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Abstract—Classifier fusion is a classical approach to improve
the classification accuracy. The multiple classifiers to combine
have in general different classification qualities (i.e. perfor-
mances), and the proper evaluation of the classifier quality plays
an important role for achieving the best global performance.
We propose a new method for classifier fusion based on refined
reliability evaluation (CF-RRE). For each object, the reliability
of its classification result with a given classifier is characterized
by a matrix R.x. (c being the number of classes in the data set),
which is estimated based on the classifier performance in the
neighborhoods (i.e. K-nearest neighbors) of the object using the
training data. The reliability matrix is used to make a cautious
discounting of the classification result. More specifically, the
probability (or belief) of the object associated with each class is
cautiously redistributed according to the reliability matrix under
the belief functions framework. The discounted classification
results of each classifier can be combined by Dempster’s rule for
making the final class decision. Our simulation results illustrate
the potential of this new method using real data sets, and they
show that CF-RRE can improve substantially the classification
accuracy.

Keywords: classifier fusion, belief functions, reliability, dis-

counting, classification.

I. INTRODUCTION

The classification accuracy can be efficiently improved by
proper fusion of multiple classifiers, which usually provide
complementary classification knowledge for the query pattern
from different points of view. This complementarity can be
achieved by extracting different features, by employing dif-
ferent classifiers, as well as by randomly selecting different
training data sets [1]. The fusion approach is expected to re-
duce the error rate and enhance the robustness of classification
compared with any individual classifier.

Many fusion methods have been developed for making a
class decision from the individual classifiers [2]. The selection
of appropriate fusion strategy mainly depends on the formats
of classifier output. If the output of the classifier consists only
of a label value (i.e. a hard-decision classifier), the simple
majority voting method is often recommended. If the classifier
can generate soft membership measures, like probability value,
fuzzy memberships or belief functions, the linear combi-
nation way (average, sum, etc) [3], Bayesian combination
[4], Bayesian Model Averaging (BMA) [5], fuzzy rules [6],
evidential reasoning technique [1], [7] can be used. The soft
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classification result generally offers more useful information
than a single hard label, and the fusion of the soft outputs of
different classifiers can improve significantly the classification
performance [8].

Belief functions (BF) [9]-[11] known as Dempster-Shafer
theory (DST), provides an interesting framework to represent
and combine uncertain information [12], [13]. Belief functions
allow the object to be associated with not only the singleton
classes but also any sets of classes according to a basic belief
assignment (BBA), and we adopt it here for the ensemble of
multiple classifiers. The belief functions have been already
successfully applied in the information fusion [14], [24], data
classification [15]-[17] and clustering [18], decision-making
support [19], and so on. Particularly, several methods [1], [7],
[20] have been introduced for the fusion of multiple classi-
fiers based on belief functions. In [20], several combination
strategies (i.e. majority voting, Bayesian formalism and DS
model) were introduced, and the conditional probability of the
object belonging to different classes was derived based on the
confusion matrix. For DS model, each evidence is represented
by dichotomous mass functions including three focal elements
(e.g. A, A and ignorance element (2), and it was defined
according to the overall performance of classifiers. In [7],
a class-indifferent method was proposed for multi-classifier
fusion using DS rule, and the classifier decisions were modeled
by triplet and quartet evidential structures. In [1], an optimal
combination scheme was presented based on a parameterized
family of t-norms for an ensemble of multiple classifiers that
provides the partly dependent information, and the parameter
can be optimized to achieve the minimum error criterion.

In the fusion process, the classifiers have in general different
reliability factors which play an important role to improve the
overall classification accuracy. The reliability factor is usually
determined based on the overall classification performance
(e.g. accuracy) in the training set, and many methods [21] have
been proposed to compute it. In [22], a contextual discounting
method has been introduced taking into account the refined
reliability knowledge, where the reliability of information
source were dependent of the knowledge of the ground truth
(true value of the variable known in simulations), which is
unfortunately rarely known in real applications.



In many applications, the reliabilities of classification results
obtained by one classifier are related with the objects to clas-
sify. Different elements (i.e. the different probabilities assigned
to each class) in the soft classification result of one object may
also have different reliabilities, because the difference between
the output value of classifier and the expected value (truth)
usually is not the same for the different elements. As example,
let’s consider an object y with true class ¢(y) = wy to classify
over the frame of discernment Q@ = {w;,ws,ws}. Let us
assume that the classifier provides the following probability
assignments p(w1) = 0.4, p(we) = 0.5, and p(wz) = 0.1.
If the classifier would have been 100% reliable, it should
have provided pirye(w1) = 1, Pirue(W2) = Prrue(ws) = 0 as
correct output for the classification of y. In order to improve
the classification result, it seems very natural to develop a
method for revising the classifier output thanks to a refined
reliability evaluation (RRE). By doing this, one expects to
improve substantially the accuracy of the classification result
produced by each classifier.

In this paper we also want to improve the classification
performance as far as possible and that is why we propose
a new method for classifier fusion with refined reliability
evaluation (CF-RRE). The refined reliability knowledge of
each classifier is represented by a R.x. matrix', where each
element of this reliability matrix represents the likelihood of
the object belonging to class w;,¢ = 1,...,c when it is
classified to class w;,j = 1,..., c by the given classifier. This
reliability matrix is estimated using the training data close to
the object. The soft classification result provided by a classifier
can be modified (revised) according to the reliability matrix
by a new cautious discounting rule under the belief functions
framework. The multiple discounted classification results from
different classifiers will be combined altogether using DS rule
for the final classification of the object.

This paper is organized as follows. After a brief introduction
of the belief functions in section II, we present the method for
refined reliability evaluation in details in the section III, with
classifier fusion approach. Simulations results are presented in
the section IV to evaluate the performance of this new method
for different data sets. Section V concludes this work.

II. BASICS OF BELIEF FUNCTION THEORY

The belief functions (BF) have been introduced by Shafer
in his Mathematical Theory of Evidence, also known as
Dempster-Shafer Theory (DST) [9], [11]. In DST, we work

with a discrete frame of discernment as Q = {w;,i =
1,2,..., ¢} consisting of ¢ exclusive and exhaustive hypothe-
ses (classes) w;,i = 1,...,c. A basic belief assignment

(BBA), also called a mass of beliefs, can be defined over
the power-set of {2 denoted by 2, which is the set of all the
subsets of €. For example, if the frame of discernment is 2 =
{w1,wa, w3}, then its power-set is 22 = {(), w1, wa, w3, w; U
wa, w1 Uws, wo Uws, }. A BBA is mathematically defined as

!¢ being the number of classes in the framework of discernment of the
problem under concern.

a mapping m(.) from 2% to [0, 1], which satisfies m(f)) = 0

and
> m(A)=1 (1)

Ae2%

With a BBA m(.), one can allow one object to belong to
different elements (singletons, as well as their disjunctions) in
2 with different masses of belief. All the elements A € 2
such that m(A) > 0 are called the focal elements of the
BBA m(.). m(A) represents the support degree of the object
associated with class w;. In pattern classification problem, if
A is a set of classes (e.g. A = w; Uw;j), m(A) can be
used to characterize the imprecision (partial ignorance) degree
among the class w; and w; in classification of the object.
m(£2) denotes the total ignorance degree, and it usually plays a
particular neutral role in the fusion process, because m(2) = 1
characterizes the vacuous belief source of evidence.

The lower and upper bounds of imprecise probability associ-
ated with a BBA respectively correspond to the belief function
Bel(.) and the plausibility function PI(.) defined VA C Q by
(see [9])

Bel(A) = Z m(B) (2)
Be22|BCA
Pl(A)= > m(B) 3)

Be22|ANB#()

In a multi-classifier system, the output of each classifier
can be considered as an evidence represented by a BBA.
The well-known Dempster’s rule (often called DS rule) is
still widely applied for combining multiple BBA’s mainly
because of its commutative and associative properties, which
makes it relatively easy to implement, and also because it
offers a compromise between the specificity and complexity
for the combination of BBA’s. The DS combination of two
distinct sources of evidence characterized by the BBA’s m (.)
and mo(.) over 2% is denoted m = m; @ my, and it
is mathematically defined (assuming the denominator is not
equal to zero) by m()) = 0, and VA # () € 2% by

e DY

12 p ce29|BnCc=4

where Ko 2 ZB,CGQWBHCZ@ml(B)mQ(C) is the total
conjunctive conflicting mass.

In DS formula (4), the total conflicting mass Kia is re-
distributed back to all the focal elements due to choice of
the normalization. This choice of normalization (conflicting
mass redistribution) can however generate unreasonable re-
sults, specially in the high conflicting cases [14], but also
in some special low conflicting cases [23] as well. So a
number of alternative combination rules have been developed
to overcome the limitations of DS rule, like Proportional
Conflict Redistribution (PCR) rules [14]. These modified
rules are unfortunately less attractive from the implementation
standpoint because even if they provide better fusion results,
they are much more complicate and not associative.

In the combination of multiple sources of evidence cor-



responding to different classifiers, each source may have
different reliabilitiy factors. The classical Shafer’s discounting
method was introduced in [9] to deal with the unreliable
source of evidence, and it discounts the partial mass of belief
in a BBA to the total ignorance according to the reliability
factor. In Shafer’s discounting method [9], the reliability of
one source of evidence is described by a single number in
[0,1], and the mass values of different focal elements are
discounted with the same number. A contextual discounting
operation considered as a general extension of the classical
discounting has been developed in [22]. It allows to take into
account the refined reliability knowledge, which is represented
by a vector of discounting rates characterizing the reliability
of source associated with different hypotheses (contexts). The
contextual discounting operation is suitable for handling the
cases where the reliability of source of information mainly
depends on the truth of the object to be classified. However,
such prior reliability knowledge is usually very difficult to
obtain in the real applications, that is why a new method is
proposed in the next section of this paper.

III. REFINED RELIABILITY EVALUATION (RRE) AND
CLASSIFIER FUSION

By convention, the objet to classify is denoted y, its real
class is denoted c¢(y), and its estimated class declared by a
classifier C,, is denoted ¢,(y). In this work, we focus on
the combination of multiple classifiers trained on different
attribute sets. The class ¢(y) of the object y to classify
is assumed to belong to the frame of discernment (2 =
{w1,...,wc}. We consider N classifiers, C1,...,Cy trained
on N different attribute spaces Si,...,Sy. Each classifier
C,, provides as output a probabilistic mass function (pmf)
denoted g, = [un(1),...,1un(c)] based on the attribute
knowledge of object in S,,, where p,, (i) = P(é(y) = wi|Sn),
it =1,...,c The value p, (i) represents the probability of the
object belonging to the class w; estimated by the classifier.
The classification performance can be improved in taking into
account the quality of the classifier, which can be captured by
the refined reliability evaluation of the output (pmf) p,, of each
classifier. Then the output p, will be modified accordingly
before entering the classifier fusion process to make the final
class decision.

A. Refined reliability evaluation

In this section, we will propose a very refined reliability
evaluation method. In a c-class problem, the classification
result of an object y by classifier C,, in the attribute space S,,
is given as u.,. The reliability of u,, is denoted by a matrix
R..2 called reliability matrix, and this matrix expresses the
conditional probability of the object y potentially belonging
to class w;,i = 1,...,c when it is classified to class wj,j =
1,...,c by classifier Cy,, i.e. 7j; & P(c(y) = wilé(y) = w;).

Obviously, if this reliability matrix R can be well estimated,
the accuracy of the classification result p,, could be efficiently

2For notation convenience, the classifier index n is omitted in the sequel.

improved taking into account this important knowledge. Now
we will show how to estimate this reliability matrix R.

Because the knowledge about the true class of the object
is unavailable in the classification task, we will attempt to
estimate the reliability matrix using the training knowledge.
In the training data space, the patterns in the nearby neigh-
borhood of the object y generally have the close attribute
values with the object. Thus, the given classifier is expected
to produce the similar performance on the object and on its
close neighbors. Meanwhile, the ground truth of the class of
the training patterns is always known. So the training data
lying in the neighborhood of the object will be employed here
for the reliability evaluation.

The K nearest neighbors (training patterns) of y are found
at first in the attribute space S,. The selected neighbors
denoted xj, k = 1..., K will be classified by the given base
classifier C),3, and the classification result én(xg) provided
by C,, is represented by the vector Py, = [Py(1),..., Px(c)],
where Py (i) £ P(é(xy) = w;) is the estimated probability of
X, belonging to the class w;, fori=1,...,c.

If a neighbor x;, with the real class label w; (i.e. ¢(xg) =
w;) 1s classified by the base classifier into class w; (i.e.
¢é(xy) = w,;) with the corresponding probability Py (j), it
indicates that the conditional probability of x;, classified to w;
is Pp.(j) knowing xj, truly lies in w; as Py(j) £ P(é(xg) =
wjle(xy) = w;). Because xj is a close neighbor of the
object y, the given classifier C), likely produces the similar
performance on x; and y. We can estimate the conditional
probability of the object y classified to w; if its real class
label is w;, i.e P(é(y) = wjle(y) = w;) , according to
P(é(xk) = wjle(xk) = wi).

Moreover, there may be multiple patterns with the real class
label w; in the K selected neighbors, and all of them will be
employed to estimate P(¢é(y) = wjlc(y) = w;). Meanwhile,
the distance* between the object y and the neighbor x;
must be additionally taken into account in the calculation of
P(é(y) = wjle(y) = w;). If y is far from xg, then xj is
considered with a small influence on the estimation. Thus,
the bigger distance, the smaller weight of the neighbor. The
weighted sums of the conditional probabilities of the neighbors
X}, belonging to class w; but classified to w; (denoted by ;)
is computed by

Bij =Y P(é(x) = wjle(xx) = wi) - 0k

P(5) - Ok (&)

Xk |c(xk)=w;
with
O = e T (6)

3The base classifier can be selected according to the actual application, like
Artificial neural network, Bayesian classifier, etc. The classifier can work with
probabilistic framework or belief functions framework. In this work, we just
consider the belief-based classifier with the output represented by a simple
BBA, which includes the singleton focal elements and only one ignorant
element. The evidential neural network [15] classifier producing the simple
BBA’s as output is employed as base classifier in our sequel simulations.

4The Euclidean distance is used here.



d(y, xx)

n d
L (¥, Xx)

di, =

)

where J; denotes the distance weights, and ~ is a tuning
parameter used to control the influence of distance, and dj
is the relative distance of the object to the neighbor xj with
respect to the minimum distance to the nearest neighbors.

Bij can be interpreted as the weighting factor of the hypoth-
esis that the object is really from class w; but classified to w;.
The conditional probability P(é(y) = wjlc(y) = w;) should
be proportional to 8;; as P(é(y) = wjle(y) = wi) x Bij,
and it is defined by P(é(y) = wjle(y) = wi) = pBij
(p € (0,1] being a positive proportional coefficient). Then
the reliability matrix R expressed by the probability 7;; =
P(c(y) = wi|é(y) = w;) can be easily derived according to
Bayes rule, one gets

rji =P(c(y) = wilé(y) = wj)

__Plely) =wiley) =wi)Pley) =wi) o

; P(e(y) = wyley) = w)Ple(y) = w)

Without extra knowledge, the priori probability P(c(y) =
wy),l = 1,...,c is usually assumed uniformly distributed.
Therefore, the probability P(c(y) = w;|é(y) = w;) can be
obtained by

= ©)
=1

Then the reliability matrix R is determined, and we will
modify the classification result u,, to make it closer to the
potential truth using R. We recall that the matrix is estimated
according to a limited number of neighborhoods of the object
to classify. Generally, there are more or less differences
between the object and these neighbors. Therefore we must not
be completely confident about the estimation of this matrix for
revising the classifier result of the object y, and the confidence
degree about this matrix seems quite difficult to obtain. That is
why we propose a very cautious discounting method to transfer
the classification knowledge to the associated partial ignorance
(e.g. w;Uwyj) rather than to the specific class (e.g. w;). By doing
this, one can efficiently reduce the risk of misclassification
error at the price of partial imprecision, and such imprecision
can be specified through the combination with other classifiers.
More specifically, the contribution of belief from the classifier
output p,,(j) and the probability P(c(y) = w;ilé(y) = w;) is
transferred by

M1 (wi Uwj) = Ple(y) = wilé(y) = wj) - un(j)  (10)

w; Uw; represents the imprecision between w; and w;, and it
plays a neutral role in the classification between w; and w;.

Another contribution of belief on w; Uw;, j # ¢ is also
obtained from i, (¢) by considering

(1)

So that the discounted BBA derived from pu,, is given for
i=1,...,cand j=1,...,¢c

Mpa(wj Uw;) = P(c(y) = wjlé(y) = wi) - pn(i)

Mo (Wi Uw;) = M1 (w; Uw;) + mpa(wj Uw;)
= P(c(y) = wilé(y) = wj) - fin(3)
+ Ple(y) = wjlé(y) = wi) - pun (i), if i#j
(12)

mp(wi) = Plcy) = wilé(y) = wi) - pn (), if j=1. (13)

One can see that some partial imprecision has arisen due
to the cautious discounting operation, but these imprecise
information will be clarified by the combination with other
classifiers in the sequel.

If the probabilities of the /K neighbors committed to w; are
all zeros. In this case, the probability of the object y belonging
to wj, i.e. uup (7), will be discounted to total ignorance by taking

my(Q)=1-— Z my(A)

ACQ

(14)

my () captures the total ignorant information about the
classification done by the classifier C),, and it plays a neutral
role in the combination with the (modified) output of other
classifiers. In fact, m,, (2) will always be redistributed to other
more specific focal elements in the classifier fusion process
based on the conjunctive rule of combination.

To show how formulas (12), (13) and (14) work for making
a cautious discounting, let us consider the following example.

Example 1: One assumes that the result obtained by the
classifier C,, for one object is the following probability mass
function (pmf): y,, (1) = 0.5, pn(2) = 0.3, and p, (3) = 0.2.
Suppose that this object has three close neighbors x;, x2, X3,
and two of them x;, xo are truly labeled by w;, and the third
one x3 is labeled by wy. The three neighbors are respectively
classified using classifier C),, and the classification results of
the x1, X2, x3 are respectively given by the following pmf:

Pl . Pl(l) é P(é(Xl) = w1|c(x1) == wl) == 09,

Pi(2) & P(é(x1) = walc(x1) = wy) = 0.1
P, : Py(1) 2 P(é(x2) = wi]c(x2) = wy) = 0.6,
Py(2) £ P(é(x2) = walc(x2) = wy) = 0.4
Py : P3(1) = P(é(x3) = wi|c(x3) = wa) = 0.2,
P3(2) £ P(é(x3) = walc(x3) = wp) = 0.8

In the reliability evaluation, the distance weights of x;, X2, X3
can be easily calculated using eq. (6), and let us assume that
we have §; = 0.6, do = 0.3, and d3 = 0.5.

So we can estimate the weighted sums of the conditional
probability of the object classified to w; if the real class is w;



1 =1,2,3 using eq.(5) as
£11 =0.6 x 0.9+ 0.3 x 0.6 =0.72
B12 =0.6 x 0.1 + 0.3 x 0.4 = 0.18
Ba1 =0.5x0.2=0.1
Bz =0.5x 0.8 =0.4

Then conditional probability of the object classified to w; but
truly coming from w, can be derived by eq.(9).

ﬁll

r1=— =0.88
H B11 + B2
Ba1
rig=——-—=20.12
2 Ba1 + Bi1
Bi2
ro; = —— = 0.31
o Bi2 + B22
Pz 0.69

"2 B+ Buz
Then the classification result p, of the object obtained by
the classifier C), will be cautiously discounted based on the
reliability matrix R using eq.(12), (13) and eq. (14). One
finally gets:

My (w1) =r11 - pn(l) = 0.88 x 0.5 = 0.44;
My (wWa) =rag - un(2) = 0.69 x 0.3 = 0.21;
My (w1 Uws) =r1a - pn (1) + o1 - 1n(2)
=0.12 x 0.5 4+ 0.31 x 0.3 = 0.15;
M () =1 — 0.44 — 0.21 — 0.15 = 0.20

In fact, the probability value 1, (3) is transferred to the mass
of ignorance m,, (1), since no neighbors are from class w3 and
the probability of the selected three neighbors committed to
class w3 is zero. After the cautious discounting operation, one
observes also that some masses of beliefs are transferred to
the partial ignorant element (i.e. w; Uws), and such imprecise
information can be specified by the combination with other
classifiers. By doing this, one can reduce the classification
error rate using the complementarity of the classifiers.

B. Classifier fusion process and decision-making

The popular DS rule defined by the formula (4) requiring
relatively small computation burden is often used to combine
the uncertain and imprecise information, and it will be em-
ployed here to combine the discounted classification results
from different classifiers. Since DS rule is associative, the
BBA’s can be combined sequentially in any sequence order.
In the final fusion results, some beliefs may remain in the
(partial) imprecise focal element (imprecise classes) due to
the discounting procedure. So the plausibility functions PI(.)
taking into account all the beliefs of the associated classes
is used here for decision making support, and the object
is considered belonging to the class receiving the biggest
plausibility value, e.g. w, satisfying w, = arg max Pl(w;).

J

C. Guideline for parameters tuning

In this new CF-RRE method, the parameter « involved in
eq.(5) should be tuned in the real applications. «y is used to
penalize the influence of the neighbors in the determination
of the reliability according to the distance between the object
and its neighbor. The bigger ~ value, the smaller influence
of the neighbor (through its distance to the object) for the
reliability evaluation. According to many heuristics tested with
various real data sets, we find that v must belong to [5, 20] in
practice, and we recommend to take v = 10 as default value.
In applications, the tuning parameters vy can be optimized by
cross validation in the training data space, and the optimized
value corresponding to the highest accuracy can be chosen.

IV. EXPERIMENT APPLICATIONS

The classification performance of this new CF-RRE method
is evaluated by comparisons with several other fusion methods
including weighted majority voting (WMYV), weighted averag-
ing fusion (WAF) and weighted DS (WDS) combination rule.
Here we will test the formulas (15)-(16) that are commonly
used in practice to calculate the weighting factors based on
the classification accuracy 7 (see [21]).

In

w, = (15)
X
]
w, = (16)
nB — Nw
where np £ maxn,, nw = minn,, 7, = J¢, and where
n n

N, is the number of patterns correctly classified, and T is
the number of patterns to classify. We consider here the local
accuracy 7,,, which is calculated according to 7' = K nearest
neighbors of objects in training data space. 7, denotes the
individual local accuracy of the classifier C),.

The three used fusion methods including WMV, WAF and
WDS are briefly explained here for comparisons in this work.

e In WMV rule, the fusion result is calculated by 1 =
N

> wypl,, and 1, is the hard classification result of
n=1
classifier C,,.

N
o In WAF method, the fusion is defined as p = > w,pn.,
n=1
and p,, is the output of classifier C,.

e In WDS method, the classifiers are combined by
m=%m;®...»*»my with o,, = =22 The BBA

“nm,, denotes the BBA m,, discounted using Shafer’s
discounting rule [9] with the reliability factor c«,. The
weights w, (n = 1,..., N) are normalized to make the
sum of fusion result equal to one.

The base classifier can be selected according to the actual
applications. In this work, the Evidential neural network
(ENN) [15] classifier is employed as the base classifiers’,

5Any other classical classifiers can be also be used here as base classifier,
and the selection of proper base classifier mainly depends on the actual
application, which is out of scope of this paper.



since it usually produces good performance. The base
classifier(s) will be respectively trained using different subsets
of attributes, and the multiple classification results obtained
by different classifiers will be fused for classifying the
objects. In this work, the predicted class of the object (i.e. the
final decision made) corresponds to the class that has received
(after the classifier fusion) the maximum of plausibility.

Five real data sets from UCI repository [26] have been used
in this work to evaluate the performance of this new CF-RRE
method, and to compare it with respect to other three fusion
methods. The basic knowledge of the used data sets are shown
by Table I. The patterns in these data sets contain multiple
attributes. For each data set, the whole set of attributes will be
randomly divided into NV distinct subsets®, and each subset of
attributes will be respectively used to train the base classifier.
For example, Texture data set has 40 attributes that can be
divided into 4 distinct sub-sets, and each subset contains 10
attributes. The base classifier ENN will be respectively learnt
based on each subset of attributes.

The k-fold cross validation is often used for the classifica-
tion performance evaluation, but k£ remains a free parameter.
We use the simplest 2-fold cross validation here, since the
training and test sets are large, and each sample can be
respectively used for training and testing on each fold. In the
K nearest neighbors selection, we have tested the classification
performance with the K value ranging from 5 to 20 for the
local weighted fusion methods, and for our proposed CF-RRE
method. The two derivations of weights according to (15)-(16)
have been tested and the best results are reported. In the CF-
RRE method, the parameters v € [5,20] can be optimized
using the training data, and optimized value corresponding
to the highest accuracy is adopted. The average classification
results (mean accuracy value) with K € [5,20] for different
methods are reported in Table II, and the accuracy curves with
the different K values in different methods are shown by Figs.
1 and 2.

In Table II, the N value is the number of classifiers, and
each classifier corresponds to a subset of attributes. AC; and
AC,, represent respectively the lower and upper bounds of
the classification accuracy of these individual classifiers that
are combined, and the accuracy is calculated by AC' = %
where N, is the number of correctly classified object, and T’
is number of total test patterns.

The analysis of the results of Table II shows that all the
used fusion approaches generally improve the classification
accuracy with respect to the individual classifier. This demon-
strates the advantage and interest of combining classifiers.
Meanwhile, one can see that this new CF-REE method pro-
duces much higher accuracy rate than other methods thanks
to the use of the refined reliability evaluation strategy. In
the other weighted fusion methods, the weighting factors
mainly depend on the overall performance of classifier, and
the refined classification knowledge (e.g. the variety of the

SThere is no overlapping attributes in different subsets.

misclassifications) is ignored. In the new method, the different
misclassification cases of neighborhoods play different roles in
the cautious discounting of classification results of object.

In the Figs. 1 and 2, the x-axis represents the number of K
value, whereas y-axis corresponds to the accuracy. According
to the Figs. 1 and 2, we also observe that the classification
performance of the new method is not very sensitive to the
K value contrary to the other methods. This is because the
influence of the distance from the object to its neighbors is
additionally taken into account. The farther distance from a
neighbor to the object will yield the smaller weight (influence)
of this neighbor in the reliability evaluation. So the neighbors
which are quite far from the object will have very little
influence on the classification of the object. The experiment
results show that the new method is robust with respect to the
K value. Thus, the K value can be easily selected in the real
applications for this new method.

For each data set, we have considered two cases with
different number of classifiers. We find that the bigger number
of classifiers does not necessarily lead to higher accuracy. So
the proper selection of classifiers for the fusion procedure
according to the reliability evaluation may be an interesting
topic to investigate in the future.

Table T
BASIC INFORMATION OF THE USED DATA SETS.

Data Classes Attributes Instances

Texture (Te) 11 40 5500

Vehicle (Ve) 4 18 946

Movement-libras (ML) 15 90 360

Sonar (So) 2 60 208

Segment (Se) 7 19 2310
Table II

CLASSIFICATION RESULTS OF DIFFERENT METHODS WITH ENN
CLASSIFIER (IN %).

Data N [AC),, AC,] WMV WAF WDS NEW
Te 4 [59.18,65.35] 81.62 80.87 83.13 9538
Te 8 [53.00,68.36] 84.59 8259 8528 94.44
Ve 2 [38.18,49.53] 5225 51,57 5156  65.17
Ve 6 [3853,49.29] 55.16 5240 5578 64.93
ML 9 [26.67,44.17] 5538 5436 6155 76.68
ML 15 [24.44,38.06] 56.56 49.03 62.10 71.65
So 6 [53.37,73.08] 7437 7329 7731 8197
So 20 [53.37,74.04] 7257 7136 7581  78.85
Se 7 [32.73,67.10] 76.60 80.28  80.61  90.70
Se 2 [63.72,69.87] 8234 81.63 8236 91.79

V. CONCLUSION

A new method for classifier fusion with refined reliabil-
ity evaluation (CF-RRE) has been proposed based on be-
lief function theory. The reliability represented by a matrix



R.x. (c being the number of classes in the data set) is
estimated based on the local classifier performance in the
neighborhoods of the object. Each element of the reliability
matrix characterizes the conditional probability of the object
potentially belonging to class w;,i = 1,...,c when it is
classified to w;,j = 1,...,c by the given classifier. Then
the classification result is cautiously discounted according to
the elements of reliability matrix, and the partial probability
(or belief) of each class is prudently redistributed to the
associated imprecise classes (i.e. the disjunction of several
classes) under belief functions framework. This cautious dis-
counting operation is able to reduce the error risk by modeling
the imprecision, which can be specified by combining with
other (more or less) complementary classifiers. The popular
Dempster’s rule (also called DS rule) is employed to globally
fuse the discounted classification results provided by different
classifiers. The uncertainty and imprecision of the individual
classifiers can be efficiently decreased through the fusion
procedure. The effectiveness of the new method has been
validated by experiments using various real data sets with
respect to several other related methods, and the new method
is able to produce much higher accuracy than others. Some
more base classifiers (e.g. Support Vector Machine, Bayesian
classifier) and more real data sets will be used to further
test the potential of the proposed method in our future work.
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Fig.1a: Texture Data with 4 classifiers. Fig. 2a: Texture Data with 8 classifiers.
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Fig. 1b: Vehicle Data with 2 classifiers. Fig. 2b: Vehicle Data with 6 classifiers.
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Figure 1. Classification results by fusion of few classifiers. Figure 2. Classification results by fusion of more classifiers.



