = 2Ω, and assuming all elements exhaustive and
exclusive.

4If a denominator, e.g., m1(X) +m2(Y ) tends towards 0, then also the
conflicting mass m1(X)m2(Y ) that is transferable tends to zero because
m1(X) and m2(Y ) tend to zero (since they are positive), therefore the
redistribution masses also tend to zero. That reflects the continuity of PCR6.

compute and it corresponds to the following formula5

mZPCR6
1,2 (X) =

1

KZPCR6
1,2

·[ ∑
X1,X2∈2Ω

X1∩X2=X

DZ(X1, X2)m1(X1)m2(X2)

+
∑

Y ∈2Ω\{X}
X∩Y=∅

[
m1(X)2m2(Y )

m1(X) +m2(Y )
+

m2(X)2m1(Y )

m2(X) +m1(Y )
]
]
, (6)

where KZPCR6
1,2 is a normalization constant such that∑

X∈2Ω mZPCR6
1,2 (X) = 1. As for PCR6, one has

mZPCR6
1,2 (∅) = 0 and ZPCR6 is commutative but not asso-

ciative. The advantage of ZPCR6 over PCR6 and DS rules is
its ability to respond to the inputs in a more effective way has
clearly shown in examples in [7].

C. Discounting

A discounting effect can be applied on a mass function m(.) if
a piece of information has its reliability lowered. In this case,
a new mass function mα(.) (with α ∈ [0, 1]) is computed
from m(.) and a part of the mass of each element of the FoD
is transferred to the whole FoD Ω which represents the total
ignorance. More precisely, one defines

mα (A) ,

{
(1− α) ·m (A) if A 6= Ω

(1− α) ·m (A) + α if A = Ω
. (7)

III. EVIDENTIAL OCCUPANCY GRID

The basic idea of an Occupancy Grid (OG) is to divide the
surrounding environment (the ground plane of the 2D world)
into a set a cells (denoted Ci, i ∈ [0, n] for convenience)
in order to estimate their occupancy state. Each cell Cij of
the perception grid represents a square over the ground place
defined by the cordinates : [x0− i · δ/2, x0 + i · δ/2]× [y0− j ·
δ/2, y0 + j · δ/2], where (x0, y0) represents the origin of the
frame of the occupancy grid and δ the grid resolution. In a
probabilistic framework, the aim is to estimate the probabilities
P
(
Oi|z1:t

)
and P

(
F i|z1:t

)
given a set of measures z1:t from

the beginning up to the current time t. Oi (resp. F i) denotes
the occupied (resp. free) state of the cell Ci. Finally, a decision
rule is applied to select the most likely state for each cell.

For the evidential approach, and occupancy grid represents
the information using a mass function over the frame of
discernment (FoD) Ω = {F, O} and the occupancy of each
cell Cij is represented by its associeted mass mij(.). So the
mass functions used in grid have the structure

mt =
[
mt (∅) mt (F ) mt (O) mt (Ω)

]
. (8)

The occupancy mass function can be used during the fusion
process, then the decision can be taken using pignistic trans-
form [26] to get a probability measure and use the same
decision rule but an evidential decision rule can also be
applied directly on the mass function. An interesting part of

5The general ZPCR6 formula for s > 2 sources in detailed in [7].



an evidential occupancy grid is that the FoD can be more
complex, and as the fusion is done cell by cell the fusion
scheme will be still valid.

Occupancy grids updating strategies can be classified into
two categories depending on the use of a forward or inverse
sensor model. The forward model relies on Bayes inference.
Since this approach takes into account the conditional depen-
dency of the cells of the map, it is well adapted to a sensor
that observes a large domain of cells with only one reading
measurement (e.g., an ultrasonic sonar). However, it requires
heavy processing that can be handled by optimized approxima-
tion. The inverse model approach is well adapted to narrow
fields of measure by sensors (e.g., LIDAR). It is composed
of two separate steps. First, a snapshot map of the sensor
reading is built using an inverse sensor model P

(
Oi|zt

)
,

which takes into account the conditional dependency between
the sensor reading and the occupancy of the seen cells. Then,
a fusion process (denoted �) is done with the previous map
P
(
Oi|z1:t−1

)
as an independent opinion poll fusion:

P
(
Oi|z1:t

)
= P

(
Oi|zt

)
� P

(
Oi|z1:t−1

)
. (9)

In the probabilistic framework, the usual fusion operation
between states A and B coming from an independent mea-
surement, uses the independent opinion poll [35]:

P (A)� P (B) =
P (A)P (B)

P (A)P (B) + (1− P (A))(1− P (B))
. (10)

Inverse approaches have very efficient implementations
(e.g., log-odd) that make them popular in mobile robotics [8],
[9], [25]. Maps built using inverse models are usually less
accurate, since they just take into account the dependency of
the cells observed in one reading. They provide a good approx-
imation with accurate and high resolution sensors observing a
limited number of cells at a time.

A. Fusion strategy with the inverse model

When dealing with the inverse model approach, an estimate
of the pose of the robot has to be available, and a map
grid GM has to be handled. This grid is defined in a world-
referenced frame (so it does not move with the robot) and it
is updated when a new sensor reading is available. Because of
the likely evolution of the world in a dynamic environment,
the OG update has to be completed by a remanence strategy.
The fusion architecture is based on a prediction-correction
paradigm to fuse one or several sensors observations.

a) Prediction step: The prediction step computes the
predicted map grid at time t from the map grid estimated at
time t− 1. Depending on the available information, this step
can be very refined as done in [24]. Because we do not have
specific information on the velocity of the objects (or cells), the
prediction step is done by the classical discounting technique.
The confidence in past data is controlled by a remanence factor
α ∈ [0; 1]. The prediction stage is therefore governed by

ĜMt|t−1 = discount
(
ĜMt−1|t−1, α

)
. (11)

b) Correction step: The correction step consists in the
combination of the previously estimated map grid with the
grid built from the current measures thanks to the inverse
model sensor (see more details in [1], [2]). This one is called
ScanGrid GSt . As this information is referenced in the sensor
frame, a 2D warping is applied to reshape this grid into the
fusion frame. To do this, the pose of the robot provided by
an accurate localisation system (i.e GPS aided by odometry
or LIDAR SLAM algorithm) is used in order to compute the
motion matrix Ht as follow:

Ht =

cos(θt) − sin(θt) T xt
sin(θt) cos(θt) T yt

0 0 1

 , (12)

where θt represents the heading angle of the vehicle relative to
the grid frame, and the vector (T x, T y) represents the position
of the vehicle.

An extrinsic calibration matrix C (which is also a homoge-
neous transformation matrix) is defined in order to compensate
the position of the sensor mounted on the vehicle. A calibra-
tion step is required to compute the parameters, but in our
experiment, we simply set it by hand (mesuring the position
of the sensor relatively to the main frame). Finally, a matrix
P is defined to warps the cordinates from world frame to grid
indices. The motion matrix Ht and the extrinsic calibration
matrix C are used to compute a remapping function f(i, j)
according to Eq. (13) below:

f(i, j) = P · C ·Ht · P−1 ·

ij
1

 . (13)

Finally, the ScanGrid is remapped with f and fused with the
previous map grid according to the general formula

ĜMt|t (i, j) = ĜMt|t−1 (i, j)�GSt (f (i, j)) , (14)

where the grid GSt represents the BBA produced by the
sensor model. This BBA is created in respect to sensor data
(e.g., LIDAR point here) and a sensor model to infer an
instant occupancy grid. With the probabilistic approach, it
refers to the occupancy probability PSt (O). With the evi-
dential approach it refers to the occupancy mass function
mS
t =

[
mS
t (∅) mS

t (F ) mS
t (O) mS

t (Ω)
]
. The grid

ĜMt|t−1 refers to the previous MapGrid ĜMt−1|t−1 predicted
at current time t using Eq. (11). In the next parts, for each
approach considered, the fusion rule � used in Eq. (14) is
different. Bayesian approach uses Eq.(10), DS rule Eq.(2),
PCR6 rule Eq.(4), and ZPCR6 rule Eq.(6).

B. Discounting in Occupancy Grids

The main advantage of using discounting is to provide a
simple way to model the presence of dynamic object in the
scene. The discounting allows to make a prediction without
needing information on the dynamic at the cell level (or at
the object level). The information on the dynamic of objects
in the environment is rarely available from sensors, and the
dynamic is difficult to estimate without greedy time-computing



algorithms [24]. The main issue with the discounting effect is
that it makes impossible to build persistent static map. Indeed,
cells not viewed by the sensor will quickly converge to the
ignorance state, so this strategy cannot be used to build the
map of a building for instance. If we are interested to build
static map in presence of moving objects, the discounting
function is then not recommended. We will see why in the
next part of the paper where in this case Bayesian and DS
fusion rules will not be very efficient. To handle this case, it
is recommended to use either PCR6 or ZPCR6 rules.

IV. SIMULATION RESULTS

In this section, we present simulation results of grid occu-
pancy estimation in a realistic scenario based on different rules
of combination (Bayesian fusion, DS rule, PCR6 and ZPCR6
fusion rules).

A. Basic simulation

Setup: In order to present the basic behavior of the different
combination rules studied, we have implemented at first some
simple 1D-simulations, where we consider a grid cell crossed
by a moving object. In this case, the state of the cell changes
from free-state to occupied-state at time t1 and from occupied-
state to free-state at time t2. The figures 1–4 show the results
of these simulations under different conditions.

On each subfigure, we show on the top row the real
state of the cell (i.e., the ground truth). The second row
shows the sensor data simulated that correspond to the
BBA of the state of the cell. This mass function is built
according to the state of the cell, the level of confidence of
the sensor and can be eventually perturbed with additional
noises. FA indicates the rate of False Alarms and ND
the rate of Non Detections. We will consider different
level of confidence for mSG(O) when the cell is occupied
and mSG(F ) when the cell if free. The subfigures at the
bottom represent the level of belief of the cell state obtained
with Bayesian fusion, DS rule, PCR6 and ZPCR6 fusion rules.

Effect of discounting: Fig.1 shows the results of the classical
chain using a discounting factor α = 0.05 while Fig. 2 is the
same case without discounting (α = 0). Without discounting,
a lag appears with Bayesian and DS fusion rules. The lag is
seriously reduced with PCR6 and ZPCR6. We insist on the
fact that PCR6 and ZPCR6 rules allow to estimate efficiently
the moving objects in the grid without using discounting. With
discounting, all the fusion rules behave similarly, but because
of memory vanishing effect due to the discounting we forget
what has been perceived before which prevents us to map
efficiently the whole perceived environment. Fortunately, this
unsatisfying behavior (for a mapping purpose standpoint) can
be avoided if ones uses PCR6 or ZPCR6 without discounting.

Performances analyses: To evaluate the performance of our
method, we did perform 10000 Monte Carlo runs for each
simulation in order to estimate the false alarm and non
detection rates. In order to make the decision, the pignistic

Ground Truth

Fig. 1. Case with discounting (α = 0.05).

Ground Truth

Fig. 2. Case without discounting (α = 0).

probability has been computed and a MAP estimator has been
used. Each simulation (from No 0 to No 8) corresponding to
different conditions (the discounting level, the rate of noise
impacting the sensor observations) is reported in Table I.
For each simulation presented in the Table I, we obtain the
performances (rates of FA and ND in %) shown in Table II.

Simulations 0 and 1 illustrated by Figures 1 and 2, corre-
spond to the noise-free situation. By removing the discounting
operator, Bayesian and DS approaches have a lag in the
detection of the change of state that impacts clearly their per-
formances. The PCR6 and ZPCR6 approach are not concerned
by this effect because of PCR of conflict. Simulations 2 and
3 (see Fig. 3) include 10% of wrong measurement caused by
noises. The fusion rules behave similarly as for simulations
0 and 1, but the performances are a bit lower which shows
the effect of noisy measurements in the estimation process.



Ground Truth

Fig. 3. Case with noise (FA=10%, ND=10%) and α = 0.

Ground Truth

Fig. 4. Case with noise (FA=30%, ND=15%) and α = 0.

Simu N° discounting sensor noise sensor belief
α ND/FA mSG (O) /mSG (F )

0 0.05 0 0.8/0.6
1 0 0 0.8/0.6
2 0.05 10/10 0.8/0.6
3 0 10/10 0.8/0.6
4 0.05 15/30 0.8/0.69
5 0 15/30 0.8/0.68
6 0 15/30 0.6/0.4
7 0 25/50 0.6/0.4
8 0 25/50 0.4/0.2

TABLE I
PARAMETERS OF SIMULATIONS.

For simulations 4, 5 and 6, the noise reaches 15% for ND
and 30% for FA which is important. As we see in Fig. 4, the
Bayesian and DS fusion rules are not able to detect the second
state change, during the simulation time. This induces the bad
false alarm rates. In the last simulations 7 and 8 the noise is

Simu # Bayesian DS PCR6 ZPCR6
ND FA ND FA ND FA ND FA

0 10.0 6.0 10.0 6.0 10.0 6.0 10.0 4.0
1 65.0 24.0 60.0 32.0 10.0 6.0 10.0 4.0
2 11.2 9.2 10.5 10.0 10.0 9.6 11.1 7.8
3 77.7 15.2 73.5 18.9 11.5 6.7 11.3 7.5
4 9.2 28.0 8.2 31.5 8.4 28.9 9.8 25.8
5 33.0 62.7 26.9 65.8 8.4 28.8 10.1 24.7
6 31.3 63.9 26.0 67.3 9.3 38.7 8.8 32.3
7 15.1 76.9 11.5 79.4 5.7 64.0 7.5 55.2
8 7.1 83.9 5.1 85.1 1.9 87.3 3.0 76.2

TABLE II
RATES OF FALSE ALARM AND NON DETECTION (IN %).

very important (about 25% of ND and 50% of FA). In these
conditions, all the methods have poor false alarm rates but the
PCR6 and ZPCR6 keep good non detection rates. Globally, we
see an improvement of the performances when using ZPCR6,
especially for the reduction of the FA rates.

B. LIDAR simulation

Here, the DS and PCR6 fusion rules are compared on a
2D occupancy grid problem close to real application for robot
perception. The simulation has been done using the Robot
Operating System (ROS) [33] environment and the Gazebo
[34] simulator is used here to simulate a Hokuyo LIDAR and
a moving object as shown on Figure 5. The simulated sensor
has a FoV (Field of View) about 270° and a max range of
about 10m. The rate of the scan is 20Hz and the ranges of the
LIDAR point is corrupted with a Gaussian noise N (0, 0.1).

Fig. 5. Gazebo simulation: the box turns around the LIDAR sensor. Left: 3D
view of the simulation scene, Right: view of one Lidar scan (bird view).

Figure 5 shows a simulated scan. The beams that do not
hit obstacle within the range are considered as max range (as
done in the real Hokuyo sensor). The moving object is a box
moving circularily at 6rpm around the LIDAR. A ground truth
grid is computed according the real position of the box and
its geometry at each scan time. The grid used is a square of
10m by 10m with a resolution of 0.1m and the ScanGrid BBA
are set to mSG (O) = 0.8, mSG (Ω) = 0.2 for occupied cells,
and mSG (F ) = 0.6, mSG (Ω) = 0.4 for free cells.

In order to quantify the results, we compute some metrics.
However, because of occlusion, only the cells located on the
edges of the box can be considered, that is why we do not use
global metrics. We use the following metrics: 1) the number
of correct occupied cell (proportional to recall in our case),
and 2) the number of conflicting cells close to the box. The



first describes the ability of the method to add objects into
the map, and also by analogy to remove an object from the
map. The second describes the ability of the method to detect
moving objects by generating conflict. This ability is important
and shows the improvements of the evidential grid over the
classical Bayesian grid. The number of cells detected for both
metrics depends a lot on the position around the sensor. This
dependency exists because the LIDAR sensor is able to see
two edges of the box in some cases, or only one edge in other
situations, and even no edge at all if the box is out of its field
of view (when the box is located behind the LIDAR sensor).

Figure 6 shows that the number of occupied cells with the
ZPCR6 is very close to the one obtained with PCR6, but
slightly higher. DS fusion without discounting can not handle
well the quick change of states in the map.

Figure 7 shows the number of cells that support conflict
which also fit into the box shape generated from the Ground
Truth. DS approach generates more conflicting cells than
PCR6 and ZPCR6 because it does not provide occupied cells.
As we see, PCR6 and ZPCR6 allow also to generate conflicting
cells corresponding to the moving object that may be sufficient
to identify them as moving cells. In this case, PCR6 performs
slightly higher than ZPCR6.
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Fig. 6. 2D LIDAR Simulation: Number of correct occupied cells (blue=DS
rule, green=PCR6 rule, red=ZPCR6 rule).
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Fig. 7. 2D LIDAR Simulation: Number of cells with conflict that fit with the
ground gruth (blue=DS rule, green=PCR6 rule, red=ZPCR6 rule).

C. Real data processing

A real experiment was done using an Hokuyo UTM-30LX
sensor. This experiment takes place in an office in which a
person was walking into. The room is rectangular but there
are furnitures in it (desk, armchairs, wall cabinets, etc) with
windows and the door was open. In our experiment, a person
was walking around the desk in the office room. The evidential

occupancy grid fusion node was implemented within the ROS
environment. The grid has the same size and resolution as in
the previous example. The BBA used in the sensor model has
been set to mSG (O) = 0.8, mSG (Ω) = 0.2 for occupied
cells and mSG (F ) = 0.86, mSG (Ω) = 0.2 for free cells. No
discounting was applied.

Figures 8–10 present the occupancy grid estimation using
DS, PCR6 and ZPCR6 rules for a typical snapshot of the se-
quence. The color of cells denotes the state having the highest
mass value: green for F (free state), red for O (occupied state),
and black for Ω (full uncertainty). For convenience, we have
also displayed in blue all the cells that carry a conflicting mass
m(∅) > 0 before applying the normalization step of DS rule,
or before applying the proportional conflict redistribution with
PCR6, or both with ZPCR6.

Fig. 8. Snapshot 1 - with DS fusion.

Fig. 9. Snapshot 1 - with PCR6 fusion.

Fig. 10. Snapshot 1 - with ZPCR6 fusion.

Figure 8 shows the result using DS rule. The room scanned
by the sensor is correctly mapped and its bounds (mainly walls



and doors) are clearly identified by the red pixels. The free
space (green pixels) is correctly detected in the room except
near the person that is labeled as free (with conflicting cell
shown in blue for convenience). The person moving around
the desk in the office room is only detected from conflicting
cells when he stops to walk several times.

Figure 9 shows the PCR6 result at the same time stamps.
In this case, the person is rightly detected as shown by the
red pixels (occupied cells) inside the green area (the office
room). A conflict cell is created when he starts walking in the
room. The static part of the room is also detected (as with DS
fusion rule). Figure 10 shows the ZPCR6 result at the same
time stamps. The results of this rule are close to the PCR6 rule
but the level of ignorance (the mass on Ω) is higher on the
cells behind the person. This can be understood because the
mass m (Ω) is weighed by a factor 0.5 during the transition.

V. CONCLUSIONS AND PERSPECTIVES

In this work we have presented a novel application of the
belief functions which significantly improves the map building
process for intelligent vehicles environment perception and
grid map estimation. This work shows the importance of
defining an accurate sensor model. We have considered the un-
certainties of the LIDAR measurements and used the ZPCR6
rule of DSmT to model and combine sensor information.
Our new method differs from Bayesian approach by allowing
support for more than one proposition at a time, rather than a
single hypothesis. It is a interval-based approach, as defined
by the lower and upper probability bounds [Bel,Pl] allowing
the lack of measurement to be modeled adequately. This
new method based on ZPCR6 rule differs from the classical
evidential approach based on DS rule and improves in theory
the results based PCR6, and more substantially the results of
DS rule. Our experimental results with the LIDAR confirm
the improvement of the accuracy of this new grid estimation
method w.r.t previous methods, but the improvment obtained
with ZPCR6 over PCR6 is not so important because of the
too simplistic structure of the chosen frame of discernment.
As research perspectives, we will try to implement these
fusion rules in 3D occupancy grid (Octomap based) and use a
stereo camera with dense disparity map computation as sensor
source. Also we would like to deal with refined frames of
discernment to ameliorate the precision of the perception and
to emphasize the advantages of ZPCR6 rule.

REFERENCES

[1] J. Moras, V. Cherfaoui, P.Bonnifait, Credibilist occupancy grids for
vehicle perception in dynamic environments, 2011 IEEE Int. Conf on
Robotics and Automation, Shanghai, China, pp. 84–89, May 2011.

[2] J. Moras, V. Cherfaoui, P. Bonnifait, Moving Objects Detection by
Conflict Analysis in Evidential Grids, 2011 IEEE Intelligent Vehicles
Symposium IV, pp. 1122–1127, June 2011.

[3] G. Shafer, A Mathematical Theory of Evidence, Princeton: Princeton
University Press, 1976.

[4] J. Moras, V. Cherfaoui, P. Bonnifait, Evidential Grids Information
Management in Dynamic Environments, Fusion 2014, Spain, July 2014.

[5] J. Moras, J. Dezert, B. Pannetier, Grid occupancy estimation for envi-
ronment perception based on belief functions and PCR6, Proc. of SPIE
(SP/SIF, and Target Recogn. XXIV), USA, 20–22 April 2015.

[6] F. Smarandache, J. Dezert (Editors), Advances and applications of DSmT
for information fusion (Collected works), American Research Press,
USA Vol.1–4, 2004–2015. http://www.onera.fr/staff/jean-dezert?page=2

[7] F. Smarandache, J. Dezert, Modified PCR Rules of Combination with
Degrees of Intersections, in Proc. of Fusion 2015, USA, July 6-9, 2015.

[8] A. Elfes, Using occupancy grids for mobile robot perception and
navigation, Computer, Vol. 22, no. 6, pp. 46–57, 1989.

[9] H.P. Moravec, Sensor fusion in certainty grids for mobile robots, AI
Magazine, Summer: 116–121, 1988.

[10] G. Oriolo, G. Ulivi, M. Vendittelli, On-line map building and navigation
for autonomous mobile robots, Proc. 1995 IEEE Int. Conf. on Robotics
and Automation, pp. 2900–2906, Nagoya, Japan, 1995.

[11] K. Hughes, R. Murphy, Ultrasonic robot localization using Dempster-
Shafer theory, in Proc. of SPIE on Neural and Stochastic Methods in
Image and Signal Processing, 1992, pp. 2–11, 1992.

[12] P. Tirumalai, B.G. Schunk, R.C. Jain, Evidential reasoning for building
environment maps, IEEE Trans. on SMC, Vol. 25(1), pp. 10–20, 1995.

[13] F. Gambino, G. Oriolo, G. Ulivi, A comparison of three uncertainty
calculus techniques for ultrasonic map building, SPIE Int. Symp. on
Aerospace/Defense Sensing and Control, pp. 249–260, USA, 1996.

[14] D. Pagac, E. Nebot, H. Durrant-Whyte, An evidential approach to
probabilistic map-building, Proc. of IEEE Int. Conf. on Robotics and
Automation, Vol. 1, pp. 745–750, Minneapolis, MN, USA, April 1996.

[15] T. Reineking, J. Clemens, Evidential FastSLAM for grid mapping, Proc.
of Fusion 2013 Conf., pp. 789–796, Istanbul, Turkey, July 2013.

[16] X. Li, X. Huang, M. Wang, J. Xu, H. Zhang, DSmT Coupling with
PCR5 for Mobile Robots Map Reconstruction, Proc. of 2006 Int. Conf.
on mechatronics and Automation, Luoyang, China, June 26–28, 2006.

[17] P. Li, X. Huang, S. Yang, J. Dezert, SLAM and path planning of mobile
robot using DSmT, J. of Soft. Eng., Vol. 7, No. 2, pp. 46–67, 2013.

[18] J. Zhou, J. Duan, G. Yang, Occupancy Grid Mapping Based on DSmT
for Dynamic Environment Perception, Int. J. of Robotics and Automation
(IJRA), Vol. 2, No. 4, pp. 129–139, Dec. 2013.

[19] J. Dezert, P. Wang, A. Tchamova, On the validity of Dempster-Shafer
theory, Proc. of Fusion 2012 Int. Conf., Singapore, July 9–12, 2012.

[20] A. Tchamova, J. Dezert, On the behavior of Dempster’s Rule of
combination and the foundations of Dempster-Shafer theory, 6th IEEE
Int. Conf. on Int. Syst. (IS’12), Sofia, Bulgaria, Sept. 6–8, 2012.

[21] J. Dezert, A. Tchamova, On the validity of Dempster’s fusion rule and
its interpretation as a generalization of Bayesian fusion rule, Int. J. of
Intelligent Systems, Vol. 29(3), pp. 223–252, March 2014.

[22] F. Smarandache, J. Dezert, On the consistency of PCR6 with the
averaging rule and its application to probability estimation, Proc. of
Fusion 2013, Istanbul, Turkey, July 2013.

[23] F. Smarandache, J. Dezert, J.-M. Tacnet, Fusion of sources of evidence
with different importances and reliabilities, Proc. of Fusion 2010 Int.
Conf., Edinburgh, UK, July 26–29, 2010.

[24] M.K. Tay, et al., The Bayesian occupation filter, in Proba. Reas. and
Dec. Making in Sensory-Motor Syst., pp. 77–98, Springer, 2008.

[25] T. Weiss, B. Schiele, K.Dietmayer, Robust Driving Path Detection in
Urban and Highway Scenarios Using a Laser Scanner and Online
Occupancy Grids, IEEE Intel. Vehicles Symp., pp. 184–189, June 2007.

[26] P. Smets, Decision making in the TBM: the necessity of the pignistic
transformation, IJAR, Vol. 38, pp. 133–147, Feb. 2005.

[27] http://bfasp.iutlan.univ-rennes1.fr/wiki/index.php/Toolboxes
[28] L.A. Zadeh, On the validity of Dempster’s rule of combination, Memo

M79/24, Univ. of California, Berkeley, CA, U.S.A., 1979.
[29] L.A. Zadeh, Book review: A mathematical theory of evidence, The Al

Magazine, Vol. 5, No. 3, pp. 81-83, 1984.
[30] L.A. Zadeh, A simple view of the Dempster-Shafer theory of evidence

and its implication for the rule of combination, The Al Magazine, Vol.
7 (2), pp. 85–90, 1986.

[31] L. Zhang, Representation, independence and combination of evidence in
Dempster-Shafer theory, in Advances in DST, Wiley, pp. 51–95, 1994.

[32] P. Jaccard, Etude comparative de la distribution florale dans une portion
des Alpes et du Jura, Bulletin de la Société Vaudoise des Sciences
Naturelles, Vol. 37, pp. 547–579, 1901.

[33] M. Quigley et al., ROS: an open-source Robot Operating System, ICRA
Workshop on Open Source Software, 2009.

[34] N. Koenig, A. Howard, Design and Use Paradigms for Gazebo, An
Open-Source Multi-Robot Simulator, in 2004 IEEE/RSJ Int. Conf. on
Intell. Robots and Syst., pp. 2149–2154, Sept. 2004.

[35] R.A. Jacobs, Methods for combining expert’s probability assessments,
Neural Computation, Vol. 7 (5), pp. 867–888, 1995.


