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Abstract. Experts take into account several criteria to assess the effec-
tiveness of torrential flood protection systems. In practice, scoring each
criterion is imperfect. Each system is assessed choosing a qualitative class
of effectiveness among several such classes (high, medium, low, no). Evi-
dential Reasoning for Multi-Criteria Decision-Analysis (ER-MCDA) ap-
proach can help formalize this Multi-Criteria Decision-Making (MCDM)
problem but only provides a coarse ranking of all systems. The recent
Belief Function-based Technique for Order Preference by Similarity to
Ideal Solution (BF-TOPSIS) methods give a finer ranking but are lim-
ited to perfect scoring of criteria. Our objective is to provide a coarse
and a finer ranking of systems according to their effectiveness given the
imperfect scoring of criteria. Therefore we propose to couple the two
methods using an intermediary decision and a quantification transfor-
mation step. Given an actual MCDM problem, we apply the ER-MCDA
and its coupling with BF-TOPSIS, showing that the final fine ranking is
consistent with a previous coarse ranking in this case.

Keywords: Belief Functions, BF-TOPSIS,ER-MCDA, Torrent protec-
tion.

1 Introduction

In mountainous areas, torrents put people and buildings at risk. Thousands of
check dams, clustered in series, have been built to protect them. Risk managers
must assess their effectiveness given several criteria such as their structural sta-
bility or their hydraulic dimensions. This is a Multi-Criteria Decision-Making
(MCDM) problem. In practice, scoring each criterion is difficult and imperfect.
Experts affect each check dam series to one of several qualitative evaluation
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classes of effectiveness (high, medium, low, no) [1]. Evidential Reasoning for
Multi Criteria Decision Analysis (ER-MCDA) has been developed on the ba-
sis of fuzzy sets, possibility and belief function theories [2, 3] to decide on such
MCDM problems, taking into account imperfect assessment of criteria provided
by several sources.

Given the final qualitative label for each check dam series, a coarse ranking
of all of them can be provided, as shown in recent applications [1]. Nevertheless,
risk managers need a finer ranking to choose the most effective one. To help it,
the recent Belief Function-based Technique for Order Preference by Similarity
to Ideal Solution (BF-TOPSIS) methods [4] are more robust to rank reversal
problems than other classical decision-aid methods such as the Analytic Hier-
archy Process (AHP) [5]. Nevertheless, the BF-TOPSIS methods are limited to
MCDM problems with precise quantitative evaluation of criteria.

To help risk managers rank several check dam series according to their ef-
fectiveness, the BF-TOPSIS should take into account the initial imperfect as-
sessment of criteria. Therefore, we propose to combine the ER-MCDA and BF-
TOPSIS methods. We first detail the ER-MCDA process and apply it to an
actual case with a final coarse ranking. We then combine ER-MCDA with BF-
TOPSIS. Applying it to the same example, we finally show that the finer ranking
result obtained is consistent with the previous coarse ranking result in this case.

2 Some basics of belief function theory

Shafer proposed belief function theory [6] to represent imperfect knowledge (im-
precision, epistemic uncertainty, incompleteness, conflict) through a basic belief
assignment (BBA), or belief mass m(-), given the frame of discernment (FoD)
©. All elements O,k = 1,...,q of @ are considered exhaustive and mutually
exclusive. The powerset 2€ is the set of all subsets (focal elements) of ©, the
empty set included. Each body (or source) of evidence is characterized by a
mapping m(-) : 2€ — [0, 1] with m(0) = 0, and >y o m(X) = 1,VX # 0 € 2°.
For a categorical BBA denoted mx, it holds that mx(X) =1 and mx(Y) =0
ifYy CO#X.

Given O, numerous more or less effective rules allow combining several BBAs.
Before their combination, each BBA m(-) can be differently discounted by the
source reliability or importance [7]. The comparison of the combination rules
is not the main scope of this paper, and hereafter we use the 6th Proportional
Conflict Redistribution (PCR6) fusion rule, developed within the framework of
Dezert-Smarandache Theory (DSmT) [8] (Vol. 3). The latter is a modification
of belief function theory, designed to palliate the disadvantages of the classical
Dempster fusion rule [9].

Given m(-), choosing a singleton § € @ or subset X C © is the decision issue.
In general, it consists in choosing 6 = 04+, k = 1,...,q with k* £ arg max,C(0y),
where C(6y) is a decision-making criterion. Among several C(6y), the most
widely used one is the belief Bel(6;) = m()) corresponding to a pessimistic
attitude of the Decision-Maker (DM). On the contrary, the plausibility PI(6) =
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> xno, £0| X €20 m(X) is used for an optimistic attitude. Between those two ex-
treme attitudes, an attitude of compromise is represented by the decision based
on the maximum probability. For this, the BBA m(-) is transformed into a sub-
jective probability measure P(-) through a probabilistic transformation such as
the pignistic one [10], the normalized plausibility transformation [11], etc.

In some cases, taking into account non-singletons X C © is needed to make a
decision. As shown in [12], the minimum of any strict distance metric d(m,mx)
between m(-) and the categorical BBA mx can be used in Eq. (1). If only
singletons of 2€ are accepted, the decision is defined by Eq. (2).

X2 arg miny c,e\ (pyd(m, mx) (1)

020+ £ argmin,_, LA(m,me,y) (2)

Among the few true distance metrics! between two BBAs m1(-) and ma(-),
the Belief Interval-based Euclidean dgr(mi,ms) € [0,1] defined by Eq. (3) [13]
provides reasonable results. It is based on the Wasserstein distance defined by
Eq (4) [14] with [al, bl] £ Bll(X) £ [Bell(X), Pll(X)] and [az, bg] £ BIQ(X) £
[Bely(X), Ply(X)] for X C O.

,,,,,

dpr(m,ms) 2 \/2|@1 > @ (BL(X), BL(X)) 3

Xe20

a a1 + b1 as + bo 2 1({b1 —a1 by — as 2
dwqal,bu,[az,bz])—ﬂ : R . @)

The quality indicator q(X ) defined by Eq. (5) evaluates how good the decision
X is with respect to other focal elements: the higher q(X ) is, the more confident
in its decision X the DM should be. If only singletons of 2€ are accepted, ¢(X) =
q({#}) is defined by Eq. (6).

5 dBI(mamX)
q(X) =1 -
EXEZQ\{Q)} dBI(m7 mX)

()

dpr(m, m{é})
2 =1 dB1(m,myo, 1)

a({0) 21—

! For any BBAs z, y, z defined on 2°, a true distance metric d(z,y) satisfies the
properties of non-negativity (d(x,y) > 0), non-degeneracy (d(z,y) = 0 < =z = y),
symmetry (d(z,y) = d(y,z)), and triangle inequality (d(z,y) + d(y, z) > d(z, 2)).
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3 From ER-MCDA to decision-making

3.1 Multi-Criteria Decision-Making problems

In a MCDM problem, the DM compares alternatives A; € A= {Ay, Ay, ..., Ay}
through N criteria C}, scored with different scales. Each C; has an importance
weight w; € [0, 1] assuming Z;V:1 w; = 1. The N-vector w = [wy, ..., wn] rep-
resents the DM preferences between criteria. The AHP process helps extract it,
comparing criteria pairwisely [5]. The DM gives an M x N score matrix S = [S;;]
in Eq. (7). S;; is a score value of A; according to the scoring scale of the criterion
C;. In practice, S;; for each alternative A; is given in hazardous situations, with
no sensor and in a limited amount of time. The sources of information can there-
fore be imprecise, epistemically uncertain, incomplete and possibly conflicting.

Given the matrix S,

SM1...SM]'.‘.SMN

we consider two different decision-making assessments (DMA1 and DMAZ2).
Given a final FoD © = {61, ...,6,}, DMA1 involves choosing a singleton §(4;) €
O for each alternative A;, 1 =1,..., M. Given S, DMA2 consists in totally rank-
ing the M alternatives A; and choosing the best one A;«.

3.2 The ER-MCDA for the DMAI1 given imperfect S;;

e Step 1,4 (M® construction): Given the FoD © = {f1,...,0,} of qualitative
labels, the set A of M alternatives, the N criteria C; and wj, the M x N
BBA matrix M® = [mg(-)] is provided in Eq. (8). For each criterion Cj, a
possibility distribution m;; [15] is provided by an expert through intervals Fj,,
t=1,...,tmax With a confidence level. This represents the imprecise scoring of
S;; of each alternative A;. The mapping [2] of each possibility distribution into
q fuzzy sets 0y, k = 1,...,q [16] provides each BBA m§}(-) on 29 for each A;,

i=1,...,Mand Cj, j=1,...,N in the BBA matrix M®.

mlel(') mlej(') m?N(')
M2 | mS() ... mS() ... m&() (8)
@:



ER-MCDA and BF-TOPSIS applied to torrent protection 5

The algorithm of the geometric mapping process is detailed in [2]. A BBA
m;{.j (+) is first extracted from each m;;: the FoD is the scoring scale X; of the
criterion Cj; focal elements are the intervals F,,, ¢+ = 1,...,tmax. Then each
interval F,, is mapped into each fuzzy set 6; to obtain its geometric area A, f,
with A, £ Y7, A, 4. A final BBA is then computed for the FoD © with

max . Xj A,
mz@g (0k) £ Zi:l my;’ (Fa,) A'Lk~

e Step 2,4 (DMA1): We refer the reader to [3] for details. Each BBA m{)(-) is
discounted by the importance weight w; of each criterion C;. For each A; € A,
the N BBAs m{)(-) are combined? with importance discounting [3] to obtain the
BBA m(-) for each i"-row. Given that the FoD © = {6,...,0,...,0,} and
for each A;, 0(A;) = argmin,_; quI(m?,m{gk}) is chosen, where myg,; is
the categorical BBA focused on the singleton {0} only, based on the minimum
of dpy defined by Eq. (3).

Given a preference ranking of the g elements of ©, comparing all the é(Az)
chosen for each A; helps rank the A; alternatives. Nevertheless, it is not neces-
sarily a strict ranking since the label é(Ai) may be the same for several A;.

3.3 BF-TOPSIS methods for the DMAZ2 given precise S;;

Four BF-TOPSIS methods were developed to decide on the corresponding M x N
matrix S = [S;;] (Eq. (7)), with the precise score value S;;. Details are given in
[4].

All BF-TOPSIS methods start with the same construction of the M x N
matrix MA = [m;‘j‘()} from S for the FoD A £ {A;, As, ..., Apr}. In the sequel,
A, denotes the complement of A; in the FoD A. For each A; and each Cjy,
the positive support Sup;(4;) £ Eke{l,...,M}\Sk,-SSij Sij — Skj| measures how
much A; is better than other alternatives according to criterion C;. The negative

support Inf ;(A;) = Zke{1,..‘,M}|skasij

worse than other alternatives according to C;. Given A7, = max; Sup ; (A;)

and Aﬂlin = min; Inf ;(A;), each m;‘]l() is consistently defined by the triplet

A AlA A A . .
(my;(Ai), m7j(Ai), mi;(A; U A;)) presented on the FoD A by:

Sij — Skj| measures how much A4, is

Supj (A;) if Aj 0
miy(A;) £ Ahax 1 e 7 9)
0 if A,y =0
miy(A) 2 Q¢ A M # (10)
0 if A, =0
mi (A U A;) 2 mi(0) 21— (Belfi(A;) + Bel{i(A;)) (11)

? with the PCR6 rule in this paper [8] (Vol. 3).
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To help rank all alternatives A; € A, the main idea of BF-TOPSIS methods is
to compare each A; with the best and worst ideal solutions. It is directly inspired
by the technique for order preference by similarity to the ideal solution (TOPSIS)
developed in [17]. The four BF-TOPSIS methods differ from each other in how
they process the M x N matrix M“ with an increasing complexity and robustness
to rank reversal problems. In this paper, we focus on BF-TOPSIS3 (the 3rd BF-
TOPSIS method using the PCR6 fusion rule) [4].

1. For each A;, the N BBAs m;}(-) are combined? to give my!(-) on 24, taking

into account the importance factor w; of each criterion C’; [7].

2. For each A; € A, the best ideal BBA defined by m***"(4;) £ 1 and
the worst ideal BBA defined by m:*"*"*'(4;) £ 1 means that A; is better,
and worse, respectively, than all other alternatives in A. Using Eq. (3), one
computes the Belief Interval distance d*t(A4;) = dp;(m:*, m*"*") between
the computed BBA my!(-) and the ideal best BBA mf"be“(-). Similarly, one
computes the distance d“™(4;) = dp;(m#, m;"""*") between mA(-) and
the ideal worst BBA m7™orst(.).

3. The relative closeness of each alternative A; with respect to an unreal ideal

best solution defined by A" is given by C/(A;, Abe) & 4000
Since d“°rt(A;) > 0 and dP*s*(4;) > 0, then C(A;, AP*Y) € [0, 1].

If dP*st(A;) = 0, then C(A;, AP*') = 1, meaning that alternative A; coin-
cides with AP®s*. On the contrary, if d¥°™*(4;) = 0, then C(4;, AP*t) = 0,
meaning that alternative A; coincides with the ideal best solution AWerst,
Thus, the preference ranking of all alternatives A; € A is made according to
the descending order of C'(A;, APest).

3.4 BF-TOPSIS coupled with ER-MCDA to deal with imperfect S;;

To deal with the DMA2 and imperfect information, we propose to couple (mix)
BF-TOPSIS with ER-MCDA according to the following steps:

e Step 1,..,=Step 1,4 (M® construction): We use the same step 1 from ER-
MCDA to obtain the matrix M® = [m{(-)] defined by Eq. (8) for the FoD
O ={01,...,0k,...,04}.

e Step 2,.... (M construction): ER-MCDA is coupled with BF-TOPSIS in this
step. We obtain the BBA matrix M4 = [mf}()] related to the FoD A from the
BBA matrix M® as follows:

1. For each mi@j(),i =1,...,M,j = 1,..., N, restricting the decision to sin-
gletons, one chooses é(Ai,Cj) applying Eq. (2) with m = mi@j. This gives
the M x N matrix S® = [é(Ai,Cj)] with qualitative scores é(Ai,Cj). The

corresponding quality indicator is computed by q(é(AZ-, Cj;)) applying Eq. (5)
with m = mg.
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2. A quantitative transformation of each element 6 in © is made to obtain
the M x N matrix S = [S;;], Si; being the quantitative transformation of
é(Ai, C;). Several transformations are possible. We are aware that the choice
of one can impact the final results. We introduce it as a general step and
propose to analyze the results given different transformations in forthcoming
publications.

3. From the score matrix S = [S;;], we use the formulas (9)-(11) to obtain the
BBA matrix M4 = [m7}(-)] for A= {Ay, As,..., Ay}

e Step 3,.., (ranking alternatives): We use q(A(i, j)) as the reliability factor to
discount each BBA m;‘]‘() using the Shafer discounting method [6]. For each
A;, we combine them with the PCR6 rule to obtain the BBA m#(-), taking
into account the importance factor w; of each criterion C; [7]. As explained in
points 2 and 3 of subsection 3.4, the relative closeness factors C(A;, AP*!) are
calculated, from which the preference ranking of all A; is deduced.

4 Effectiveness of torrential check dam series

To reduce potential damage on at-risk housing, each torrential check dam series
stabilizes the torrent’s longitudinal profile to curtail sediment release from the
headwaters. Their effectiveness in achieving this function depends on N = 7
technical criteria C; with their importance weights w;, as shown in Figure 1. An
expert assesses M = 4 check dam series A; according to their effectiveness given
an imperfect evaluation of each C; and using ER-MCDA step 1. After this com-
mon step, ER-MCDA step 2 is used to assess (DMA1) the effectiveness of each
A; expressed by four qualitative labels (levels) in © = {high, medium, low, no}
[1]. Then steps 2 and 3 of the method based on BF-TOPSIS3 developed in sec-
tion 3.4 are used to rank all A; and to choose the most effective one, A;» (DMA2).

e Step 1,...,=Step 1,4 (M@ construction): The expert evaluates each criterion
C; for each A; through possibility distributions. N = 7 fuzzy scales are specified,
each one gathering the ¢ = 4 fuzzy sets 0x, kK = 1,...,q. The BBA matrix

M® = [m§(-)] obtained for © = {high, medium, low, no} is given in Table 1.

Fig. 1. Formalization of the actual MCDM problem.

Aj
effectiveness
r T ¥ ¥ ¥ ¥ V
Cq -smallest | Cg2-check |C3-longitudinal C4- stability of | C5- stability of | Cg - active C7-
free spillway dam’s mean |implantation of | significant other check longitudinal active
dimensions orientation check dams check dams dams erosion lateral erosion
W1=0.1 W2=0.2 W3=0.1 W4=O. 15 W5=0.05 W6=0.2 W7=0.2
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Table 1. M® provided by Step 1,..=Step 1.

Focal ms ()

! element Ch Co Cs Cy Cs Ce Cr
01 0.2963|0.1755|0.0161|0.0000{0.0000{0.0000{0.1378
02 0.6270|0.7556|0.9107|0.0000(0.0391]0.1748]0.8083
Aq 03 0.0467/|0.0389(0.0432{0.0009|0.40990.7786{0.0239
04 0.0000{0.0000|0.0000(0.9691|0.5210{0.0166{0.0000
G 0.0300{0.0300|0.0300(0.0300{0.0300{0.0300{0.0300
01 0.8446|0.0052|0.0310/0.9281|0.0693[0.6434]0.0073
02 0.1254]0.2677|0.9232|0.0419(0.3469(0.32660.9250
Ay 03 0.0000{0.6050|0.0158|0.0000(0.2670]0.0000{0.0377
04 0.0000{0.0921|0.0000(0.0000(0.2868(0.0000{0.0000
e 0.0300{0.0300|0.0300(0.0300{0.0300{0.0300{0.0300
01 0.7159]0.0019|0.6463|0.0000(0.0000{0.7154]0.0000
02 0.2541|0.1464|0.3237|0.0451|0.0338(0.2546|0.3769
As 03 0.0000{0.6655|0.0000(0.3786|0.2188(0.0000{0.5578
04 0.0000{0.1562|0.0000|0.5463|0.7174]0.0000{0.0353
e 0.0300{0.0300|0.0300(0.0300{0.0300{0.0300{0.0300
01 0.3372(0.3950|0.3849|0.0000(0.0576{0.0022{0.0000
0 0.4731]0.5676|0.2460|0.1562|0.3390(0.7030{0.5075
Ay 03 0.1597(0.0074|0.3391|0.7831|0.5147{0.2643]0.4371
04 0.0000{0.0000|0.0000(0.0307|0.0587{0.0005{0.0254
e 0.0300{0.0300{0.0300{0.0300{0.0300{0.0300{0.0300

M@

e DMA1 (based on Step 2., described in section 3.2): given M® in Table 1,
the column d3}" in Table 2 lists the minimal value obtained for dp;(m$,mye,})

defined by Eq. (3), for each A; € A. The best label 6(A;) is chosen for each
A;. Three check dam series A1, Az, and A4 are declared as medium, and As is
declared as low. The DM coarsely has A; = Az, As = A3z and Ay > As.

Table 2. Final results for DM A1 based on ER-MCDA step 2.4 from M®.

Ai| d5" |6(A;)|Final class| Ranking
A110.3769| 62 medium 1-3
A>0.4837| 62 medium 1-3
As3]0.5096| 63 low 4
A4]0.3911| 6o medium 1-3

e DMA2 (based on Step 2,.,, and Step 3...,, described in section 3.4): given M®
in Table 1, for each A; and C}, one computes arg ming—1,.. 4 dBI(mg», m{gk}) be-
tween each mg)(-) and the categorical BBA myg,}(-), with © = {0, = high, 0, =
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medium, 3 = low, 8, = no}. The linear quantitative transformation: §; = 4,65 =
3,03 = 2,04 = 11is assumed to establish the matrix S = [S;;] in Table 3. For each
A; and Cj, the quality factor ¢(6(A;,C;)) is also computed in Table 3 applying

Eq. (5) with m = mi@j.

Table 3. S,; and q(0(Ai,C;)) (= q(i, 7)) provided by Step 2ne. from M®.

Cj,w;| C1,0.1 C2,0.2 C3,0.1 C4,0.15 | C5,0.05 Cs,0.2 C7,0.2
A; | |Si1 q(i,1)|Si2 q(i,2)|Sis q(i,3)|Sia q(i,4) |Sis q(4,5) | Sie q(i,6) |Siz q(,7)
A 3 0.8747| 3 0.9226] 3 0.9754| 1 0.9921| 1 0.8332| 2 0.9287| 4 0.9404
Ao 4 0.9505| 2 0.8708| 3 0.9794| 4 0.9797| 3 0.8737| 4 0.8754| 3 0.9794
As 4 0.9029| 2 0.8953| 4 0.8765| 1 0.8435| 1 0.9078| 4 0.9027| 2 0.8469
Ay | 3 0.8747] 3 0.9226| 4 0.9754| 2 0.9921| 2 0.8332| 3 0.9287| 3 0.9404

After the reliability discounting of BBAs from Table 1 by the factors q(é (A:,Cy))
from Table 3, one obtains M4 = [m}(-)] for A = {A1, Ay, ..., Apr}. After apply-
ing BF-TOPSIS3, we obtain the relative closeness C(A;, A***) values in Table 4.
The ranking of all A; according to their effectiveness is consistent with the DM A1
results: As = A4 = A1 = Asz. The most effective check dam series is As.

Table 4. Final results for DM A2 based on step 3,.. from Table 3.

A:[d*S(A)[d (A)[C(Ar, AP [Ranking
Ay| 05065 | 03061 | 0.3391 3
Ao| 0.4930 | 04060 | 0.4521 1
Asz| 0.6431 | 0.2683 0.2944 4
A4 0.5033 | 04090 | 0.4483 2

5 Conclusion

The ER-MCDA helps provide a coarse ranking of torrential check dam series
according to their effectiveness, taking into account several imperfectly scored
criteria. Given the same imperfect MCDM problem, risk managers may need a
finer ranking. For this purpose, we suggested coupling the ER-MCDA and BF-
TOPSIS methods. We have shown the consistency of coarse and finer ranking
results for only one example. Further studies are needed to determine whether
such consistency holds in general or for certain classes of examples. Moreover,
an intermediary decision step and a quantitative transformation are needed to
meet this goal. The sensitivity of results to their definition is under evaluation
and will be reported in forthcoming publications.
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