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Abstract—The theory of belief functions is a very appealing
theory for uncertainty modeling and reasoning which has been
widely used in information fusion. However, when the cardinality
of the frame of discernment and the number of the focal elements
are large the fusion of belief functions requires in general a
high computational complexity. To circumvent this difficulty,
many methods were proposed to implement more efficiently the
combination rules and to approximate basic belief assignments
(BBA’s) into simplest ones to reduce the number of focal elements
involved in the fusion process. In this paper, we present a
novel principle for approximating a BBA by withdrawing more
redundant focal elements of the original BBA. Two methods
based on this principle are presented (using batch and recursive
implementations). Numerical examples, simulations and related
analyses are provided to illustrate and evaluate the performances
of this new BBA approximation method.

Index Terms—Evidence theory; belief functions; basic belief
assignment; approximation.

I. INTRODUCTION

The original theory of belief functions, also known as
Dempster-Shafer Theory (DST) [1] has been widely used in
information fusion, pattern recognition and decision making
due to its advantages in representing uncertain information and
partial knowledge. However, the computational complexity is
one of its drawbacks [2], specially for combining sources of
evidences expressing their BBA’s with respect to large frames
of discernment (FoD). The computational complexity of the
evidence combination is strongly affected by the cardinality
of the FoD and the number of focal elements of the BBA of
the sources to combine.

To reduce the computational complexity of evidence com-
bination, various approaches have been proposed, which gen-
erally fit within the following two categories:

a) Efficient implementation for performing exact computa-
tions of the chosen rule of combination. For example,
an optimal algorithm for Dempster’s rule of combination
was proposed by Kennes [3]. Barnett [4], Shafer and
Logan’s [5] works are also representatives of this aspect.

b) Approximation of simplification of BBA’s. For example,
k — | — x approach [6], summarization approach [7], the
D1 approximation [8], inner and outer approximations
[9], Monte-Carlo based approximation [10], etc., remove
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focal elements and redistribute the corresponding mass
assignments. In our previous works, we also had proposed
hierarchical proportional redistribution approach [11],
and the optimization-based BBA approximations [12].
The work presented in this paper focuses on the reduction
of evidence combination’s computational cost thanks to BBA
approximations. In the aforementioned works of category b),
the different methods propose to remove some focal elements
according to some criteria, typically based either on their mass
values or on their cardinalities. We think that only mass values
or focal element cardinality are not enough for selecting the
focal elements to remove for making good BBA approxima-
tion. We propose a novel approach using the notion of focal
element redundancy. Those relatively redundant focal elements
should be removed and those relatively non-redundant ones
should be remained. To quantify this notion of redundancy, we
use the average distance between a given focal element and
all the other focal elements. Smaller average distance means
that the given focal element carries similar information when
compared with others, i.e., it is more redundant and should
be removed at first. User can preset the desired number of
remaining focal elements (also the number of removed focal
elements). Two removing procedures (including a batch mode
and a iterative mode) are proposed in the sequel, followed
by the re-normalization or redistribution. Numerical examples,
simulations and related analyses are provided to show the
rationality and interest of these novel BBA approximation
approaches.

II. BASICS OF BELIEF FUNCTIONS
The theory of belief functions has been developed by
Shafer [1] in 1976 from early works of Dempster. In DST,
the elements in frame of discernment (FoD) © are mutually
exclusive and exhaustive. A basic belief assignment (BBA),
also called a mass function, is a mapping m(-) : 2 — [0,1]
satisfying m(0) = 0 and

Y m(4)=1 (1)
Ae2©

If m(A) > 0, A is called a focal element of the BBA m(-).
In DST, the combination of two distinct bodies of evidence



(BOEs) mi(-) and mgy(-) is done using Dempster’s rule as
follows. VA € 29 :

0, if A=0

m(A) =
(4) {ﬁ Y ainp—ami(A)ma(B)),  if A#0
2)
where K = EAmBj:Q) mi(A;)ma(B;) is the total conflicting
mass assignments, which is discarded by normalization in
Dempster’s rule. It can be found from Eq. (2) that Dempster’s
rule is both commutative and associative. Dempster’s rule
has been seriously criticized for its counter-intuitive behaviors
both in high conflicting and low conflicting situations [13],
and other rules of combination have been developed in the
literature — see [14] for details. These modified or refined
combination rules focus on suppressing the counter-intuitive
behaviors of Dempster’s rule. However, like Dempster’s rule,
they all have to face the problem of high computational
complexity with the increase of the FoD’s cardinality and the
quantity of the focal elements.

To reduce the computational cost of combination of BBA’s
and make the fusion process tractable, we can as a first strategy
switch to more simple rules of combination or try to develop
efficient implementations of sophisticate rules, or as a second
strategy simplify (approximate) original BBA to combine by
simplest BBA with less focal elements of smaller cardinalities,
or we can mix both strategies as well. In this paper, we focus
on the second strategy devoted to BBA approximation, which
is more intuitive for human to catch the meaning [15].

III. EXISTING BBA APPROXIMATION APPROACHES

Some existing BBA approximation approaches are briefly
recalled in this section for the purpose of comparisons with
the novel methods proposed in this paper.

1) k—1—x method [6]: This approach has been proposed
by Tessem in 1993. The simplified BBA is obtained by

o keeping no less than k focal elements;

o keeping no more than [ focal elements;

o by deleting the masses which are no greater than x.

In k — [ — x, all original focal elements are sorted according
to their mass values in a decreasing order. Then, the first p
focal elements are chosen such that £ < p < [ and such
that the sum of the mass assignments of these first p focal
elements is no less than 1 — z. The removed mass values
are redistributed to remaining focal elements by a classical
normalization procedure.

2) Summarization method [7]: This method is similar to
the K — [ — x and it also keeps focal elements having highest
mass values. The mass values of focal elements to remove are
accumulated and assigned to the their union set. Suppose k
is the desired number of focal elements in the approximated
BBA mg(-) of a given BBA m(-). Let M be the set of k — 1
focal elements with the highest mass values in m(-). Then
mg(+) is obtained from m(-) by

m(A), if Ae M
mg(A) = ZA,QA7A,¢M m(A’), ifA=A4, Q)
0, otherwise

where Ag is determined by

405 A )

A’¢ M,m(A)>0

3) DI method [8]: Let m(-) be the original BBA to
approximate. mg(-) denotes the approximated BBA and the
desired number of focal elements is k. Let M be the set of
k —1 focal elements with the highest mass values in m(-) and
M~ be the set including all the other focal elements of m(-).
The basic idea of the D1 method is to keep all the members
of M as the focal elements of mg(-) and to assign the mass
values of the focal elements in M~ among the focal elements
in M according to the following procedure.

Given a focal element A € M ~, in M, find all the supersets
of A to form the collection M 4. If M 4 is not empty, the mass
value of A is uniformly assigned among the focal elements
with smallest cardinality in M 4. When M4 is empty, then
construct M/, as

M) ={B € M||B| = |[A[,BNA# 0} )

Then, if M/, is not empty, m(A) is assigned among the focal
elements with smallest cardinality in M’,. The value assigned
to a focal element B depends on the value of |B N A|. Such
a procedure is executed iteratively until all m(A) have been
assigned to the focal elements in M.

If M, is empty, there are two possible cases:

1) If the total set © € M, the sum of mass values of the
focal elements in M~ will be added to ©;

2) If © ¢ M, then set O as a focal element of mg(-) and
assign the sum of mass values of the focal elements in
M~ to ms(G)

More details on D1 method with examples can be found in [8].

The basic principle of these three previous approaches of
BBA approximation is to remove the focal elements having
smaller mass values because they are deemed as unimportant.
Besides theses methods, there exist other works on BBA
approximations. For example, Denceux inner and outer ap-
proximations [9], Grabisch’s k-additive BBA approximation
[16], and our previous works based on hierarchical propor-
tional distribution (HPR) [11] and optimization-based BBA
approximations [12]. In these methods, the aim is to remove
the focal elements with larger cardinalities because they bring
more computational cost in the fusion process in general (see
related references for details).

IV. NEw BBA APPROXIMATIONS USING THE PRINCIPLE
OF FOCAL ELEMENT REDUNDANCY

As briefly shown in the previous section, the existing
BBA approximation approaches propose to remove some focal
elements by eliminating those with smaller mass values, or
with larger cardinalities. Although these methods have some
rational justification, only mass values or cardinalities are not
enough in our opinion for judging which focal elements should
be removed for making BBA approximation. We consider that



it is quite hazardous (risky) to deem focal elements having
small mass values as unimportant. It may also be dangerous
to remove the focal elements with large cardinality justified
only by the possible high computational cost they may cause in
the fusion process. So, we should be cautious when adopting a
BBA approximation technique. We agree with the fact that fo-
cal elements that are considered unimportant must be removed
at first in an approximation method. However, focal elements’
mass values are not enough for judging their importance.
A more solid index (criterion) should be found to estimate
the importance of a focal element to keep. Because the very
redundant focal elements can reasonably be considered as
unimportant and the relatively non-redundant focal elements
can reasonably be considered as important, we define the
degree of non-redundancy for a focal element at first. From
this degree of non-redundancy, we can then develop new BBA
approximation methods as it will be shown.

A. Degree of non-redundancy of focal elements

Suppose a BBA m(-) has [ focal elements. A distance
between focal elements A; and A; proposed by Denceux [9]
is defined as

0n (Ai, Aj) = m (Ai) - [Ail +m (4;) - [Aj]

CmA) +m A A4l ©

If a focal element A; has the smallest average distance with
other focal elements A; C ©,j # 4, then A; shares most
common information with other focal elements, i.e., A; is the
most redundant. Therefore, we can define the degree of non-
redundancy based on the average distance between a focal
elements and others. First, we calculate the distance matrix
for all the focal elements of m(-) as

0n (A1, A1) 6n (A1, Ag) 0n (A1, Ar)
o | O0n (A2, A1) 6n (A2, Ag) 0n (A2, 4Ay)

Matpp = ) . )
0n (A1, A1) 6n (A1, Ad) on (A, Ap)

It should be noted that dn (A;, A;) = 0 and dn (A4;, 4;) =
dn (A, A;) where ¢ = 1,...,1. Hence, it is not necessary to
calculate all the elements in Matrg because the matrix is
symmetric.

We define the degree of non-redundancy of the focal ele-
ment A; by

-1
1
Jj=1

The larger nRd(A;) value, the larger non-redundancy (less
redundancy) for A;. The less nRd(A;) value, the less non-
redundancy (larger redundancy) for A;.

Based on the focal element redundancy, i.e., to use the
degree of non-redundancy in (7), we propose two new BBA
approximation methods described in the next subsections,
where the more non-redundant focal elements will be remained
and the more redundant ones will be removed.

B. Batch approximation method

Let m(-) denote the original BBA to approximate with [
focal elements. In the approximation, we want to keep k < [
focal elements. First, we propose a BBA approximation with
a batch processing, which means that the number of focal
elements is reduced from [ to k in one processing cycle as
follows.

o Step 1: Calculate Matpp at first, and for each A;, i =

1,...,1 compute its non-redundancy value nRd(A;);

o Step 2: Sort all the elements in descending order accord-

ing to the values of nRd(A;);

o Step 3: Remove the | — k bottom focal elements;

o Setp 4: Normalize the mass values of the remaining

k focal elements and output the approximated BBA
m()

C. Iterative approximation method

In this method, we remove iteratively one most redundant
focal element (with the least nRd value) in each cycle until
k focal elements are remained. This method consists of the
following steps:

o Step 1: Calculate Matrgr and nRd for each A;, i =

1,...,10;

o Step 2: Sort all the elements in descending order accord-
ing to their values of nRd(4;);

o Step 3: Remove the bottom focal element A,;

o Setp 4: If the number of remaining focal element is larger
than k, recalculate nRd(A;) fori = 1,...,1,i # r and go
to Step 3. Otherwise, go to Step 5 ;

o Setp 5: Normalize the mass values of the remaining
k focal elements and output the approximated BBA
mi().

For this iterative method, the degrees of non-redundancy are
recalculated in each cycle after removing a focal element in
the previous cycle. That is to say, in each cycle, only the
non-redundancy of the current remaining focal elements are
concerned.

D. Illustrative examples

Here we provide a simple numerical example to illustrate
the implementation procedures of some available BBA
approximation approaches with respect to our two new
methods.

Example 1: Let consider the BBA m(-) defined over the FoD
O = {91, 02, 03,04, 95} listed in Table I.

TABLE I
FOCAL ELEMENTS AND MASS VALUES OF m(-)

Focal Elements Mass values
Ay ={01,02} 0.50
Az = {01,03,04} 0.30
Az = {03} 0.10
As ={03,04} 0.05
As = {04,05} 0.05




1) Using k — | — x method [6]: Here k and [ are set to
3. x is set to 0.1. The focal elements Ay = {63,604} and
As = {04,605} are removed without violating the constraints
in k — ! — x. The remaining total mass value is 1 — 0.05 —
0.05 = 0.9. Then, all the remaining focal elements’ mass
values are divided by 0.9 to accomplish the normalization. The
approximated BBA m!/®(-) obtained by k — I — 2 method is
listed in Table II, where A}, i = 1,2, 3 are the focal elements
of m¥=(.).

TABLE II
mkT(-) OBTAINED USING k — [ —

the supplemented focal element whose mass value is the
sum of the removed two focal elements’ mass values. Such
a procedure is repeated until the desired number of focal
elements is reached. The results at each step are listed in Table
V.

TABLE V
BBA’S OBTAINED USING INNER APPROXIMATION

Focal Elements Mass values
A’l = {01,62} 0.5556
A’2 = {01,63,04} 0.3333
Ag = {03} 0.1111

Step 1 Step 2
Focal elements Mass values | Focal elements Mass values
Al = {61,602} 0.5 Al = {61,602} 0.5
AIQ ={01,03,04} 0.3 AIQ ={601,03,04} 0.3
Al ={03} 0.15 AL =10 0.2
Al ={04,05} 0.05

2) Using summarization method [7]: Here k is set to 3.
According to the summarization method, the focal elements
As = {05}, Ay = {05,04} and A5 = {04,05} are removed,
and their union {03, 64, 65 } is generated as a new focal element
with mass value m({03}) +m({0s,04}) +m({04,05}) = 0.2.
The approximated BBA mgum is listed in Table III below.

TABLE III
mgum(,) OBTAINED USING SUMMARIZATION

Focal Elements Mass values
AT =1{01,0-} 0.50
A’2 ={61,03,04 0.30
A.’3 ={03,04, 05 0.20

3) Using DI method [8]: Here k is still 3. It can be
obtained that Ay, As belong to M, and As, A4, A5 belong to
M~ . The focal element A; = {61, 02} has empty intersection
with the focal elements in M —, therefore its value will be
unchanged. In M, A, is the unique superset of As and Ay,
therefore, m(As) + m(A4) = 0.10 + 0.05 is added to its
original mass value. Ay also covers half of Ay, therefore,
m(As)/2 = 0.025 is further added to the mass of A,.
Finally, the rest mass value is assigned to the total set ©.
The approximated BBA mZ%! is listed in Table IV.

TABLE IV
mZE1(-) OBTAINED USING SUMMARIZATION

Focal Elements Mass values
AT =1{01,0-} 0.50
Al =101,03,04} 0.475
A.’3 =0 0.025

4) Using Denceux inner approximation [9]: Because this
method uses the focal element distance in Eq. (6), we also
apply it in this exampe for comparison. With the inner
approximation method, the focal elements pair with smallest
distance are removed, and then their intersection is set as

As we can see in Table V, it generates the empty set as a
focal element, which is not allowed in the classical Dempster-
Shafer evidence theory under close-world assumption.

5) Using the redundancy-based batch approximation
method: The desired remaining focal element is set to k = 3.
We first calculate the distance matrix Matrgr and we get

Ay 0 110 1.10 1.10 1.10
Ao 1.10 0 0.60 0.30 0.65
Matpp = As 1.10 060 0 0.05 0.20
Ay 1.10 0.30 0.05 0 0.10
As 1.10 0.65 0.20 0.10 O
Ay Ay A3 Ay A5

Based on this matrix, the degree of non-redundancy for each
focal elements of m(-) can be obtained. It is listed in Table
VL

TABLE VI
NON-REDUNDANCY FOR DIFFERENT FOCAL ELEMENTS
Focal Elements Mass values | nRd(A4;)
A7 = {01, 02) 0.50 1.10
Ay = {01, 03,04) 0.30 0.6625
Az = {03} 0.10 0.4875
Ay ={05,604} 0.05 0.3875
As = {04,605} 0.05 0.5125

Since A3z and A4 at the bottom have the two least nRd
values, they correspond the two focal elements with the lowest
non-redundancy, i.e., the highest redundancy. Therefore, they
are removed and their mass values are redistributed thanks
to the classical normalization step. The approximated BBA
mBF? is listed in Table VII.

TABLE VII
mBEF4(.) OBTAINED USING THE BATCH APPROXIMATION BASED ON
REDUNDANCY
Focal Elements Mass values
AT =1{01,05] 0.5882
Al =101,03,04} 0.3530
Al =1{04,05] 0.0588




6) Using the redundancy-based iterative approximation
method: The number of remaining focal elements is still set
to k = 3, so that two focal elements have to be removed. In
the iterative mode, only one focal element is removed in each
cycle, thus two cycles are needed.

In cycle I, the degree of non-redundancy is the same as
listed in Table V. Then, the focal element A4 is removed in
first cycle.

In cycle II, recalculate nRd for A;, i = 1,...,5,i # 4
according to nRd(4;) = Z?Zl,j#,#i d(A;, Aj). The results

are
nRd(A;) = 1.1000, nRd(A,) = 0.7833,
nRd(As3) = 0.6333, nRd(A45) = 0.6500

Then, As is removed in this cycle due to its the lowest nRd
value (the highest redundancy among the remaining focal
elements). The approximated BBA obtained using iterative
way is the same as the one listed in Table VII. It should
be noted that the batch approximation and the iterative
approximation will not always output the same results as
shown in the next example.

Example 2: Suppose that FoD is © = {01, 63, 605}. The BBA
to approximate is listed in Table VIII, and the desired number
of remaining focal elements is k& = 3.

TABLE VIII
FOCAL ELEMENTS AND MASS VALUES OF m(+)

Focal Elements Mass values

A1 = {01,02} 0.1780

Az = {03,037} 0.2477

Az = {02 0.2322

As = {03 0.1758

As; =6 0.1662

The distance matrix Matpg is
Aq 0 0.4258 0.1780 0.5319 0.1662
Ag 0.4258 0 0.2477 0.2477 0.1662
Az 0.1780 0.2477 0 0.4080 0.3325
Ay 0.5319 0.2477 0.4080 0 0.3325
As 0.1662 0.1662 0.3325 0.3325 0
Ay Ay As Ay As

The degree of non-redundancy of focal elements are

nRd(A;) = 0.3255, nRd(A,) = 0.2719,
nRd(As) = 0.2916, nRd(A4) = 0.3800, nRd(A5) = 0.2494

With the batch approximation, the focal elements Ay and Aj
are removed. After normalization, we get the approximated
BBA listed in Table IX.

With the iterative approximation method, the degree of non-
redundancy obtained at Cycle I are also

nRd'(4;) = 0.3255,nRd!(Ay) = 0.2719,
nRd!(43) = 0.2916, nRd'(A4) = 0.3800,
nRd'(A45) = 0.2494

TABLE IX
mBEF4(.) OBTAINED USING THE BATCH APPROXIMATION BASED ON
REDUNDANCY

Focal Elements | Mass values

Al = {601,602} 0.3038
Al = {62 0.3962
Al = {63 0.3000

The iterative approximation first removes the focal element
As because it has the least nRd value. Then we recalculate
the nRd values for A;, Ay, Az, and A4 which gives us

nRd(A;) = 0.3786, nRd!!(4z) = 0.3071,
nRd(A3) = 0.2779, nRA(A4) = 0.3959

At Cycle 11, the focal element Ag having the least nRd value is
removed. After normalization, we get the approximated BBA
ngd( -) using iterative approximation as listed in Table X.

TABLE X
mZ 74 (-) OBTAINED USING THE BATCH APPROXIMATION BASED ON
REDUNDANCY

Focal Elements | Mass values

A7 ={601,02} 0.2960

A/Q = {02,03} 0.4118
Ag = {03} 0.2922

which is different of the result of Table IX using the batch
approximation.

V. COMPARATIVE ANALYSIS

In this section, we present simulation results to compare
the different BBA approximation approaches in terms of the
computational cost and the closeness to the original one in
average meaning. A BBA transformation with less compu-
tational cost and more closeness is preferred. To measure
the closeness or the dissimilarity between different BBAs, a
distance measure between BBA is used. In this work, we use
Jousselme’s distance [17] because it remains one of the most
widely used distance of evidence. This distance is defined as

1

dy(my,mg) = \/5 < (mq — mg)TJac (m1 —ma)  (8)

where Jac is the so-called Jaccard’s weighting matrix whose
elements J;; = Jac(A;, B;) are defined by

_ |Ain By
- |Al UBj|

A BBA m(-) here can be considered as a column vector
according to the geometric interpretation of the theory of
belief functions [18]. There are also other types of distance
of evidence [18]. We choose to use Jousselme’s distance of
evidence in this paper, because it has been proved to be a
strict distance metric [19].

Our comparative analysis is based on a Monte Carlo
simulation using M = 200 random runs. In j-th simulation

Jac(Al-,Bj) (9)



run, the BBA to approximate m/(-) is randomly generated
and the different approximation results {m (-)} are obtained
using the different approximation approaches, where i
denotes the i-th BBA approximation approach. We calculate
the computational time of the original evidence combination
of m?(-) ® m’(-) with Dempster’s rule, and the computation
time of Dempster’s combination of each approximated BBA
m&, (-) @ m (-). As stated before, there are many available
BBA approximation approaches. Here we only compare our
proposed approaches with & — [ — z method, D1 method,
Summarization method because with these methods the
number of the remaining focal elements and the empty set
is never considered as a valid focal element (contrarily to
inner approximation method which will bring troubles for
making the comparisons because Jousselme distance cannot
be computed if one allows to put mass on empty set because

0] = 0).

In our simulations, the cardinality of the FoD® is chosen to
3. In each random generation, there are 7 focal elements in the
original BBA to approximate. The remaining number of focal
elements for all the approaches used here are set to 6, 5, 4, 3,
and 2. Random generation of BBA is based on Algorithm 1
[18] below.

TABLE XI
ALGORITHM 1: RANDOM GENERATION OF BBA.

Input: ©: Frame of discernment;

Npaz: Maximum number of focal elements
Output: Output: m: BBA

Generate P (©), which is the power set of O;
Generate a random permutation of P(©) — R(©);
Generate an integer between 1 and Nypaz — 13
FOReach First k elements of R(©) do

Generate a value within [0,1] — m,, i = 1,...,1;
END

Normalize the vector m = [mu, ...,my| — m/;
m(A;) =m);

The average distance values over 200 runs between the
original BBA and the approximated BBA’s obtained using
different approaches given different remaining focal elements’
numbers are shown in Fig. 1. The average (over all runs and
all numbers of remaining focal elements) computation time
and distance are shown in Table XII.

TABLE XII
COMPARISONS BETWEEN DIFFERENT BBA APPROXIMATIONS IN TERMS
OF TIME AND CLOSENESS

Approaches Distance | Time (ms)
Batch-redundancy 0.1162 0.1026
Iterative-redundancy 0.1147 0.1059
k—l—x 0.1181 0.1073
D1 0.1718 0.1039
Summarization 0.1624 0.1034
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Fig. 1. Comparisons between different approximations in terms of the distance
of evidence.

As we can see in Fig. 1 and in Table XII, all the method have
the average computation time around 0.1 ms, which is reduced
when compared with the original average computation time
which is 0.2011 ms. It means that all the methods can well
reduce the computational cost. Our new BBA approximation
approaches based on focal element redundancy outputs BBA’s
which are closer to the original one when compared with
other approaches. This means that our proposed approximation
approaches output BBA’s which are most faithful and with
the least loss of information when compared with other
approaches. So based on this comprehensive evaluation using
two criteria including computation time and the closeness to
the original BBA, our comparative analysis shows that our
new methods perform better. The iterative version (having
the smallest average distance) performs better than the batch
version.

VI. CONCLUSION

The degree of non-redundancy of focal elements is defined,
based on which, two novel BBA approximation methods have
been proposed in this paper including a batch version and
an iterative version. Our Monte Carlo simulation results show
that these new methods can well reduce the computational
cost when compared with other available approaches; at the
same time, the approximated BBA’s obtained using our new
approaches are closer the original BBA in average, which
represents the less loss of information in the approximation
procedure.

In our future work, further theoretical analyses on the
definition of the focal element non-redundancy or redundancy
are needed, based on which, we will also attempt to design
some new types of the focal element redundancy and to make
additional comparison with the one used in this paper. Besides
the computation time and the distance of evidence used in this
paper, we will explore more comprehensive evaluation criteria
of the BBA approximation approaches, and test other distance



measures of evidence [20] in our proposed approaches. This
is crucial for the design of more effective approximations.
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