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Abstract. In this paper we propose a new general method for decision-
making under uncertainty based on the belief interval distance. We show
through several simple illustrative examples how this method works and
its ability to provide reasonable results.
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1 Introduction

Dempster-Shafer Theory (DST), also known as the Mathematical Theory of Ev-
idence or the Theory of Belief Functions (BF), was introduced by Shafer in 1976
[1] based on Dempster’s previous works [2]. This theory offers an elegant theoret-
ical framework for modeling uncertainty, and provides a method for combining
distinct bodies of evidence collected from different sources. In the past more
than three decades, DST has been used in many applications, in fields including
information fusion, pattern recognition, and decision making [3]. Although belief
functions are very appealing for modeling epistemic uncertainty, the two main
important questions related to them remain still open:

1. How to combine efficiently several independent belief functions?
This open question is out of the scope of this paper and it has been widely
disputed by many experts [4–14]. In this short paper, we focus on the second
question below.

2. How to take a final decision from a belief function?
This second question is also very crucial in many problems involving epis-
temic uncertainty where the final step (after beliefs elicitation, and beliefs
combination) is to make a decision.

In the sequel, we assume that the reader is familiar with Demspter-Shafer
Theory of belief functions [1] and its notations. Due to space restriction, we will
not recall the definitions of basic belief assignment m(·), belief Bel(·) (also called
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credibility by some authors), and plausibility functions Pl(·) functions defined
over a given finite discrete frame of discernment (FoD) Θ. For any focal element
X of the powerset of Θ, denoted by 2Θ, the interval BI(X) , [Bel(X), P l(X)]
is called the belief interval of X. Its length Pl(X) − BeI(X) characterizes the
uncertainty on X (also called ambiguity in [15]). This paper is organized as
follows. In section 2, we recall the common decision-making techniques used
so far to make a decision from belief functions. In section 3 we recall the new
distance measure based on Belief interval, and we present a new general method
for decision-making with belief functions. Finally, examples of this new approach
are given in section 4, with concluding remarks in section 5.

2 Classical decision-making methods with belief functions

We assume a given FoD Θ = {θ1, . . . , θn} and a given BBA m(·) defined on
2Θ. We want to make a decision from m(·). It consists in choosing a particu-
lar element of the FoD that solves the problem under consideration, which is
represented by the set of potential solutions (choices) θi, i = 1, . . . , n. How to
do this in an effective manner is the fundamental question of decision-making
under epistemic uncertainty. Many decision-making criteria have been proposed
in the literature. Some advanced techniques developed in the 1990s [16–19, 15]
have not been widely used so far in the BF community, probably because of
their complexity of implementation. In this section, we only present briefly the
simplest ones frequently used.

1. Decision based on maximum of credibility:
This decision-making scheme is the so-called prudent (or pessimistic) scheme.
It consists in choosing the element of the FoD Θ that has the maximum of
credibility. In other terms, one will decide θ̂ = θi? with1

θi? = arg max
i
Bel(θi) (1)

2. Decision based on maximum of plausibility:
On the contrary, if we prefer to adopt a more optimistic decision-making
(less prudent) attitude, one will choose the element of the FoD Θ that has

the maximum of plausibility. In other terms, one will decide θ̂ = θi? with

θi? = arg max
i
Pl(θi) (2)

3. Decision based on maximum of probability:
Usually decision-makers prefer to adopt a more balanced decisional attitude
making a compromise between the aforementioned pessimistic and optimistic
attitudes. For this, the BBA m(·) is transformed into a subjective probability
measure P (·) compatible with the belief interval [Bel(·), P l(·)], and one will

1 The notation with hat indicates the decision taken. Here θ̂ specifies that the decision
taken is only a singleton of Θ.
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choose the element of the FoD Θ that has the maximum of probability. In
other terms, one will decide θ̂ = θi? with

θi? = arg max
i
P (θi) (3)

In practice, many probabilistic transformations are available to approximate
(or transform) a BBA m(·) in a probability measure P (·). By example, the
pignistic transformation [20], the plausibility transformation [21], the DSmP
transformation and other ones presented in [22], etc.

Of course, in case of multiple maximum values, no decision can be clearly
drawn. Usually if only one decision must be made, a random sample between
elements θi generating the maximal decision-making criterion value is used to
make a unique final decision θ̂. Another more prudent decision scheme is to use
the disjunction of all elements generating the maximal decision-making criterion
value, to provide a less specific final decision (if it is allowed for the problem
under concern).

Our main criticism about using these decision-making schemes is that they
do not use the whole information contained in the original BBA, which is in
fact expressed by the whole belief interval. The pessimistic attitude uses only
the credibility values, whereas the optimistic attitude uses only the plausibil-
ity values. The prudent attitude based on the criteria (3) requires a particular
choice of probabilistic transformation which is often disputed by users. Making
a decision from the P (.) measure is theoretically not satisfactory at all because
the transformation is lossy since we cannot retrieve m(·) from P (·) when some
focal elements of m(·) are not singletons. In the next section, we propose a better
justified decision scheme based on the belief interval distance [23, 24].

3 Decision-making method using belief interval distance

In our previous works [23, 24], we have defined a Euclidean belief interval distance
between two BBAs m1(·) and m2(·) defined on the powerset of a given FoD
Θ = {θ1, . . . , θn} as follows

dBI(m1,m2) ,
√
Nc ·

∑
X∈2Θ

d2W (BI1(X), BI2(X)) (4)

where Nc = 1/2n−1 is a normalization factor to have dBI(m1,m2) ∈ [0, 1], and
dW (BI1(X), BI2(X)) is the Wassertein’s distance [25] between belief intervals
BI1(X) , [Bel1(X), P l1(X)] = [a1, b1] and BI2(X) , [Bel2(X), P l2(X)] =
[a2, b2]. More specificly,

dW ([a1, b1], [a2, b2]) ,

√[
a1 + b1

2
− a2 + b2

2

]2
+

1

3

[
b1 − a1

2
− b2 − a2

2

]2
(5)



4 Jean Dezert et al.

In [23], we have proved that dBI(x, y) is a true distance metric because it
satisfies the properties of non-negativity (d(x, y) ≥ 0), non-degeneracy (d(x, y) =
0⇔ x = y), symmetry (d(x, y) = d(y, x)), and the triangle inequality (d(x, y) +
d(y, z) ≥ d(x, z), for any BBAs x, y and z defined on 2Θ. The choice of Wasser-
stein’s distance in dBI definition is justified by the fact that Wasserstein’s dis-
tance is a true distance metric and it fits well with our needs because we have
to compute a distance between [Bel1(X), P l1(X)] and [Bel2(X), P l2(X)].

For notation convenience, we denote mX the categorical BBA having only
X as focal element, where X 6= ∅ is an element of the powerset of Θ. More
precisely, mX is the particular (categorical) BBA defined by mX(X) = 1 and
mX(Y ) = 0 for any Y 6= X. Such basic BBA plays an important role in our
new decision scheme because its corresponding belief interval reduces to the
degenerate interval [1, 1] which represents the certainty on X. The basic principle
of the new decision scheme we propose is very simple and intuitively makes sense.
It consists in selecting as the final decision (denoted by X̂) the element of the
powerset for which the belief interval distance between the BBA m(·) and mX ,
X ∈ 2Θ \ {∅} is the smallest one7. Therefore, take as the final decision X̂ given
by

X̂ = arg min
X∈2Θ\{∅}

dBI(m,mX) (6)

where dBI(m,mX) is computed according to (4). m(·) is the BBA under test
and mX(.) the categorical BBA focused on X defined above.

This decision scheme is very general in the sense that the decision making
can be done on any type of element2 of the power-set 2Θ, and not necessarily
only on the elements (singletons) of the FoD (see examples in the next section).
This method not only provides the final decision X̂ to make, but also it evaluates
how good this decision is with respect to its alternatives if we define the quality
indicator q(X̂) as follows

q(X̂) , 1−
dBI(m,mX̂)∑

X∈2Θ\{∅} dBI(m,mX)
(7)

One sees that the quality indicator q(X̂) of the decision X̂ made will become
maximum (equal to one) when the distance between the BBA m(·) and mX̂ is

zero, which means that the BBA m(·) is focused in fact only on the element X̂.
The higher q(X̂) is, the more confident in the decision X̂ we should be.

Of course, if a decision must be made with some extra constraint3 defined
by a (or several) condition(s), denoted c(X), then we must take into account
c(X) in Eq. (6), that is X̂ = arg minX∈2Θ\{∅} s.t. c(X) dBI(m,mX), and also in
the derivation of quality indicator by taking

∑
X∈2Θ\{∅} s.t. c(X) dBI(m,mX) as

7 This simple principle has also been proposed by Essaid et al. [26] using Jousselme’s
distance.

2 empty set excluded.
3 for instance, making a choice only among the singletons of 2Θ.
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denominator in (7). Theoretically any other strict distance metric, for instance
Jousselme’s distance [27–29], could be used instead of dBI(·, ·). We have chosen
dBI distance because of its ability to provide good and reasonable behavior [23]
as will be shown. When there exists a tie between multiple decisions {X̂j , j > 1},
then the prudent decision corresponding to their disjunction X̂ = ∪jX̂j should

be preferred (if allowed), otherwise the final decision X̂ is made by a random
selection of elements X̂j .

4 Examples and comparisons

In this section we present several examples when the cardinality of the FoD |Θ|
is only 2 and 3 because it is easier to see whether the decision-making results
make sense or not. We compare and discuss decisions only made with the be-
lief interval distance dBI and Jousselme’s distance dJ because the other lossy
decision schemes do not exploit both credibility and plausibility values. The ex-
amples corresponding to cases where the BBA m(·) is focused on a single element
X of 2Θ are not presented because one trivially gets X̂ = X using either dBI
or dJ distances. The next tables present several BBAs from which a decision
has to be made. By convention, and since we work with normal BBAs satisfying
m(∅) = 0, the empty set is not included in the tables. The rows for dmin

BI (mi,mX)
and for dmin

J (mi,mX) list the minimal values obtained for dBI(mi,mX) and

dJ(mi,mX). The rows for X̂dBI and for X̂dJ list the decision(s) X̂ made when
using dBI(mi,mX) and dJ(mi,mX) respectively. The rows for q(X̂dBI ) and
q(X̂dJ ) list the quality indicators of decision(s) made using dBI(mi,mX) and
dJ(mi,mX) respectively. Depending on the BBA, it is possible to have multiple
decisions {X̂j} in case of a tie. If a tie occurs either a random sampling of {X̂j}
must be drawn, or (if allowed) the disjunction of decisions X̂j is preferred. In
the next subsections, we present results in free-constraint case (i.e. c(X) = ∅), as
well as when the decisions are restricted to be singletons (i.e. c(X) ≡ “|X| = 1”).

4.1 Examples with Θ = {A,B}

Table 1 shows the decisions made when there is no constraint on the cardinality
of the decision X̂.

One sees that methods based on min of dBI(m,mX) and on min of dJ(m,mX)
yield the same reasonable decisions in almost all cases. With m2, one has multiple
decisions X̂dJ = {A,B,A ∪ B} with quality 0.6667 when using dJ , which is
a bit surprising in our opinion because there is a real tie between A and B.
Consequently, the decision A∪B should be preferred when there is no constraint
on the cardinality of decisions. For this m2 case, one gets a unique decision
X̂dBI = A∪B with a better quality 0.776 which seems more reasonable. We see
also that all minimal distance values obtained with dBI are less (or equal in case
m1) to the minimal values obtained with dJ . In fact, when the mass function
is distributed symmetrically, it is naturally expected that no real decision can
be easily taken (as illustrated for BBA’s m2(·) and m5(·) in Table 1). Here, the
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Table 1. Examples of several BBA’s and decisions made (no constraint case).

X ∈ 2Θ m1(·) m2(·) m3(·) m4(·) m5(·) m6(·) m7(·)
A 0.9 0.5 0.8 0.1 0.4 0.9 0.1

B 0.1 0.5 0.1 0.1 0.4 0 0

A ∪B 0 0 0.1 0.8 0.2 0.1 0.9

dmin
BI (mi,mX) 0.1000 0.2887 0.1528 0.0577 0.2309 0.0577 0.0577

q(X̂dBI ) 0.9330 0.7760 0.8939 0.9502 0.8134 0.9622 0.9513

X̂dBI A A ∪B A A ∪B A ∪B A A ∪B
dmin
J (mi,mX) 0.1000 0.5000 0.1581 0.1000 0.4000 0.0707 0.0707

q(X̂dJ ) 0.9390 0.6667 0.8999 0.9276 0.6409 0.9574 0.9501

X̂dJ A A,B,A ∪B A A ∪B A ∪B A A ∪B

decision A ∪ B for BBA’s m2(·) and m5(·) can be interpreted as a no proper
decision, in the sense that A ∪ B is the whole universe of discourse, hence we
are merely selecting anything (and discarding nothing). Such kind of no proper
decision may however be very helpful in some fusion systems because it warns
that input information is not rich enough, and that one needs more information
to take a proper decision (by including more sensors or more experts reports
in the system for instance). For symmetrical mass function, the decision drawn
from the new proposed decision rule is consistent with what we can reasonably
get because. To make a proper decision we will always need to introduce some
possibly arbitrary additional constraints.

Table 2 shows the decisions made for same examples when we force the
decision to be a singleton, that is when the constraint is c(X) ≡ “|X| = 1”. One
sees that the decisions restricted to the set of singletons using dBI(m,mX) or
dJ(m,mX) are the same but the quality indicators are a bit better when using
dBI(m,mX) with respect to dJ(m,mX). The values of the quality indicators in
Table 2 are different to those of Table 1 which is normal because we use the
constraint c(X) in the denominator of the formula (7).

Table 2. Examples of several BBA’s and decisions made (restricted to singletons).

X ∈ 2Θ m1(·) m2(·) m3(·) m4(·) m5(·) m6(·) m7(·)
A 0.9 0.5 0.8 0.1 0.4 0.9 0.1

B 0.1 0.5 0.1 0.1 0.4 0 0

A ∪ B 0 0 0.1 0.8 0.2 0.1 0.9

dmin
BI (mi,mX) 0.1000 0.5000 0.1528 0.5508 0.5033 0.0577 0.5196

q(X̂dBI ) 0.9000 0.5000 0.8477 0.5000 0.5000 0.9427 0.5393

X̂dBI A A,B A A,B A,B A A

dmin
J (mi,mX) 0.1000 0.5000 0.1581 0.6403 0.5099 0.0707 0.6364

q(X̂dJ ) 0.9000 0.5000 0.8434 0.5000 0.5000 0.9308 0.5276

X̂dJ A A,B A A,B A,B A A
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4.2 Examples with Θ = {A,B,C}

Table 3 shows the decisions made when there is no constraint on the cardinality
of the decision X̂, whereas Table 4 shows the results for the same examples when
the decisions made are restricted to singletons. As shown in the tables all minimal
distance values obtained with dBI are less (or equal) to the minimal values
obtained with dJ and the quality indicator decisions is better when computed
with dBI (except in case m1 of Table 3). The decisions results obtained with dJ
are mostly consistent with those obtained with dBI (except in case m2 and m3 of
Table 3) where a larger set of decisions (tie) is obtained using dJ . If the decisions
are restricted to singletons (see Table 4), then the decision-making based on dBI
and on dJ provides the same results with a better quality of decisions using dBI .

Table 3. Examples of several BBA’s and decisions made (no constraint case).

X ∈ 2Θ m1(·) m2(·) m3(·) m4(·) m5(·) m6(·) m7(·) m8(·)
A 0.9 0.5 1/3 0.5 0 0 0 0.2

B 0.1 0.5 1/3 0 0 0 0 0.1

A ∪ B 0 0 0 0.5 0.5 2/3 1/3 0.05

C 0 0 1/3 0 0 0 0 0.05

A ∪ C 0 0 0 0 0 0 1/3 0.1

B ∪ C 0 0 0 0 0.5 1/3 1/3 0.2

A ∪ B ∪ C 0 0 0 0 0 0 0 0.3

dmin
BI (mi,mX) 0.1000 0.2887 0.4082 0.2887 0.2887 0.1925 0.2357 0.2227

q(X̂dBI ) 0.9776 0.9242 0.8787 0.9271 0.9120 0.9421 0.9241 0.9280

X̂dBI A A ∪ B 2Θ \ {∅, A,B,C}
A, A ∪ B,

A ∪ B A ∪ B ∪ C A ∪ B ∪ C
A ∪ B B ∪ C,Θ

dmin
J (mi,mX) 0.1000 0.5000 0.5774 0.3536 0.4082 0.2722 0.3333 0.3149

q(X̂dJ ) 0.9798 0.8870 0.8571 0.9225 0.8989 0.9337 0.9111 0.9152

X̂dJ A
A,B,

2Θ \ {∅}
A, A ∪ B,

A ∪ B A ∪ B ∪ C A ∪ B ∪ C
A ∪ B A ∪ B B ∪ C,Θ

Table 4. Examples of several BBA’s and decisions made (restricted to singletons).

X ∈ 2Θ m1(·) m2(·) m3(·) m4(·) m5(·) m6(·) m7(·) m8(·)
A 0.9 0.5 1/3 0.5 0 0 0 0.2

B 0.1 0.5 1/3 0 0 0 0 0.1

A ∪ B 0 0 0 0.5 0.5 2/3 1/3 0.05

C 0 0 1/3 0 0 0 0 0.05

A ∪ C 0 0 0 0 0 0 1/3 0.1

B ∪ C 0 0 0 0 0.5 1/3 1/3 0.2

A ∪ B ∪ C 0 0 0 0 0 0 0 0.3

dmin
BI (mi,mX) 0.1000 0.5000 0.5774 0.2887 0.5000 0.5092 0.6236 0.5770

q(X̂dBI ) 0.9488 0.7321 0.6667 0.8531 0.7388 0.7364 0.6667 0.6855

X̂dBI A A,B A,B,C A B B A,B,C A

dmin
J (mi,mX) 0.1000 0.5000 0.5774 0.3536 0.5774 0.5932 0.6667 0.6117

q(X̂dJ ) 0.9488 0.7321 0.6667 0.8300 0.7257 0.7229 0.6667 0.6836

X̂dJ A A,B A,B,C A B B A,B,C A
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5 Conclusions

We have presented a new method for decision-making with belief functions which
truly exploits the belief interval value of each focal element of a BBA. It is easy to
implement and can be applied with any strict distance metric between two BBAs.
We have considered and compared the well-known Jousselme’s distance and the
recent belief interval distance. This method is general because the decision can
be made not only on singletons, but also on any other compound focal elements
(if needed and allowed). It also provides a quality indicator of the decision made.
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