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Abstract. Experts take into account several criteria to assess the effec-
tiveness of torrential flood protection systems. In practice, scoring each
criterion is imperfect. Each system is assessed choosing a qualitative class
of effectiveness among several such classes (high, medium, low, no). Evi-
dential Reasoning for Multi-Criteria Decision-Analysis (ER-MCDA) ap-
proach can help formalize this Multi-Criteria Decision-Making (MCDM)
problem but only provides a coarse ranking of all systems. The recent
Belief Function-based Technique for Order Preference by Similarity to
Ideal Solution (BF-TOPSIS) methods give a finer ranking but are lim-
ited to perfect scoring of criteria. Our objective is to provide a coarse
and a finer ranking of systems according to their effectiveness given the
imperfect scoring of criteria. Therefore we propose to couple the two
methods using an intermediary decision and a quantification transfor-
mation step. Given an actual MCDM problem, we apply the ER-MCDA
and its coupling with BF-TOPSIS, showing that the final fine ranking is
consistent with a previous coarse ranking in this case.

Keywords: Belief Functions, BF-TOPSIS,ER-MCDA, Torrent protec-
tion.

1 Introduction

In mountainous areas, torrents put people and buildings at risk. Thousands of
check dams, clustered in series, have been built to protect them. Risk managers
must assess their effectiveness given several criteria such as their structural sta-
bility or their hydraulic dimensions. This is a Multi-Criteria Decision-Making
(MCDM) problem. In practice, scoring each criterion is difficult and imperfect.
Experts affect each check dam series to one of several qualitative evaluation
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classes of effectiveness (high, medium, low, no) [1]. Evidential Reasoning for
Multi Criteria Decision Analysis (ER-MCDA) has been developed on the ba-
sis of fuzzy sets, possibility and belief function theories [2, 3] to decide on such
MCDM problems, taking into account imperfect assessment of criteria provided
by several sources.

Given the final qualitative label for each check dam series, a coarse ranking
of all of them can be provided, as shown in recent applications [1]. Nevertheless,
risk managers need a finer ranking to choose the most effective one. To help it,
the recent Belief Function-based Technique for Order Preference by Similarity
to Ideal Solution (BF-TOPSIS) methods [4] are more robust to rank reversal
problems than other classical decision-aid methods such as the Analytic Hier-
archy Process (AHP) [5]. Nevertheless, the BF-TOPSIS methods are limited to
MCDM problems with precise quantitative evaluation of criteria.

To help risk managers rank several check dam series according to their ef-
fectiveness, the BF-TOPSIS should take into account the initial imperfect as-
sessment of criteria. Therefore, we propose to combine the ER-MCDA and BF-
TOPSIS methods. We first detail the ER-MCDA process and apply it to an
actual case with a final coarse ranking. We then combine ER-MCDA with BF-
TOPSIS. Applying it to the same example, we finally show that the finer ranking
result obtained is consistent with the previous coarse ranking result in this case.

2 Some basics of belief function theory

Shafer proposed belief function theory [6] to represent imperfect knowledge (im-
precision, epistemic uncertainty, incompleteness, conflict) through a basic belief
assignment (BBA), or belief mass m(·), given the frame of discernment (FoD)
Θ. All elements θk, k = 1, . . . , q of Θ are considered exhaustive and mutually
exclusive. The powerset 2Θ is the set of all subsets (focal elements) of Θ, the
empty set included. Each body (or source) of evidence is characterized by a
mapping m(·) : 2Θ → [0, 1] with m(∅) = 0, and

∑
X⊆Θm(X) = 1,∀X 6= ∅ ∈ 2Θ.

For a categorical BBA denoted mX , it holds that mX(X) = 1 and mX(Y ) = 0
if Y ⊆ Θ 6= X.

Given Θ, numerous more or less effective rules allow combining several BBAs.
Before their combination, each BBA m(·) can be differently discounted by the
source reliability or importance [7]. The comparison of the combination rules
is not the main scope of this paper, and hereafter we use the 6th Proportional
Conflict Redistribution (PCR6) fusion rule, developed within the framework of
Dezert-Smarandache Theory (DSmT) [8] (Vol. 3). The latter is a modification
of belief function theory, designed to palliate the disadvantages of the classical
Dempster fusion rule [9].

Given m(·), choosing a singleton θ̂ ∈ Θ or subset X̂ ⊆ Θ is the decision issue.

In general, it consists in choosing θ̂ = θk? , k = 1, . . . , q with k? , arg maxkC(θk),
where C(θk) is a decision-making criterion. Among several C(θk), the most
widely used one is the belief Bel(θk) , m(θk) corresponding to a pessimistic
attitude of the Decision-Maker (DM). On the contrary, the plausibility Pl(θk) ,
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X∩θk 6=∅|X∈2Θ m(X) is used for an optimistic attitude. Between those two ex-

treme attitudes, an attitude of compromise is represented by the decision based
on the maximum probability. For this, the BBA m(·) is transformed into a sub-
jective probability measure P (·) through a probabilistic transformation such as
the pignistic one [10], the normalized plausibility transformation [11], etc.

In some cases, taking into account non-singletons X ⊆ Θ is needed to make a
decision. As shown in [12], the minimum of any strict distance metric d(m,mX)
between m(·) and the categorical BBA mX can be used in Eq. (1). If only
singletons of 2Θ are accepted, the decision is defined by Eq. (2).

X̂ , arg minX∈2Θ\{∅}d(m,mX) (1)

θ̂ , θk? , arg mink=1,...,qd(m,m{θk}) (2)

Among the few true distance metrics1 between two BBAs m1(·) and m2(·),
the Belief Interval-based Euclidean dBI(m1,m2) ∈ [0, 1] defined by Eq. (3) [13]
provides reasonable results. It is based on the Wasserstein distance defined by
Eq. (4) [14] with [a1, b1] , BI1(X) , [Bel1(X),Pl1(X)] and [a2, b2] , BI2(X) ,
[Bel2(X),Pl2(X)] for X ⊆ Θ.

dBI(m1,m2) ,

√
1

2|Θ|−1
·
∑
X∈2Θ

d2W (BI1(X), BI2(X)) (3)

dW ([a1, b1], [a2, b2]) ,

√[
a1 + b1

2
− a2 + b2

2

]2
+

1

3

[
b1 − a1

2
− b2 − a2

2

]2
(4)

The quality indicator q(X̂) defined by Eq. (5) evaluates how good the decision
X̂ is with respect to other focal elements: the higher q(X̂) is, the more confident
in its decision X̂ the DM should be. If only singletons of 2Θ are accepted, q(X̂) =

q({θ̂}) is defined by Eq. (6).

q(X̂) , 1−
dBI(m,mX̂)∑

X∈2Θ\{∅} dBI(m,mX)
(5)

q({θ̂}) , 1−
dBI(m,m{θ̂})∑q
k=1 dBI(m,m{θk})

(6)

1 For any BBAs x, y, z defined on 2Θ, a true distance metric d(x, y) satisfies the
properties of non-negativity (d(x, y) ≥ 0), non-degeneracy (d(x, y) = 0 ⇔ x = y),
symmetry (d(x, y) = d(y, x)), and triangle inequality (d(x, y) + d(y, z) ≥ d(x, z)).
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3 From ER-MCDA to decision-making

3.1 Multi-Criteria Decision-Making problems

In a MCDM problem, the DM compares alternatives Ai ∈ A , {A1, A2, . . . , AM}
through N criteria Cj , scored with different scales. Each Cj has an importance

weight wj ∈ [0, 1] assuming
∑N
j=1 wj = 1. The N -vector w = [w1, . . . , wN ] rep-

resents the DM preferences between criteria. The AHP process helps extract it,
comparing criteria pairwisely [5]. The DM gives an M×N score matrix S = [Sij ]
in Eq. (7). Sij is a score value of Ai according to the scoring scale of the criterion
Cj . In practice, Sij for each alternative Ai is given in hazardous situations, with
no sensor and in a limited amount of time. The sources of information can there-
fore be imprecise, epistemically uncertain, incomplete and possibly conflicting.

Given the matrix S,

S ,



S11 . . . S1j . . . S1N

...
Si1 . . . Sij . . . SiN

...
SM1 . . . SMj . . . SMN

 (7)

we consider two different decision-making assessments (DMA1 and DMA2).

Given a final FoD Θ = {θ1, . . . , θq}, DMA1 involves choosing a singleton θ̂(Ai) ∈
Θ for each alternative Ai, i = 1, . . . ,M . Given S, DMA2 consists in totally rank-
ing the M alternatives Ai and choosing the best one Ai? .

3.2 The ER-MCDA for the DMA1 given imperfect Sij

• Step 1old (MΘ construction): Given the FoD Θ = {θ1, . . . , θq} of qualitative
labels, the set A of M alternatives, the N criteria Cj and wj , the M × N
BBA matrix MΘ = [mΘ

ij(·)] is provided in Eq. (8). For each criterion Cj , a
possibility distribution πij [15] is provided by an expert through intervals Fαι ,
ι = 1, . . . , ιmax with a confidence level. This represents the imprecise scoring of
Sij of each alternative Ai. The mapping [2] of each possibility distribution into
q fuzzy sets θk, k = 1, . . . , q [16] provides each BBA mΘ

ij(·) on 2Θ for each Ai,

i = 1, . . . ,M and Cj , j = 1, . . . , N in the BBA matrix MΘ.

MΘ ,



mΘ
11(·) . . . mΘ

1j(·) . . . mΘ
1N (·)

...
mΘ
i1(·) . . . mΘ

ij(·) . . . mΘ
iN (·)

...
mΘ
M1(·) . . . mΘ

Mj(·) . . . mΘ
MN (·)


(8)
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The algorithm of the geometric mapping process is detailed in [2]. A BBA

m
Xj
ij (·) is first extracted from each πij : the FoD is the scoring scale Xj of the

criterion Cj ; focal elements are the intervals Fαι , ι = 1, . . . , ιmax. Then each
interval Fαι is mapped into each fuzzy set θk to obtain its geometric area Aι,k,

with Aι ,
∑q
k=1Aι,k. A final BBA is then computed for the FoD Θ with

mΘ
ij(θk) ,

∑ιmax

ι=1 m
Xj
ij (Fαι)

Aι,k
Aι

.

• Step 2old (DMA1): We refer the reader to [3] for details. Each BBA mΘ
ij(·) is

discounted by the importance weight wj of each criterion Cj . For each Ai ∈ A,
the N BBAs mΘ

ij(·) are combined2 with importance discounting [3] to obtain the

BBA mΘ
i (·) for each ith-row. Given that the FoD Θ = {θ1, . . . , θk, . . . , θq} and

for each Ai, θ̂(Ai) = arg mink=1,...,qdBI(m
Θ
i ,m{θk}) is chosen, where m{θk} is

the categorical BBA focused on the singleton {θk} only, based on the minimum
of dBI defined by Eq. (3).

Given a preference ranking of the q elements of Θ, comparing all the θ̂(Ai)
chosen for each Ai helps rank the Ai alternatives. Nevertheless, it is not neces-
sarily a strict ranking since the label θ̂(Ai) may be the same for several Ai.

3.3 BF-TOPSIS methods for the DMA2 given precise Sij

Four BF-TOPSIS methods were developed to decide on the corresponding M×N
matrix S = [Sij ] (Eq. (7)), with the precise score value Sij . Details are given in
[4].

All BF-TOPSIS methods start with the same construction of the M × N
matrix MA = [mAij(·)] from S for the FoD A , {A1, A2, . . . , AM}. In the sequel,

Āi denotes the complement of Ai in the FoD A. For each Ai and each Cj ,

the positive support Supj(Ai) ,
∑
k∈{1,...,M}|Skj≤Sij |Sij − Skj | measures how

much Ai is better than other alternatives according to criterion Cj . The negative

support Inf j(Ai) , −
∑
k∈{1,...,M}|Skj≥Sij |Sij − Skj | measures how much Ai is

worse than other alternatives according to Cj . Given Ajmax , maxiSupj(Ai)

and Ajmin , miniInf j(Ai), each mAij(·) is consistently defined by the triplet

(mAij(Ai),m
A
ij(Āi),m

A
ij(Ai ∪ Āi)) presented on the FoD A by:

mAij(Ai) ,

{
Supj(Ai)

A
j
max

if Ajmax 6= 0

0 if Ajmax = 0
(9)

mAij(Āi) ,


Inf j(Ai)

A
j
min

if Ajmin 6= 0

0 if Ajmin = 0
(10)

mAij(Ai ∪ Āi) , mAij(Θ) , 1− (BelAij(Āi) + BelAij(Ai)) (11)

2 with the PCR6 rule in this paper [8] (Vol. 3).
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To help rank all alternatives Ai ∈ A, the main idea of BF-TOPSIS methods is
to compare each Ai with the best and worst ideal solutions. It is directly inspired
by the technique for order preference by similarity to the ideal solution (TOPSIS)
developed in [17]. The four BF-TOPSIS methods differ from each other in how
they process theM×N matrix MA with an increasing complexity and robustness
to rank reversal problems. In this paper, we focus on BF-TOPSIS3 (the 3rd BF-
TOPSIS method using the PCR6 fusion rule) [4].

1. For each Ai, the N BBAs mAij(·) are combined2 to give mAi (·) on 2A, taking
into account the importance factor wj of each criterion Cj [7].

2. For each Ai ∈ A, the best ideal BBA defined by mA,besti (Ai) , 1 and

the worst ideal BBA defined by mA,worst
i (Āi) , 1 means that Ai is better,

and worse, respectively, than all other alternatives in A. Using Eq. (3), one

computes the Belief Interval distance dbest(Ai) = dBI(m
A
i ,m

A,best
i ) between

the computed BBA mAi (·) and the ideal best BBA mA,besti (·). Similarly, one

computes the distance dworst(Ai) = dBI(m
A
i ,m

A,worst
i ) between mAi (·) and

the ideal worst BBA mA,worst
i (·).

3. The relative closeness of each alternative Ai with respect to an unreal ideal

best solution defined by Abest is given by C(Ai, A
best) , dworst(Ai)

dworst(Ai)+dbest(Ai)
.

Since dworst(Ai) ≥ 0 and dbest(Ai) ≥ 0, then C(Ai, A
best) ∈ [0, 1].

If dbest(Ai) = 0, then C(Ai, A
best) = 1, meaning that alternative Ai coin-

cides with Abest. On the contrary, if dworst(Ai) = 0, then C(Ai, A
best) = 0,

meaning that alternative Ai coincides with the ideal best solution Aworst.

Thus, the preference ranking of all alternatives Ai ∈ A is made according to
the descending order of C(Ai, A

best).

3.4 BF-TOPSIS coupled with ER-MCDA to deal with imperfect Sij

To deal with the DMA2 and imperfect information, we propose to couple (mix)
BF-TOPSIS with ER-MCDA according to the following steps:

• Step 1new=Step 1old (MΘ construction): We use the same step 1 from ER-
MCDA to obtain the matrix MΘ = [mΘ

ij(·)] defined by Eq. (8) for the FoD
Θ = {θ1, . . . , θk, . . . , θq}.

• Step 2new (MA construction): ER-MCDA is coupled with BF-TOPSIS in this
step. We obtain the BBA matrix MA = [mAij(·)] related to the FoD A from the

BBA matrix MΘ as follows:

1. For each mΘ
ij(·), i = 1, . . . ,M, j = 1, . . . , N , restricting the decision to sin-

gletons, one chooses θ̂(Ai, Cj) applying Eq. (2) with m = mΘ
ij . This gives

the M × N matrix SΘ = [θ̂(Ai, Cj)] with qualitative scores θ̂(Ai, Cj). The

corresponding quality indicator is computed by q(θ̂(Ai, Cj)) applying Eq. (5)
with m = mΘ

ij .
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2. A quantitative transformation of each element θk in Θ is made to obtain
the M × N matrix S = [Sij ], Sij being the quantitative transformation of

θ̂(Ai, Cj). Several transformations are possible. We are aware that the choice
of one can impact the final results. We introduce it as a general step and
propose to analyze the results given different transformations in forthcoming
publications.

3. From the score matrix S = [Sij ], we use the formulas (9)-(11) to obtain the
BBA matrix MA = [mAij(·)] for A = {A1, A2, . . . , AM}.

• Step 3new (ranking alternatives): We use q(θ̂(i, j)) as the reliability factor to
discount each BBA mAij(·) using the Shafer discounting method [6]. For each

Ai, we combine them with the PCR6 rule to obtain the BBA mAi (·), taking
into account the importance factor wj of each criterion Cj [7]. As explained in
points 2 and 3 of subsection 3.4, the relative closeness factors C(Ai, A

best) are
calculated, from which the preference ranking of all Ai is deduced.

4 Effectiveness of torrential check dam series

To reduce potential damage on at-risk housing, each torrential check dam series
stabilizes the torrent’s longitudinal profile to curtail sediment release from the
headwaters. Their effectiveness in achieving this function depends on N = 7
technical criteria Cj with their importance weights wj , as shown in Figure 1. An
expert assesses M = 4 check dam series Ai according to their effectiveness given
an imperfect evaluation of each Cj and using ER-MCDA step 1. After this com-
mon step, ER-MCDA step 2 is used to assess (DMA1) the effectiveness of each
Ai expressed by four qualitative labels (levels) in Θ = {high,medium, low,no}
[1]. Then steps 2 and 3 of the method based on BF-TOPSIS3 developed in sec-
tion 3.4 are used to rank all Ai and to choose the most effective one, Ai? (DMA2).

• Step 1new=Step 1old (MΘ construction): The expert evaluates each criterion
Cj for each Ai through possibility distributions. N = 7 fuzzy scales are specified,
each one gathering the q = 4 fuzzy sets θk, k = 1, . . . , q. The BBA matrix
MΘ = [mΘ

ij(·)] obtained for Θ = {high,medium, low,no} is given in Table 1.

Fig. 1. Formalization of the actual MCDM problem.
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Table 1. MΘ provided by Step 1new=Step 1old.

Ai
Focal mΘ

ij(·)
element C1 C2 C3 C4 C5 C6 C7

MΘ

A1

θ1 0.2963 0.1755 0.0161 0.0000 0.0000 0.0000 0.1378

θ2 0.6270 0.7556 0.9107 0.0000 0.0391 0.1748 0.8083

θ3 0.0467 0.0389 0.0432 0.0009 0.4099 0.7786 0.0239

θ4 0.0000 0.0000 0.0000 0.9691 0.5210 0.0166 0.0000

Θ 0.0300 0.0300 0.0300 0.0300 0.0300 0.0300 0.0300

A2

θ1 0.8446 0.0052 0.0310 0.9281 0.0693 0.6434 0.0073

θ2 0.1254 0.2677 0.9232 0.0419 0.3469 0.3266 0.9250

θ3 0.0000 0.6050 0.0158 0.0000 0.2670 0.0000 0.0377

θ4 0.0000 0.0921 0.0000 0.0000 0.2868 0.0000 0.0000

Θ 0.0300 0.0300 0.0300 0.0300 0.0300 0.0300 0.0300

A3

θ1 0.7159 0.0019 0.6463 0.0000 0.0000 0.7154 0.0000

θ2 0.2541 0.1464 0.3237 0.0451 0.0338 0.2546 0.3769

θ3 0.0000 0.6655 0.0000 0.3786 0.2188 0.0000 0.5578

θ4 0.0000 0.1562 0.0000 0.5463 0.7174 0.0000 0.0353

Θ 0.0300 0.0300 0.0300 0.0300 0.0300 0.0300 0.0300

A4

θ1 0.3372 0.3950 0.3849 0.0000 0.0576 0.0022 0.0000

θ2 0.4731 0.5676 0.2460 0.1562 0.3390 0.7030 0.5075

θ3 0.1597 0.0074 0.3391 0.7831 0.5147 0.2643 0.4371

θ4 0.0000 0.0000 0.0000 0.0307 0.0587 0.0005 0.0254

Θ 0.0300 0.0300 0.0300 0.0300 0.0300 0.0300 0.0300

• DMA1 (based on Step 2old described in section 3.2): given MΘ in Table 1,
the column dmin

BI in Table 2 lists the minimal value obtained for dBI(m
Θ
i ,m{θk})

defined by Eq. (3), for each Ai ∈ A. The best label θ̂(Ai) is chosen for each
Ai. Three check dam series A1, A2, and A4 are declared as medium, and A3 is
declared as low. The DM coarsely has A1 � A3, A2 � A3 and A4 � A3.

Table 2. Final results for DMA1 based on ER-MCDA step 2old from MΘ.

Ai dmin
BI θ̂(Ai) Final class Ranking

A1 0.3769 θ2 medium 1-3

A2 0.4837 θ2 medium 1-3

A3 0.5096 θ3 low 4

A4 0.3911 θ2 medium 1-3

• DMA2 (based on Step 2new and Step 3new described in section 3.4): given MΘ

in Table 1, for each Ai and Cj , one computes arg mink=1,...,q dBI(m
Θ
ij ,m{θk}) be-

tween each mΘ
ij(·) and the categorical BBA m{θk}(·), with Θ = {θ1 = high, θ2 =
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medium, θ3 = low, θ4 = no}. The linear quantitative transformation: θ1 = 4, θ2 =
3, θ3 = 2, θ4 = 1 is assumed to establish the matrix S = [Sij ] in Table 3. For each

Ai and Cj , the quality factor q(θ̂(Ai, Cj)) is also computed in Table 3 applying
Eq. (5) with m = mΘ

ij .

Table 3. Sij and q(θ̂(Ai, Cj)) (= q(i, j)) provided by Step 2new from MΘ.

Cj , wj C1, 0.1 C2, 0.2 C3, 0.1 C4, 0.15 C5, 0.05 C6, 0.2 C7, 0.2

Ai ↓ Si1 q(i, 1) Si2 q(i, 2) Si3 q(i, 3) Si4 q(i, 4) Si5 q(i, 5) Si6 q(i, 6) Si7 q(i, 7)

A1 3 0.8747 3 0.9226 3 0.9754 1 0.9921 1 0.8332 2 0.9287 4 0.9404

A2 4 0.9505 2 0.8708 3 0.9794 4 0.9797 3 0.8737 4 0.8754 3 0.9794

A3 4 0.9029 2 0.8953 4 0.8765 1 0.8435 1 0.9078 4 0.9027 2 0.8469

A4 3 0.8747 3 0.9226 4 0.9754 2 0.9921 2 0.8332 3 0.9287 3 0.9404

After the reliability discounting of BBAs from Table 1 by the factors q(θ̂(Ai, Cj))
from Table 3, one obtains MA = [mAij(·)] for A = {A1, A2, . . . , AM}. After apply-

ing BF-TOPSIS3, we obtain the relative closeness C(Ai, A
best) values in Table 4.

The ranking of all Ai according to their effectiveness is consistent with the DMA1
results: A2 � A4 � A1 � A3. The most effective check dam series is A2.

Table 4. Final results for DMA2 based on step 3new from Table 3.

Ai d
best(Ai) d

worst(Ai) C(Ai, A
best) Ranking

A1 0.5965 0.3061 0.3391 3

A2 0.4930 0.4069 0.4521 1

A3 0.6431 0.2683 0.2944 4

A4 0.5033 0.4090 0.4483 2

5 Conclusion

The ER-MCDA helps provide a coarse ranking of torrential check dam series
according to their effectiveness, taking into account several imperfectly scored
criteria. Given the same imperfect MCDM problem, risk managers may need a
finer ranking. For this purpose, we suggested coupling the ER-MCDA and BF-
TOPSIS methods. We have shown the consistency of coarse and finer ranking
results for only one example. Further studies are needed to determine whether
such consistency holds in general or for certain classes of examples. Moreover,
an intermediary decision step and a quantitative transformation are needed to
meet this goal. The sensitivity of results to their definition is under evaluation
and will be reported in forthcoming publications.
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