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Abstract—The ranking fusion (or aggregation), which is an im-
portant branch in multiple attribute decision making, combines
multiple rankings to a single one for decision making. Many
traditional ranking fusion methods are implemented through
heuristic ways to reduce the computational cost. They all have
their own pros and cons. In this paper, a new hierarchical ranking
aggregation method is proposed. All the items are first divided
into multiple ranking levels (i.e., ordered items subsets) based on
the information provided by different rankings to be fused. The
items in high ranking levels are ranked higher than all the items
in low ranking levels in the fused ranking, therefore those items
in different levels never interact each other’s ranking. Then, the
items in the same ranking level are further divided into multiple
sub-levels if possible. In the final, the items in a sub-level which
cannot be further divided are further compared and ranked in
particular. Simulation results show that our new hierarchical
method performs well in ranking fusion for decision making.

Index Terms—Ranking fusion, hierarchical, pairwise compar-
ison, multiple attribute decision making (MADM).

I. INTRODUCTION

Different attributes or information sources reflect different

aspects of the items concerned in decision making. Information

fusion based decision making approaches such as multiple at-

tribute decision making (MADM) [1], which comprehensively

uses multiple attributes, are expected to obtain better results

than those using only single attribute. The ranking fusion (or

ranking aggregation) is an important branch in MADM where

each information source provides a order list (ranking) of the

corresponding items and these input rankings are fused to

generate a consensus ranking. The ranking fusion has been

a research topic for more than two centuries and has been

increasingly used in a wide range of successful applications

such as the information retrieval [2], bio-informatics [3],

estimator ranking [4] and enterprise management [5], [6].

In the traditional MADM framework, the goal of ranking

fusion is to find a ranking that can best represent all the

input rankings, i.e., to find a ranking which has the smallest

average distance to all the available rankings to be fused

[2], [7]. Finding this fused ranking can be formulated as

an optimization problem, which is usually NP-hard [2]. To

reduce the computational cost, a series of heuristic ranking

fusion methods have been proposed. According to their im-

plementation processes, these methods can be divided into

two branches, i.e., batch mode [8]–[12] (or global mode)

methods and instant-runoff mode [15] (or Luce mode [16],

[17]) methods.

Batch mode methods generate the ranking positions of all

the items simultaneously, where the Borda count [7], [8] is

perhaps the most representative one. It works based on the

items’ positions in input rankings directly. Condorcet vote

[9] is another popular traditional method, which works based

on the pairwise comparisons of items. Dwork [11] used the

Locally Kemeny optimal ranking as the fused ranking. It is

implemented by finding Hamiltonian path. In 2002, Mark [10]

designed a Condorcet-fuse method and it is also implemented

by finding the Hamiltonian path. In 2012, Negahban [12] intro-

duced a kind of iterative ranking from pairwise comparisons,

and later Yin [4] proposed the Ranking Eigenvector (REV)

method. Although these two methods analyze the ranking

problem in different ways, they both use the eigenvector of the

pairwise comparison matrix for ranking. Yin also introduced

a Self-weighted Score Addition (SSA2) method. Moreover,

some other methods apply stochastic optimization algorithms

[13], [14] such as the genetic algorithm and cross-entropy

Monte Carlo algorithm for searching the optimal ranking.

The instant-runoff mode methods decompose the process

of generating a fused ranking of n items into n sequential

rounds. In each round, only the one item is assigned a fused

ranking position and eliminated immediately from the set of

unranked items. The following rounds only concern about the

unranked items. The most representative method is Instant-

Runoff Voting (IRV) [15]. However, in each round of IRV, the

eliminated items is selected just according to the first place

votes, which can not represent the input rankings’ opinions

comprehensively. In 2010, Qin [17] proposed a probabilistic

model, i.e., coset-permutation distance based stagewise (CPS)

model, for the ranking aggregation. CPS works better than

IRV, however, it has large computational cost for selecting

the best item in each round. In 2015, we [18] proposed an

instant-runoff ranking fusion method (IRRF) using the result

of traditional batch mode ranking fusion methods and a top-2

comparison based instant-runoff ranking fusion method (T2-

IRRF), which is an improved IRRF by introducing more local

comparison information into the selection of the best item in

each round.

Traditional ranking fusion methods all have their pros and

cons (e.g., the problem of rank reversal [19]), and there is



no widely accepted one. In this paper, a hierarchical ranking

aggregation (HRA) method is proposed to obtain better perfor-

mances of ranking fusion. HRA divides the items into different

ranking levels, i.e., multiple ordered items subsets, according

to their comparisons with all the other items based on all the

rankings to be fused. Then the items in the same ranking

level are further divided into different sub-levels according

to the comparisons among themselves if they could be further

divided. The ranking fusion is implemented hierarchically. In

the final, the items in a sub-level, which cannot be further

divided, are compared and ranked in particular to complete the

fused ranking. According to HRA, the items in high ranking

levels are ranked higher than all the items in low ranking levels

in the fused ranking, therefore, those items in different levels

never interact each other’s ranking. Simulation results show

that the new ranking fusion method can effectively improve the

performance of ranking fusion, which is desired for decision

making.

II. RANKING AGGREGATION IN MULTIPLE ATTRIBUTE

DECISION MAKING

A. Conceptions and formulations in ranking aggregation

Given a set of items X = {x1, x2, ..., xn}, a ranking is

the order list of these items according to a certain criterion

(or attribute). The ranking in general can be categorized into

three types [7], [20], [21]: the total ranking, the partial ranking,

and the top-k ranking. Here, we only focus on the total

ranking, where all the items are assigned ranking positions.

When there are more than one available rankings originated

from different information sources (or attributes), the ranking

fusion (or aggregation) can output a consensus ranking of these

available rankings. Suppose there are m available rankings

with respect to n items as shown in (1).

E =

x1 x2 ⋅ ⋅ ⋅ xn

A1

A2

...

Am

⎡

⎢

⎢

⎢

⎣

�11 �12 ⋅ ⋅ ⋅ �1n
�21 �22 ⋅ ⋅ ⋅ �2n

...
...

. . .
...

�m1 �m2 ⋅ ⋅ ⋅ �mn

⎤

⎥

⎥

⎥

⎦

(1)

The ith row of E represents the ranking � i = {�i1, �i2, ..., �in}
given by attribute Ai (i = 1, 2, ...,m) and �ij denotes the

ranking position of xj in � i. In general, we assume that if

the value of �ij is smaller, the corresponding item xj is more

preferred according to � i.

Each ranking in E can also be described using pairwise

representation [22], i.e., the preference between each pair of

items is represented using a matrix R = (rij)n×n
, where

rij =

⎧

⎨

⎩

1 if xi ≻ xj ,

0 if xi ≺ xj ,

0.5 if xi = xj

(2)

Here, xi ≻ xj denotes that xi is better than xj , and xi ≺ xj

denotes the opposite situation. The ranking, e.g., x4 ≻ x1 ≻
x2 ≻ x3 can be represented with R:

R =

x1 x2 x3 x4

x1

x2

x3

x4

⎡

⎢

⎢

⎣

0 1 1 0
0 0 1 0
0 0 0 0
1 1 1 0

⎤

⎥

⎥

⎦

To make a decision, the multiple rankings should be fused or

aggregated to generate a consensus ranking that best represents

all the rankings:

�∗ = H
(

�1, �2, ..., �m
)

(3)

where �∗ is the fused ranking, H (⋅) denotes a kind of ranking

fusion method, and �1, �2, ..., �m are the rankings provided by

different attributes or information sources, e.g., the rankings in

E. Traditional ranking fusion methods can mainly be divided

into two branches, the batch mode method and the instant-

runoff mode method. Batch mode (i.e. global mode) methods

obtain the fused ranking in one run, e.g., Borda Count and the

Ranking Eigenvector method (REV). The instant-runoff mode

methods obtain the fused ranking using a series of sequential

rounds, e.g., Instant-Runoff Voting (IRV).

B. Batch mode methods

1) Borda Count: It works based on the ranking positions of

items directly. It assigns each item xj (j = 1, 2, ..., n) a score

Bi (j) based on the position provided by � i (i = 1, 2, ...,m).

Bi (j) = 1−
�ij − 1

n
(4)

According to the scores of xj generated from all the avail-

able rankings � i (i = 1, 2, ...,m), Borda Count generates a

final score for xj using a certain aggregate function Bj =
f
(

B1 (j) , B2 (j) , ..., Bm (j)
)

. For example, the mean aggre-

gate function is

f
(

B1 (j) , B2 (j) , ..., Bm (j)
)

=
1

m

m
∑

l=1

Bl (j) (5)

There are also many other ways to construct aggregate function

f , such as the p-norm mapping, median mapping and geomet-

ric mean mapping, etc. [7]. The fused ranking is obtained by

sorting the aggregated scores of items.

2) Ranking Eigenvector (REV): It works based on the

pairwise comparison matrix (PCM). PCM’s elements express

the average preference between each items pair according to

their comparisons in all the available rankings. In REV, all the

available rankings � i (i = 1, 2, ...,m) are reformulated using

pairwise representation Ri = (rijk)n×n. The PCM matrix is

generated as:

ℳ
Δ
=

⎡

⎢

⎢

⎢

⎣

M (1, 1) M (1, 2) ⋅ ⋅ ⋅ M (1, n)
M (2, 1) M (2, 2) ⋅ ⋅ ⋅ M (2, n)

...
...

. . .
...

M (n, 1) M (n, 2) ⋅ ⋅ ⋅ M (n, n)

⎤

⎥

⎥

⎥

⎦

(6)



where

M (j, k) =
1

m

m
∑

i=1

rijk (7)

M (j, k) denotes the average preference of xj over xk. If

M (j, k) > M (k, j), then xj ≻ xk . There exists
{

M (j, k) +M (k, j) = 1 ∀j ∕= k

M (j, k) = 0 ∀j = k
(8)

Based on the PCM matrix, REV method generates scores for

different items using an certain mapping F (⋅). For example,

the simple linear mapping is as follows.

�maxvREV = F (vREV ) = ℳvREV (9)

where ℳ is the PCM matrix, �max is the largest eigenvalue of

ℳ, and vREV is the ranking eigenvector (REV), which is the

positive eigenvector1 corresponding to the largest eigenvalue

�max. vREV is defined as

vREV =
[

v1 v2 ⋅ ⋅ ⋅ vn
]′

(10)

where vi (i = 1, 2, ..., n) is positive and stands for the fusion

score of item xi. The fused ranking is generated by sorting

the scores in vREV .

C. Instant-runoff mode methods

Both two methods introduced above determine the positions

of all items in the fused ranking simultaneously, while instant-

runoff mode methods determine the items’ ranking positions

one by one. Instant-Runoff Voting is the most representative

instant-runoff mode method. In each round, IRV only deter-

mines the ranking position of the item with the fewest (or the

most) votes. The item whose ranking is determined in current

round will be eliminated. The following rounds are only for

determining the rankings of remaining items. The process of

IRV is as follows:

i) By counting first place votes according to the rankings

with respect to the remaining items we get

V (xj) =

m
∑

i=1

�i (xj) (11)

where

�i (xj) =

{

1 xj ≻ xk, ∀k ∕= j

0 otℎerwise
(12)

�i (xj) indicates the first place vote according to � i. V (xj) is

the count of votes for item xj . The item with the fewest (or

the most) votes will be assigned the lowest (or the highest)

ranking position.

ii) The item who has been ranked in step i) is put into

the fused ranking and eliminated from all the input rankings.

These updated input rankings will be used as input rankings

in the next round.

iii) Repeat the above two steps until we have obtain the

whole fused ranking.

1The way of taking this eigenvector as ranking vector is also adopted in
many other ranking fusion methods, i.e., AHP [6].

D. Average ranking distance criterion

As aforementioned, the purpose of the ranking aggregation

is to find a ranking that can most represent all of the rankings

available for fusion. Kemeny optimal aggregation (KOA) [2]

aims to find a ranking with the smallest average distance

between the input rankings and the fused one, which is defined

as

�∗ = argmin
�

1

m

m
∑

i=1

K
(

�, � i
)

(13)

where K(⋅, ⋅) is the Kendall distance [23], which is a measure-

ment for describing the consensus degree between rankings.

The Kendall distance compares rankings by counting the pair-

wise disagreements between two rankings, which is defined as

follows:

K (�1, �2) =
1

C2
n

∑

(i,j),i∕=j

K∗
ij (�1, �2) (14)

where

K∗
ij (�1, �2) =

⎧





⎨





⎩

0
if xi , xj are in tℎe

same order in �1 , �2

1
if xi , xj are in tℎe

inverse order in �1, �2

(15)

Kendall distance is calculated in time O
(

n2
)

.

Finding the Kemeny optimal aggregation is usually NP-

hard, which is very difficult especially when the number of

items is very large. The most direct way to find this optimal

fused ranking is traversing all of the possible rankings. If the

number of the items to be ranked is n, there will be n! (the

factorial of n) rankings to be traversed. Traditional ranking

fusion methods find the feasible fused rankings, among which

the one with a smaller average ranking distance is preferred.

Therefore, the average ranking distance criterion (ARDC) is

often used to evaluate the fused ranking, which is defined as

" (�) =
1

mC2
n

m
∑

j=1

K
(

�, � j
)

(16)

If the average ranking distance " is small, the corresponding

fused ranking is good, i.e., the fused ranking has a higher

consensus degree to the input rankings. In this paper, ARDC

is adopted to evaluate the fused ranking.

Traditional ranking fusion methods introduced above have

their own pros and cons. There is no well accepted ranking

fusion approach till now.

III. NOVEL HIERARCHICAL RANKING AGGREGATION

Here, a novel hierarchical ranking aggregation (HRA) ap-

proach is proposed. The hierarchical fusion process of HRA

is illustrated using a simple example in Figure 1. HRA first

divides the items into multiple ranking levels, e.g., Level2,

Level1 and Level0
2, according to the comparisons between

each item with all the other items. All the items in high ranking

levels are ranked higher than the items in low ranking levels.

2The ranking level with larger subscript number is a higher ranking level.



Fig. 1. Hierarchical fusion process of HRA.

The items in the same ranking level are further compared and

divided into multiple ranking sub-levels, e.g., x2, x3 in Level2
are further compared and divided into Level21 and Level20.

HRA refines the fused ranking hierarchically. In the following,

we introduce the way for dividing the items into different

ranking levels in detail.

Assume that x1, x2, ⋅ ⋅ ⋅ , xn are the items to be ranked and

there are m rankings with respect to these n items available

for fusion. HRA assigns each item a certain ranking level

according to its comparisons with all the other items. All the

comparisons of each item with all the other items can construct

a matrix, i.e., the pairwise comparison matrix ℳ which has

already been introduced in (6) as.

ℳ
Δ
=

⎡

⎢

⎢

⎢

⎣

M (1, 1) M (1, 2) ⋅ ⋅ ⋅ M (1, n)
M (2, 1) M (2, 2) ⋅ ⋅ ⋅ M (2, n)

...
...

. . .
...

M (n, 1) M (n, 2) ⋅ ⋅ ⋅ M (n, n)

⎤

⎥

⎥

⎥

⎦

As aforementioned, M (j, k) denotes the average preference of

xj over xk on the opinions of all input rankings (attributes).

xj is preferred than xk if and only if M (j, k) > M (k, j).
Then HRA generates the preference order between each

items pair according to the PCM matrix and obtains the

pairwise comparison decision (PCD) matrix, as

D
Δ
=

⎡

⎢

⎢

⎢

⎣

D (1, 1) D (1, 2) ⋅ ⋅ ⋅ D (1, n)
D (2, 1) D (2, 2) ⋅ ⋅ ⋅ D (2, n)

...
...

. . .
...

D (n, 1) D (n, 2) ⋅ ⋅ ⋅ D (n, n)

⎤

⎥

⎥

⎥

⎦

(17)

where

D(i, j) =

⎧

⎨

⎩

1 M(i, j) > M(j, i)
0.5 M(i, j) = M(j, i), and i ∕= j

0 M(i, j) < M(j, i), or i = j

(18)

The ith row of D denotes the comparisons results between xi

and all the other items.

According to ith row of D, xi is assigned the ranking level

by counting the times of xi winning the pairwise comparisons.

L (i) =

n
∑

j=1

D (i, j) (19)

where L (i) is defined as the ranking level of xi. xi and xj

are in the same ranking level if L (i) = L (j), and xi locates

in a higher ranking level than xj if L (i) > L (j). In the fused

ranking, all the high ranking level items are ranked higher than

the low ranking level items.

For the items in the same ranking level, HRA further

compares their preference order and divides them into multiple

ranking sub-levels. The ranking level (or sub-level), which

contains more than one items but can not be divided any more,

is defined as stationary level. The same ranking level items will

stop being divided when this level only contains one item or it

is an stationary level. For the items in a stationary level, HRA

uses some traditional ranking fusion method, e.g., Borda count

as an auxiliary method to generate the fused ranking of those

items. The pseudo code of HRA is as Algorithm 1.

Algorithm 1: Hierarchical Ranking Aggregation

Input: Rankings to be fused,
{

� j
}m

j=1
;

fusedRanking = HierarchicalRank
(

{

� j
}m

j=1

)

{
n = number of items in

{

� j
}m

j=1

if n=1
return

endif

ℳ = calcuate PCM matrix
{

� j
}m

j=1

D = calcuate PCD matrix (ℳ)
L (i) , (i = 1, 2, ⋅ ⋅ ⋅ , n) = calcute each item’s ranking level (D)
if L (1) = L (2) = ⋅ ⋅ ⋅ = L (n)

fusedRanking = traditional ranking fused method
(

{

� j
}m

j=1

)

return fusedRanking
endif

for k = 1: number of different levels
ranking of kth level = HierarchicalRank ( input rankings with

respect to the items in kth level )
endfor

fusedRanking = Rank the items according to their levels
return fusedRanking

}

The computational cost of HRA mainly relates to the

comparison times between the same level items. The best case

is that all the items are divided to different ranking levels in

one time, where HRA will compute in time O
(

n2
)

comparing

each pair of the n items. The worst case is that, in each ranking

level (or sub-level) division, the items in the same ranking level

(or sub-level) are divided into two sub-levels, one of which

only contains one item. In this case, HRA will perform n− 1
times ranking sub-level divisions for generating the complete

fused ranking. Therefore, HRA will compute in time O
(

n3
)

in the worst case.

Here, we give an example to illustrate our new ranking

aggregation approach.

Example 1: Assume that �1, �2, �3, �4, �5 are five rankings

originated from five attributes A1, A2, A3, A4, A5 with respect

to nine items x1, x2, . . . , x9 as

E =

⎡

⎢

⎢

⎢

⎢

⎣

4 1 9 8 3 6 5 7 2
3 1 2 8 9 6 7 5 4
9 3 5 6 1 2 8 7 4
5 4 2 7 9 3 1 8 6
2 6 7 1 9 4 8 5 3

⎤

⎥

⎥

⎥

⎥

⎦



where the ith row of E represents ranking � i obtained based

on Ai and its column represents the ranking position of

corresponding item in each ranking. Here we show the fusion

process of HRA.

HRA first generates the pairwise comparison matrix ℳ1,

according to E. For example, considering the comparison

between x1 and x2, x1 loses the comparison according to

�1, �2, �3, �4 and wins the comparison according to �5.

According to (2) and (7), we have M (1, 2) = 0.2.

ℳ1 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0.0 0.2 0.4 0.6 0.6 0.6 0.6 0.8 0.6
0.8 0.0 0.8 0.8 0.8 0.4 0.8 0.8 0.8
0.6 0.2 0.0 0.6 0.6 0.4 0.6 0.6 0.4
0.4 0.2 0.4 0.0 0.6 0.2 0.4 0.6 0.2
0.4 0.2 0.4 0.4 0.0 0.4 0.4 0.4 0.2
0.4 0.6 0.6 0.8 0.6 0.0 0.6 0.8 0.4
0.4 0.2 0.4 0.6 0.6 0.4 0.0 0.4 0.2
0.2 0.2 0.4 0.4 0.6 0.2 0.6 0.0 0.0
0.4 0.2 0.6 0.8 0.8 0.6 0.8 1.0 0.0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

Then HRA generates the preference order between each pair

of items according to ℳ1 and obtians the pairwise comparison

decision matrix D1.

D1 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 0 0 1 1 1 1 1 1
1 0 1 1 1 0 1 1 1
1 0 0 1 1 0 1 1 0
0 0 0 0 1 0 0 1 0
0 0 0 0 0 0 0 0 0
0 1 1 1 1 1 1 1 0
0 0 0 1 1 0 0 0 0
0 0 0 0 1 0 1 0 0
0 0 1 1 1 1 1 1 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

Then different items are assigned ranking levels by counting

their winning times according to D1.

L1 =
[

7 8 6 3 1 7 3 3 7
]

where L1 (i) denotes the ranking level of xi. Since L1 (2) = 8
is the biggest, then x2 is in the highest ranking level. Similarly,

x5 is in the lowest ranking level. x1, x6, x9 are in the same

ranking level, and x4, x7, x8 are also in the same ranking

level. Then we have

x2 ≻ x1, x6, x9 ≻ x3 ≻ x4, x7, x8 ≻ x5

where the preference order among x1, x6, x9 and the pref-

erence order among x4, x7, x8 has not been determined, as

they are in the same ranking level, i.e., they are close to each

other. They will be further compared and divided into multiple

ranking levels.

For x1, x6, x9, the pairwise comparison matrix with respect

to these three items is ℳ2.

ℳ2 =

⎡

⎣

0.0 0.6 0.6
0.4 0.0 0.4
0.4 0.6 0.0

⎤

⎦

According to ℳ2 the preference order between each pair

of items is generated and the pairwise comparison decision

matrix D2 is as

D2 =

⎡

⎣

0 1 1
0 0 0
0 1 0

⎤

⎦

So we have

L2 =
[

2 0 1
]

According to L2 we have

x1 ≻ x9 ≻ x6

Then this branch will stop and return the ranking with respect

to x1, x6, x9, as each ranking level only has one item

according to L2.

For x4, x7, x8, the pairwise comparison matrix with respect

to these three items is ℳ3.

ℳ3 =

⎡

⎣

0.0 0.4 0.6
0.6 0.0 0.4
0.4 0.6 0.0

⎤

⎦

According to ℳ3, the pairwise comparison decision matrix

D3 is generated, as

D3 =

⎡

⎣

0 0 1
1 0 0
0 1 0

⎤

⎦

So we have

L3 =
[

1 1 1
]

According to L3, x4, x7, x8 can not be divided into different

ranking levels any more, i.e., they are in an stationary level.

Their preference order will be determined according to some

traditional ranking fusion method. In this example, we use

Borda count method. According to Borda count we have

x7 ≻ x4 ≻ x8

Then this branch will stop and return the ranking with respect

to x4, x7, x8, as these three items are in an stationary level

according to L3.

Till now we have obtain the order list with respect to all

the items, i.e.,

x2 ≻ x1 ≻ x9 ≻ x6 ≻ x3 ≻ x7 ≻ x4 ≻ x8 ≻ x5

thus the final fused ranking is

�f =
[

2 1 5 7 9 4 6 8 3
]

The average ranking distance of �f together with the results

of traditional ranking fusion methods are listed in TABLE

I, where HRA is our new method and KOA is the Kemeny

optimal aggregation found by traversing all of the possible

rankings. According to TABLE I, in this example, the result

of HRA is better than traditional ranking fusion methods based

on ARDC, and the fused ranking of HRA is the same with

Kemeny optimal aggregation.

Note that the stationary level appears only when all the

items can not be divided into multiple levels (or sub-levels)



TABLE I
RESULTS OF DIFFERENT RANKING FUSION METHODS.

Method Ranking Average ranking distance

Borda 4, 1, 5, 7, 8, 3, 6, 9, 2 0.3500
REV 4, 1, 5, 7, 8, 3, 6, 9, 2 0.3500

SSA2 4, 1, 5, 7, 8, 3, 6, 9, 2 0.3500
IRV 3, 1, 2, 8, 5, 7, 6, 9, 4 0.3667
CPS 3, 2, 5, 8, 7, 1, 6, 9, 4 0.3500
HRA 2, 1, 5, 7, 9, 4, 6, 8, 3 0.3333
KOA 2, 1, 5, 7, 9, 4, 6, 8, 3 0.3333

any more, i.e., all the items still locate in the same ranking

level according to the comparisons among themselves, such

as x4, x7, x8. In this case, every item wins half of the other

items in this stationary level, i.e., these items are really close

to each other. Although HRA uses Borda count to deal with

the stationary level items as a auxiliary method, using HRA

is better than only using Borda count to determine the whole

fused ranking.

IV. SIMULATIONS

To verify the validity of the novel hierarchical ranking

aggregation method, in this section, we use Monte-Carlo

simulations with different settings. The rankings to be fused

are randomly generated with different parameter settings in

different simulations. Then different ranking fusion methods

are used to fuse these rankings generated. The performance of

the ranking fusion methods used are compared.

The parameters involved in the generations of simulation

settings are given in TABLE II. In each run, a seed ranking

TABLE II
PARAMETERS INVOLVED IN SIMULATION SETTINGS.

Parameters Meanings

m number of rankings to be fused
I number of items
T swapping times

�seed with respect to I items is randomly generated. Then,

randomly select two items in �seed and swap their positions.

Such a random selection and swapping will be repeat T times

to generate a ranking to be fused. The swapping times T can be

different for different single rankings. The rankings generated

with small T are similar to each other, as they are all similar

to the seed ranking. The ranking generated with large T are

quite different from all the other rankings generated. In each

run, m rankings are generated.

In the simulations, Borda Count, REV, SSA2, IRV, CPS and

HRA are used to fuse the input rankings. The fused rankings

generated by different methods are evaluated according to

average ranking distance criterion (ARDC). Totally 100 runs

are executed, where in each run a seed ranking is randomly

regenerated. The performance of different methods used are

evaluated using the average of the 100 runs. When the number

of items is small, the Kemeny optimal aggregation is found

by traversing all of the possible rankings.

Simulation 1: This simulation compares the performance

of different methods in the cases with small number of items

and input rankings. We design three simulation settings with

different similarity degrees. The simulation settings are shown

in TABLE III. Note that there are in total three rankings to

TABLE III
SIMULATION SETTINGS IN SIMULATION 1.

settings m (Rankings NO.) I (Items NO.) T (Swapping times)

1 3 9 2

2
2 9 2
1 9 6

3 3 9 6

be fused in setting 2, one is generated by swapping 6 times

and the other two are generated by swapping 2 times. All the

three rankings in setting 1 are similar to each other. In setting

2, two rankings are similar to each other but quite different

from the other one. Setting 3 contains three quite different

rankings. The average ranking distance of different methods

are listed in TABLE IV.

TABLE IV
SIMULATION RESULTS IN SETTINGS 1 ∼ 3.

Methods
settings

1 2 3

Borda 0.2314 0.2456 0.2916
REV 0.2165 0.2479 0.2828

SSA2 0.2137 0.2469 0.2828
IRV 0.2356 0.2636 0.3045
CPS 0.2085 0.2397 0.2722
HRA 0.1966 0.2257 0.2622
KOA 0.1950 0.2233 0.2581

Because in this simulation the number of items is small, so

we find the Kemeny optimal aggregation (KOA) by traversing

all of the possible rankings. According to TABLE IV, the

performance of HRA is better than traditional ranking fusion

methods, i.e., Borda count, REV, SSA2, IRV and CPS, and its

results are very close to the results of KOA.

Furthermore, TABLE IV only lists the average ranking

distance of different methods in different simulation settings.

It should be better to provide further detailed comparisons

among the different ranking fusion methods by considering

KOA as the optimal one. Here we define the difference rate


, which is calculated according to (20).


 =
"∗ − "KOA

"KOA
(20)

where "KOA is calculated using (16) with respect to the result

of KOA and "∗ is calculated with respect to the results of

different ranking fusion methods. As aforementioned, if " is

small, the corresponding fused ranking is good and KOA finds

the optimal fused ranking by traversing all of the possible



rankings. Thus "∗ ≥ "KOA, i.e., 
 ≥ 0, and a smaller 
 is

better, i.e., the corresponding fused ranking is closer to the

optimal fused ranking. The mean, maximum and minimum

of 
 with respect to different ranking fusion methods are

calculated in 100 runs and shown in Figures 2∼4.

In these three figures, the histogram indicates the mean of


, and the top and the bottom of the error bar (blue vertical

line segment) denote the maximum and minimum of 
 in 100

runs, respectively. According to Figures 2∼4, the performance

of HRA is better than the other traditional ranking fusion

methods. The mean 
 of HRA is the smallest. Especially

in setting 1, the mean 
 of HRA nearly equals to 0, i.e., in

each run, the result of HRA is very close to the optimal fused

ranking. Furthermore, the top of HRA’s error bar is the lowest

one and the length of its error bar is the shortest one, i.e., the

fused ranking obtained using HRA is more reliable than the

results of the other traditional ranking fusion methods.
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0
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Fig. 2. Results in Setting 1.
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Fig. 3. Results in Setting 2.

Simulation 2: This simulation compares the performance of

different methods in the cases with large number of items and

more input rankings. We also design three simulation settings

with different similarity degrees. The simulation settings are

shown in TABLE V. Note that both setting 4 and setting 5

totally contain ten rankings to be fused. Most of the rankings

in setting 4 are similar to each other and most of the rankings

in setting 5 are quite different from the others. All the rankings

in setting 6 are quite different from the others. The average

ranking distance of different methods are listed in TABLE VI.
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Fig. 4. Results in Setting 3.

TABLE V
SIMULATION SETTINGS IN SIMULATION 2.

settings m (Rankings NO.) I (Items NO.) T (Swapping times)

4
7 50 5
3 50 25

5
3 50 5
7 50 25

6 10 50 25

According to TABLE VI, the performance of HRA is better

than traditional ranking fusion methods, as the average ranking

distance of HRA is smaller than traditional ranking fusion

methods in all these three settings. Because in this simulation

the number of items is too large to find the KOA by traversing

all of the possible rankings. Here, we do not provide the result

of KOA and the difference rates of different ranking fusion

methods compared with KOA.

V. CONCLUSION

A novel Hierarchical Ranking Aggregation approach is

proposed in this paper. According to HRA, the ranking fusion

is implemented by dividing all the items into multiple ranking

levels hierarchically. The items in the same ranking level are

further divided according to the pairwise comparisons between

the items in this ranking level, where the preference order

among the close items are further compared. In simulations

no matter when the number of items and the number of input

rankings are small or big, HRA performs better than traditional

ranking fusion methods as its results have smaller average

ranking distances. Moreover, the fused ranking of HRA has

TABLE VI
SIMULATION RESULTS IN SETTING 4 ∼ 6.

Methods
settings

4 5 6

Borda 0.2151 0.2927 0.3390
REV 0.2183 0.2933 0.3393

SSA2 0.2174 0.2933 0.3393
IRV 0.2461 0.3448 0.4016
CPS 0.2154 0.2923 0.3385
HRA 0.1932 0.2837 0.3358



a smaller difference rate 
, i.e., it is more reliable than the

results of other methods.

Furthermore, evaluation criteria are crucial for ranking

fusion. In future work, we will try to design better evalua-

tion criteria for analysing the performance of HRA and the

robustness of HRA to the rank reversal.
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