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Abstract—The theory of belief functions is a very appealing
theory for uncertainty modeling and reasoning which has been
widely used in information fusion. However, when the cardinality
of the frame of discernment and the number of the focal elements
are large the fusion of belief functions requires in general a
high computational complexity. To circumvent this difficulty,
many methods were proposed to implement more efficiently the
combination rules and to approximate basic belief assignments
(BBA’s) into simplest ones to reduce the number of focal elements
involved in the fusion process. In this paper, we present a
novel principle for approximating a BBA by withdrawing more
redundant focal elements of the original BBA. Two methods
based on this principle are presented (using batch and recursive
implementations). Numerical examples, simulations and related
analyses are provided to illustrate and evaluate the performances
of this new BBA approximation method.

Index Terms—Evidence theory; belief functions; basic belief
assignment; approximation.

I. INTRODUCTION

The original theory of belief functions, also known as

Dempster-Shafer Theory (DST) [1] has been widely used in

information fusion, pattern recognition and decision making

due to its advantages in representing uncertain information and

partial knowledge. However, the computational complexity is

one of its drawbacks [2], specially for combining sources of

evidences expressing their BBA’s with respect to large frames

of discernment (FoD). The computational complexity of the

evidence combination is strongly affected by the cardinality

of the FoD and the number of focal elements of the BBA of

the sources to combine.

To reduce the computational complexity of evidence com-

bination, various approaches have been proposed, which gen-

erally fit within the following two categories:

a) Efficient implementation for performing exact computa-

tions of the chosen rule of combination. For example,

an optimal algorithm for Dempster’s rule of combination

was proposed by Kennes [3]. Barnett [4], Shafer and

Logan’s [5] works are also representatives of this aspect.

b) Approximation of simplification of BBA’s. For example,

k − l− x approach [6], summarization approach [7], the

D1 approximation [8], inner and outer approximations

[9], Monte-Carlo based approximation [10], etc., remove

focal elements and redistribute the corresponding mass

assignments. In our previous works, we also had proposed

hierarchical proportional redistribution approach [11],

and the optimization-based BBA approximations [12].

The work presented in this paper focuses on the reduction

of evidence combination’s computational cost thanks to BBA

approximations. In the aforementioned works of category b),

the different methods propose to remove some focal elements

according to some criteria, typically based either on their mass

values or on their cardinalities. We think that only mass values

or focal element cardinality are not enough for selecting the

focal elements to remove for making good BBA approxima-

tion. We propose a novel approach using the notion of focal

element redundancy. Those relatively redundant focal elements

should be removed and those relatively non-redundant ones

should be remained. To quantify this notion of redundancy, we

use the average distance between a given focal element and

all the other focal elements. Smaller average distance means

that the given focal element carries similar information when

compared with others, i.e., it is more redundant and should

be removed at first. User can preset the desired number of

remaining focal elements (also the number of removed focal

elements). Two removing procedures (including a batch mode

and a iterative mode) are proposed in the sequel, followed

by the re-normalization or redistribution. Numerical examples,

simulations and related analyses are provided to show the

rationality and interest of these novel BBA approximation

approaches.

II. BASICS OF BELIEF FUNCTIONS

The theory of belief functions has been developed by

Shafer [1] in 1976 from early works of Dempster. In DST,

the elements in frame of discernment (FoD) Θ are mutually

exclusive and exhaustive. A basic belief assignment (BBA),

also called a mass function, is a mapping m(·) : 2Θ → [0, 1]
satisfying m(∅) = 0 and

∑

A∈2Θ

m(A) = 1 (1)

If m(A) > 0, A is called a focal element of the BBA m(·).
In DST, the combination of two distinct bodies of evidence



(BOEs) m1(·) and m2(·) is done using Dempster’s rule as

follows. ∀A ∈ 2Θ :

m(A) =

{

0, if A = ∅
1

1−K

∑

Ai∩Bj=A m1(Ai)m2(Bj), if A 6= ∅
(2)

where K =
∑

Ai∩Bj=∅ m1(Ai)m2(Bj) is the total conflicting

mass assignments, which is discarded by normalization in

Dempster’s rule. It can be found from Eq. (2) that Dempster’s

rule is both commutative and associative. Dempster’s rule

has been seriously criticized for its counter-intuitive behaviors

both in high conflicting and low conflicting situations [13],

and other rules of combination have been developed in the

literature – see [14] for details. These modified or refined

combination rules focus on suppressing the counter-intuitive

behaviors of Dempster’s rule. However, like Dempster’s rule,

they all have to face the problem of high computational

complexity with the increase of the FoD’s cardinality and the

quantity of the focal elements.

To reduce the computational cost of combination of BBA’s

and make the fusion process tractable, we can as a first strategy

switch to more simple rules of combination or try to develop

efficient implementations of sophisticate rules, or as a second

strategy simplify (approximate) original BBA to combine by

simplest BBA with less focal elements of smaller cardinalities,

or we can mix both strategies as well. In this paper, we focus

on the second strategy devoted to BBA approximation, which

is more intuitive for human to catch the meaning [15].

III. EXISTING BBA APPROXIMATION APPROACHES

Some existing BBA approximation approaches are briefly

recalled in this section for the purpose of comparisons with

the novel methods proposed in this paper.

1) k− l−x method [6]: This approach has been proposed

by Tessem in 1993. The simplified BBA is obtained by

• keeping no less than k focal elements;

• keeping no more than l focal elements;

• by deleting the masses which are no greater than x.

In k − l − x, all original focal elements are sorted according

to their mass values in a decreasing order. Then, the first p
focal elements are chosen such that k ≤ p ≤ l and such

that the sum of the mass assignments of these first p focal

elements is no less than 1 − x. The removed mass values

are redistributed to remaining focal elements by a classical

normalization procedure.
2) Summarization method [7]: This method is similar to

the k − l− x and it also keeps focal elements having highest

mass values. The mass values of focal elements to remove are

accumulated and assigned to the their union set. Suppose k
is the desired number of focal elements in the approximated

BBA mS(·) of a given BBA m(·). Let M be the set of k− 1
focal elements with the highest mass values in m(·). Then

mS(·) is obtained from m(·) by

mS(A) =











m(A), if A ∈ M
∑

A′⊆A,A′ /∈M m(A′), if A = A0

0, otherwise

(3)

where A0 is determined by

A0 ,
⋃

A′ /∈M,m(A′)>0

A′ (4)

3) D1 method [8]: Let m(·) be the original BBA to

approximate. mS(·) denotes the approximated BBA and the

desired number of focal elements is k. Let M be the set of

k−1 focal elements with the highest mass values in m(·) and

M− be the set including all the other focal elements of m(·).
The basic idea of the D1 method is to keep all the members

of M as the focal elements of mS(·) and to assign the mass

values of the focal elements in M− among the focal elements

in M according to the following procedure.

Given a focal element A ∈ M−, in M , find all the supersets

of A to form the collection MA. If MA is not empty, the mass

value of A is uniformly assigned among the focal elements

with smallest cardinality in MA. When MA is empty, then

construct M ′
A as

M ′
A = {B ∈ M | |B| ≥ |A| , B ∩ A 6= ∅} (5)

Then, if M ′
A is not empty, m(A) is assigned among the focal

elements with smallest cardinality in M ′
A. The value assigned

to a focal element B depends on the value of |B ∩ A|. Such

a procedure is executed iteratively until all m(A) have been

assigned to the focal elements in M .

If M ′
A is empty, there are two possible cases:

1) If the total set Θ ∈ M , the sum of mass values of the

focal elements in M− will be added to Θ;

2) If Θ /∈ M , then set Θ as a focal element of mS(·) and

assign the sum of mass values of the focal elements in

M− to mS(Θ).

More details on D1 method with examples can be found in [8].

The basic principle of these three previous approaches of

BBA approximation is to remove the focal elements having

smaller mass values because they are deemed as unimportant.

Besides theses methods, there exist other works on BBA

approximations. For example, Denœux inner and outer ap-

proximations [9], Grabisch’s k-additive BBA approximation

[16], and our previous works based on hierarchical propor-

tional distribution (HPR) [11] and optimization-based BBA

approximations [12]. In these methods, the aim is to remove

the focal elements with larger cardinalities because they bring

more computational cost in the fusion process in general (see

related references for details).

IV. NEW BBA APPROXIMATIONS USING THE PRINCIPLE

OF FOCAL ELEMENT REDUNDANCY

As briefly shown in the previous section, the existing

BBA approximation approaches propose to remove some focal

elements by eliminating those with smaller mass values, or

with larger cardinalities. Although these methods have some

rational justification, only mass values or cardinalities are not

enough in our opinion for judging which focal elements should

be removed for making BBA approximation. We consider that



it is quite hazardous (risky) to deem focal elements having

small mass values as unimportant. It may also be dangerous

to remove the focal elements with large cardinality justified

only by the possible high computational cost they may cause in

the fusion process. So, we should be cautious when adopting a

BBA approximation technique. We agree with the fact that fo-

cal elements that are considered unimportant must be removed

at first in an approximation method. However, focal elements’

mass values are not enough for judging their importance.

A more solid index (criterion) should be found to estimate

the importance of a focal element to keep. Because the very

redundant focal elements can reasonably be considered as

unimportant and the relatively non-redundant focal elements

can reasonably be considered as important, we define the

degree of non-redundancy for a focal element at first. From

this degree of non-redundancy, we can then develop new BBA

approximation methods as it will be shown.

A. Degree of non-redundancy of focal elements

Suppose a BBA m(·) has l focal elements. A distance

between focal elements Ai and Aj proposed by Denœux [9]

is defined as

δ∩ (Ai, Aj) = m (Ai) · |Ai|+m (Aj) · |Aj |

− [m (Ai) +m (Aj)] · |Ai ∩ Aj |
(6)

If a focal element Ai has the smallest average distance with

other focal elements Aj ⊆ Θ, j 6= i, then Ai shares most

common information with other focal elements, i.e., Ai is the

most redundant. Therefore, we can define the degree of non-

redundancy based on the average distance between a focal

elements and others. First, we calculate the distance matrix

for all the focal elements of m(·) as

MatFE ,











δ∩ (A1, A1) δ∩ (A1, A2) · · · δ∩ (A1, Al)
δ∩ (A2, A1) δ∩ (A2, A2) · · · δ∩ (A2, Al)

...
...

. . .
...

δ∩ (Al, A1) δ∩ (Al, A2) · · · δ∩ (Al, Al)











It should be noted that δ∩ (Ai, Ai) = 0 and δ∩ (Ai, Aj) =
δ∩ (Aj , Ai) where i = 1, ..., l. Hence, it is not necessary to

calculate all the elements in MatFE because the matrix is

symmetric.

We define the degree of non-redundancy of the focal ele-

ment Ai by

nRd (Ai) ,
1

l − 1

l−1
∑

j=1

δ∩ (Ai, Aj) (7)

The larger nRd(Ai) value, the larger non-redundancy (less

redundancy) for Ai. The less nRd(Ai) value, the less non-

redundancy (larger redundancy) for Ai.

Based on the focal element redundancy, i.e., to use the

degree of non-redundancy in (7), we propose two new BBA

approximation methods described in the next subsections,

where the more non-redundant focal elements will be remained

and the more redundant ones will be removed.

B. Batch approximation method

Let m(·) denote the original BBA to approximate with l
focal elements. In the approximation, we want to keep k < l
focal elements. First, we propose a BBA approximation with

a batch processing, which means that the number of focal

elements is reduced from l to k in one processing cycle as

follows.

• Step 1: Calculate MatFE at first, and for each Ai, i =
1, ..., l compute its non-redundancy value nRd(Ai);

• Step 2: Sort all the elements in descending order accord-

ing to the values of nRd(Ai);
• Step 3: Remove the l− k bottom focal elements;

• Setp 4: Normalize the mass values of the remaining

k focal elements and output the approximated BBA

mBRd
S (·).

C. Iterative approximation method

In this method, we remove iteratively one most redundant

focal element (with the least nRd value) in each cycle until

k focal elements are remained. This method consists of the

following steps:

• Step 1: Calculate MatFE and nRd for each Ai, i =
1, ..., l;

• Step 2: Sort all the elements in descending order accord-

ing to their values of nRd(Ai);
• Step 3: Remove the bottom focal element Ar;

• Setp 4: If the number of remaining focal element is larger

than k, recalculate nRd(Ai) for i = 1, ..., l, i 6= r and go

to Step 3. Otherwise, go to Step 5 ;

• Setp 5: Normalize the mass values of the remaining

k focal elements and output the approximated BBA

mIRd
S (·).

For this iterative method, the degrees of non-redundancy are

recalculated in each cycle after removing a focal element in

the previous cycle. That is to say, in each cycle, only the

non-redundancy of the current remaining focal elements are

concerned.

D. Illustrative examples

Here we provide a simple numerical example to illustrate

the implementation procedures of some available BBA

approximation approaches with respect to our two new

methods.

Example 1: Let consider the BBA m(·) defined over the FoD

Θ = {θ1, θ2, θ3, θ4, θ5} listed in Table I.

TABLE I
FOCAL ELEMENTS AND MASS VALUES OF m(·)

Focal Elements Mass values

A1 = {θ1, θ2} 0.50

A2 = {θ1, θ3, θ4} 0.30

A3 = {θ3} 0.10

A4 = {θ3, θ4} 0.05

A5 = {θ4, θ5} 0.05



1) Using k − l − x method [6]: Here k and l are set to

3. x is set to 0.1. The focal elements A4 = {θ3, θ4} and

A5 = {θ4, θ5} are removed without violating the constraints

in k − l − x. The remaining total mass value is 1 − 0.05 −
0.05 = 0.9. Then, all the remaining focal elements’ mass

values are divided by 0.9 to accomplish the normalization. The

approximated BBA mklx
S (·) obtained by k − l − x method is

listed in Table II, where A′
i, i = 1, 2, 3 are the focal elements

of mklx
S (·).

TABLE II
mklx

S
(·) OBTAINED USING k − l − x

Focal Elements Mass values

A′

1
= {θ1, θ2} 0.5556

A′

2
= {θ1, θ3, θ4} 0.3333

A′

3
= {θ3} 0.1111

2) Using summarization method [7]: Here k is set to 3.

According to the summarization method, the focal elements

A3 = {θ3}, A4 = {θ3, θ4} and A5 = {θ4, θ5} are removed,

and their union {θ3, θ4, θ5} is generated as a new focal element

with mass value m({θ3})+m({θ3, θ4})+m({θ4, θ5}) = 0.2.

The approximated BBA mSum
S is listed in Table III below.

TABLE III
mSum

S
(·) OBTAINED USING SUMMARIZATION

Focal Elements Mass values

A′

1
= {θ1, θ2} 0.50

A′

2
= {θ1, θ3, θ4} 0.30

A′

3
= {θ3, θ4, θ5} 0.20

3) Using D1 method [8]: Here k is still 3. It can be

obtained that A1, A2 belong to M , and A3, A4, A5 belong to

M−. The focal element A1 = {θ1, θ2} has empty intersection

with the focal elements in M−, therefore its value will be

unchanged. In M , A2 is the unique superset of A3 and A4,

therefore, m(A3) + m(A4) = 0.10 + 0.05 is added to its

original mass value. A2 also covers half of A5, therefore,

m(A5)/2 = 0.025 is further added to the mass of A2.

Finally, the rest mass value is assigned to the total set Θ.

The approximated BBA mD1
S is listed in Table IV.

TABLE IV
mD1

S
(·) OBTAINED USING SUMMARIZATION

Focal Elements Mass values

A′

1
= {θ1, θ2} 0.50

A′

2
= {θ1, θ3, θ4} 0.475

A′

3
= Θ 0.025

4) Using Denœux inner approximation [9]: Because this

method uses the focal element distance in Eq. (6), we also

apply it in this exampe for comparison. With the inner

approximation method, the focal elements pair with smallest

distance are removed, and then their intersection is set as

the supplemented focal element whose mass value is the

sum of the removed two focal elements’ mass values. Such

a procedure is repeated until the desired number of focal

elements is reached. The results at each step are listed in Table

V.

TABLE V
BBA’S OBTAINED USING INNER APPROXIMATION

Step 1 Step 2

Focal elements Mass values Focal elements Mass values

A′

1
= {θ1, θ2} 0.5 A′

1
= {θ1, θ2} 0.5

A′

2
= {θ1, θ3, θ4} 0.3 A′

2
= {θ1, θ3, θ4} 0.3

A′

3
= {θ3} 0.15 A′

3
= ∅ 0.2

A′

4
= {θ4, θ5} 0.05

As we can see in Table V, it generates the empty set as a

focal element, which is not allowed in the classical Dempster-

Shafer evidence theory under close-world assumption.

5) Using the redundancy-based batch approximation

method: The desired remaining focal element is set to k = 3.

We first calculate the distance matrix MatFE and we get

MatFE =

A1

A2

A3

A4

A5













0 1.10 1.10 1.10 1.10
1.10 0 0.60 0.30 0.65
1.10 0.60 0 0.05 0.20
1.10 0.30 0.05 0 0.10
1.10 0.65 0.20 0.10 0













A1 A2 A3 A4 A5

Based on this matrix, the degree of non-redundancy for each

focal elements of m(·) can be obtained. It is listed in Table

VI.

TABLE VI
NON-REDUNDANCY FOR DIFFERENT FOCAL ELEMENTS

Focal Elements Mass values nRd(Ai)
A1 = {θ1, θ2} 0.50 1.10

A2 = {θ1, θ3, θ4} 0.30 0.6625

A3 = {θ3} 0.10 0.4875

A4 = {θ3, θ4} 0.05 0.3875

A5 = {θ4, θ5} 0.05 0.5125

Since A3 and A4 at the bottom have the two least nRd

values, they correspond the two focal elements with the lowest

non-redundancy, i.e., the highest redundancy. Therefore, they

are removed and their mass values are redistributed thanks

to the classical normalization step. The approximated BBA

mBRd
S is listed in Table VII.

TABLE VII
mBRd

S
(·) OBTAINED USING THE BATCH APPROXIMATION BASED ON

REDUNDANCY

Focal Elements Mass values

A′

1
= {θ1, θ2} 0.5882

A′

2
= {θ1, θ3, θ4} 0.3530

A′

3
= {θ4, θ5} 0.0588



6) Using the redundancy-based iterative approximation

method: The number of remaining focal elements is still set

to k = 3, so that two focal elements have to be removed. In

the iterative mode, only one focal element is removed in each

cycle, thus two cycles are needed.

In cycle I, the degree of non-redundancy is the same as

listed in Table V. Then, the focal element A4 is removed in

first cycle.

In cycle II, recalculate nRd for Ai, i = 1, ..., 5, i 6= 4
according to nRd(Ai) =

∑5
j=1,j 6=4,j 6=i δ(Ai, Aj). The results

are
nRd(A1) = 1.1000, nRd(A2) = 0.7833,
nRd(A3) = 0.6333, nRd(A5) = 0.6500

Then, A3 is removed in this cycle due to its the lowest nRd

value (the highest redundancy among the remaining focal

elements). The approximated BBA obtained using iterative

way is the same as the one listed in Table VII. It should

be noted that the batch approximation and the iterative

approximation will not always output the same results as

shown in the next example.

Example 2: Suppose that FoD is Θ = {θ1, θ2, θ3}. The BBA

to approximate is listed in Table VIII, and the desired number

of remaining focal elements is k = 3.

TABLE VIII
FOCAL ELEMENTS AND MASS VALUES OF m(·)

Focal Elements Mass values

A1 = {θ1, θ2} 0.1780

A2 = {θ2, θ3} 0.2477

A3 = {θ2} 0.2322

A4 = {θ3} 0.1758

A5 = Θ 0.1662

The distance matrix MatFE is

A1

A2

A3

A4

A5













0 0.4258 0.1780 0.5319 0.1662
0.4258 0 0.2477 0.2477 0.1662
0.1780 0.2477 0 0.4080 0.3325
0.5319 0.2477 0.4080 0 0.3325
0.1662 0.1662 0.3325 0.3325 0













A1 A2 A3 A4 A5

The degree of non-redundancy of focal elements are

nRd(A1) = 0.3255, nRd(A2) = 0.2719,
nRd(A3) = 0.2916, nRd(A4) = 0.3800, nRd(A5) = 0.2494

With the batch approximation, the focal elements A2 and A5

are removed. After normalization, we get the approximated

BBA listed in Table IX.

With the iterative approximation method, the degree of non-

redundancy obtained at Cycle I are also

nRdI(A1) = 0.3255, nRdI(A2) = 0.2719,
nRdI(A3) = 0.2916, nRdI(A4) = 0.3800,

nRdI(A5) = 0.2494

TABLE IX
mBRd

S
(·) OBTAINED USING THE BATCH APPROXIMATION BASED ON

REDUNDANCY

Focal Elements Mass values

A′

1
= {θ1, θ2} 0.3038

A′

2
= {θ2} 0.3962

A′

3
= {θ3} 0.3000

The iterative approximation first removes the focal element

A5 because it has the least nRd value. Then we recalculate

the nRd values for A1, A2, A3, and A4 which gives us

nRdII(A1) = 0.3786, nRdII(A2) = 0.3071,
nRdII(A3) = 0.2779, nRdII(A4) = 0.3959

At Cycle II, the focal element A3 having the least nRd value is

removed. After normalization, we get the approximated BBA

mSRd
S (·) using iterative approximation as listed in Table X.

TABLE X
mSRd

S
(·) OBTAINED USING THE BATCH APPROXIMATION BASED ON

REDUNDANCY

Focal Elements Mass values

A′

1
= {θ1, θ2} 0.2960

A′

2
= {θ2, θ3} 0.4118

A′

3
= {θ3} 0.2922

which is different of the result of Table IX using the batch

approximation.

V. COMPARATIVE ANALYSIS

In this section, we present simulation results to compare

the different BBA approximation approaches in terms of the

computational cost and the closeness to the original one in

average meaning. A BBA transformation with less compu-

tational cost and more closeness is preferred. To measure

the closeness or the dissimilarity between different BBAs, a

distance measure between BBA is used. In this work, we use

Jousselme’s distance [17] because it remains one of the most

widely used distance of evidence. This distance is defined as

dJ (m1,m2) ,

√

1

2
· (m1 −m2)

T
Jac (m1 −m2) (8)

where Jac is the so-called Jaccard’s weighting matrix whose

elements Jij = Jac(Ai, Bj) are defined by

Jac(Ai, Bj) =
|Ai ∩Bj |

|Ai ∪Bj |
(9)

A BBA m(·) here can be considered as a column vector

according to the geometric interpretation of the theory of

belief functions [18]. There are also other types of distance

of evidence [18]. We choose to use Jousselme’s distance of

evidence in this paper, because it has been proved to be a

strict distance metric [19].

Our comparative analysis is based on a Monte Carlo

simulation using M = 200 random runs. In j-th simulation



run, the BBA to approximate mj(·) is randomly generated

and the different approximation results {mj
Si
(·)} are obtained

using the different approximation approaches, where i
denotes the i-th BBA approximation approach. We calculate

the computational time of the original evidence combination

of mj(·) ⊕mj(·) with Dempster’s rule, and the computation

time of Dempster’s combination of each approximated BBA

mj
Si
(·) ⊕ mj

Si
(·). As stated before, there are many available

BBA approximation approaches. Here we only compare our

proposed approaches with k − l − x method, D1 method,

Summarization method because with these methods the

number of the remaining focal elements and the empty set

is never considered as a valid focal element (contrarily to

inner approximation method which will bring troubles for

making the comparisons because Jousselme distance cannot

be computed if one allows to put mass on empty set because

|∅| = 0).

In our simulations, the cardinality of the FoDΘ is chosen to

3. In each random generation, there are 7 focal elements in the

original BBA to approximate. The remaining number of focal

elements for all the approaches used here are set to 6, 5, 4, 3,

and 2. Random generation of BBA is based on Algorithm 1

[18] below.

TABLE XI
ALGORITHM 1: RANDOM GENERATION OF BBA.

Input: Θ: Frame of discernment;
Nmax: Maximum number of focal elements
Output: Output: m: BBA
Generate P(Θ), which is the power set of Θ;
Generate a random permutation of P(Θ) → R(Θ);
Generate an integer between 1 and Nmax → l;
FOReach First k elements of R(Θ) do
Generate a value within [0, 1] → mi, i = 1, ..., l;
END
Normalize the vector m = [m1, ...,ml] → m′;
m(Ai) = m′

i
;

The average distance values over 200 runs between the

original BBA and the approximated BBA’s obtained using

different approaches given different remaining focal elements’

numbers are shown in Fig. 1. The average (over all runs and

all numbers of remaining focal elements) computation time

and distance are shown in Table XII.

TABLE XII
COMPARISONS BETWEEN DIFFERENT BBA APPROXIMATIONS IN TERMS

OF TIME AND CLOSENESS

Approaches Distance Time (ms)

Batch-redundancy 0.1162 0.1026

Iterative-redundancy 0.1147 0.1059

k − l− x 0.1181 0.1073

D1 0.1718 0.1039

Summarization 0.1624 0.1034
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Fig. 1. Comparisons between different approximations in terms of the distance
of evidence.

As we can see in Fig. 1 and in Table XII, all the method have

the average computation time around 0.1 ms, which is reduced

when compared with the original average computation time

which is 0.2011 ms. It means that all the methods can well

reduce the computational cost. Our new BBA approximation

approaches based on focal element redundancy outputs BBA’s

which are closer to the original one when compared with

other approaches. This means that our proposed approximation

approaches output BBA’s which are most faithful and with

the least loss of information when compared with other

approaches. So based on this comprehensive evaluation using

two criteria including computation time and the closeness to

the original BBA, our comparative analysis shows that our

new methods perform better. The iterative version (having

the smallest average distance) performs better than the batch

version.

VI. CONCLUSION

The degree of non-redundancy of focal elements is defined,

based on which, two novel BBA approximation methods have

been proposed in this paper including a batch version and

an iterative version. Our Monte Carlo simulation results show

that these new methods can well reduce the computational

cost when compared with other available approaches; at the

same time, the approximated BBA’s obtained using our new

approaches are closer the original BBA in average, which

represents the less loss of information in the approximation

procedure.

In our future work, further theoretical analyses on the

definition of the focal element non-redundancy or redundancy

are needed, based on which, we will also attempt to design

some new types of the focal element redundancy and to make

additional comparison with the one used in this paper. Besides

the computation time and the distance of evidence used in this

paper, we will explore more comprehensive evaluation criteria

of the BBA approximation approaches, and test other distance



measures of evidence [20] in our proposed approaches. This

is crucial for the design of more effective approximations.
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positive definiteness of the jaccard index matrix,” International Journal

of Approximate Reasoning, vol. 54, no. 5, pp. 615–626, 2013.
[20] D. Han, J. Dezert, and Y. Yang, “New distance measures of evidence

based on belief intervals,” in Belief Functions: Theory and Applications.
Springer, 2014, pp. 432–441.


