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Abstract—This paper proposes a new generic object recog-
nition (GOR) method based on the multiple feature fusion of
2D and 3D SIFT (scale invariant feature transform) descriptors
drawn from 2D images and 3D point clouds. We also use
trained Support Vector Machine (SVM) classifiers to recognize
the objects from the result of the multiple feature fusion. We
analyze and evaluate different strategies for making this multiple
feature fusion applied to real open-datasets. Our results show
that this new GOR method has higher recognition rates than
classical methods, even if one has large intra-class variations,
or high inter-class similarities of the objects to recognize, which
demonstrates the potential interest of this new approach.
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I. INTRODUCTION

Generic object recognition (GOR) in real environment plays
a significant role in computer vision and artificial intelli-
gence. It has important applications in intelligent monitoring,
robotics, medical image processing, etc [1]-[3]. Contrariwise
to specific object recognition!, GOR is much more difficult
to accomplish. Mainly because the generic features of objects
which express the common properties in the same class and
help to make the difference between classes need to be found
out, instead of defining characteristics of particular category as
used in specific object recognition (SOR) methods. The current
main techniques for GOR are based on local feature extraction
algorithms on 2D images, typically the 2D SIFT (scale invari-
ant feature transform) descriptors [4], [5]. However, 2D images
lose the 3D information of the objects, and are susceptible
to change due to various external illumination conditions. To
solve this drawback, 3D SIFT descriptors based on volumes
[3], [6]-[10], and 3D descriptors based on point cloud model
[11]-[13] have been proposed recently by several researchers
because point cloud model of object is obtained from the depth
images which only depends on the geometry of the objects.
Such point cloud model has nothing to do with the brightness
and reflection features of the objects. That is the main reason
why we are also interested by these technique in this paper.
3D SIFT descriptors have been applied successfully in motion
recognition of consecutive video frames by Scovanner et al.
[6]. They show good performance in medical image processing

such as face recognition [1] (SOR) where only certain objects or certain
categories need to be recognized, which can be accomplished by training mass
samples.
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[3], [7]-[9] as well. Object recognition has also be done with
3D SIFT in complex Computed Tomography (CT) for airport
baggage inspection and security by Flitton et al. [10].

The object recognition algorithms based on single feature
only often generate erroneous object recognitions, specially
if there are big intra-class variations and some inter-class
high similarities, or if there exist important changes in pose
and appearance of objects. In these conditions, the use of a
single feature is insufficient to make a reliable recognition
and classification. To overcome this serious drawback, new
recognition algorithms based on multiple features and fusion
algorithms have been proposed recently in the literature [14]-
[17]. Compared with the recognition algorithm using single
feature only, the feature fusion algorithms combine multi-
ple features information which can improve substantially the
recognition rate.

In this paper, we propose a new method for GOR based on
feature fusion of 2D and 3D SIFT descriptors, which consists
of two main phases: 1) a training phase, and 2) a testing phase.
In the both phases, we consider two types of inputs:

1) The first type of input is a database with 3D point cloud
model representation of different objects from different
categories (classes). In this work, our database has been
just obtained from the web?. It is characterized by 3D
SIFT descriptors adapted (in this paper) for point cloud
— see the next section for details.

2) As second input, we use the same database with 2D
images including some objects that are characterized by
their 2D SIFT descriptors.

From these two inputs, the 2D and 3D SIFT feature
descriptors are transformed into the corresponding Bag of
Words (BoW) feature vector [18]. In the training phases,
these two BoW feature vectors (drawn from the 2D and 3D
SIFT) describing the object are used to train Support Vector
Machines (SVMs) [19] to get the prediction functions. After
this training phase, the system is used to recognize unknown
objects in the testing phase. These two BoW feature vectors
describing the object are used to make the object recognition
in the testing phase. In this paper, we test:

1) the feature-level fusion strategy, where we combine

(fuse) directly the two BoW-based feature vectors and

Zhttp://rgbd-dataset.cs.washington.edu/dataset.html



we feed the trained SVM with the fused vector to get
the final recognition result.

2) the decision-level fusion strategy, where each of the
two BoW-based feature vectors feeds its corresponding
trained SVM to get the corresponding recognition re-
sult separately. Then we test different fusion rules to
combine these two recognition results to get the final
recognition result.

The paper is organized as follows. The recognition algorith-
m is described in details in section 2. Section 3 evaluates the
performances of this new method on real datasets. Conclusions
with perspectives are given in section 4.

II. NEW GENERIC OBJECT RECOGNITION METHOD

This new method of object recognition consists in three
main steps (features extraction and representation, features
fusion, and classifier design) that we present in details in
this section. To achieve the good recognition of objects,
we propose to combine 2D scale-invariant feature transform
(2D SIFT) characterizing the object features, with 3D SIFT
(based on point clouds model). We need at first to recall the
principle of 2D SIFT [4], [5], and we explain improved 3D
SIFT descriptors applied in point cloud.

Step 1: Features extraction and representation

Feature extraction and representation are necessary for any
object recognition algorithm. In many situations the object
recognition task is very difficult because it is possible that
some (partial) similarities exist in different classes of objects,
as well as (partial) dissimilarities in the same class of objects.
So the feature extraction process must be done as efficient as
possible in order to help the recognition of objects by making
the difference between object classes biggest, and by making
the difference in the same class smallest. The objects need
also to be represented at a certain level of semantic, using
limited training objects to represent the class [2].

— 2D SIFT descriptor

In 1999, David Lowe [4] did present for the first time
a new method to extract keypoints of objects in images,
and to describe their local features that allows to make
generic object recognition, for example in computer vision
applications. His method has then been improved in [5], and
extended to 3D by other authors (see next paragraph). The
feature description of the object drawn from a training image
is then used to identify the presence (if any) of the object
in real (usually cluttered) observed scene. To get good object
recognition performances, Lowe proposed a (2D) SIFT (scale-
invariant feature transform) that warranties that the features
extracted (i.e. the key-points) from the training image are
detectable under changes in image orientation, scale, noise
and illumination, and even if partial object occlusions occur
in the observed scene. Lowe’s SIFT feature descriptor is
invariant to uniform scaling, orientation, and partially invariant

to illumination changes and robust to local geometric (affine)
distortion. The stable key-points locations of SIFT are given
by the detection of scale-space extrema in the Difference-of-
Gaussian (DoG) function D(x, y, o) convolved with the image
I(z,y). More precisely, one defines [5]

D(I,y,d) éL(Ivya k’O’)*L(;’E?y,U) (1)

where L(z,y,ko) £ G(z,y,ko) * I(x,y) and L(z,y,0) =
G(z,y,0) = I(x,y) are Gaussian-blurred images at nearby
scale-space o separated by a constant multiplicative factor’
k, and where = is the convolution operator and G(x,y, o) is
the centered Gaussian kernel defined by
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The local extreme points of D(z,y,0) functions (DoG
images) define the set of keypoint candidates (the SIFT
descriptor). To detect the keypoints, each sample point (pixel)
is compared to its eight neighbors in the current image and
its nine neighbors in the scale below and above. The sample
point under test is considered as a keypoint (local extrema) if
its value is larger (or smaller) than all of its 26 neighbors. The
localization of a candidate keypoint is done by the 2nd-order
Taylor expansion of the DoG scale-space function D(x,y, o)
with the candidate keypoint taken as the origin [5]. However
in general there are too many candidate keypoints and we need
to identify and remove the bad candidates that have too low
contrast*, or are poorly localized along an edge. For doing this,
a contrast thresholding is applied on D(x,y,c) to eliminate
all the candidate keypoints below a chosen’ threshold value 7.
To eliminate the candidate keypoints that are poorly localized
along an edge, Lowe [5] uses a thresholding method based on
the ratio of the eigenvalues of the Hessian matrix H of the
DoG function, because for poorly defined extrema in the DoG
function the principal curvature across the edge would be much
larger than the principal curvature along it. More precisely, if
the ratio 7r(H)? /Det(H) > (r¢,+1)?/r4), then the candidate
keypoint is rejected. Here, r, is a chosen threshold value of
the ratio between the largest magnitude eigenvalue of H and
the smaller one®.

Once all the keypoints are determined, one must assign
a consistent orientation based on local image properties,
from which the keypoint descriptor can be represented, hence
achieving invariance to image rotation. For this, the scale of
the keypoint is used to choose the Gaussian-blurred image
L with the closest scale. The keypoint descriptor is created
by computing at first the gradient magnitude m(x,y) and its
orientation 6(z,y) at each pixel (z,y) in the region around
the keypoint in this Gaussian-blurred image L as follows [5]

{m(a:,.w = /L2 + L2
0(x,y)

—1/,L
= tan~! (24)
3The choice for k = 21/5 is justified by Lowe in [4], where s is an integer
number of intervals
“because they are sensitive to noise.
SWe have chosen 7 = 0.02 in our simulations.
6In [5], Lowe takes 7, = 10.
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with L, £ L(x + 1,y) — L(z — 1,y) and L, £ L(z,y +
1) — L(z,y — 1). In [5], a set of orientation histograms is
created on 4x4 pixel neighborhoods with 8 directions (bins)
each. These histograms are computed from magnitude and
orientation values of samples in a 16 x 16 region around
the keypoint such that each histogram contains samples from
a 4 x 4 subregion of the original neighborhood region. The
magnitudes are weighted by a Gaussian function with o equal
to one half the width of the descriptor window. The descriptor
then becomes a 128-dimensional feature vector because there
are 4x4 = 16 histograms each with 8 directions. This vector is
then normalized to unit length in order to enhance invariance
to affine changes in illumination. Also a threshold of 0.2 is
applied to reduce the effects of non-linear illumination, and the
vector is again normalized. The figure 1 shows an example of
4 x 4 keypoint descriptor, where the space delimited by the
purple ellipse is the neighborhood under consideration.
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Fig. 1: A 4 x 4 Keypoint descriptor (Credit: J. Hurrelmann).

The simplest method to find the best candidate match
for each keypoint would consist in identifying its nearest’
neighbor in the database of key points from training images.
Unfortunately, SIFT-based keypoint matching requires more
sophisticate methods because many features from an image
will not have any correct match in the training database
because of background clutter in observed scene and because
of possible missing features in training images, see [5] for
details. SIFT method is patented by the University of Bristish
Columbia (US Patent 6,711,293 — March 23, 2004) and a
demo is available in [20]. Open SIFT codes can be found on
the web, for example in [21].

— 3D SIFT descriptor

The previous 2D SIFT descriptor working with pixels has
been extended to 3D using volumes in different manners by
different authors [3], [6]-[10]. In this paper, we adapt the
3D SIFT for point cloud inspired by [6], [13]. But all the
methods require same functional steps as for 2D SIFT, that
is 1) Keypoints detection; 2) Key points orientation; and 3)
Descriptor representation. We present these steps in detail in
the next subsections.

Tbased on Euclidean distance metric.

1) Keypoint detection

The scale space of a 3D input point cloud is defined as a 4D
function L(z,y,z2,0) = G(z,y,z2,ko) *x P(xz,y,z) obtained
by the convolution of a 3D variable-scale centered Gaussian
kernel G(x,y, z,0), with the input point P(z,y, z), where

1
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Extending Lowe’s approach [5], scale-space o is separated by
a constant multiplicative factor k, and the candidate keypoints
in 4D scale space are taken as the local extrema (maxima or
minima) of the multi-scale DoG defined for 4 € [0, s + 2] by

To find extrema of the multi-scale DoG function, each
sample point is compared to its 27 + 26 + 27 = 80 neighbors,
where 26 neighbors belong to the current scale, and each
27 neighbors in the scale above and below. A keypoint is
chosen only if it is larger than all of its neighbors or smaller
than all of them. To eliminate the bad candidate keypoints
having low contrast, one uses a thresholding method to
remove the erroneous points. A contrast threshold is applied
on D(z,y,z k') to eliminate all the candidate keypoints
below a chosen® threshold value 7.

2) Keypoint orientations

Similarly to 2D SIFT, once all the keypoints are determined
in 3D, one must assign a consistent orientation based on local
points properties, from which the keypoint descriptor can be
represented, hence achieving invariance to object rotation. For
this, The two-dimensional histogram is calculated by gathering
statistics of the angles between the neighboring points and
their center. The keypoint descriptor is created by computing
at first the vector magnitude m(x,y, z) and its orientations
O(x,y,z) (azimuth angle) and ¢(x,y,z) (elevation angle)
between each point (z,y, z) in the region around the keypoint
and their center (2., ¥, z.) as follows’

m(z,y,2) = /(x =22+ (Y —ye)? + (2 — 2)?
O(z,y,2) =tan"" ((y —ye)/ (2 — zc)) (6)
gb(x,y,z) = Sin_l ((Z _ZC)/m(xﬂ:%Z))

In 3D point cloud, each point has two values which represent
the direction of the region, whereas in 2D case each pixel had
only one direction of the gradient.

Extending Lowe’s approach in 3D case, in order to find the
keypoint orientations we construct a weighted histogram for
the 3D neighborhood around each candidate keypoint. There
are different ways for doing this. In this work, a 2D-histogram

8We have chosen 7 = 0.5 in our simulations.

°In Eq.(6), 8 and ¢ refer to the original coordinate system. In the paragraph
“Descriptor representation” on p. 4, they refer to the rotated coordinate system.
(z¢, Ye, zc) is not same as (xp, yYp, 2p). The former refers to the center of
the keypoints r-points neighborhood. The latter refers to the keypoint.



is produced by grouping the angles in bins which divide
6 and ¢ into 10 deg angular bins. A regional Gaussian
weighting of e~ (24/ Ruax)” for the points whose magnitude
is d is applied to the histogram, where R,,,x represents
the max distance from the center. The sample points at a
distance greater than R,,.x are ignored. The histogram is
smoothed using a Gaussian filter to limit the effect of noise.
The dominant azimuth « and elevation 5 of the keypoint
are determined by the peaks of the 2D-histogram. In order
to enhance robustness, peaks in the histogram within 80%
of the largest peak are also retained as possible secondary
orientations.

3) Descriptor representation

Each keypoint p is described by its location p 2
[%p, Yp, 2p]', scale o, and orientation angles ay, and 3,. The
descriptor representation associated with a keypoint p is based
on the local spatial characteristics around it to describe its
features. To ensure rotation invariance of the descriptor, the r-
points p; (i = 1,...,7) of coordinates p; £ [2;, ¥, 2] around
the keypoint of interest p are at first transformed (rotated) in
the dominant orientation of p by the following transformation

cosay,cos B, —sino, —cosaysinf,
p; = |sinaycosB, cosa, —sinaysing,| -p; (7)
sin By, 0 cos Bp

Then the vector n at the key point which is normal to the
surface of the r-points neighborhood is calculated according
to the routine available in the open Point Cloud Library (PCL)
[22]. For each (rotated) point p; (¢ = 1,...,7) in the r-points
neighborhood of the (rotated) keypoint p’, we calculate the
vector p'p} and the magnitude m and angles 6 and ¢ according
to Eq. (6). The angle ¢ between n and p’p} is given by
p'p;-n )

PP}l I

Therefore, a keypoint p’ with its neighbor p} is represented
by the 4-tuple (m, 6, ¢, ). To reduce the computational time,
instead of dividing the neighborhood into n X n X n subregions
(with n = 4 as in Lowe’s 2D SIFT descriptor), we take directly
the entire neighborhood, which means that we have n = 1. The
histogram used to generate the 3D descriptor at the keypoint
p’ is derived by splitting (6, ¢, §) space into 45 deg bins, and
adding up the number of points with the Gaussian weighting
of e~ (2m/Bmax)*  So the dimension of our 3D SIFT descriptor
ismxnxnx4x4x8=128 (as for the 2D SIFT descriptor
described previously), because n = 1; the azimuth angle 6 €
[0,360] deg which is split into 8 bins of 45 deg; the elevation
angle ¢ € [—90,90] deg which is split into 4 bins of 45 deg;
and ¢ € [0, 180] deg which is also split into 4 bins of 45 deg.
Each 3D SIFT descriptor is normalized to unity.

The 2D and 3D SIFT descriptors summarize efficiently the
useful information contained in 2D and 3D images. Instead
of working directly with whole images, it is usually more
interesting (in terms of computational burden reduction) to

0= cos_l(

®)

work directly with 2D and 3D SIFT descriptors, specially
if real-time object recognition is necessary. Generally, the
objects characterized by 2D and 3D SIFT descriptors have
different number of keypoints which makes the feature fusion
(FF) problem for object recognition very challenging. For
example, for a simple object like an apple, we can get 45
keypoints using 3D SIFT descriptor, and 38 keypoints using
2D SIFT descriptor. To overcome this problem, we adopt the
Bag of Words (BoW) model [18] to gather the statistics of
the 2D and 3D SIFT descriptors to describe the objects.

— BoW model for features vector

In the BoW feature model, the feature descriptors of all
the interest points are quantized by clustering them into a
pre-specified!® number of clusters. Instead of using k-means
algorithm as in [2], we use the k-means++ method [23] which
selects more effectively the initial cluster centers to complete
this step. The resultant cluster centers are now called visual
words, while the collection of these cluster centers is referred
to as the visual word vocabulary. Once our vocabulary is
computed, the descriptors are matched to each visual word
based on the Euclidean distance and the frequency of the
visual words in image and in point cloud is accumulated into
a histogram, which is the BoW feature vector of the image
and of the point cloud. So each object in 2D image and in
3D point cloud is described by a 1 x 300 BoW-based feature
vector denoted respectively BoWsp and BoWjsp. These
two BoW-based feature vectors will be used for feeding the
trained SVM classifiers to get the final object recognition.

Step 2: Classifier design

Once the object description is completed, SVMs are
trained to learn objects categories and to perform the
object classification. SVM is a supervised and discriminative
machine learning method providing usually good performance.
Through offline training of pre-limited samples, we seek
a compromise between model complexity and learning
ability, to get a good discriminant function [19]. Linear
SVM classifier is applied for its efficiency and it is a typical
classifier for two categories problems. In many real-life
applications, we are face to multi-category -classification
problems and we use trained 1V1 SVMs between classes
to set up a multi-category classifier. The training process is
done as follows: for training samples belonging to the :th
category, we make a pairwise SVM training with respect to
all the other classes. So, we get C2 = n(n —1)/2 1V1 SVM
classifiers for training samples of n categories.

Step 3: Features fusion strategies

When the two BoW-based features vectors of the object to
recognize have been computed from 2D and 3D SIFT descrip-

10In our simulations, we took K = 300.



tors, we have to use them to achieve the object recognition
thanks to the trained SVMs from the BoW-based features
vectors of known objects of our data base. In this paper, we
present briefly the following different strategies that we have
tested:

1) The direct feature-level fusion strategy: this feature-level
fusion is for feeding SVM classifiers in training phase
and then making object recognition. With this strategy
we combine (fuse) directly the two BoW-based feature
vectors BoWs,p and BoW;p, and we feed the trained
(global) SVM classifiers with the fused vector to get the
final recognition. The principle of our method based on
this strategy is summarized in Fig 2.

Feature-
level
fusion

_ 3D SIFT Bow
Point Feature Feature
cloud description vector
2D SIFT Bow
|mage Feature Feature
8 description vector
Voting
Multi trained 1V1 SVMs }—b{ P(i) }—b Recognition result

Fig. 2: Direct feature-level fusion strategy.

Object to be Object
recognized description

2) The decision-level fusion strategy: each BoW-based
feature vector BoWsyp and BoW3p feeds a specif-
ic trained SVM to get separately the corresponding
recognition result. Then we test different fusion rules
to combine these two recognition results to get the
final fusioned recognition result. In this work we have
evaluated the performances of the following rules:

o Average weighted fusion rule,
¢ PCRO6 fusion rule of DSmT [24],
o Murphy’s rule of combination [26].

The principle of our method based on this strategy is
summarized in Fig 3.
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Fig. 3: Decision-level fusion strategy.
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1) The direct feature-level fusion strategy

This strategy consists of the following steps:

1-a) For any object to classify, we extract its 2D and 3D
SIFT descriptors associated with each keypoint. So we
get Nop 2D SIFT descriptors of size 1 x 128 if one has
extracted Nop keypoints from the 2D image under test,
and we get N3p 3D SIFT descriptors of size 1 x 128
if one has extracted N3p keypoints from the 3D point
cloud under test.

1-b) From the Nyp 2D SIFT descriptors of size 1 x 128, we
compute 1 x 300 BoW feature vectors BoW,p, and
from the N3p 3D SIFT descriptors of size 1 x 128, we
compute 1 x 300 BoW feature vectors BoW3p thanks
to the BoW model representation [18].

The direct feature-level fusion is done by stack-
ing the BoW-based feature vectors BoW,p and
BoW;p to get a 1 x 600 vector BoWapsp =
[BOWQD, BOW3D].

The feature-level fused vector BoWsp 3p is fed in all
1vl trained SVMs to get the corresponding discriminant
results. The probability P (i) of the object to belong to
the category ¢; (¢t = 1,2,...,n) is estimated by voting.
The object is associated to the category (or class) having
the largest probability, that is:

1-¢)

1-d)

1-e)

Class(Object) = arg max {P(i)} )

2) The decision-level fusion strategy

As stated before, with this strategy each BoW-based feature
vector BoWsyp and BoW;p feeds a specific trained SVM
to get separately the corresponding recognition result. Then
different fusion rules can be used to combine these two
recognition results to get the final fusioned recognition result.
2-a) The average weighted fusion rule: This very simple rule
consists of a voting procedure. The BoWsp and BoWj3p
vectors feed separately all corresponding 1v1 trained SVMs to
get the discriminant results, and we compute the corresponding
number of votes vote[i] for each class ¢;, i = 1,2,...,n. We
will denote voteapli] the distribution of votes drawn from
2D SIFT, and votesp[i] the distribution of votes drawn from
3D SIFT. The probability P,p(i) of the object to belong
to the class ¢; based on 2D SIFT descriptors is estimated
by Pop(i) = voteapli]/ > |_, voteapli], similarly we have
Psp (i) = votespli]/ Y _, votezpli]. Then the voting results
drawn from SVMs feeded with 2D and 3D SIFT are averaged
to obtain the fusion result.
2-b) PCR6 combination rule: The BBA (Basic Belief Assign-
ment) my (.) and mo(.) are built from the empirical probability
obtained by voting procedure described in 2-a). The elements
of the frame of discernment © are the n different classes ¢y,
2, ..., Cp. To get the final result, the BBA’s m4(.) and ma(.)
are fused using the PCR6 combination rule'' [24], defined by
mpcore() = 0 and for all X # () in 29,

mpcre(X) & Y mi(X1)ma(Xs)+

ml(X);mg(Y) mQ(X)le(Y)
+ 10
L2 e ) e sm )
XNY =0

'pCR6 formula coincides with the formula of PCRS fusion rule here
because one considers only two BBA’s to combine. If more than two BBA’s
have to be fused altogether, we advise to use PCR6 rather than PCRS - see
[25] for a theoretical justification.



where all denominators in Eq.(10) are different from zero.
If a denominator is zero, that fraction is discarded. All
propositions/sets are in a canonical form.

2-c¢) Murphy’s rule: Taking the feature-level fusion of 2D and
3D SIFT as a separate feature, together with the 2D and 3D
SIFT, there are three features. Then the BBA mq(.), ma(.)
and m3(.) are built from the empirical probability obtained
by the voting procedure. The vote results of the features are
combined based on the Murphy rule'? [26].

ITII. SIMULATION RESULTS
A. The experimental setup

We evaluate the recognition algorithm on a large-scale
multi-view object dataset collected using an RGB-D camera
[27]. This dataset contains color, depth images and point
clouds of 300 physically distinct everyday objects taken from
different viewpoints. The objects belong to one of 51 cate-
gories and contain three viewpoints. To test the recognition
ability of our features, we test category recognition on objects
that were not present in the training set. At each trial, we
randomly choose one test object from each category and train
classifiers on the remaining objects. We randomly choose 100
training samples and 60 test samples for each category. The
object recognition rate (ORR) is calculated by

ORR = n, /N (11)

where n, is the number of objects correctly recognized, and
N is the total number of test samples.

B. Experiment results and analysis

B.1 Accuracy of our 3D SIFT descriptor

In this simulation, we choose six categories with significant
intra-class variations and high inter-class similarities. The
objects to recognize are apple, tomato, banana, pitcher,
cereal_boz, and kleenex. The Point Feature Histogram (PFH)
[11] and PFHRGB methods in open PCL [22] outperform the
existed 3D features based on point clouds [28]. In order to
verify the advantages of the proposed 3D SIFT for GOR, we
compare these tree feature descriptors under the same condi-
tions. Keypoints are detected using SIFTKeypoint module in
open PCL [22] for each feature descriptors. Then the vectors
of different feature descriptors of the keypoints are calculated.
The object recognition rates (ORR) that we get are shown in
Table I.

Type of feature descriptor ORR (in %)
PFH based on [11] 81.39
PFHRGB based on [22] 84.17
3D SIFT based on this paper 91.11

TABLE I: Object recognition rates (ORR) of three descriptors.

The PFHRGB descriptor is an improved PFH feature
descriptor enriched with color information which allows
to improves object recognition rate. As shown in Table I,

12Because results of the fusion with Dempster’s rule are very close to results
with Murphy’s rule in our applications, we do not report them in our analysis.

compared with PFH and PFHRGB, the object recognition
rate we get with our 3D SIFT descriptor adapted for point
cloud gains 6.94% w.r.t. PFHRGB and 9.72% w.r.t PFH.

B.2 Performances of feature fusion strategies

Here, we evaluate the performance (i.e. the ORR) of
the different features fusion strategies presented in Sec-
tion II (Step 3). We have chosen 10 categories (apple,
tomato, banana, pitcher, cereal_box, kleenex, camera,
cof fee_mug, calculator, cell_phone) having significant
intra-class variations and high inter-class similarities. We com-
pare our four fusion approaches: the direct feature-level fusion
and the three decision-level fusions (by average weighted
fusion, PCR6, and Murphy’s rule). The results are shown in
Fig. 4.
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Fig. 4: Performances of the four feature fusion strategies.

where the legend of curves of Fig.4 must be read as follows:
DSmT means PCR6 rule in fact, 2D+3D SIFT means the
direct feature-level fusion of 2D and 3D SIFT, and ave means
the average weighted feature fusion rule. The horizontal axis
represents the total number of categories that we have tested.
Due to the variability of the objects, the information provided
by a single feature is too imprecise, uncertain and incomplete
for getting good ORR. As shown in Fig.4, ORR obtained
with the different feature fusion strategies are better than the
ORR obtained with the best single descriptor. The results of
average weighted fusion and PCR6 are close, but are lower
than the other two fusion methods. Feature-level fusion of
2D and 3D SIFT is taken as the third feature for Murphy’s
rule. However, compared with the feature-level fusion, the
performances of Murphy’s rule do not improve. So, the
direct feature-level fusion performs best among these fusion
strategies, and the following experiments are completed
based on the direct feature-level fusion. One clearly sees that
3D SIFT proposed in this work significantly outperforms
2D SIFT and PFHRGB descriptors for GOR. As shown in
Fig.4, ORR decreases with the increasing of the number
of categories because of the design of the multi-category
classifier which consists of many 1V1 SVM classifiers. Each
classification error will be accumulated to the final voting



results, leading to an increasing of recognition errors.

B.3 Robustness to intra-class variation and inter-class
similarities

In this study, we compare the ORR performances in dif-
ferent classes having high similarity (e.g., apple and tomato),
and in the same class but having strong variation (e.g., pitcher
object) as in Figs. 5 and 6 below. We evaluate the accuracy
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Fig. 6: Pitchers.

Fig. 5: Apple and Tomato.

of PFHRGB, 2D SIFT, 3D SIFT and the feature-level fusion
of 2D and 3D SIFT under the same conditions. Training and
testing samples are the same as in the first experiment. Our
simulation results are shown in Table II.

Feature descriptor | PFHRGB | 2D SIFT | 3D SIFT | 2D+3D SIFT
ORR(apple) 61.67 53.33 71.67 65.00
ORR(tomato) 100 98.33 91.67 100
ORR(banana) 91.67 93.33 93.33 100
ORR(pitcher) 70.00 95.00 96.67 98.33
ORR(cereal_box) 91.67 98.33 95.00 95.00
ORR (kleenex) 90.00 90.00 100 100
Averaged ORR 84.17 88.06 91.11 93.06

TABLE II: ORR (in %) of different classes.

As we see from Table II, using 3D SIFT increases the ORR
of 3.05% w.r.t. 2D SIFT. This shows that the introduction
of the depth information improve the quality of object
recognition. Three different objects of the pitcher class are
shown in Figure 6. As we see, there are great differences
within such class. 3D SIFT achieves ORR with 96.67%
accuracy, much superior to the 70% obtained with PFHRGB.
Apple and tomato displayed in Figure 5 look highly similar
even if they belong to two distinct classes. 3D SIFT provides
much better ORR than the other descriptors. As shown in
Table II, our GOR method based on feature-level fusion
of 2D and 3D SIFT offer better robustness to intra-class
variations and inter-class similarities, and 3D SIFT gives
higher accuracy than the other single descriptors.

B.4 Robustness to changes of the angle of view

In this experiment, we evaluate the performance of our GOR
method when applied under different observation conditions,
more precisely when the objects are observed under three very
distinct angles of view (30 deg, 45 deg and 60 deg).Training
samples are the same as the Experiment 1. Randomly select
60 objects from each view to be as the test samples. So for
each view, there are 360 test samples from 6 categories. The
experimental results are shown in Fig. 7.

From Fig. 7, one sees that ORR with 3D SIFT is relatively
accurate and stable compared with PFHRGB descriptor. The
direct feature-level fusion strategy (with ORR > 90%) offers
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Fig. 7: ORR Performances under 3 angles of view.

much better ORR than using the best single descriptor, which
indicates that the combination of 2D and 3D SIFT is effective
and robust for category recognition even under very distinct
angles of view.

B.5 Robustness to size scaling

The training samples are the same as in the first experiment.
To evaluate the robustness of our method to size scaling
(zooming), the test samples are zoomed out to 1/2, 1/3 and
1/4. As shown in Table III.

Feature descriptor PFHRGB | 2D SIFT | 3D SIFT | 2D+3D SIFT
ORR (no Zoom) 84.17 88.06 91.11 93.06
ORR (Zoom=1/2) 74.44 71.50 76.67 82.78
ORR (Zoom=1/3) 63.33 64.17 65.28 68.89
ORR (Zoom=1/4) 61.39 46.94 61.67 63.05

TABLE III: Averaged ORR (in %) for different zoomings.

As one sees in Table III, our GOR method with fusion is
superior to the algorithm based on single descriptor. However,
the ORR of each feature descriptor has decreased. Especially
when zoomed to 1/4, the accuracy of ORR with 2D SIFT is
only 46.94%. The main reason is that part of the images, such
as apple (whose original size is only 84 x 82) after scaling,
reduces the number of useful keypoints. The feature-level
fusion algorithm still provides an averaged ORR of 63.05%.

B.6 Computational time evaluation

The computational times (CT) of the different feature de-
scriptors have been evaluated with an i7-3770@3.4GHz CPU,
under x64 Win7 operating system and are shown in Table
IV. The training and test samples are the same as in the first
experiment. Because the Point cloud model contains a larger
amount of data and richer information than image, therefore
CT using point cloud is relatively long, which is normal. The
largest proportion of CT in the whole recognition process
is the feature extraction and description. 3D SIFT includes
keypoints detection and description. If the points’ number of
the object is n, the time complexity of keypoints detection is
O(octaves - scale - k-n). Because the pyramid layers octaves,



scale of each layer scale and neighborhood of key points &
are constant, the time complexity is O(n). For the detected m
keypoints, the time complexity of calculating the descriptors
of the key points is O(mn). So the time complexity of 3D
SIFT is O(mn + n), ignoring lower-order item, the time
complexity is O(mn). As seen in Table IV, the CT of 3D
SIFT has diminished of 34.75% w.r.t. PFHRGB, and the CT
performance with fusion of 2D and 3D SIFT turns out to be
faster (22.07%) than PFHRGB, and the ORR performance is
substantially improved.

Feature descriptors CT of CT of

360 test samples (in s) | each test sample (in s)
PFHRGB 3404.628 9.4573
3D SIFT 2221.608 6.1711
2D+3D SIFT 2653.272 7.3702

TABLE IV: Computational times for feature descriptors.

IV. CONCLUSIONS

Because there are many complex objects in the real scenes
we observe in the nature and because of possible large intra-
class variations and high inter-class similarities, the generic
object recognition (GOR) task is very hard to achieve in
general. In this paper we have proposed a new GOR method
based on 2D and 3D SIFT descriptors that allows to calculate
multiple feature vectors which are combined with different
strategies, and feed SVM classifier for making object recog-
nition. The evaluation of the performances based on real
open-datasets has shown the superiority of our new 3D SIFT
descriptor adapted for point cloud with respect to the existing
3D features such as PFHRGB. Our GOR method based on
feature fusion of 2D and 3D SIFT works better than the
one using best single feature. For now, if the environment
substantially changes, we have to retrain the system. To
overcome this problem we will also consider background
segmentation within GOR in future works. Also, we would like
to reduce the computational time needed for feature extraction
and description in maintaining good recognition rate, and we
want to explore more feature fusion strategies to improve (if
possible) the recognition performances.
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