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Abstract—The main objective of this paper is to present, to
apply, and to test the effectiveness of the new method, based on
belief functions, proposed by Dezert et al. in order to evaluate
the quality of the individual association pairings provided in
the classical optimal data association solution for improving
the performances of multitarget tracking systems in clutter,
when some of the association decisions given in the optimal
assignment solution are unreliable and doubtful and lead to
potentially critical mistake. This evaluation is based on a Monte
Carlo simulation for particular difficult maneuvering and non-
maneuvering MTT problems in clutter. A comparison with the
results obtained on the base of Kinematic only Data Association
and Generalized Data Association is made.
Keywords: Data association, Belief Functions, PCR6 fusion

rule, multitarget tracking.

I. INTRODUCTION

Data association (DA) is a fundamental and central problem

in up-to-date multitarget tracking (MTT) systems ( [1] and

[2]). It entails selecting the most trustable associations between

uncertain sensor’s measurements and existing targets at a given

time. In the presence of dense MTT environment, with false

alarms and sensors detection probability less than unity, the

problem of DA becomes more complex, because it should

contend with many possibilities of pairings, some of which are

in practice very doubtful, unreliable, and could lead to critical

association mistakes in overall tracking process. To avoid such

cases, sometimes it is better to wait for a new measurements

during the next scan, instead of taking a hard DA decision,

which actually is not always unique.

Several methods have been devised over the years, in

order to resolve properly DA problem. They are originating

from different models. Some rely on the established reward

matrix based on Kinematic only Data Association (KDA) and

on a probabilistic framework [3], [4]. Some other studies

are based on Belief Functions (BF) ([5]- [9]), motivating

the incorporation of the advanced concepts for Generalized

Data Association (GDA) ([6]- [8]), where a particular target’s

attribute is introduced into the association logic in order to

compensate the complicated cluttered cases, when kinematics

data are insufficient for adequate decision making. Dezert-

Smarandache Theory (DSmT) of plausible and paradoxical

reasoning [8] is used to model and to process the utilized

attribute data. Although interesting and approved, all these

methods currently developed are limited to the following

aspect - all of them solve the optimal DA problem and use

all optimal observations-to-tracks pairings, selected in the first

best DA solution to update tracks, even if some of them have

poor quality. In consequence the overall tracking performance

could be degraded substantially. In order to deal with this case

the most recent method to evaluate the Quality Assessment

of Data Association (QADA) encountered in multiple target

tracking applications in a mono-criterion context is proposed

by Dezert and Benameur [10]. It is extended in [11] for

the multi-criteria context. This novel method assumes the

reward matrix is known, regardless of the manner in which

it is obtained by the user. It is based on BF for achieving

the quality of pairings (interpreted as a confidence score)

belonging to the optimal data assignment solution based on

its consistency (stability) with respect to all the second best

solutions, provided by a chosen algorithm.

This paper is an extension of our preliminary study on the

effect of applying QADA method in MTT presented in [17].

The main purpose of our paper is to assess the efficiency of

QADA method in a critical, conflicting MTT situation. The

evaluation is based on a Monte Carlo simulation for particular

difficult maneuvering and non-maneuvering MTT problems

in clutter. The QADA based MTT performance is compared

with the results, obtained for KDA and GDA based MTT,

concerning the same scenarios. The paper is organised as

follows. In order to achieve a good readability of the paper,

we recall in section II the data association problem within

the MTT context, and in a section III the details of the new

method, proposed by Dezert et al. [10] for quality assessment

of pairings, chosen in the optimal DA solution. In section IV

we discuss and propose the way in which Kalman filtering

could be affected in order to reflect the knowledge we have

obtained on the base of QADA method. Two simulation MTT

scenarios (with non-maneuvering and maneuvering targets) are

presented and the results, obtained on the base of QADA-,

KDA-, and GDA based MTT are discussed. Conclusions are

made in Section VI.

II. DATA ASSOCIATION PROBLEM IN MTT CONTEXT

The DA problem consists in finding the global optimal

assignments of targets Ti, i = 1, ...,m to some measurements

zj , j = 1, ..., n at a given time k by maximizing the overall



gain in such a way, that no more than one target is assigned

to a measurement, and reciprocally.
The m × n reward (gain/painoff) matrix Ω = [ω(i, j)] is

defined by its elements ω(i, j) > 0, representing the gain of

the association of target Ti with the measurement zj . These

values are usually homogeneous to the likelihood ratios. In our

case ω(i, j) represents the normalized distances between the

measurement Zj and target Ti : d2(i, j) � (zj(k)− ẑi(k|k −
1))′S−1(k)(zj(k) − ẑi(k|k − 1)) ≤ γ computed from the

measurement zj(k) and its prediction ẑi(k|k−1) computed by

the tracker of target i (see [2] for details), and the inverse of

the covariance matrix S(k) of the innovation computed by the

tracking filter. In this case the DA problem consists in finding

the best assignment, minimizing the overall cost.
The optimal DA problem consists in finding the m × n

binary association matrix A = [a(i, j)] with a(i, j) ∈ {0, 1},

maximizing the global reward R(Ω,A), given by:

R(Ω,A) �
m∑
i=1

n∑
j=1

ω(i, j)a(i, j). (1)

If a(i, j) = 1, it means that one has an association between

target Ti and measurement zj . The association indicator value

a(i, j) = 0 means that they are not associated.

a(i, j) =

{
1, if zj is associated to track Ti

0 otherwise
(2)

The importance of the assignment problem is quite clear

and various successful solutions to its solving already exist.

Among the well known are Kuhn-Munkres algorithm (known

as Hungarian) [12], [13], and its extension proposed by

Bourgeois and Lassalle in [14] to rectangular matrices. More

sophisticated Murty’s method [15] provides not only the first

best assignment, but also the m-best assignments in order of

increasing cost, as it was shown in the examples in [10], [11].

The best optimal assignment solution is not necessarily unique,

as well as the second best one. Usually in MTT algorithms the

first best assignment solution is taken as a hard decision for

association. But in some real practical cases of dense multi-

target and cluttered environment, DA problem is difficult to

solve, because some of the associations decisions a(i, j) are

unreliable, so they could lead to potential mistakes.
For example, in case of incorrect determination of the

incoming measurements for two tracks in such a way, that they

are too close, the solution of the assignment problem, that is

the core of the Global Nearest Neighbour (GNN) approach,

is impossible to be sufficiently explicit. In such a case, it will

be more cautious not to rely on all the pairings confirmed in

the first best solution, no matter than only some of them are

trustable enough. Utilizing the already obtained and available

m-best assignments solutions, Dezert et al. [10], [11] provided

an appealing method for taking into account this knowledge.

III. QUALITY ASSESSMENT OF PAIRINGS IN DA

In order to establish the quality of particular associations,

associated with the optimal assignment matrix A1, and sat-

isfying the condition a1(i, j) = 1, QADA method proposes

to utilize both, first and second assignment solutions A1 and

A2. For a self-containing purpose, this section recalls briefly

the principle of QADA that has been already detailed in [10],

[11] with a tracking application in [17].

The main idea behind it is to compare the values a1(i, j)
in A1 with the corresponding values a2(i, j) in A2, and to

identify if there is a change of the optimal pairing (i, j). In

our MTT context (i, j) means an association between mea-

surement zj and target Ti. One establishes a quality indicator

associated with this pairing, depending on the stability of

the pairing and also, on its relative impact in the global

reward. The proposed method works also when the 1st and

2nd optimal assignments A1 and A2 are not unique, i.e., there

are multiplicities available. The construction of the quality

indicator is based on BF theory and Proportional Conflict

Redistribution Rule no.6 (PCR6), defined within DSmT [8]. It

depends on the type of the pairing matching, as it is described

below:

• If a1(i, j) = a2(i, j) = 0, one has a full agreement on the

hypothesis ’non-association’ of the given pairing (Ti, zj)
in A1 and A2. This ’non-association’ has no impact

on the global reward values R1(Ω,A1) and R2(Ω,A2),
therefore it will be useless to utilize it in DA. Hence,

in this case, the quality indicator will be set to zero,

q(i, j) = 0.

• If a1(i, j) = a2(i, j) = 1, one has a full agreement on

the hypothesis ’association’ of the pairing (Ti, zj) in A1

and A2. This ’association’ (Ti, zj) has different impacts

on the global reward values R1(Ω,A1) and R2(Ω,A2).
In order to estimate the quality of this matching pairing,

one establishes two Basic Belief Assignments (BBAs),

ms(.), s = 1, 2, according to both sources of information

(1st and 2nd optimal assignments matrices A1 and A2).

The frame of discernment consists of a single hypothesis

X = (Ti, zj) : measurement zj belongs to the track Ti.

The ignorance is modelled by the proposition X ∪ X̄ ,

where X̄ is the negation of hypothesis X:{
ms(X) = a1(i, j).ω(i, j)/R1(Ω,A1)

ms(X ∪ X̄) = 1−ms(X)
(3)

Applying the conjunctive rule of combination [8] (Vol.

1), one gets:⎧⎪⎨
⎪⎩
m12(X) = m1(X)m2(X) +m1(X)m2(X ∪ X̄)

+m1(X ∪ X̄)m2(X)

m12(X ∪ X̄) = m1(X ∪ X̄)m2(X ∪ X̄)
(4)

The pignistic transformation [16] is applied in order

to obtain pignistic probabilities, built on the base of

combined belief assignments, such as: BetP (X) =
m12(X) + 1

2 .m12(X ∪ X̄) and BetP (X̄) = 1
2 .m12(X ∪

X̄). Then one chooses the quality indicator, associated

with the pairing (i, j), as q(i, j) = BetP (X).
• If a1(i, j) = 1 and a2(i, j) = 0, then a conflict is

encountered on the association (Ti, zj) in A1 and A2.



Then one could find the association (Ti, zj2) in A2, where

j2 is the index, such that a2(i, j2) = 1. In order to define

the quality of such conflicting association, one establishes

two BBAs, ms(.), s = 1, 2 according to both sources

of information (A1 and A2). The frame of discernment

consists of two propositions: Θ = {X = (Ti, zj), Y =
(Ti, zj2)}, and the BBAs are defined by [10].{

m1(X) = a1(i, j) · ω(i,j)
R1(Ω,A1)

m1(X ∪ Y ) = 1−m1(X)
(5)

{
m2(Y ) = a2(i, j2) · ω(i,j2)

R2(Ω,A2)

m2(X ∪ Y ) = 1−m2(Y )
(6)

Applying PCR6 fusion rule [8] (Vol. 3), one gets:⎧⎪⎨
⎪⎩
m(X) = m1(X).m2(X ∪ Y ) +m1(X) · m1(X)m2(Y )

m1(X)+m2(Y )

m(Y ) = m1(X ∪ Y ).m2(Y ) +m2(Y ) · m1(X)m2(Y )
m1(X)+m2(Y )

m(X ∪ Y ) = m1(X ∪ Y )m2(X ∪ Y )
(7)

Applying again the pignistic transformation, one gets

BetP (X) = m(X) + 1
2 .m(X ∪ Y ) and BetP (Y ) =

m(Y ) + 1
2 .m(X ∪ Y ). Hence, the quality indica-

tors here are chosen as: q(i, j) = BetP (X) and

q(i, j2) = BetP (Y ). The absolute quality factor be-

comes: Qabs(A,A2) =
∑m

i=1

∑n
j=1 .a(i, j).q(i, j).

Once obtained, this quality matrix Q = [q(i, j)], i =
1, . . . ,m; j = 1, . . . , n, where the elements q(i, j) ∈
[0, 1] define the quality of particular associations, chosen

in the optimal assignment matrix A1. It will be utilized

in the next step of the classical MTT algorithm - Kalman

filtering (KF).

IV. KALMAN FILTERING INFLUENCED BY QADA METHOD

The classical target tracking algorithm was run, consisting

of two basic steps: (i) data association to associate the proper

measurements (distance, angle) with correct targets and (ii)

track filtering to update the targets state vectors, once the

optimal assignment is found. In our simulation the Global

Nearest Neighbour (GNN) [1] approach is applied in order

to make a decision for data associations. GNN approach is

a DA method that provides an assignment matrix for quality

assessment of data association.

The Converted Measurement Kalman Filter (CMKF) is used

for track filtering. We will not recall it in details, which can

be found in many standard textbooks ( [1], [2]), but will

make an impact on the manner, in which the obtained quality

assessment of pairings in the optimal assignment solution

influences the target’s state updating.

In order to derive KF equations, the goal is to find an

equation computing an a posteriori state estimate x̂(k+1|k+1)
at time (k+1) as a linear combination of an a priori estimate

x̂(k + 1|k), and a weighted difference between the true

measurement z(k + 1) and a measurement prediction:

x̂(k + 1|k + 1) = x̂(k + 1|k) +W(k + 1)z̃(k + 1) (8)

The difference z̃(k + 1) � z(k + 1)−Hx̂(k + 1|k), called a

measurement innovation (or residual), reflects the discrepancy

between the predicted measurement ẑ(k + 1|k) = H(k +
1)x̂(k + 1|k) and the true one z(k + 1), where H(k + 1) is

the so-called observation matrix. If z̃(k + 1) is equal to zero,

it means, that both, the true measurement and predicted one

are in full agreement, which is the perfect case. The matrix

W(k + 1) is the filter’s gain matrix obtained by minimizing

the a posteriori estimate error covariance. It is given by

the following formulae, where R is the measurement error

covariance, and P(k+1|k) is the predicted covariance matrix

of the state estimate error:

W(k + 1) = P(k + 1|k)HT (k + 1)S−1(k + 1) (9)

= P(k + 1|k)HT (k + 1)

· [H(k + 1)P(k + 1|k)HT (k + 1) +R]
−1

(10)

From Eqs. (8) and (10) one could conclude, that the value

of measurement error covariance R influences the gain’s value

W(k+1), and respectively the state estimate in the way below:

• If the measurement error covariance R → 0, the true

measurement z(k + 1) is trusted more, and in the same

time predicted measurement Hx̂(k+1|k) is trusted less.

• If the measurement error covariance R increases, the true

measurement z(k+1) is trusted less, and in the same time

predicted measurement Hx̂(k + 1|k) is trusted more.

Let’s now recall again what kind of information one obtains,

having in hand the quality matrix, derived by QADA method

[10]. It gives us a knowledge about the confidence q(i, j) in

all pairings (Ti, zj), i = 1, ..,m; j = 1, .., n, chosen in the

first best assignment solution. The smaller quality (confidence)

of hypothesis “zj belongs to Ti” means, that the particular

measurement error covariance R was increased and one should

not trust fully in the actual (true) measurement z(k + 1).

Having this conclusion in mind, in this work we propose,

such a behaviour of the measurement error covariance to be

modelled by R = R
q(Ti,zj)

, for every pairing, chosen in the

first best assignment and on the base of corresponding quality

value obtained. Then, Kalman filter gain decreases, and as a

result, the true measurement zj(k + 1) is trusted less in the

updated state estimate x̂(k + 1|k + 1).

The MTT algorithm tested in this paper is based on the

classical one (using Kalman Filters based on kinematics mea-

surements) because we are only concerned with impact QADA

on the performances of such type of tracking filters for now.

Our aim is not to compare this QADA-MTT to other more

sophisticate MTT algorithms1, but we believe that QADA

approach could also be useful for improving performances of

more sophisticate MTT algorithms as well. This is left for

future research works.

1In fact, we will just compare QADA-MTT to KDA-MTT and GDA-MTT
based on CMKF in Section V.



V. SIMULATION SCENARIOS AND RESULTS

Two simulation MTT scenarios - non-maneuvering and

maneuvering are presented and the results, obtained on the

base of QADA-, KDA-, and GDA based MTT are discussed.

A. Maneuvering targets simulation scenario
The simulation scenario (Fig. 1) consists of three air targets

with two classes. The stationary sensor is located at the origin.

The sampling period is Tscan = 5sec and the measurement

standard deviations are 0.4 deg and 25m for azimuth and

range respectively. The targets go from West to East with the

following type order CFC (C=Cargo, F=Fighter) with constant

velocity 100m/sec. At the beginning the targets move from

different directions. The first target moves from North-West

with heading 120 degrees from North. At scan no. = 8
the target performs a maneuver until scan no. = 15 with

transversal acceleration +1.495m/s2 and settles towards East,

moving in parallel according to X axis. The second target

moves during the whole scenario in parallel according to

X from West to East without maneuvering. The third target

at the beginning moves from South-West with heading 60
degrees from North. At scan no. = 8 the target performs a

maneuver until scan no. = 15 with transversal acceleration

−1.495m/s2 and settles towards East, moving in parallel

according to X axis. The inter-distance between the targets

during scans 15th - 18th (the parallel segment) is approxi-

mately 150m. At scan no. = 18 to scan no. = 25 the first

and the third targets make new maneuvers. The first one is

directed to North-East and the second - to South-East. The

process noise standard deviations for the two nested models

for constant velocity IMM (Interacting Multiple Models) filter

[1], [3] are 0.1m/s2 and 7m/s2 respectively. The number of

false alarms (FA) follows a Poisson distribution and FA are

uniformly distributed in the surveillance region.
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Figure 1. Noise-free maneuvering MTT Scenario.

Fig. 2 shows the respective noised scenario.
GDA-MTT [6], [7] improves DA process by utilizing

target’s type decision based on the confusion matrix C = [Cij ]
coupled with the classical kinematic measurements, where

Cij = P (Td = Tj/TrueTargetType = Ti) represents the

probability of decisions Td = (T1 � Fighter, T2 � Cargo),
that the target type is j when its real type is i. In our

simulation C =

[
0.95 0.05
0.05 0.95

]
.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

x 104

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
x 104

1

2

3

C

F

C

Noised Scenario

X[m]

Y[
m

]

Figure 2. Noised maneuvering MTT Scenario.

Monte Carlo (MC) simulations for the considered MTT

scenario are made for 200 MC runs, applying KDA, QADA,

and GDA. Our goal is to evaluate, show, and to discuss

the effect of Quality Assessment of Optimal Assignment for

Data Association on the overall target tracking performance

in comparison to results, obtained for the same scenario,

by Kinematic only Data Association, and Generalized Data

Association based MTT. We use an idealized track initiation

in order to prevent uncontrolled impact of this stage on the

statistical parameters of the tracking process during Monte

Carlo tests of the new developed algorithm. The true targets

positions (known in our simulations) for the first two scans

are used for tracks initiation.

The evaluation of MTT performance is based on the criteria

of tracks’ purity, tracks’ life, and percentage of miscorrelation.

Track’s purity criteria examines the ratio between the number

of particular performed (jth observation - ith track) associ-

ations (in case of detected target) over the total number of

all possible associations during the tracking scenario. Track’s

life is evaluated as an average number of scans before track’s

deletion. In our simulations, a track is cancelled and deleted

from the list of tracked tracks, when during 3 consecutive

scans it cannot be updated with some measurement because

there is no validated measurement in the validation gate. We

call this, the “cancelling/deletion condition”. The status of the

tracked tracks is denoted “alive”.

The percentage of miscorrelation examines the relative

number of incorrect (observation-to-track) associations during

the scans.

The results for less noised case (with 0.2 FA in average in

the filter validation gate) are given in Table 1.

Table I
MANEUVERING SCENARIO: COMPARISON BETWEEN KDA, QADA, GDA

BASED MTT PERFORMANCES FOR FA = 0.2.

KDA-MTT QADA-MTT GDA-MTT

Average Track Life [%] 86.65 92.82 91.06
Average Miscorrelation [%] 7.27 3.69 3.06

Track Purity [%] 77.44 88.20 85.74

QADA-MTT exceeds KDA-MTT according to average track

life and track purity, and shows better performance concerning

the encountered average track life in comparison to GDA-

MTT. Figure 3 shows the most informative knowledge - a



percentage of miscorrelations, encountered during the consec-

utive scans. One could see, that QADA-MTT shows almost

two times better performance in comparison to KDA-MTT,

and is close to GDA-MTT performance.
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Figure 3. Maneuvering scenario: Average miscorrelations in KDA-MTT,
QADA-MTT, GDA-MTT for noised case FA = 0.2

The respective results for the most noised case (with 0.4

FA in average in the filter validation gate) are given in Table

2 below.

Table II
MANEUVERING SCENARIO: COMPARISON BETWEEN KDA, QADA, GDA

BASED MTT PERFORMANCES FOR FA = 0.4

KDA-MTT QADA-MTT GDA-MTT

Average Track Life [%] 74.27 86.61 86.52
Average Miscorrelation [%] 10.58 7.05 4.68

Track Purity [%] 60.42 77.96 79.35

As a whole, the results for FA = 0.4 are deteriorated

in comparison to the less noised case, but still QADA-MTT

shows stably better performance with respect to KDA-MTT

performance. The average track life keeps a little bit higher

than in GDA-MTT case.

The Fig.4, showing the percentage of miscorrelations in

more difficult noised case, confirms that QADA-MTT over-

comes KDA-MTT performance.
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Figure 4. Maneuvering scenario: Average miscorrelations in KDA-MTT,
QADA-MTT, GDA-MTT for noised case FA = 0.4

The figures 5 and 6 show typical performances of QADA-

MTT and KDA-MTT systems.

Figure 5. Maneuvering scenario: Typical performance of QADA based MTT.

Figure 6. Maneuvering scenario: Typical performance of KDA based MTT.

The figures 7 and 8 show the averaged filtered errors along

X (designated by asterisk) and Y (designated by circles) axes,

and the distance error associated with the maneuvering track

1 in the considered scenario.
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Figure 7. Filtered errors along X,Y for maneuvering track 1 - KDA-MTT,
QADA-MTT, GDA-MTT.

For the maneuvering target 1, the errors, along X axis,

obtained by using QADA-MTT, are definitely smaller than

those, encountered with KDA-MTT. The errors along Y are

a little bit bigger than respective errors along X, but as a

whole the distance error, encountered by using QADA-MTT

are smaller than in KDA-MTT. MC errors are evaluated on the

base of the averaged errors associated with all “alive” tracks.

Some of the errors occurred (for example in Fig.7 and Fig.8)
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Figure 8. Maneuvering scenario: Distance errors for maneuvering track 1 -
KDA-MTT, QADA-MTT, GDA-MTT.

could be explained by the unrealized canceling of tracks at the

end of the scenario, when some tracks go toward canceling, but

cannot satisfy the canceling condition because of lack of time.

As a result they are not cancelled (and not deleted) leading

that way to the increasing error.

Figures 9 and 10 show the behaviour of the same errors,

but now associated with the near-by non-maneuvering target

2.
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Figure 9. Maneuvering scenario: Filtered errors along X,Y for non-
maneuvering track 2 - KDA-MTT, QADA-MTT, GDA-MTT.
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Figure 10. Maneuvering scenario: Distance errors for non-maneuvering track
2 - KDA-MTT, QADA-MTT, GDA-MTT.

For the non maneuvering target 2, the filtered errors

along X and Y axes, obtained by using QADA-MTT, are

smooth and definitely smaller then those, encountered with

KDA-MTT. As a consequence, the associated with QADA-

MTT distance error is smaller than in KDA- and GDA-MTT.

The errors are calculated on the base only of the “alive” tracks.

B. Non-maneuvering targets simulation scenario

The noise-free non-maneuvering targets simulation scenario

(see Fig.11) consists of three air targets moving in parallel

from West to East with the type order CFC (C=Cargo,

F=Fighter) with constant velocity of 100m/sec and a

distance between them 150m. The stationary sensor is located

at the origin. The sampling period is Tscan = 5sec, and the

measurement standard deviations are 0.5 deg and 65m for

azimuth and range respectively. The surveillance of moving

targets is performed during 15 scans. The confusion matrix,

utilized by GDA is C =

[
0.95 0.05
0.05 0.95

]
. Fig. 12 shows the

respective noised scenario.
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Figure 11. Noise-free non-maneuvering MTT Scenario.
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Figure 12. Noised non-maneuvering MTT Scenario.

As reported in Table 3, QADA-MTT shows again almost

2 times better performance, in comparison to KDA-MTT,

according to the average miscorrelations, and also better

performance regarding the average track life and track purity.

Table III
NON-MANEUVERING SCENARIO: COMPARISON BETWEEN KDA, QADA,

GDA BASED MTT PERFORMANCES FOR FA = 0.2.

KDA-MTT QADA-MTT GDA-MTT

Average Track Life [%] 89.79 94.21 97.59
Average Miscorrelation [%] 21.36 10.77 5.82

Track Purity [%] 64.46 81.72 90.15



Fig.13 shows the percentage of miscorrelations in less

noised case (with 0.2 FA in average per gate).
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Figure 13. Non-maneuvering scenario: Average miscorrelations in KDA-
MTT, QADA-MTT, GDA-MTT.

The same QADA-MTT behaviour is valid in the more dense

cluttered environment with 0.4 FA in average per gate (see

table 4 and fig. 14).

Table IV
NON-MANEUVERING SCENARIO: COMPARISON BETWEEN KDA, QADA,

GDA BASED MTT PERFORMANCES FOR FA = 0.4.

KDA-MTT QADA-MTT GDA-MTT

Average Track Life [%] 90.72 92.18 96.77

Average Miscorrelation [%] 20.69 12.15 6.26

Track Purity [%] 65.46 77.38 88.82
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Figure 14. Non-maneuvering scenario: Average miscorrelations in KDA-
MTT, QADA-MTT, GDA-MTT.

The figures 15 and 16 show typical performances of QADA-

MTT and KDA-MTT systems.

The figures 17–20 show the encountered filtered errors along

X and Y axes and the distance errors, associated with the

intermediate track 2 for both noised cases (when the number

of FA per gate is 0.2 and 0.4).

One observes (for example in Fig.9 and Fig.17) that er-

rors associated with this simpler (non-maneuvering) scenario

sometimes appear to be greater than in the previous more

complicated (maneuvering) one. It is because the sensor’s

errors are defined deliberately greater in the non-maneuvering

scenario. It provokes a complex situations, where the impact

of QADA method is better demonstrated.

Figure 15. Non-maneuvering scenario: Typical performance of QADA based
MTT.

Figure 16. Non-maneuvering scenario: Typical performance of KDA based
MTT.

0 5 10 15
0

20

40

60

80

100

120

140
Nonmaneuvering scenario: Filtered Errors along X,Y−track 2: KDA−MTT, QADA−MTT, GDA−MTT

scans

[m
]

X−error KDA−MTT
X−error QADA−MTT
X−error GDA−MTT
Y−error KDA−MTT
Y−error QADA−MTT
Y−error GDA−MTT

FA=0.2

Figure 17. Non-maneuvering scenario: Filtered errors along X,Y for track 2
- KDA-MTT, QADA-MTT, GDA-MTT.
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Figure 18. Non-maneuvering scenario: Filtered errors along X,Y for track 2
- KDA-MTT, QADA-MTT, GDA-MTT.

VI. CONCLUSIONS

This work assesses the efficiency of MTT performance in

cluttered conflicting situations, based on the recent QADA
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Figure 19. Non-maneuvering scenario: Distance errors for non-maneuvering
track 2 - KDA-MTT, QADA-MTT, GDA-MTT.
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Figure 20. Non-maneuvering scenario: Distance errors for non-maneuvering
track 2 - KDA-MTT, QADA-MTT, GDA-MTT.

method. The QADA based MTT performance is compared

with the results, obtained for KDA and GDA based MTT,

concerning two (maneuvering and non-maneuvering targets)

scenarios. Our Monte Carlo simulation results show that

QADA-MTT performs better than KDA-MTT for all measures

of performances in all scenarios under low or heavy clutter

conditions with target detection probabilities less than one,

which is the main result of this paper.

Concerning the comparison of performances of QADA-

MTT (using kinematics measurements only) with respect to

GDA-MTT, we observe that the performances of GDA-MTT

are slightly better than those of QADA-MTT. This conclu-

sion is not very surprising because GDA-MTT uses more

information (kinematics and attributes) than KDA-MTT or

QADA-MTT (which are based on kinematics measurements

only). Therefore, the ability of GDA-MTT to provide better

tracking performances is what we naturally expect. However,

we must emphasize that QADA method could also be used to

improve GDA-MTT as well in a similar manner as it has been

used to improve the performances of KDA-MTT. This possible

improvement of GDA-MTT with QADA is under investigation

and will be reported in a forthcoming publication.

Taking in mind, that MTT problems as a general do not

able to utilize additional target attribute information, (i.e. when

only kinematic measurements are available), applying QADA

instead of KDA leads to better MTT performance, because

of its ability to estimate the quality of the individual pairings

given in the optimal assignment solution. QADA is totally

independent of the applied logic to obtain the best DA solution.

Hence, it could be applied successfully in all cases when

attribute or/and kinematic data are available.
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