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Abstract—The influence of the missing values in the classifi-
cation of incomplete pattern mainly depends on the context.In
this paper, we present a fast classification method for incomplete
pattern based on the fusion of belief functions where the missing
values are selectively (adaptively) estimated. At first, itis assumed
that the missing information is not crucial for the classification,
and the object (incomplete pattern) is classified based onlyon the
available attribute values. However, if the object cannot be clearly
classified, it implies that the missing values play an important
role to obtain an accurate classification. In this case, the missing
values will be imputed based on theK-nearest neighbor (K-
NN) and self-organizing map (SOM) techniques, and the edited
pattern with the imputation is then classified. The (original or
edited) pattern is respectively classified according to each training
class, and the classification results represented by basic belief
assignments (BBA’s) are fused with proper combination rules for
making the credal classification. The object is allowed to belong
with different masses of belief to the specific classes and meta-
classes (i.e. disjunctions of several single classes). This credal
classification captures well the uncertainty and imprecision of
classification, and reduces effectively the rate of misclassifications
thanks to the introduction of meta-classes. The effectiveness of
the proposed method with respect to other classical methodsis
demonstrated based on several experiments using artificialand
real data sets.
Keywords: information fusion, combination rule, belief func-
tions, classification, incomplete pattern.

I. I NTRODUCTION

In many practical classification problems, some attributes
of object can be missing for various reasons (e.g. the failure
of the sensors, etc). So it is crucial to develop efficient
techniques to classify as best as possible the objects with
missing attribute values (incomplete pattern), and the search
for a solution of this problem remains an important research
topic in the community [1], [2]. Many classification approaches
have been proposed to deal with the incomplete patterns [1].
The simplest method consists in removing (ignoring) directly
the patterns with missing values, and the classifier is designed
only for the complete patterns. This method is acceptable
when the incomplete data set is only a very small subset
(e.g. less than 5%) of the whole data set. A widely adopted
method is to fill the missing values with proper estimations

[3], and then to classify the the edited patterns. There have
been different works devoted to the imputation (estimation) of
missing data. For example, the imputation can be done either
by the statistical methods, e.g. mean imputation [4], regress
imputation [2], etc, or by machine learning methods, e.g.
K-nearest neighbors (K-NN) imputation [5], Fuzzyc-means
(FCM) imputation [6], [7], etc. Some model-based techniques
have also been developed for dealing with incomplete patterns
[8]. The probability density function (PDF) of the training
data (complete and incomplete cases) is estimated at first,
and then the object is classified using bayesian reasoning.
Other classifiers [9] have also been proposed to directly handle
incomplete pattern without imputing the missing values. All
these methods attempt to classify the object into a partic-
ular class with maximal probability or likelihood measure.
However, the estimation of missing values is in general quite
uncertain, and the different imputations of missing valuescan
yield very different classification results, which preventus to
correctly commit the object into a particular class.

Belief function theory (BFT), also called Dempster-Shafer
theory (DST) [10] and its extension [11], [12] offer a mathe-
matical framework for modeling uncertainty and imprecise in-
formation [13]. BFT has already been applied successfully for
object classification [14], [15], [17]–[19], clustering [20]–[23]
and multi-source information fusion [24], etc. Some classifiers
for the complete pattern based on DST have been developed by
Denœux and his collaborators to come up with the evidential
K-nearest neighbors [14], evidential neural network [19],etc.
The extra ignorance element represented by the disjunction
of all the elements in the whole frame of discernment is
introduced in these classifiers to capture the totally ignorant
information. However, the partial imprecision, which is very
important in the classification, is not well characterized.That is
why we have proposed new credal classifiers in [15]–[17], [22].
Our new classifiers take into account all the possible meta-
classes (i.e. the particular disjunctions of several singleton
classes) to model the partial imprecise information thanksto
belief functions. The credal classification allows the objects
to belong (with different masses of belief) not only to the



singleton classes, but also to any set of classes corresponding
to the meta-classes.

In our recent research works, a prototype-based credal clas-
sification (PCC) [25] method for the incomplete patterns has
been introduced to well capture the imprecision of classifica-
tion caused by the missing values. The object hard to correctly
classify are committed to a suitable meta-class by PCC, which
captures well the imprecision of classification caused by the
missing values and also reduces the misclassification errors.
In PCC, the missing values in all the incomplete patterns are
imputed using the prototype of each class, and the edited
pattern with each imputation is respectively classified by a
standard classifier (used for the classification of complete
pattern). With PCC, one obtainsc pieces of classification
results for one incomplete pattern in ac class problem, and
the global fusion of thec results is used for the credal
classification. Unfortunately, PCC classifier is computationally
greedy and time-consuming, and the method of imputation of
the missing values based on the prototype of each class is
not so precise and accurate. That is why we propose a new
innovative and more effective method for credal classification
of incomplete pattern with adaptive imputation of missing
values, and this method can be called Credal Classification
with Adaptive Imputation (CCAI) for short.

The pattern to classify usually consists of multiple at-
tributes. Sometimes, the class of the pattern can be precisely
determined using only a part (a subset) of the available
attributes, which means that the other attributes are redundant
and in fact unnecessary for the classification. In the classifica-
tion of incomplete pattern with missing values, one can attempt
at first to classify the object only using the known attributes
value. If a specific classification result is obtained, it very likely
means that the missing values are not very necessary for the
classification, and we directly take the decision on the class of
the object based on this result. However, if we the object cannot
be clearly classified with the available information, it means
that the missing information included in the missing attribute
values is probably very crucial for making the classification.
In this case, we propose a sophisticated classification strategy
for the edited pattern with proper imputation of missing
values obtained using K-NN and self-organizing map (SOM)
techniques [26].

The information fusion technique is adopted in the clas-
sification of original incomplete pattern (without imputation
of missing values) or the edited pattern (with imputation of
missing values) to obtain the good results. One can respectively
get the simple classification result represented by a simple
basic belief assignment (BBA) according to each training class.
The global fusion (ensemble) of these multiple BBA’s with a
proper combination rule, i.e. Dempster-Shafer (DS) rule ora
new rule inspired by Dubois Prade (DP) rule depending on the
actual case, is then used to determine the class of the object.

This paper is organized as follows. The basics of belief
function theory is briefly recalled in section II. The new credal
classification method for incomplete patterns is presentedin
the section III, and the proposed method is then tested and

evaluated in section IV compared with several other classical
methods. It is concluded in the final.

II. BASIS OF BELIEF FUNCTION THEORY

The Belief Function Theory (BFT) is also known as
Dempster-Shafer Theory (DST), or the Mathematical Theory
of Evidence [10]–[12]. Let us consider a frame of discernment
consisting ofc exclusive and exhaustive hypotheses (classes)
denoted byΩ = {ωi, i = 1, 2, . . . , c}. The power-set ofΩ de-
noted2Ω is the set of all the subsets ofΩ, empty set included.
In the classification problem, the singleton element (e.g.ωi)
represents a specific class. In this work, the disjunction (union)
of several singleton elements is called ameta-classwhich
characterizes the partial ignorance of classification. In BFT,
the basic belief assignment (BBA) is a functionm(.) from 2Ω

to [0, 1] satisfyingm(∅) = 0 and the normalization condition
∑

A∈2Ω
m(A) = 1. The subsetsA of Ω such thatm(A) > 0 are

called the focal elements of the belief massm(.).
The credal classification (or partitioning) [20], [21] is de-

fined asn-tupleM = (m1, · · · ,mn) of BBA’s, wheremi is
the basic belief assignment of the objectxi ∈ X , i = 1, . . . , n
associated with the different elements in the power-set2Θ.
The credal classification can well model the imprecise and
uncertain information thanks to the introduction of meta-class.
For combining multiple sources of evidence represented by
a set of BBA’s, the well-known Dempster’s rule [10] is still
widely used. We denote it by DS (standing for Dempster-
Shafer) because Dempster’s rule has been widely promoted
by Shafer in [10]. The combination of two BBA’sm1(.) and
m2(.) over 2Ω is done with DS rule of combination defined
by mDS(∅) = 0 and forA 6= ∅, B, C ∈ 2Ω by

mDS(A) =

∑

B∩C=A

m1(B)m2(C)

1−
∑

B∩C=∅

m1(B)m2(C)
(1)

DS rule is commutative and associative, and makes a com-
promise between the specificity and complexity for the com-
bination of BBA’s. However, DS rule produces unreasonable
results in high conflicting cases, and as well as in some special
low conflicting cases [27]. Many alternative rules have been
proposed to overcome the limitations of DS rule, e.g. Dubois-
Prade (DP) rule [28] and Proportional Conflict Redistributions
(PCR) rules [29]. Our method is inspired by DP rule [28]
defined bymDP (∅) = 0 and forA 6= ∅, B, C ∈ 2Θ by

mDP (A) =
∑

B∩C=A

m1(B)m2(C) +
∑

B∩C=∅
B∪C=A

m1(B)m2(C)

(2)
In DP rule, the partial conflicting beliefs are all transferred

to the union of the elements (i.e. meta-class) involved in the
partial conflict.

III. C REDAL CLASSIFICATION OF INCOMPLETE PATTERN

Our new method consists of two main steps. In the first step,
the object (incomplete pattern) is directly classified according



to the known attribute values only, and the missing values
are ignored. If one can get a specific classification result, the
classification procedure is done because the available attribute
information is sufficient for making the classification. Butif the
class of the object cannot be clearly identified in the first step, it
means that the unavailable information included in the missing
values is likely crucial for the classification. In this case, one
has to enter in the second step of the method to classify
the object with a proper imputation of missing values. In
the classification procedure, the original or edited pattern will
be respectively classified according to each class of training
data. The global fusion of these classification results, which
can be considered as multiple sources of evidence represented
by BBA’s, is then used for the credal classification of the
object. The new method is referred as Credal Classification
with Adaptive Imputation of missing values denoted by CCAI
for conciseness.

A. Step 1: Direct classification of incomplete pattern

Let us consider a set of test patterns (samples)X =
{x1, . . . ,xn} to be classified based on a set of labeled training
patternsY = {y1, . . . ,ys} over the frame of discernment
Ω = {ω1, . . . , ωc}. In this work, we focus on the classification
of incomplete pattern in which some attribute values are ab-
sent. So we consider all the test patterns (e.g.xi, i = 1, . . . , n)
with several missing values. The training data setY may also
have incomplete patterns in some applications. However, ifthe
incomplete patterns take a very small amount say less than 5%
in the training data set, they can be ignored in the classification.
If the percentage of incomplete patterns is big, the missing
values must usually be estimated at first, and the classifier
will be trained using the edited (complete) patterns. In thereal
applications, one can also just choose the complete labeled
patterns to include in the training data set when the training
information is sufficient. So for simplicity and convenience,
we consider that the labeled samples (e.g.yj , j = 1, . . . , s) of
the training setY are all complete patterns in the sequel.

In the first step of classification, the incomplete pattern say
xi will be respectively classified according to each training
class by a normal classifier (for dealing with the complete
pattern) at first, and all the missing values are ignored here.
In this work, we adopt a very simple classification method for
the convenience of computation, andxi is directly classified
based on the distance to the prototype of each class.

The prototype of each class{o1, . . . ,oc} corresponding
to {ω1, . . . , ωc} is given by the arithmetic average vector of
the training patterns in the same class. Mathematically, the
prototype is computed forg = 1, . . . , c by

og =
1

Ng

∑

yj∈ωg

yj (3)

whereNg is the number of the training samples in the class
ωg.

In a c-class problem, one can getc pieces of simple classi-
fication result forxi according to each class of training data,
and each result is represented by a simple BBA’s including

two focal elements, i.e. the singleton class and the ignorant
class (Ω) to characterize the full ignorance. The belief of
xi belonging to classwg is computed based on the distance
betweenxi and the corresponding prototypeog. Mahalanobis
distance is adopted here to deal with the anisotropic class,
and the missing values are ignored in the calculation of this
distance. The other mass of belief is assigned to the ignorant
classΩ. Therefore, the BBA’s construction is done by

{

m
og

i (wg) = e−ηdig

m
og

i (Ω) = 1− e−ηdig
(4)

with

dig =

√

√

√

√

1

p

p
∑

j=1

(

xij − ogj
δgj

)2

(5)

and

δgj =

√

1

Ng

∑

yi∈ωg

(yij − ogj)
2 (6)

wherexij is value ofxi in j-th dimension, andyij is value
of yi in j-th dimension.p is the number of available attribute
values in the objectxi. The coefficient1/p is necessary to
normalize the distance value because each test sample can
have a different number of missing values.δgj is the average
distance of all training samples in classωg to the prototype
og in j-th dimension.Ng is the number of training samples in
ωg. η is a tuning parameter, and the biggerη generally yields
smaller mass of belief on the specific classwg.

Obviously, the smaller distance measure, the bigger mass
of belief on the singleton class. This particular structureof
BBA’s indicates that we can just confirm the degree of the
objectxi associated with the specific classwg only according
to training data inwg. The other mass of belief reflects the
level of belief one has on full ignorance, and it is committed
to the ignorant classΩ. Similarly, one calculatesc independent
BBA’s m

og

i (wg), g = 1, . . . , c based on the different training
classes.

Before combining thesec BBA’s, we examine whether
a specific classification result can be derived from thesec
BBA’s. This is done as follows: if it holds thatmo1st

i (w1st) =
argmaxg(m

og

i (wg)), then the object will be considered to
belong very likely to the classw1st, which obtains the biggest
mass of belief in thec BBA’s. The class with the second biggest
mass of belief is denotedw2nd.

The distinguishability degreeχi ∈ (0, 1] of an objectxi

associated with different classes is defined by:

χi =
mo2nd

i (w2nd)

momax

i (wmax)
(7)

Let ǫ be a chosen small positive distinguishability threshold
value in (0, 1]. If the conditionχi ≤ ǫ is satisfied, it means
that all the classes involved in the computation ofχi can
be clearly distinguished ofxi. In this case, it is very likely
to obtain a specific classification result from the fusion of
the c BBA’s. The conditionχi ≤ ǫ also indicates that the
available attribute information is sufficient for making the



classification of the object, and the imputation of the missing
values is not necessary. Ifχi ≤ ǫ condition holds, hec
BBA’s are directly combined with DS rule (1) to obtain
the final classification results of the object because DS rule
usually produces specific combination result with acceptable
computation burden in the low conflicting case. In such case,
the meta-class is not included in the fusion result, because
these different classes are considered distinguishable based on
the condition of distinguishability. Moreover, the mass ofbelief
of the full ignorance classΩ, which represents the noisy data
(outliers), can be proportionally redistributed to other singleton
classes for more specific results if one knows a priori that the
noisy data is not involved.

If the distinguishability conditionχi ≤ ǫ is not satisfied, it
means that the classesw1st andw2nd cannot be clearly dis-
tinguished for the object with respect to the chosen threshold
value ǫ, indicating that missing attribute values play almost
surely a crucial role in the classification. In this case, the
missing values must be properly imputed to recover the un-
available attribute information before entering the classification
procedure. This is the Step 2 of our method which is explained
in the next subsection.

B. Step 2: Classification of incomplete pattern with imputation
of missing values

1) Multiple estimation of missing values:In the estimation
of the missing attribute values, there exist various methods.
Particularly, the K-NN imputation method generally provides
good performance. However, the main drawback of KNN
method is its big computational burden, since one needs to
calculate the distances of the object with all the training sam-
ples. Inspired by [30], we propose to use the Self Organized
Map (SOM) technique [26], [30] to reduce the computational
complexity. SOM can be applied in each class of training data,
and thenM × N weighting vectors will be obtained after
the optimization procedure. These optimized weighting vectors
allow to characterize well the topological features of the whole
class, and they will be used to represent the corresponding data
class. The number of the weighting vectors is usually small
(e.g. 5 × 6). So theK nearest neighbors of the test pattern
associated with these weighting vectors in the SOM can be
easily found with low computational complexity1. The selected
weighting vector no.k in the classwg, g = 1, . . . , c is denoted
σ
wg

k , for k = 1, . . . ,K.
In each class, theK selected close weighting vectors

provide different contributions (weights) in the estimation of
missing values. The weightpwg

ik of each vector is defined based
on the distance between the objectxi and weighting vector
σ
wg

k as follows
p
wg

ik = e(−λd
wg

ik
) (8)

1The training of SOM using the labeled patterns becomes time consuming
when the number of labeled patterns is big, but fortunately it can be done off-
line. In our experiments, the running time performance shown in the results
does not include the computational time spent for the off-line procedures.

with

λ =
cNM(cNM − 1)

2
∑

i,j

d(σi, σj)
(9)

where d
wg

ik is the Euclidean distance betweenxi and the
neighborowg

k ignoring the missing values, and1
λ

is the average
distance between each pair of weighting vectors produced by
SOM in all the classes;c is the number of classes;M × N
is the number of weighting vectors obtained by SOM in each
class; andd(σi, σj) is the Euclidean distance between any two
weighting vectorsσi andσj .

The weighted mean valuêywg

i of the selectedK weighting
vectors in class training classwg will be used for the imputa-
tion of missing values. It is calculated by

ŷ
wg

i = (

K
∑

k=1

p
wg

ik σ
wg

k )/(

K
∑

k=1

p
wg

ik ) (10)

The missing values inxi will be filled by the values of
ŷ
wg

i in the same dimensions. By doing this, we get the edited
patternxwg

i according to the training classwg. Thenxwg

i will
be simply classified only based on the training data inwg as
similarly done in the direct classification of incomplete pattern
using eq. (4) of Step 1 for convenience2.

The classification ofxi with the estimation of missing
values is also respectively done based on the other training
classes according to this procedure. For ac-class problem,
there arec training classes, and therefore one can getc pieces
of classification results with respect to one object.

2) Ensemble classifier for credal classification:Thesec
pieces of results obtained by each class of training data in
a c-class problem are considered with different weights, since
the estimations of the missing values according to different
classes have different reliabilities. The weighting factor of the
classification result associated with the classwg can be defined
by the sum of the weights of theK selected SOM weighting
vectors for the contributions to the missing values imputation
in wg, which is given by

ρ
wg

i =

K
∑

k=1

p
wg

ik (11)

The result with the biggest weighting factorρwmax

i is
considered as the most reliable, because one assumes that
the object must belong to one of the labeled classes (i.e.
wg, g = 1, . . . , c). So the biggest weighting factor will be
normalized as one. The other relative weighting factors are
defined by:

α̂
wg

i =
ρ
wg

i

ρwmax

i

(12)

If the condition3 α̂
wg

i < ǫ is satisfied, the corresponding
estimation of the missing values and the classification result

2Of course, some other sophisticated classifiers can also be applied here
according to the selection of user, but the choice of classifier is not the main
purpose of this work.

3The thresholdǫ is the same as in section III-A, because it is also used to
measure the distinguishability degree here.



are not very reliable. Very likely, the object does not belong to
this class. It is implicitly assumed that the object can belong to
only one class in reality. If this result whose relative weighting
factor is very small (w.r.t.ǫ) is still considered useful, it will be
(more or less) harmful for the final classification of the object.
So if the conditionα̂wg

i < ǫ holds, then the relative weighting
factor is set to zero. More precisely, we will take

α
wg

i =

{

0, if α̂
wg

i < ǫ
ρ
wg

i

ρ
wmax
i

, otherwise.
(13)

After the estimation of weighting (discounting) factorsα
wg

i ,
the c classification results (the BBA’smog

i (.)) are classically
discounted [10] by

{

m̂
og

i (wg) = α
wg

i m
og

i (wg)

m̂
og

i (Ω) = 1− α
wg

i + α
wg

i m
og

i (Ω)
(14)

These discounted BBA’s will be globally combined to get
the credal classification result. Ifαwg

i = 0, one getŝmog

i (Ω) =
1, and this fully ignorant (vacuous) BBA plays a neutral role
in the global fusion process for the final classification of the
object.

Although we have done our best to estimate the missing
values, the estimation can be quite imprecise when the es-
timations are obtained from different class with the similar
weighting factors, and the different estimations probablylead
to distinct classification results. In such case, we prefer to
cautiously keep (rather to ignore) the uncertainty, and maintain
the uncertainty in the classification result. Such uncertainty
can be well reflected by the conflict of these classification
results represented by the BBA’s. DS rule is not suitable here,
because all the conflicting beliefs are distributed to otherfocal
elements. A particular combination rule inspired by DP ruleis
introduced here to fuse these BBA’s according to the current
context. In our new rule, the partial conflicting beliefs are
prudently transferred to the proper meta-class to reveal the
imprecision degree of the classification caused by the missing
values. This new rule of combination is defined by:















mi(wg) = m̂
og

i (wg)
∏

j 6=g

m̂
oj

i (Ω)

mi(A) =
∏

⋃

j

wj=A

m̂
oj

i (wj)
∏

k 6=j

m̂ok

i (Ω) (15)

The global fusion formula (15) consists of two parts. In
the first part, we use the conjunctive combination to commit
the mass of belief to the specific (singleton) class, whereas
the disjunctive combination is used to transfer the conflicting
beliefs to the proper meta-class in the second part.

The test pattern can be classified according to the fusion
results, and the object is considered belonging to the class
(singleton class or meta-class) with the maximum mass of
belief. This is called hard credal classification. If one object
is classified to a particular class, it means that this objecthas
been correctly classified with the proper imputation of missing
values. If one object is committed to a meta-class (e.g.A∪B),
it means that we just know that this object belongs to one of

the specific classes (e.g.A or B) included in the meta-class,
but we cannot specify which one. This case can happen when
the missing values are essential for the accurate classification
of this object, but the missing values cannot be estimated very
well according to the context, and different estimations will
induce the classification of the object into distinct classes (e.g.
A or B).

With traditional classifiers, the missing values in each
object are usually estimated before making the classification.
In our CCAI approach, many objects can be directly classified
based on the distances to each class prototype, and the
imputation of missing values is ignored according to the
context. So the computation complexity of CCAI is generally
relatively low with respect to other methods like KNNI, PCC,
etc.

Guideline for tuning of the parameters ǫ and η: η in eq.
(4) is associated with the calculation of mass of belief on the
specific class, and the biggerη value will lead to smaller mass
of belief committed to the specific class. We advise to take
η ∈ [0.5, 0.8], and the valueη = 0.7 can be taken as the
default value. The parameterǫ is the threshold for changing
the classification strategy. It is also used in Eq. (13) for the
calculation of the discounting factor. The biggerǫ will makes
fewer objects committed to the meta-classes (corresponding to
the low imprecision of classification), but it increases therisk
of misclassification error.ǫ should be tuned according to the
compromise one can accept between the misclassification error
and imprecision.

IV. EXPERIMENTS

Two experiments with artificial and real data sets have
been used to test the performance of this new CCAI method
compared with the K-NN imputation (KNNI) method [5], FCM
imputation (FCMI) method [6], [7] and our previous credal
classification PCC method [25]. The evidential neural network
classifier (ENN) [19] is adopted here to classify the edited
pattern with the estimated values in PCC, KNNI and FCMI,
since ENN produce generally good results in the classification.
The parameters of ENN can be automatically optimized as
explained in [19]. In the applications of PCC, the tuning
parameterǫ can be tuned according to the imprecision rate
one can accept. In CCAI, a small number of the nodes in the
2-dimensional grid of SOM is given byM ×N = 3× 4, and
we take the value ofK = N = 4 in K-NN for the imputation
of missing values. This seems to provide good performance
in the sequel experiments. In order to show the ability of
CCAI and PCC to deal with the meta-classes, the hard credal
classification is applied, and the class of each object is decided
according to the criterion of the maximal mass of belief.

In our simulations, the misclassification is declared
(counted) for one object truly originated fromwi if it is
classified intoA with wi ∩A = ∅. If wi ∩A 6= ∅ andA 6= wi

then it will be considered as an imprecise classification. The
error rate denoted byRe is calculated byRe = Ne/T , where
Ne is number of misclassification errors, andT is the number



of objects under test. The imprecision rate denoted byRij is
calculated byRij = Nij/T , whereNij is number of objects
committed to the meta-classes with the cardinality valuej.
In our experiments, the classification of object is generally
uncertain (imprecise) among a very small number (e.g. 2) of
classes, and we only takeRi2 here since there is no object
committed to the meta-class including three or more specific
classes.

A. Experiment 1 (artificial data set)

In the first experiment, we show the interest of credal
classification based on belief functions with respect to the
traditional classification working with probability framework.
A 3-class data setΩ = {ω1, ω2, ω3} obtained from three 2-
D uniform distributions is considered here. Each class has
200 training samples and 200 test samples, and there are 600
training samples and 600 test samples in total as shown in
Fig.1.
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Figure 1. Training data and test data.

The uniform distributions of the three classes are character-
ized by the following interval bounds:

x-label interval y-label interval
w1 (5, 65) (5, 25)
w2 (95, 155) (5, 25)
w3 (50, 110) (50, 70)

The values in the second dimension corresponding to y-
coordinate of test samples are all missing. So test samples
are classified according to the only one available value in
the first dimension corresponding to x-coordinate. A particular
value ofK = 9 is selected in the classifier K-NN imputation
method4. The classification results of the test objects by
different methods are given in Fig. 2 (a)–(c). For notation
conciseness, we have denotedwte , wtest, wtr , wtraining

and wi,...,k , wi ∪ . . . ∪ wk. The error rate (in %) and
imprecision rate (in %) are specified in the caption of each
subfigure.

4In fact, the choice ofK ranking from 7 to 15 does not affect seriously the
results.
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(a). Classification result by FCMI
(Re = 14.67, time = 0.0469s).
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(b). Classification result by KNNI
(Re = 14.17, time = 7.9531s).
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(c). Classification result by CCAI
(Re = 5.83, Ri2 = 16.83, time = 0.0469s).

Figure 2. Classification results of a 3-class artificial dataset by different
methods.

Because they value in the test sample is missing, the class
w3 appears partially overlapped with the classesw1 andw2 on
their margins according to the value of x-coordinate as shown
in Fig. 1. The missing value of the samples in the overlapped
parts can be filled by quite different estimations obtained
from different classes with the almost same reliabilities.For
example, the estimation of the missing values of the objects
in the right margin ofw1 and the left margin ofw3 can be
obtained according to the training classw1 or w3. The edited
pattern with the estimation fromw1 will be classified into



classw1, whereas it will be committed to classw3 if the
estimation is drawn fromw3. It is similar to the test samples
in the left margin ofw2 and the right margin ofw3. This
indicates that the missing value play a crucial rule in the
classification of these objects, but unfortunately the estimation
of these involved missing values are quite uncertain according
to context. So these objects are prudently classified into the
proper meta-class (e.g.w1 ∪ w3 andw2 ∪ w3) by CCAI. The
CCAI results indicate that these objects belong to one of the
specific classes included in the meta-classes, but these specific
classes cannot be clearly distinguished by the object based
only on the available values. If one wants to get more precise
and accurate classification results, one needs to request for
additional resources for gathering more useful information.
The other objects in the left margin ofw1, right margin of
w2 and middle ofw3 can be correctly classified based on the
only known value in x-coordinate, and it is not necessary to
estimate the missing value for the classification of these objects
in CCAI. However, all the test samples are classified into
specific classes by the traditional methods KNNI and FCMI,
and this causes many errors due to the limitation of probability
framework. Thus, CCAI produces less error rate than KNNI
and FCMI thanks to the use of meta-classes. Meanwhile, the
computational time of CCAI is similar to that of FCMI, and is
much shorter than KNNI because of the introduction of SOM
technique in the estimation of missing values. It shows that
the computational complexity of CCAI is relatively low. This
simple example shows the interest and the potential of the
credal classification obtained with CCAI method.

B. Experiment 2 (real data set)

Four well known real data sets (Breast cancer, Iris, Seeds
and Wine data sets) available from UCI Machine Learning
Repository [32] are used in this experiment to evaluate the
performance of CCAI with respect to KNNI, FCMI and
PCC. ENN is also used here as standard classifier. The basic
information of these four real data sets is given in Table I.

The cross validation is performed on all the data sets, and
we use the simplest 2-fold cross validation5 here, since it has
the advantage that the training and test sets are both large,and
each sample is used for both training and testing on each fold.
Each test sample hasn missing (unknown) values, and they are
missing completely at random in every dimension. The average
error rateRe and imprecision rateRi (for PCC and CCAI) of
the different methods are given in Table II. Particularly, the
reported classification result of KNNI is the average withK
value ranging from 5 to 15.

One can see that the credal classification of PCC and
CCAI always produce the lower error rate than the traditional
FCMI and KNNI methods, since some objects that cannot be

5More precisely, the samples in each class are randomly assigned to two
setsS1 andS2 having equal size. Then we train onS1 and test onS2, and
reciprocally.

Table I
BASIC INFORMATION OF THE USED DATA SETS.

name classes attributes instances
Breast (B) 2 9 699

Iris (I) 3 4 150
Seeds (S) 3 7 210
Wine (W) 3 13 178

Table II
CLASSIFICATION RESULTS FOR DIFFERENT REAL DATA SETS(IN %).

datan FCMI KNNI PCC CCAI
Re Re {Re,Ri2} {Re,Ri2}

B 3 3.81 3.95 {3.81, 2.34} {3.66, 0}
B 6 7.32 8.20 {5.42,1.32} {4.83, 1.61}
B 7 11.42 11.54 {10.10, 2.64} {9.00, 0.66}
I 1 7.33 4.89 {5.33, 2.67} {4.00, 1.33}
I 2 14.11 11.33 {8.67,4.00} {8.00, 4.67}
I 3 17.33 18.44 {12.67, 9.33} {11.33, 12}
S 2 15.24 11.19 {9.52, 4.76} {9.52, 0}
S 4 17.14 11.98 {10.48, 4.29} {10.00, 0.48}
S 6 20.95 25.71 {16.19, 14.76} {16.19, 13.81}
W 3 26.97 26.97 {26.97, 1.69} {6.74, 1.12}
W 7 33.24 30.43 {29.78, 2.25} {7.30, 3.93}
W 11 33.43 30.90 {30.34, 2.81} {12.36, 3.93}

correctly classified using only the available attribute values
have been properly committed to the meta-classes, which can
well reveal the imprecision of classification. In CCAI, some
objects with the imputation of missing values are still classified
into the meta-class. It indicates that these missing valuesplay
a crucial role in the classification, but the estimation of these
missing values is no very good. In other words, the missing
values can be filled with the similar reliabilities by different
estimated data, which lead to distinct classification results. So
we have to cautiously assign them to the meta-class to reduce
the risk of misclassification. Compared with our previous
method PCC, this new method CCAI generally provide better
performance with lower error rate and imprecision rate, and
it is mainly because more accurate estimation method (i.e.
SOM +KNN ) for missing values is adopted in CCAI. This
third experiment using real data sets for different applications
shows the effectiveness and interest of this new CCAI method
with respect to other methods.

V. CONCLUSION

A fast credal classification method with adaptive imputation
of missing values (called CCAI) for dealing with incomplete
pattern has been presented. In step 1 of CCAI method, some
objects (incomplete pattern) are directly classified ignoring the
missing values if the specific classification result can be ob-
tained, which effectively reduces the computation complexity
because it avoids the imputation of the missing values. How-
ever, if the available information is not sufficient to achieve a
specific classification of the object, we estimate (recover)the
missing values before entering the classification procedure in



the second step. The SOM and K-NN approaches are applied
to make the estimation of missing attributes with a good
compromise between the estimation accuracy and computation
burden. Information fusion technique is employed to combine
the multiple simple classification results respectively obtained
from each training class for the final credal classification of
object. The credal classification in this work allows the object
to belong to different singleton classes and meta-class with
different masses of belief. Once the object is committed to
a meta-class (e.g.A ∪ B), it means that the missing values
cannot be accurately recovered according to the context, and
the estimation is not very good. Different estimations will
lead the object to distinct classes (e.g.A or B) involved in
the meta-class. So some other sources of information will be
required to achieve more precise classification of the object
if necessary. Two experiments have been applied to test the
performance of CCAI method with artificial and real data sets.
The results show that the credal classification is able to well
capture the imprecision of classification and effectively reduces
the misclassification errors as well.
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