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Abstract—The ranking fusion (or aggregation), which is an im-
portant branch in multiple attribute decision making, combines
multiple rankings to a single one for decision making. Many
traditional ranking fusion methods are implemented through
heuristic ways to reduce the computational cost. They all have
their own pros and cons. In this paper, a new hierarchical ranking
aggregation method is proposed. All the items are first divided
into multiple ranking levels (i.e., ordered items subsets) based on
the information provided by different rankings to be fused. The
items in high ranking levels are ranked higher than all the items
in low ranking levels in the fused ranking, therefore those items
in different levels never interact each other’s ranking. Then, the
items in the same ranking level are further divided into multiple
sub-levels if possible. In the final, the items in a sub-level which
cannot be further divided are further compared and ranked in
particular. Simulation results show that our new hierarchical
method performs well in ranking fusion for decision making.

Index Terms—Ranking fusion, hierarchical, pairwise compar-
ison, multiple attribute decision making (MADM).

I. INTRODUCTION

Different attributes or information sources reflect different
aspects of the items concerned in decision making. Information
fusion based decision making approaches such as multiple at-
tribute decision making (MADM) [1], which comprehensively
uses multiple attributes, are expected to obtain better results
than those using only single attribute. The ranking fusion (or
ranking aggregation) is an important branch in MADM where
each information source provides a order list (ranking) of the
corresponding items and these input rankings are fused to
generate a consensus ranking. The ranking fusion has been
a research topic for more than two centuries and has been
increasingly used in a wide range of successful applications
such as the information retrieval [2], bio-informatics [3],
estimator ranking [4] and enterprise management [5], [6].

In the traditional MADM framework, the goal of ranking
fusion is to find a ranking that can best represent all the
input rankings, i.e., to find a ranking which has the smallest
average distance to all the available rankings to be fused
[2], [7]. Finding this fused ranking can be formulated as
an optimization problem, which is usually NP-hard [2]. To
reduce the computational cost, a series of heuristic ranking
fusion methods have been proposed. According to their im-
plementation processes, these methods can be divided into
two branches, i.e., batch mode [8]-[12] (or global mode)
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methods and instant-runoff mode [15] (or Luce mode [16],
[17]) methods.

Batch mode methods generate the ranking positions of all
the items simultaneously, where the Borda count [7], [8] is
perhaps the most representative one. It works based on the
items’ positions in input rankings directly. Condorcet vote
[9] is another popular traditional method, which works based
on the pairwise comparisons of items. Dwork [11] used the
Locally Kemeny optimal ranking as the fused ranking. It is
implemented by finding Hamiltonian path. In 2002, Mark [10]
designed a Condorcet-fuse method and it is also implemented
by finding the Hamiltonian path. In 2012, Negahban [12] intro-
duced a kind of iterative ranking from pairwise comparisons,
and later Yin [4] proposed the Ranking Eigenvector (REV)
method. Although these two methods analyze the ranking
problem in different ways, they both use the eigenvector of the
pairwise comparison matrix for ranking. Yin also introduced
a Self-weighted Score Addition (SSA%) method. Moreover,
some other methods apply stochastic optimization algorithms
[13], [14] such as the genetic algorithm and cross-entropy
Monte Carlo algorithm for searching the optimal ranking.

The instant-runoff mode methods decompose the process
of generating a fused ranking of n items into n sequential
rounds. In each round, only the one item is assigned a fused
ranking position and eliminated immediately from the set of
unranked items. The following rounds only concern about the
unranked items. The most representative method is Instant-
Runoff Voting (IRV) [15]. However, in each round of IRV, the
eliminated items is selected just according to the first place
votes, which can not represent the input rankings’ opinions
comprehensively. In 2010, Qin [17] proposed a probabilistic
model, i.e., coset-permutation distance based stagewise (CPS)
model, for the ranking aggregation. CPS works better than
IRV, however, it has large computational cost for selecting
the best item in each round. In 2015, we [18] proposed an
instant-runoff ranking fusion method (IRRF) using the result
of traditional batch mode ranking fusion methods and a top-2
comparison based instant-runoff ranking fusion method (T2-
IRRF), which is an improved IRRF by introducing more local
comparison information into the selection of the best item in
each round.

Traditional ranking fusion methods all have their pros and
cons (e.g., the problem of rank reversal [19]), and there is



no widely accepted one. In this paper, a hierarchical ranking
aggregation (HRA) method is proposed to obtain better perfor-
mances of ranking fusion. HRA divides the items into different
ranking levels, i.e., multiple ordered items subsets, according
to their comparisons with all the other items based on all the
rankings to be fused. Then the items in the same ranking
level are further divided into different sub-levels according
to the comparisons among themselves if they could be further
divided. The ranking fusion is implemented hierarchically. In
the final, the items in a sub-level, which cannot be further
divided, are compared and ranked in particular to complete the
fused ranking. According to HRA, the items in high ranking
levels are ranked higher than all the items in low ranking levels
in the fused ranking, therefore, those items in different levels
never interact each other’s ranking. Simulation results show
that the new ranking fusion method can effectively improve the
performance of ranking fusion, which is desired for decision
making.

II. RANKING AGGREGATION IN MULTIPLE ATTRIBUTE
DECISION MAKING

A. Conceptions and formulations in ranking aggregation

Given a set of items X = {x1,z2,...,2,}, a ranking is
the order list of these items according to a certain criterion
(or attribute). The ranking in general can be categorized into
three types [7], [20], [21]: the total ranking, the partial ranking,
and the top-k ranking. Here, we only focus on the total
ranking, where all the items are assigned ranking positions.
When there are more than one available rankings originated
from different information sources (or attributes), the ranking
fusion (or aggregation) can output a consensus ranking of these
available rankings. Suppose there are m available rankings
with respect to n items as shown in (1).

xl x2 PR xn
Ay T11 T12 Tin

= A To1  T22 Ton (1)
Am Tm1 Tm2 Tmn

The ith row of E represents the ranking 7° = {71, Ti2, ..., Tin }
given by attribute A, (i =1,2,...,m) and 7;; denotes the
ranking position of z; in 7%. In general, we assume that if
the value of 7;; is smaller, the corresponding item z; is more
preferred according to 7°.

Each ranking in E' can also be described using pairwise
representation [22], i.e., the preference between each pair of

items is represented using a matrix R = (ry;), .., where
1 if x; >~ Zj,
Tij = 0 Zf xr; < Zj, (2)

Here, x; = x; denotes that x; is better than z;, and x; < z;
denotes the opposite situation. The ranking, e.g., x4 > =1 >
T2 > x3 can be represented with R:

Ty T2 X3 T4
R= x5 0o 0 1 O
xs 0 0 0 0
X4 1 1 1 0

To make a decision, the multiple rankings should be fused or
aggregated to generate a consensus ranking that best represents
all the rankings:

™=H (', .., 3)

where 7* is the fused ranking, H (-) denotes a kind of ranking
fusion method, and 7!, 72, ..., 7™ are the rankings provided by
different attributes or information sources, e.g., the rankings in
E. Traditional ranking fusion methods can mainly be divided
into two branches, the batch mode method and the instant-
runoff mode method. Batch mode (i.e. global mode) methods
obtain the fused ranking in one run, e.g., Borda Count and the
Ranking Eigenvector method (REV). The instant-runoff mode
methods obtain the fused ranking using a series of sequential
rounds, e.g., Instant-Runoff Voting (IRV).

B. Batch mode methods

1) Borda Count: It works based on the ranking positions of
items directly. It assigns each item z; (j = 1,2, ...,n) a score
B (j) based on the position provided by 7¢ (i = 1,2, ..., m).
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According to the scores of x; generated from all the avail-
able rankings 7° (i = 1,2,...,m), Borda Count generates a
final score for x; using a certain aggregate function B; =
f(B*(j),B*(j),.... B™(j)). For example, the mean aggre-
gate function is

n
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There are also many other ways to construct aggregate function
f, such as the p-norm mapping, median mapping and geomet-
ric mean mapping, etc. [7]. The fused ranking is obtained by
sorting the aggregated scores of items.

2) Ranking Eigenvector (REV): It works based on the
pairwise comparison matrix (PCM). PCM’s elements express
the average preference between each items pair according to
their comparisons in all the available rankings. In REV, all the
available rankings 7¢ (i = 1,2, ...,m) are reformulated using
pairwise representation R’ = (T;k)nxn The PCM matrix is
generated as:

M(1,1) M(1,2) M (1,n)
R M(:2, ) M (2 2) M (:2,71) ©
M (n,1) M (n,2) M (n,n)



where m
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M (j,k) denotes the average preference of z; over zj. If
M (j,k) > M (k,j), then z; > xy. There exists

M (jk)+ M (k,j) =1 Vj #k ®
M (j.k) = 0 vj =k

Based on the PCM matrix, REV method generates scores for
different items using an certain mapping F' (-). For example,
the simple linear mapping is as follows.

AmaxVrEV = F (VrEV) = MUREV 9)

where M is the PCM matrix, Ay .« is the largest eigenvalue of
M, and vrgy is the ranking eigenvector (REV), which is the
positive eigenvector! corresponding to the largest eigenvalue
Amax- VrREV 18 defined as

vrpy = [ 1 v2 v | (10)

where v; (i = 1,2,...,n) is positive and stands for the fusion
score of item z;. The fused ranking is generated by sorting
the scores in vpEy.

C. Instant-runoff mode methods

Both two methods introduced above determine the positions
of all items in the fused ranking simultaneously, while instant-
runoff mode methods determine the items’ ranking positions
one by one. Instant-Runoff Voting is the most representative
instant-runoff mode method. In each round, IRV only deter-
mines the ranking position of the item with the fewest (or the
most) votes. The item whose ranking is determined in current
round will be eliminated. The following rounds are only for
determining the rankings of remaining items. The process of
IRV is as follows:

i) By counting first place votes according to the rankings
with respect to the remaining items we get

V(z) = di(x;) (11)
i=1
where ) Vh £ j
N T = T, j
0i (ws) = { 0 otherwise 12

&; (x;) indicates the first place vote according to 7°. V' (z;) is
the count of votes for item x;. The item with the fewest (or
the most) votes will be assigned the lowest (or the highest)
ranking position.

ii) The item who has been ranked in step i) is put into
the fused ranking and eliminated from all the input rankings.
These updated input rankings will be used as input rankings
in the next round.

iii) Repeat the above two steps until we have obtain the
whole fused ranking.

'The way of taking this eigenvector as ranking vector is also adopted in
many other ranking fusion methods, i.e., AHP [6].

D. Average ranking distance criterion

As aforementioned, the purpose of the ranking aggregation
is to find a ranking that can most represent all of the rankings
available for fusion. Kemeny optimal aggregation (KOA) [2]
aims to find a ranking with the smallest average distance
between the input rankings and the fused one, which is defined
as

T —argmq}nm;K(T,T) (13)
where K (-, -) is the Kendall distance [23], which is a measure-
ment for describing the consensus degree between rankings.
The Kendall distance compares rankings by counting the pair-
wise disagreements between two rankings, which is defined as
follows:

1 *
K (11,72) = &3 > Kj(rm) (14)
" (i,)i#]
where
if x;, zj arein the
N same order in Ty , T:
K} (11,72) = 1o 72 (15)

if x; , x; arein the
inverse order in Ti, T

1

Kendall distance is calculated in time O (nz)

Finding the Kemeny optimal aggregation is usually NP-
hard, which is very difficult especially when the number of
items is very large. The most direct way to find this optimal
fused ranking is traversing all of the possible rankings. If the
number of the items to be ranked is n, there will be n! (the
factorial of n) rankings to be traversed. Traditional ranking
fusion methods find the feasible fused rankings, among which
the one with a smaller average ranking distance is preferred.
Therefore, the average ranking distance criterion (ARDC) is
often used to evaluate the fused ranking, which is defined as

1 & ,
5‘(7’) = (2 ZK(T,TJ)
"=l

If the average ranking distance ¢ is small, the corresponding
fused ranking is good, i.e., the fused ranking has a higher
consensus degree to the input rankings. In this paper, ARDC
is adopted to evaluate the fused ranking.

Traditional ranking fusion methods introduced above have
their own pros and cons. There is no well accepted ranking
fusion approach till now.

(16)

III. NOVEL HIERARCHICAL RANKING AGGREGATION

Here, a novel hierarchical ranking aggregation (HRA) ap-
proach is proposed. The hierarchical fusion process of HRA
is illustrated using a simple example in Figure 1. HRA first
divides the items into multiple ranking levels, e.g., Levels,
Level; and Levely?, according to the comparisons between
each item with all the other items. All the items in high ranking
levels are ranked higher than the items in low ranking levels.

2The ranking level with larger subscript number is a higher ranking level.
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Fig. 1. Hierarchical fusion process of HRA.

The items in the same ranking level are further compared and
divided into multiple ranking sub-levels, e.g., x2, x3 in Levels
are further compared and divided into Levely; and Levelyg.
HRA refines the fused ranking hierarchically. In the following,
we introduce the way for dividing the items into different
ranking levels in detail.

Assume that z1, 29, - -, x, are the items to be ranked and
there are m rankings with respect to these n items available
for fusion. HRA assigns each item a certain ranking level
according to its comparisons with all the other items. All the
comparisons of each item with all the other items can construct
a matrix, i.e., the pairwise comparison matrix M which has
already been introduced in (6) as.

M(1,1) M(1,2) M (1,n)
A | M1 M(22) M (2,n)
M(n,1) M(n,2) M (n,n)

As aforementioned, M (j, k) denotes the average preference of
x; over xj on the opinions of all input rankings (attributes).
x; is preferred than xj, if and only if M (j,k) > M (k, j).

Then HRA generates the preference order between each
items pair according to the PCM matrix and obtains the
pairwise comparison decision (PCD) matrix, as

D(,1) D(1,2) D(1,n)
DA D(:2=1) D(:272) D(?an) an
D(n,1) D(n,2) D (n,n)
where
1 M(i,5) > M(j,i)
D(i,j)={ 05 M(i,j)=M(@,i),andi#j  (18)

0 M(i,j) < M(j,i),0r i =j

The :th row of D denotes the comparisons results between x;
and all the other items.

According to ith row of D, x; is assigned the ranking level
by counting the times of z; winning the pairwise comparisons.

L(i)=> D(ij) (19)
j=1

where L (i) is defined as the ranking level of z;. x; and z;
are in the same ranking level if L (i) = L (j), and z; locates
in a higher ranking level than x; if L (i) > L (j). In the fused
ranking, all the high ranking level items are ranked higher than
the low ranking level items.

For the items in the same ranking level, HRA further
compares their preference order and divides them into multiple
ranking sub-levels. The ranking level (or sub-level), which
contains more than one items but can not be divided any more,
is defined as stationary level. The same ranking level items will
stop being divided when this level only contains one item or it
is an stationary level. For the items in a stationary level, HRA
uses some traditional ranking fusion method, e.g., Borda count
as an auxiliary method to generate the fused ranking of those
items. The pseudo code of HRA is as Algorithm 1.

Algorithm 1: Hierarchical Ranking Aggregation
Input: Rankings to be fused, {TJ }"L ;

J=1’
fusedRanking = HierarchicalRank ({7}" )
{ _
n = number of items in {7'3}
if n=1
return
endif
M = calcuate PCM matrix {77 };”:1
D = calcuate PCD matrix (M)
L(i),(t=1,2,---,n) = calcute each item’s ranking level (D)
ifL(1)=L(2)=---=L(n)
fusedRanking = traditional ranking fused method ({7’7 };n:1>
return fusedRanking
endif
for k = 1: number of different levels
ranking of kth level = HierarchicalRank (input rankings with
respect to the items in kth level )

m
j=1

endfor
fusedRanking = Rank the items according to their levels
return fusedRanking

}

The computational cost of HRA mainly relates to the
comparison times between the same level items. The best case
is that all the items are divided to different ranking levels in
one time, where HRA will compute in time O (nz) comparing
each pair of the n items. The worst case is that, in each ranking
level (or sub-level) division, the items in the same ranking level
(or sub-level) are divided into two sub-levels, one of which
only contains one item. In this case, HRA will perform n — 1
times ranking sub-level divisions for generating the complete
fused ranking. Therefore, HRA will compute in time O (n3)
in the worst case.

Here, we give an example to illustrate our new ranking
aggregation approach.

Example 1: Assume that 71, 72, 73, 74, 7 are five rankings
originated from five attributes A1, As, As, Ay, A5 with respect

4

to nine items x1,x2,...,Tg as
4 1 9 8 3 6 5 7 2
31 2 8 9 6 7 5 4
EFE={9 3 5 6 1 2 8 7 4
5 4 2 7 9 3 1 8 6
2 6 71 9 4 8 5 3



where the ith row of E represents ranking 7% obtained based
on A; and its column represents the ranking position of
corresponding item in each ranking. Here we show the fusion
process of HRA.

HRA first generates the pairwise comparison matrix M,
according to E. For example, considering the comparison
between x; and 2, x; loses the comparison according to
71, 72, 73, 7% and wins the comparison according to 7°.

According to (2) and (7), we have M (1,2) = 0.2.

[ 0.0 02 04 06 06 06 06 0.8 0.6
08 0.0 08 08 08 04 08 08 0.8
06 02 00 06 06 04 06 06 04
04 02 04 00 06 02 04 06 0.2
My=|04 02 04 04 00 04 04 04 0.2
04 06 06 08 06 00 06 08 04
04 02 04 06 06 04 00 04 0.2
02 02 04 04 06 02 06 00 0.0
| 04 02 06 08 08 06 0.8 1.0 0.0 ]

Then HRA generates the preference order between each pair
of items according to M and obtians the pairwise comparison
decision matrix Dy.

D, =

[N eNeNoNeNel o)
SO OO OO0 oo
— OO, OOOo O
—_ O = O O
— = O e
OO OO oo
— —_ 0O = OO =
O O = O
[=NeoNeoNoNeNeNell

Then different items are assigned ranking levels by counting
their winning times according to D;.

Li=[7 8 6 317 33 7]

where L; (i) denotes the ranking level of ;. Since L (2) =8
is the biggest, then x; is in the highest ranking level. Similarly,
x5 is in the lowest ranking level. x1, xg, x9 are in the same
ranking level, and z4, x7, xg are also in the same ranking
level. Then we have

T2 = T1, Te, L9 = T3 = T4, T7, T8 > IT5

where the preference order among x1, g, T9 and the pref-
erence order among x4, x7, xs has not been determined, as
they are in the same ranking level, i.e., they are close to each
other. They will be further compared and divided into multiple
ranking levels.

For z1, x¢, x9, the pairwise comparison matrix with respect
to these three items is M.

0.0 0.6 0.6
04 0.0 04
04 0.6 0.0

My =

According to My the preference order between each pair
of items is generated and the pairwise comparison decision
matrix Dy is as

Dy =

o oo
_ o
o O =

So we have
L2:[2 0 1}

According to Lo we have
X1 > X9 > Te

Then this branch will stop and return the ranking with respect
to x1, x, Tg9, as each ranking level only has one item
according to Ls.

For x4, x7, xs, the pairwise comparison matrix with respect
to these three items is Ms.

0.0 04 0.6
Mz=1|06 00 04
04 0.6 0.0

According to Mg, the pairwise comparison decision matrix
Ds is generated, as

D3 =

o = O
= o O
o O =

So we have
Ly=[1 1 1]

According to L3, x4, 7, zg can not be divided into different
ranking levels any more, i.e., they are in an stationary level.
Their preference order will be determined according to some
traditional ranking fusion method. In this example, we use
Borda count method. According to Borda count we have

Ty = XTq > T

Then this branch will stop and return the ranking with respect
to x4, x7, xs, as these three items are in an stationary level
according to Ls.

Till now we have obtain the order list with respect to all
the items, i.e.,

Xog > X1 > X9 > Tg = T3 = T7 > Tg > X8 = Tp
thus the final fused ranking is
f=[2 157946 8 3]

The average ranking distance of 7/ together with the results
of traditional ranking fusion methods are listed in TABLE
I, where HRA is our new method and KOA is the Kemeny
optimal aggregation found by traversing all of the possible
rankings. According to TABLE 1, in this example, the result
of HRA is better than traditional ranking fusion methods based
on ARDC, and the fused ranking of HRA is the same with
Kemeny optimal aggregation.

Note that the stationary level appears only when all the
items can not be divided into multiple levels (or sub-levels)



TABLE I
RESULTS OF DIFFERENT RANKING FUSION METHODS.

Method Ranking Average ranking distance
Borda  4,1,5,7,8,3,6,9,2 0.3500

REV 4,1,5,7,8,3,6,9,2 0.3500

SSAZ? 4,1,5,7,8,3,6,9,2 0.3500

IRV 3,1,2,8,5,7,6,9,4 0.3667

CPS 3,2,5,8,7,1,6,9,4 0.3500

HRA 2,1,5,7,9,4,6,8,3 0.3333

KOA 2,1,5,7,9,4,6,8,3 0.3333

any more, i.e., all the items still locate in the same ranking
level according to the comparisons among themselves, such
as x4, 7, xg. In this case, every item wins half of the other
items in this stationary level, i.e., these items are really close
to each other. Although HRA uses Borda count to deal with
the stationary level items as a auxiliary method, using HRA
is better than only using Borda count to determine the whole
fused ranking.

IV. SIMULATIONS

To verify the validity of the novel hierarchical ranking
aggregation method, in this section, we use Monte-Carlo
simulations with different settings. The rankings to be fused
are randomly generated with different parameter settings in
different simulations. Then different ranking fusion methods
are used to fuse these rankings generated. The performance of
the ranking fusion methods used are compared.

The parameters involved in the generations of simulation
settings are given in TABLE II. In each run, a seed ranking

TABLE I
PARAMETERS INVOLVED IN SIMULATION SETTINGS.

Parameters Meanings
m number of rankings to be fused
I number of items
T swapping times

Tseed With respect to I items is randomly generated. Then,
randomly select two items in Ts..q and swap their positions.
Such a random selection and swapping will be repeat T times
to generate a ranking to be fused. The swapping times 7" can be
different for different single rankings. The rankings generated
with small 7" are similar to each other, as they are all similar
to the seed ranking. The ranking generated with large 7" are
quite different from all the other rankings generated. In each
run, m rankings are generated.

In the simulations, Borda Count, REV, SSAZ2, IRV, CPS and
HRA are used to fuse the input rankings. The fused rankings
generated by different methods are evaluated according to
average ranking distance criterion (ARDC). Totally 100 runs
are executed, where in each run a seed ranking is randomly
regenerated. The performance of different methods used are
evaluated using the average of the 100 runs. When the number

of items is small, the Kemeny optimal aggregation is found
by traversing all of the possible rankings.

Simulation 1: This simulation compares the performance
of different methods in the cases with small number of items
and input rankings. We design three simulation settings with
different similarity degrees. The simulation settings are shown
in TABLE III. Note that there are in total three rankings to

TABLE III
SIMULATION SETTINGS IN SIMULATION 1.

settings ~m (Rankings NO.) [ (Items NO.) T (Swapping times)
1 3 9 2
2 9 2
2 1 9 6
3 3 9 6

be fused in setting 2, one is generated by swapping 6 times
and the other two are generated by swapping 2 times. All the
three rankings in setting 1 are similar to each other. In setting
2, two rankings are similar to each other but quite different
from the other one. Setting 3 contains three quite different
rankings. The average ranking distance of different methods
are listed in TABLE IV.

TABLE IV
SIMULATION RESULTS IN SETTINGS 1 ~ 3.

settings
Methods 1 5 3
Borda 0.2314  0.2456  0.2916
REV 0.2165 0.2479  0.2828
SSAZ2 0.2137  0.2469  0.2828
IRV 0.2356  0.2636  0.3045
CPS 0.2085 0.2397 0.2722
HRA 0.1966  0.2257 0.2622
KOA 0.1950  0.2233  0.2581

Because in this simulation the number of items is small, so
we find the Kemeny optimal aggregation (KOA) by traversing
all of the possible rankings. According to TABLE IV, the
performance of HRA is better than traditional ranking fusion
methods, i.e., Borda count, REV, SSAZ2, IRV and CPS, and its
results are very close to the results of KOA.

Furthermore, TABLE IV only lists the average ranking
distance of different methods in different simulation settings.
It should be better to provide further detailed comparisons
among the different ranking fusion methods by considering
KOA as the optimal one. Here we define the difference rate
v, which is calculated according to (20).

* KOA
e* —¢
where 594 is calculated using (16) with respect to the result

of KOA and €* is calculated with respect to the results of
different ranking fusion methods. As aforementioned, if ¢ is
small, the corresponding fused ranking is good and KOA finds
the optimal fused ranking by traversing all of the possible



rankings. Thus ¢* > %94 je., v > 0, and a smaller ~ is
better, i.e., the corresponding fused ranking is closer to the
optimal fused ranking. The mean, maximum and minimum
of v with respect to different ranking fusion methods are
calculated in 100 runs and shown in Figures 2~4.

In these three figures, the histogram indicates the mean of
v, and the top and the bottom of the error bar (blue vertical
line segment) denote the maximum and minimum of v in 100
runs, respectively. According to Figures 2~4, the performance
of HRA is better than the other traditional ranking fusion
methods. The mean v of HRA is the smallest. Especially
in setting 1, the mean v of HRA nearly equals to 0, i.e., in
each run, the result of HRA is very close to the optimal fused
ranking. Furthermore, the top of HRA’s error bar is the lowest
one and the length of its error bar is the shortest one, i.e., the
fused ranking obtained using HRA is more reliable than the
results of the other traditional ranking fusion methods.
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Fig. 2. Results in Setting 1.
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Fig. 3. Results in Setting 2.

Simulation 2: This simulation compares the performance of
different methods in the cases with large number of items and
more input rankings. We also design three simulation settings
with different similarity degrees. The simulation settings are
shown in TABLE V. Note that both setting 4 and setting 5
totally contain ten rankings to be fused. Most of the rankings
in setting 4 are similar to each other and most of the rankings
in setting 5 are quite different from the others. All the rankings
in setting 6 are quite different from the others. The average
ranking distance of different methods are listed in TABLE VI.
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Fig. 4. Results in Setting 3.

TABLE V
SIMULATION SETTINGS IN SIMULATION 2.

settings ~m (Rankings NO.) I (Items NO.) T (Swapping times)
4 7 50 5
3 50 25
5 3 50 5
7 50 25
6 10 50 25

According to TABLE VI, the performance of HRA is better
than traditional ranking fusion methods, as the average ranking
distance of HRA is smaller than traditional ranking fusion
methods in all these three settings. Because in this simulation
the number of items is too large to find the KOA by traversing
all of the possible rankings. Here, we do not provide the result
of KOA and the difference rates of different ranking fusion
methods compared with KOA.

V. CONCLUSION

A novel Hierarchical Ranking Aggregation approach is
proposed in this paper. According to HRA, the ranking fusion
is implemented by dividing all the items into multiple ranking
levels hierarchically. The items in the same ranking level are
further divided according to the pairwise comparisons between
the items in this ranking level, where the preference order
among the close items are further compared. In simulations
no matter when the number of items and the number of input
rankings are small or big, HRA performs better than traditional
ranking fusion methods as its results have smaller average
ranking distances. Moreover, the fused ranking of HRA has

TABLE VI
SIMULATION RESULTS IN SETTING 4 ~ 6.

settings
Methods 7 5 5
Borda 0.2151  0.2927  0.3390
REV 0.2183  0.2933  0.3393
SSA2 0.2174  0.2933  0.3393
IRV 0.2461 0.3448 0.4016
CPS 0.2154  0.2923  0.3385
HRA 0.1932  0.2837 0.3358




a smaller difference rate ~, i.e., it is more reliable than the
results of other methods.

Furthermore, evaluation criteria are crucial for ranking
fusion. In future work, we will try to design better evalua-
tion criteria for analysing the performance of HRA and the
robustness of HRA to the rank reversal.
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