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Abstract—Classifier fusion is a classical approach to improve
the classification accuracy. The multiple classifiers to combine
have in general different classification qualities (i.e. perfor-
mances), and the proper evaluation of the classifier quality plays
an important role for achieving the best global performance.
We propose a new method for classifier fusion based on refined
reliability evaluation (CF-RRE). For each object, the reliability
of its classification result with a given classifier is characterized
by a matrix Rc×c (c being the number of classes in the data set),
which is estimated based on the classifier performance in the
neighborhoods (i.e. K-nearest neighbors) of the object using the
training data. The reliability matrix is used to make a cautious
discounting of the classification result. More specifically, the
probability (or belief) of the object associated with each class is
cautiously redistributed according to the reliability matrix under
the belief functions framework. The discounted classification
results of each classifier can be combined by Dempster’s rule for
making the final class decision. Our simulation results illustrate
the potential of this new method using real data sets, and they
show that CF-RRE can improve substantially the classification
accuracy.

Keywords: classifier fusion, belief functions, reliability, dis-

counting, classification.

I. INTRODUCTION

The classification accuracy can be efficiently improved by

proper fusion of multiple classifiers, which usually provide

complementary classification knowledge for the query pattern

from different points of view. This complementarity can be

achieved by extracting different features, by employing dif-

ferent classifiers, as well as by randomly selecting different

training data sets [1]. The fusion approach is expected to re-

duce the error rate and enhance the robustness of classification

compared with any individual classifier.

Many fusion methods have been developed for making a

class decision from the individual classifiers [2]. The selection

of appropriate fusion strategy mainly depends on the formats

of classifier output. If the output of the classifier consists only

of a label value (i.e. a hard-decision classifier), the simple

majority voting method is often recommended. If the classifier

can generate soft membership measures, like probability value,

fuzzy memberships or belief functions, the linear combi-

nation way (average, sum, etc) [3], Bayesian combination

[4], Bayesian Model Averaging (BMA) [5], fuzzy rules [6],

evidential reasoning technique [1], [7] can be used. The soft

classification result generally offers more useful information

than a single hard label, and the fusion of the soft outputs of

different classifiers can improve significantly the classification

performance [8].

Belief functions (BF) [9]–[11] known as Dempster-Shafer

theory (DST), provides an interesting framework to represent

and combine uncertain information [12], [13]. Belief functions

allow the object to be associated with not only the singleton

classes but also any sets of classes according to a basic belief

assignment (BBA), and we adopt it here for the ensemble of

multiple classifiers. The belief functions have been already

successfully applied in the information fusion [14], [24], data

classification [15]–[17] and clustering [18], decision-making

support [19], and so on. Particularly, several methods [1], [7],

[20] have been introduced for the fusion of multiple classi-

fiers based on belief functions. In [20], several combination

strategies (i.e. majority voting, Bayesian formalism and DS

model) were introduced, and the conditional probability of the

object belonging to different classes was derived based on the

confusion matrix. For DS model, each evidence is represented

by dichotomous mass functions including three focal elements

(e.g. A, Ā and ignorance element Ω), and it was defined

according to the overall performance of classifiers. In [7],

a class-indifferent method was proposed for multi-classifier

fusion using DS rule, and the classifier decisions were modeled

by triplet and quartet evidential structures. In [1], an optimal

combination scheme was presented based on a parameterized

family of t-norms for an ensemble of multiple classifiers that

provides the partly dependent information, and the parameter

can be optimized to achieve the minimum error criterion.

In the fusion process, the classifiers have in general different

reliability factors which play an important role to improve the

overall classification accuracy. The reliability factor is usually

determined based on the overall classification performance

(e.g. accuracy) in the training set, and many methods [21] have

been proposed to compute it. In [22], a contextual discounting

method has been introduced taking into account the refined

reliability knowledge, where the reliability of information

source were dependent of the knowledge of the ground truth

(true value of the variable known in simulations), which is

unfortunately rarely known in real applications.



In many applications, the reliabilities of classification results

obtained by one classifier are related with the objects to clas-

sify. Different elements (i.e. the different probabilities assigned

to each class) in the soft classification result of one object may

also have different reliabilities, because the difference between

the output value of classifier and the expected value (truth)

usually is not the same for the different elements. As example,

let’s consider an object y with true class c(y) = ω1 to classify

over the frame of discernment Ω = {ω1, ω2, ω3}. Let us

assume that the classifier provides the following probability

assignments p(ω1) = 0.4, p(ω2) = 0.5, and p(ω3) = 0.1.

If the classifier would have been 100% reliable, it should

have provided ptrue(ω1) = 1, ptrue(ω2) = ptrue(ω3) = 0 as

correct output for the classification of y. In order to improve

the classification result, it seems very natural to develop a

method for revising the classifier output thanks to a refined

reliability evaluation (RRE). By doing this, one expects to

improve substantially the accuracy of the classification result

produced by each classifier.

In this paper we also want to improve the classification

performance as far as possible and that is why we propose

a new method for classifier fusion with refined reliability

evaluation (CF-RRE). The refined reliability knowledge of

each classifier is represented by a Rc×c matrix1, where each

element of this reliability matrix represents the likelihood of

the object belonging to class ωi, i = 1, . . . , c when it is

classified to class ωj , j = 1, . . . , c by the given classifier. This

reliability matrix is estimated using the training data close to

the object. The soft classification result provided by a classifier

can be modified (revised) according to the reliability matrix

by a new cautious discounting rule under the belief functions

framework. The multiple discounted classification results from

different classifiers will be combined altogether using DS rule

for the final classification of the object.

This paper is organized as follows. After a brief introduction

of the belief functions in section II, we present the method for

refined reliability evaluation in details in the section III, with

classifier fusion approach. Simulations results are presented in

the section IV to evaluate the performance of this new method

for different data sets. Section V concludes this work.

II. BASICS OF BELIEF FUNCTION THEORY

The belief functions (BF) have been introduced by Shafer

in his Mathematical Theory of Evidence, also known as

Dempster-Shafer Theory (DST) [9], [11]. In DST, we work

with a discrete frame of discernment as Ω = {ωi, i =
1, 2, . . . , c} consisting of c exclusive and exhaustive hypothe-

ses (classes) ωi, i = 1, . . . , c. A basic belief assignment

(BBA), also called a mass of beliefs, can be defined over

the power-set of Ω denoted by 2Ω, which is the set of all the

subsets of Ω. For example, if the frame of discernment is Ω =
{ω1, ω2, ω3}, then its power-set is 2Ω = {∅, ω1, ω2, ω3, ω1 ∪
ω2, ω1∪ω3, ω2∪ω3,Ω}. A BBA is mathematically defined as

1
c being the number of classes in the framework of discernment of the

problem under concern.

a mapping m(.) from 2Ω to [0, 1], which satisfies m(∅) = 0
and ∑

A∈2Ω

m(A) = 1 (1)

With a BBA m(.), one can allow one object to belong to

different elements (singletons, as well as their disjunctions) in

2Ω with different masses of belief. All the elements A ∈ 2Ω

such that m(A) > 0 are called the focal elements of the

BBA m(.). m(A) represents the support degree of the object

associated with class ωi. In pattern classification problem, if

A is a set of classes (e.g. A = ωi ∪ ωj), m(A) can be

used to characterize the imprecision (partial ignorance) degree

among the class ωi and ωj in classification of the object.

m(Ω) denotes the total ignorance degree, and it usually plays a

particular neutral role in the fusion process, because m(Ω) = 1
characterizes the vacuous belief source of evidence.

The lower and upper bounds of imprecise probability associ-

ated with a BBA respectively correspond to the belief function

Bel(.) and the plausibility function Pl(.) defined ∀A ⊆ Ω by

(see [9])

Bel(A) =
∑

B∈2Ω|B⊆A

m(B) (2)

Pl(A) =
∑

B∈2Ω|A∩B 6=∅

m(B) (3)

In a multi-classifier system, the output of each classifier

can be considered as an evidence represented by a BBA.

The well-known Dempster’s rule (often called DS rule) is

still widely applied for combining multiple BBA’s mainly

because of its commutative and associative properties, which

makes it relatively easy to implement, and also because it

offers a compromise between the specificity and complexity

for the combination of BBA’s. The DS combination of two

distinct sources of evidence characterized by the BBA’s m1(.)
and m2(.) over 2Ω is denoted m = m1 ⊕ m2, and it

is mathematically defined (assuming the denominator is not

equal to zero) by m(∅) = 0, and ∀A 6= ∅ ∈ 2Ω by

m(A) =
1

1−K12

∑

B,C∈2Ω|B∩C=A

m1(B)m2(C) (4)

where K12 ,
∑

B,C∈2Ω|B∩C=∅m1(B)m2(C) is the total

conjunctive conflicting mass.

In DS formula (4), the total conflicting mass K12 is re-

distributed back to all the focal elements due to choice of

the normalization. This choice of normalization (conflicting

mass redistribution) can however generate unreasonable re-

sults, specially in the high conflicting cases [14], but also

in some special low conflicting cases [23] as well. So a

number of alternative combination rules have been developed

to overcome the limitations of DS rule, like Proportional

Conflict Redistribution (PCR) rules [14]. These modified

rules are unfortunately less attractive from the implementation

standpoint because even if they provide better fusion results,

they are much more complicate and not associative.

In the combination of multiple sources of evidence cor-



responding to different classifiers, each source may have

different reliabilitiy factors. The classical Shafer’s discounting

method was introduced in [9] to deal with the unreliable

source of evidence, and it discounts the partial mass of belief

in a BBA to the total ignorance according to the reliability

factor. In Shafer’s discounting method [9], the reliability of

one source of evidence is described by a single number in

[0, 1], and the mass values of different focal elements are

discounted with the same number. A contextual discounting

operation considered as a general extension of the classical

discounting has been developed in [22]. It allows to take into

account the refined reliability knowledge, which is represented

by a vector of discounting rates characterizing the reliability

of source associated with different hypotheses (contexts). The

contextual discounting operation is suitable for handling the

cases where the reliability of source of information mainly

depends on the truth of the object to be classified. However,

such prior reliability knowledge is usually very difficult to

obtain in the real applications, that is why a new method is

proposed in the next section of this paper.

III. REFINED RELIABILITY EVALUATION (RRE) AND

CLASSIFIER FUSION

By convention, the objet to classify is denoted y, its real

class is denoted c(y), and its estimated class declared by a

classifier Cn is denoted ĉn(y). In this work, we focus on

the combination of multiple classifiers trained on different

attribute sets. The class c(y) of the object y to classify

is assumed to belong to the frame of discernment Ω =
{ω1, . . . , ωc}. We consider N classifiers, C1, . . . , CN trained

on N different attribute spaces S1, . . . , SN . Each classifier

Cn provides as output a probabilistic mass function (pmf)

denoted µn , [µn(1), . . . , µn(c)] based on the attribute

knowledge of object in Sn, where µn(i) , P (ĉ(y) = ωi|Sn),
i = 1, . . . , c. The value µn(i) represents the probability of the

object belonging to the class ωi estimated by the classifier.

The classification performance can be improved in taking into

account the quality of the classifier, which can be captured by

the refined reliability evaluation of the output (pmf) µn of each

classifier. Then the output µn will be modified accordingly

before entering the classifier fusion process to make the final

class decision.

A. Refined reliability evaluation

In this section, we will propose a very refined reliability

evaluation method. In a c-class problem, the classification

result of an object y by classifier Cn in the attribute space Sn

is given as µn. The reliability of µn is denoted by a matrix

Rc×c
2 called reliability matrix, and this matrix expresses the

conditional probability of the object y potentially belonging

to class ωi, i = 1, . . . , c when it is classified to class ωj , j =
1, . . . , c by classifier Cn, i.e. rji , P (c(y) = ωi|ĉ(y) = ωj).

Obviously, if this reliability matrix R can be well estimated,

the accuracy of the classification result µn could be efficiently

2For notation convenience, the classifier index n is omitted in the sequel.

improved taking into account this important knowledge. Now

we will show how to estimate this reliability matrix R.

Because the knowledge about the true class of the object

is unavailable in the classification task, we will attempt to

estimate the reliability matrix using the training knowledge.

In the training data space, the patterns in the nearby neigh-

borhood of the object y generally have the close attribute

values with the object. Thus, the given classifier is expected

to produce the similar performance on the object and on its

close neighbors. Meanwhile, the ground truth of the class of

the training patterns is always known. So the training data

lying in the neighborhood of the object will be employed here

for the reliability evaluation.

The K nearest neighbors (training patterns) of y are found

at first in the attribute space Sn. The selected neighbors

denoted xk, k = 1 . . . ,K will be classified by the given base

classifier Cn
3, and the classification result ĉn(xk) provided

by Cn is represented by the vector Pk = [Pk(1), . . . , Pk(c)],
where Pk(i) , P (ĉ(xk) = ωi) is the estimated probability of

xk belonging to the class ωi, for i = 1, . . . , c.
If a neighbor xk with the real class label ωi (i.e. c(xk) =

ωi) is classified by the base classifier into class ωj (i.e.

ĉ(xk) = ωj) with the corresponding probability Pk(j), it

indicates that the conditional probability of xk classified to ωj

is Pk(j) knowing xk truly lies in ωi as Pk(j) , P (ĉ(xk) =
ωj|c(xk) = ωi). Because xk is a close neighbor of the

object y, the given classifier Cn likely produces the similar

performance on xk and y. We can estimate the conditional

probability of the object y classified to ωj if its real class

label is ωi, i.e P (ĉ(y) = ωj |c(y) = ωi) , according to

P (ĉ(xk) = ωj |c(xk) = ωi).
Moreover, there may be multiple patterns with the real class

label ωi in the K selected neighbors, and all of them will be

employed to estimate P (ĉ(y) = ωj|c(y) = ωi). Meanwhile,

the distance4 between the object y and the neighbor xk

must be additionally taken into account in the calculation of

P (ĉ(y) = ωj |c(y) = ωi). If y is far from xk, then xk is

considered with a small influence on the estimation. Thus,

the bigger distance, the smaller weight of the neighbor. The

weighted sums of the conditional probabilities of the neighbors

xk belonging to class ωi but classified to ωj (denoted by βij)

is computed by

βij =
∑

xk

P (ĉ(x) = ωj|c(xk) = ωi) · δk

=
∑

xk|c(xk)=ωi

Pk(j) · δk (5)

with

δk = e−γ·dk (6)

3The base classifier can be selected according to the actual application, like
Artificial neural network, Bayesian classifier, etc. The classifier can work with
probabilistic framework or belief functions framework. In this work, we just
consider the belief-based classifier with the output represented by a simple
BBA, which includes the singleton focal elements and only one ignorant
element. The evidential neural network [15] classifier producing the simple
BBA’s as output is employed as base classifier in our sequel simulations.

4The Euclidean distance is used here.



dk ,
d(y,xk)

min
k∈[1,K]

d(y,xk)
(7)

where δk denotes the distance weights, and γ is a tuning

parameter used to control the influence of distance, and dk
is the relative distance of the object to the neighbor xk with

respect to the minimum distance to the nearest neighbors.

βij can be interpreted as the weighting factor of the hypoth-

esis that the object is really from class ωi but classified to ωj .

The conditional probability P (ĉ(y) = ωj|c(y) = ωi) should

be proportional to βij as P (ĉ(y) = ωj|c(y) = ωi) ∝ βij ,

and it is defined by P (ĉ(y) = ωj |c(y) = ωi) = ρβij

(ρ ∈ (0, 1] being a positive proportional coefficient). Then

the reliability matrix R expressed by the probability rji ,

P (c(y) = ωi|ĉ(y) = ωj) can be easily derived according to

Bayes rule, one gets

rji =P (c(y) = ωi|ĉ(y) = ωj)

=
P (ĉ(y) = ωj |c(y) = ωi)P (c(y) = ωi)
c∑

l=1

P (ĉ(y) = ωj|c(y) = ωl)P (c(y) = ωl)
(8)

Without extra knowledge, the priori probability P (c(y) =
ωl), l = 1, . . . , c is usually assumed uniformly distributed.

Therefore, the probability P (c(y) = ωi|ĉ(y) = ωj) can be

obtained by

rji =
P (ĉ(y) = ωj|c(y) = ωi)
c∑

l=1

P (ĉ(y) = ωj |c(y) = ωl)

=
ρβij

ρ
c∑

l=1

βlj

=
βij

c∑
l=1

βlj

(9)

Then the reliability matrix R is determined, and we will

modify the classification result µn to make it closer to the

potential truth using R. We recall that the matrix is estimated

according to a limited number of neighborhoods of the object

to classify. Generally, there are more or less differences

between the object and these neighbors. Therefore we must not

be completely confident about the estimation of this matrix for

revising the classifier result of the object y, and the confidence

degree about this matrix seems quite difficult to obtain. That is

why we propose a very cautious discounting method to transfer

the classification knowledge to the associated partial ignorance

(e.g. ωi∪ωj) rather than to the specific class (e.g. ωi). By doing

this, one can efficiently reduce the risk of misclassification

error at the price of partial imprecision, and such imprecision

can be specified through the combination with other classifiers.

More specifically, the contribution of belief from the classifier

output µn(j) and the probability P (c(y) = ωi|ĉ(y) = ωj) is

transferred by

mn1(ωi ∪ ωj) = P (c(y) = ωi|ĉ(y) = ωj) · µn(j) (10)

ωi ∪ ωj represents the imprecision between ωi and ωj , and it

plays a neutral role in the classification between ωi and ωj .

Another contribution of belief on ωj ∪ ωi, j 6= i is also

obtained from µn(i) by considering

mn2(ωj ∪ ωi) = P (c(y) = ωj|ĉ(y) = ωi) · µn(i) (11)

So that the discounted BBA derived from µn is given for

i = 1, . . . , c and j = 1, . . . , c

mn(ωi ∪ ωj) = mn1(ωi ∪ ωj) +mn2(ωj ∪ ωi)

= P (c(y) = ωi|ĉ(y) = ωj) · µn(j)

+ P (c(y) = ωj|ĉ(y) = ωi) · µn(i), if i 6= j

(12)

mn(ωi) = P (c(y) = ωi|ĉ(y) = ωi) · µn(i), if j = i. (13)

One can see that some partial imprecision has arisen due

to the cautious discounting operation, but these imprecise

information will be clarified by the combination with other

classifiers in the sequel.

If the probabilities of the K neighbors committed to ωi are

all zeros. In this case, the probability of the object y belonging

to ωi, i.e. µn(i), will be discounted to total ignorance by taking

mn(Ω) = 1−
∑

A⊂Ω

mn(A) (14)

mn(Ω) captures the total ignorant information about the

classification done by the classifier Cn, and it plays a neutral

role in the combination with the (modified) output of other

classifiers. In fact, mn(Ω) will always be redistributed to other

more specific focal elements in the classifier fusion process

based on the conjunctive rule of combination.

To show how formulas (12), (13) and (14) work for making

a cautious discounting, let us consider the following example.

Example 1: One assumes that the result obtained by the

classifier Cn for one object is the following probability mass

function (pmf): µn(1) = 0.5, µn(2) = 0.3, and µn(3) = 0.2.

Suppose that this object has three close neighbors x1,x2,x3,

and two of them x1,x2 are truly labeled by ω1, and the third

one x3 is labeled by ω2. The three neighbors are respectively

classified using classifier Cn, and the classification results of

the x1,x2,x3 are respectively given by the following pmf:

P1 : P1(1) , P (ĉ(x1) = ω1|c(x1) = ω1) = 0.9,

P1(2) , P (ĉ(x1) = ω2|c(x1) = ω1) = 0.1

P2 : P2(1) , P (ĉ(x2) = ω1|c(x2) = ω1) = 0.6,

P2(2) , P (ĉ(x2) = ω2|c(x2) = ω1) = 0.4

P3 : P3(1) , P (ĉ(x3) = ω1|c(x3) = ω2) = 0.2,

P3(2) , P (ĉ(x3) = ω2|c(x3) = ω2) = 0.8

In the reliability evaluation, the distance weights of x1,x2,x3

can be easily calculated using eq. (6), and let us assume that

we have δ1 = 0.6, δ2 = 0.3, and δ3 = 0.5.

So we can estimate the weighted sums of the conditional

probability of the object classified to ωj if the real class is ωi



i = 1, 2, 3 using eq.(5) as

β11 =0.6× 0.9 + 0.3× 0.6 = 0.72

β12 =0.6× 0.1 + 0.3× 0.4 = 0.18

β21 =0.5× 0.2 = 0.1

β22 =0.5× 0.8 = 0.4

Then conditional probability of the object classified to ωi but

truly coming from ωg can be derived by eq.(9).

r11 =
β11

β11 + β21
= 0.88

r12 =
β21

β21 + β11
= 0.12

r21 =
β12

β12 + β22
= 0.31

r22 =
β22

β22 + β12
= 0.69

Then the classification result µn of the object obtained by

the classifier Cn will be cautiously discounted based on the

reliability matrix R using eq.(12), (13) and eq. (14). One

finally gets:

mn(ω1) =r11 · µn(1) = 0.88× 0.5 = 0.44;

mn(ω2) =r22 · µn(2) = 0.69× 0.3 = 0.21;

mn(ω1 ∪ ω2) =r12 · µn(1) + r21 · µn(2)

=0.12× 0.5 + 0.31× 0.3 = 0.15;

mn(Ω) =1− 0.44− 0.21− 0.15 = 0.20

In fact, the probability value µn(3) is transferred to the mass

of ignorance mn(Ω), since no neighbors are from class ω3 and

the probability of the selected three neighbors committed to

class ω3 is zero. After the cautious discounting operation, one

observes also that some masses of beliefs are transferred to

the partial ignorant element (i.e. ω1 ∪ω2), and such imprecise

information can be specified by the combination with other

classifiers. By doing this, one can reduce the classification

error rate using the complementarity of the classifiers.

B. Classifier fusion process and decision-making

The popular DS rule defined by the formula (4) requiring

relatively small computation burden is often used to combine

the uncertain and imprecise information, and it will be em-

ployed here to combine the discounted classification results

from different classifiers. Since DS rule is associative, the

BBA’s can be combined sequentially in any sequence order.

In the final fusion results, some beliefs may remain in the

(partial) imprecise focal element (imprecise classes) due to

the discounting procedure. So the plausibility functions Pl(.)
taking into account all the beliefs of the associated classes

is used here for decision making support, and the object

is considered belonging to the class receiving the biggest

plausibility value, e.g. ωg satisfying ωg = argmax
j

Pl(ωj).

C. Guideline for parameters tuning

In this new CF-RRE method, the parameter γ involved in

eq.(5) should be tuned in the real applications. γ is used to

penalize the influence of the neighbors in the determination

of the reliability according to the distance between the object

and its neighbor. The bigger γ value, the smaller influence

of the neighbor (through its distance to the object) for the

reliability evaluation. According to many heuristics tested with

various real data sets, we find that γ must belong to [5, 20] in

practice, and we recommend to take γ = 10 as default value.

In applications, the tuning parameters γ can be optimized by

cross validation in the training data space, and the optimized

value corresponding to the highest accuracy can be chosen.

IV. EXPERIMENT APPLICATIONS

The classification performance of this new CF-RRE method

is evaluated by comparisons with several other fusion methods

including weighted majority voting (WMV), weighted averag-

ing fusion (WAF) and weighted DS (WDS) combination rule.

Here we will test the formulas (15)-(16) that are commonly

used in practice to calculate the weighting factors based on

the classification accuracy η (see [21]).

wn =
ηn∑
l

ηl
(15)

wn =
ηn − ηW

ηB − ηW
, (16)

where ηB , max
n

ηn, ηW , min
n

ηn, ηn , Nc

T
, and where

Nc is the number of patterns correctly classified, and T is

the number of patterns to classify. We consider here the local

accuracy ηn, which is calculated according to T = K nearest

neighbors of objects in training data space. ηn denotes the

individual local accuracy of the classifier Cn.

The three used fusion methods including WMV, WAF and

WDS are briefly explained here for comparisons in this work.

• In WMV rule, the fusion result is calculated by l =
N∑

n=1
wnln, and ln is the hard classification result of

classifier Cn.

• In WAF method, the fusion is defined as p =
N∑

n=1
wnpn,

and pn is the output of classifier Cn.

• In WDS method, the classifiers are combined by

m = α1m1 ⊕ . . .⊕ αNmN with αn = wn

max
i

wi
. The BBA

αnmn denotes the BBA mn discounted using Shafer’s

discounting rule [9] with the reliability factor αn. The

weights wn (n = 1, . . . , N ) are normalized to make the

sum of fusion result equal to one.

The base classifier can be selected according to the actual

applications. In this work, the Evidential neural network

(ENN) [15] classifier is employed as the base classifiers5,

5Any other classical classifiers can be also be used here as base classifier,
and the selection of proper base classifier mainly depends on the actual
application, which is out of scope of this paper.



since it usually produces good performance. The base

classifier(s) will be respectively trained using different subsets

of attributes, and the multiple classification results obtained

by different classifiers will be fused for classifying the

objects. In this work, the predicted class of the object (i.e. the

final decision made) corresponds to the class that has received

(after the classifier fusion) the maximum of plausibility.

Five real data sets from UCI repository [26] have been used

in this work to evaluate the performance of this new CF-RRE

method, and to compare it with respect to other three fusion

methods. The basic knowledge of the used data sets are shown

by Table I. The patterns in these data sets contain multiple

attributes. For each data set, the whole set of attributes will be

randomly divided into N distinct subsets6, and each subset of

attributes will be respectively used to train the base classifier.

For example, Texture data set has 40 attributes that can be

divided into 4 distinct sub-sets, and each subset contains 10

attributes. The base classifier ENN will be respectively learnt

based on each subset of attributes.

The k-fold cross validation is often used for the classifica-

tion performance evaluation, but k remains a free parameter.

We use the simplest 2-fold cross validation here, since the

training and test sets are large, and each sample can be

respectively used for training and testing on each fold. In the

K nearest neighbors selection, we have tested the classification

performance with the K value ranging from 5 to 20 for the

local weighted fusion methods, and for our proposed CF-RRE

method. The two derivations of weights according to (15)-(16)

have been tested and the best results are reported. In the CF-

RRE method, the parameters γ ∈ [5, 20] can be optimized

using the training data, and optimized value corresponding

to the highest accuracy is adopted. The average classification

results (mean accuracy value) with K ∈ [5, 20] for different

methods are reported in Table II, and the accuracy curves with

the different K values in different methods are shown by Figs.

1 and 2.

In Table II, the N value is the number of classifiers, and

each classifier corresponds to a subset of attributes. ACl and

ACu represent respectively the lower and upper bounds of

the classification accuracy of these individual classifiers that

are combined, and the accuracy is calculated by AC = Nc

T

where Nc is the number of correctly classified object, and T

is number of total test patterns.

The analysis of the results of Table II shows that all the

used fusion approaches generally improve the classification

accuracy with respect to the individual classifier. This demon-

strates the advantage and interest of combining classifiers.

Meanwhile, one can see that this new CF-REE method pro-

duces much higher accuracy rate than other methods thanks

to the use of the refined reliability evaluation strategy. In

the other weighted fusion methods, the weighting factors

mainly depend on the overall performance of classifier, and

the refined classification knowledge (e.g. the variety of the

6There is no overlapping attributes in different subsets.

misclassifications) is ignored. In the new method, the different

misclassification cases of neighborhoods play different roles in

the cautious discounting of classification results of object.

In the Figs. 1 and 2, the x-axis represents the number of K

value, whereas y-axis corresponds to the accuracy. According

to the Figs. 1 and 2, we also observe that the classification

performance of the new method is not very sensitive to the

K value contrary to the other methods. This is because the

influence of the distance from the object to its neighbors is

additionally taken into account. The farther distance from a

neighbor to the object will yield the smaller weight (influence)

of this neighbor in the reliability evaluation. So the neighbors

which are quite far from the object will have very little

influence on the classification of the object. The experiment

results show that the new method is robust with respect to the

K value. Thus, the K value can be easily selected in the real

applications for this new method.

For each data set, we have considered two cases with

different number of classifiers. We find that the bigger number

of classifiers does not necessarily lead to higher accuracy. So

the proper selection of classifiers for the fusion procedure

according to the reliability evaluation may be an interesting

topic to investigate in the future.

Table I
BASIC INFORMATION OF THE USED DATA SETS.

Data Classes Attributes Instances

Texture (Te) 11 40 5500

Vehicle (Ve) 4 18 946

Movement-libras (ML) 15 90 360

Sonar (So) 2 60 208

Segment (Se) 7 19 2310

Table II
CLASSIFICATION RESULTS OF DIFFERENT METHODS WITH ENN

CLASSIFIER (IN %).

Data N [ACl, ACu] WMV WAF WDS NEW

Te 4 [59.18, 65.35] 81.62 80.87 83.13 95.38
Te 8 [53.00, 68.36] 84.59 82.59 85.28 94.44

Ve 2 [38.18, 49.53] 52.25 51.57 51.56 65.17
Ve 6 [38.53, 49.29] 55.16 52.40 55.78 64.93

ML 9 [26.67, 44.17] 55.38 54.36 61.55 76.68
ML 15 [24.44, 38.06] 56.56 49.03 62.10 71.65

So 6 [53.37, 73.08] 74.37 73.29 77.31 81.97
So 20 [53.37, 74.04] 72.57 71.36 75.81 78.85

Se 7 [32.73, 67.10] 76.60 80.28 80.61 90.70
Se 2 [63.72, 69.87] 82.34 81.63 82.36 91.79

V. CONCLUSION

A new method for classifier fusion with refined reliabil-

ity evaluation (CF-RRE) has been proposed based on be-

lief function theory. The reliability represented by a matrix



Rc×c (c being the number of classes in the data set) is

estimated based on the local classifier performance in the

neighborhoods of the object. Each element of the reliability

matrix characterizes the conditional probability of the object

potentially belonging to class ωi, i = 1, . . . , c when it is

classified to ωj , j = 1, . . . , c by the given classifier. Then

the classification result is cautiously discounted according to

the elements of reliability matrix, and the partial probability

(or belief) of each class is prudently redistributed to the

associated imprecise classes (i.e. the disjunction of several

classes) under belief functions framework. This cautious dis-

counting operation is able to reduce the error risk by modeling

the imprecision, which can be specified by combining with

other (more or less) complementary classifiers. The popular

Dempster’s rule (also called DS rule) is employed to globally

fuse the discounted classification results provided by different

classifiers. The uncertainty and imprecision of the individual

classifiers can be efficiently decreased through the fusion

procedure. The effectiveness of the new method has been

validated by experiments using various real data sets with

respect to several other related methods, and the new method

is able to produce much higher accuracy than others. Some

more base classifiers (e.g. Support Vector Machine, Bayesian

classifier) and more real data sets will be used to further

test the potential of the proposed method in our future work.
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Fig.1a: Texture Data with 4 classifiers.
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Fig. 1b: Vehicle Data with 2 classifiers.
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Fig. 1c: Movement-libras Data with 9
classifiers.
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Fig. 1d: Sonar Data with 6 classifiers.
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Fig. 1e: Segment Data with 2 classifiers.

Figure 1. Classification results by fusion of few classifiers.
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Fig. 2a: Texture Data with 8 classifiers.
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Fig. 2b: Vehicle Data with 6 classifiers.
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Fig. 2c: Movement-libras Data with 15
classifiers.
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Fig. 2d: Sonar Data with 20 classifiers.
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Fig. 2e: Segment Data with 7 classifiers.

Figure 2. Classification results by fusion of more classifiers.


