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Abstract—Dempster-Shafer evidence theory (DST) is a theo-
retical framework for uncertainty modeling and reasoning. The
determination of basic belief assignment (BBA) is crucial in
DST, however, there is no general theoretical method for BBA
determination. In this paper, a method of generating BBA using
fuzzy numbers is proposed. First, the training data are modeled
as fuzzy numbers. Then, the dissimilarities between each test
sample and the training data are measured by the distance
between fuzzy numbers. In the final, the BBAs are generated from
the normalized dissimilarities. The effectiveness of this method
is demonstrated by an application of classification problem.
Experimental results show that the proposed method is robust
to outliers.
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I. INTRODUCTION

The theory of belief functions also called Dempster-Shafer
evidence theory (DST) [1], [2], is a theoretical framework
for uncertainty modeling and reasoning. The expression of
uncertainty, i.e., the determination of basic belief assignment
(BBA) is one of the most crucial problems to deal with. BBA
is a kind of random set in nature and its determination is
actually the problem of modeling the distribution of random
set, which is still unsolved in mathematics [3]. Therefore, the
determination of BBA is a challenging problem in DST and
has aroused widespread concerns.

One category for generating BBA is the application-based
empirical approach. Shafer [1] generates BBA based on statis-
tic evidence. Selzer [12] generates BBA according to the class
number and the neighborhood of the target for automatic target
classification. Bi [13] proposed focal element triplet for text
categorization. Valente [4] proposed several BBA determina-
tion methods for speech recognition based on the membership.
Zhang [5] generates BBA based on evidential Markov random
field for image segmentation. Salzenstein [14] proposed an
iterative estimation method to generate BBA based on the
Gaussian model for multisensor image segmentation. Dezert
[6] generates BBA to describe the uncertainty of threshold
choosing in edge detection. Han [7] generates BBA based on
the intervals of the expected payoffs for different alternatives
to deal with multi-criteria decision making problems.

The another category for generating BBA is the application-
free approach. Boudraa [8] proposed a method based on fuzzy
membership functions. Deng [9] generates BBA based on the
similarity measure described by the radius of gyration. Han
[10] proposed a method based on uncertain optimization. Kang
[11] proposed a method based on interval numbers.

In Kang’s method [11], the training data are modeled as
interval numbers determined by their lower and upper bound
values. Since the interval number is a special case of the fuzzy
number and only keeps minimum and maximum values, other
important information, such as mean value and median, are
lost when modeling the data. To deal with this, other types
of fuzzy numbers are used to model the training data in this
paper, i.e., the mean value and median are also kept to describe
the training data. Then the BBAs are generated from the
dissimilarities between the test sample and the training data
using the distance between fuzzy numbers. Compared with
the distance between interval numbers in Kang’s method, the
distance between fuzzy numbers is more robust when there
exist outliers in training data. To verify the effectiveness of
the proposed BBA determination method, we consider its ap-
plication on the classification problem. The experiment results
show that the proposed method can achieve high classification
accuracies.

II. BASIS OF EVIDENCE THEORY

Dempster-Shafer evidence theory (DST) [1], [2] is a theo-
retical framework for uncertainty modeling and reasoning. In
DST, the frame of discernment (FOD) Θ contains l mutually
exclusive and exhaustive elements: Θ = {θ1, θ2, . . . , θl}. The
power set of Θ (the set of all subsets of Θ) is denoted by
2Θ. The basic belief assignment (BBA, also called a mass
function) m is defined from 2Θ to [0, 1] satisfying∑

A⊆Θ
m(A) = 1 , m(∅) = 0 (1)

m(A) represents the evidence support to the proposition A. If
m(A) > 0, A is called a focal element.

The plausibility function (Pl) and belief function (Bel) are
defined respectively as:

Pl(A) =
∑

A∩B ̸=∅
m(B) (2)



Bel(A) =
∑

B⊆A
m(B) (3)

Dempster’s rule of combination [1], used for combining two
distinct sources of evidence in the DST framework, is defined
as

m1⊕m2(A) =

{
0, A = ∅

1
1−K

∑
B∩C=A

m1(B)m2(C), A ̸= ∅ (4)

where K =
∑

B∩C=∅ m1(B)m2(C) represents the total
conflict or contradictory mass assignments.

For a probabilistic decision-making based on the BBA,
Smets defined the pignistic probability transformation [15] to
transform a BBA into a probability measure BetP :

BetP (θi)
∆
=

∑
θi∈A

m(A)

|A|
∀θi ∈ Θ (5)

where |A| denotes the cardinality of A. The final decision is
often made by choosing the element in FOD which has the
highest BetP value.

III. THE DETERMINATION OF BBA BASED ON INTERVAL
NUMBERS

In DST, the expression of uncertainty is the process of
generating BBA. Therefore, the determination of BBA is the
first step and crucial in the applications of DST. However, BBA
is a kind of random set and its determination is actually the
problem of modeling the distribution of random set, which is
still unsolved in mathematics [3]. Kang [11] proposed a BBA
determination method based on interval numbers (IN). The
basis of interval numbers is briefly introduced first.

A. Basis of interval numbers

An interval number ã in R is a set of real numbers that lie
between two real numbers, i.e., ã = [a1, a2] = {x|a1 ≤ x ≤
a2}, a1, a2 ∈ R and a1 ≤ a2.

The dissimilarity between two interval numbers ã = [a1, a2]
and b̃ = [b1, b2] can be measured by the distance between them
[16]:

D2(ã, b̃) =

∫ 1/2

−1/2

∫ 1/2

−1/2

{[(
a1 + a2

2

)
+ x(a2 − a1)

]
−
[(

b1 + b2
2

)
+ y(b2 − b1)

]}
dxdy

=

[(
a1 + a2

2

)
−

(
b1 + b2

2

)]2
+

1

3

[(
a2 − a1

2

)2

+

(
b2 − b1

2

)2
]

(6)

The larger D(ã, b̃) is, the larger dissimilarity between ã and
b̃ is.

B. IN-based method

In IN-based method, the training data belonging to the same
focal element A ⊆ Θ are modeled as an interval number
ã = [a1, a2], where a1 and a2 are the minimum and maximum
values of the training data respectively. For a single test
sample, it is also modeled as a degenerate interval number
t̃ = [t, t], where t is its value. If the test sample t̃ is similar
to the training data ã, the corresponding proposition (the test
sample belongs to A) should be assigned a large belief.

The similarity between ã and t̃ is defined as:

S(ã, t̃) =
1

1 + αD(ã, t̃)
(7)

where α > 0 is a parameter to control the degree of dispersion
of the normalized similarities and D(ã, t̃) is the distance
between the interval numbers ã and t̃. Finally, the BBA can
be generated from the normalized similarities.

In IN-based method, when modeling the training data, only
the minimum and maximum values are kept and used to
calculate similarities. However, when the distribution of the
data is not uniform, the extreme values are insufficient to well
describe the data. Actually, any interval number is a special
case of a fuzzy number. Other types of fuzzy numbers, such as
triangular fuzzy number (TFN) and trapezoidal fuzzy number
(TrFN), can keep more useful information of the data, such as
the mean value and median. Thus, TFN and TrFN are used to
model the data in this paper.

IV. BBA CONSTRUCTION FROM FUZZY NUMBERS

A. Basis of fuzzy numbers

The generalized left right fuzzy number (GLRFN) b̃ =
[b1, b2, b3, b4] is a special case of a convex, normalized fuzzy
set of the real line when its membership function is defined
by [17]:

µ(x) =


L
(

b2−x
b2−b1

)
for b1 ≤ x ≤ b2

1 for b2 ≤ x ≤ b3

R
(

x−b3
b4−b3

)
for b3 ≤ x ≤ b4

0 else

(8)

where L and R are strictly decreasing functions defined on
[0, 1] and satisfy the conditions:

L(x) = R(x) = 1 if x ≤ 0,
L(x) = R(x) = 0 if x ≥ 1.

(9)

The interval number is a special case of GLRFN with
b1 = b2 and b3 = b4. The triangular fuzzy number (TFN)
and trapezoidal fuzzy number (TrFN) [16] are two of the most
common fuzzy numbers encountered in applications involving
fuzzy numbers.



For TrFN, L(x) = R(x) = 1−x. The distance between two
TrFNs ã = [a1, a2, a3, a4] and b̃ = [b1, b2, b3, b4] is defined as:

D2(ã, b̃)

= 1
4 [(a2 + a3)− (b2 + b3)]

2

+ 1
4 [(a2 + a3)− (b2 + b3)]

× (a4 − a3 − a2 + a1 − b4 + b3 + b2 − b1)

+ 1
12 (a3 − a2)

2 + 1
12 (b3 − b2)

2

+ 1
12 (a3 − a2)[a4 − a3 + a2 − a1]

+ 1
12 (b3 − b2)[b4 − b3 + b2 − b1]

+ 1
9

[
(a4 − a3)

2 + (a2 − a1)
2
]

+ 1
9

[
(b4 − b3)

2 + (b2 − b1)
2
]

− 1
9 [(a2 − a1)(a4 − a3) + (b2 − b1)(b4 − b3)]

+ 1
6 [(a4 − a3)(b2 − b1) + (a2 − a1)(b4 − b3)]

− 1
6 [(a4 − a3)(b4 − b3) + (a2 − a1)(b2 − b1)]

(10)

The larger D(ã, b̃) is, the larger dissimilarity between ã and
b̃ is.

For TFN, L(x) = R(x) = 1− x and b2 = b3. The distance
between two TFNs ã = [a1, a2, a3] and b̃ = [b1, b2, b3] is
defined as:

D2(ã, b̃)

= (a2 − b2)
2 + 1

2 (a2 − b2) [(a3 + a1)− (b3 + b1)]

+ 1
9

[
(a3 − a2)

2
+ (a2 − a1)

2
]

+ 1
9

[
(b3 − b2)

2
+ (b2 − b1)

2
]

− 1
9 [(a2 − a1)(a3 − a2) + (b2 − b1)(b3 − b2)]

+ 1
6 (2a2 − a1 − a3)(2b2 − b1 − b3)

(11)

The larger D(ã, b̃) is, the larger dissimilarity between ã and
b̃ is.

B. Fuzzy-number-based methods

1) Data modeling: To generate BBAs, the fuzzy numbers
are used to model the training data and test samples in this
paper. For the training data belonging to A ⊆ Θ and the test
sample t, we can use three different kinds of fuzzy numbers
to model them:
(1) TFNmean: the training data are modeled as a triangular

fuzzy number ã = [a1, a2, a3], where a1 and a3 are
the minimum and maximum values of the training data
respectively and a2 is the mean value. The test sample is
modeled as t̃ = [t, t, t].

(2) TFNmed: the training data are modeled as a triangular
fuzzy number b̃ = [b1, b2, b3], where b1 and b3 are
the minimum and maximum values of the training data
respectively and b2 is the median. The test sample is
modeled as t̃ = [t, t, t].

(3) TrFN: the training data are modeled as a trapezoidal
fuzzy number c̃ = [c1, c2, c3, c4], where c1 and c4 are
the minimum and maximum values of the training data
respectively, c2 is either the mean value or median,

whichever is smaller and c3 is either the mean value or
median, whichever is larger. The test sample is modeled
as t̃ = [t, t, t, t].

In these ways, besides the maximum and minimum values,
the mean value and (or) median can be also kept to describe
the training data.

2) Calculate the similarities: Similar to the IN-based
method, the similarity between the training data and test
sample are measured from the distance between them (Eq.
(11) for TFN or Eq. (10) for TrFN) using Eq. (7). Actually,
other normalization functions can be used here.

3) Generate the BBAs: The BBAs are generated from the
normalized similarities. If the test sample t̃ is similar to the
training data ã, the corresponding proposition (t̃ belongs to the
same focal element with ã) should be assigned with a large
belief.

In the next section, we consider the classification problem
to verify the effectiveness of our proposed BBA determination
method.

V. CLASSIFICATION EXAMPLE BASED ILLUSTRATION OF
THE PROPOSED BBA DETERMINATION METHOD

We give a classification example on a set of artificial data
to illustrate the process of our BBA determination method and
verify its effectiveness.

A. Artificial training data

Suppose there are three classes in a set of artificial data:
Θ = {θ1, θ2, θ3}. Each sample has three features, f1, f2 and
f3, and each feature is correspondent to a normal distribution.
The deviation parameters for each class are 0.25, 1 and 0.25
respectively and the mean parameters for each feature of each
class are given in Table I.

TABLE I
THE MEAN PARAMETERS FOR EACH FEATURE OF EACH CLASS

Class f1 f2 f3

θ1 9 5 10
θ2 10 9 5
θ3 5 10 9

We generate 60 training data for each class. Among the 60
samples belonging to class θ1, there is an outlier whose value
of feature f1 is much larger than others belonging to class θ1.
The generated training data are shown in Fig. 1.

In this case, each class can be distinguished easily from
other classes using one feature (when its mean parameter is
5), but are difficult distinguished from other classes using other
features.

B. The process of classification

For a given test sample, the process of labeling its class can
be outlined below:
Step 1 Generate three mass functions m1, m2 and m3 accord-

ing to the corresponding features of the training data
respectively.



TABLE II
MODELING THE TRAINING DATA ON FEATURE f1

Focal element IN TFNmean TFNmed TrFN

{θ1} [8.1, 12.6] [8.1, 9.1, 12.6] [8.1, 9.0, 12.6] [8.1, 9.0, 9.1, 12.6]

{θ2} [7.6, 13.1] [7.6, 10.0, 13.1] [7.6, 10.0, 13.1] [7.6, 10.0, 10.0, 13.1]

{θ3} [4.1, 5.7] [4.1, 5.0, 5.7] [4.1, 4.8, 5.7] [4.1, 4.8, 5.0, 5.7]

{θ2, θ3} [8.1, 12.6] [8.1, 9.6, 12.6] [8.1, 9.3, 12.6] [8.1, 9.3, 9.6, 12.6]

(a) Values of the training data for feature f1.

(b) Values of the training data for feature f2.

(c) Values of the training data for feature f3.

Fig.1. Values of the training data.

Step 2 Combine m1, m2 and m3 using Eq. (4) to obtain the
combined mass function m.

Step 3 Transform m into the probability measure BetP using
Eq. (5).

Step 4 The class of the test sample is labeled as class θi ∈ Θ
which has the highest BetP value.

We take a test sample t = (t1, t2, t3) = (11.8, 9.8, 3.9)
(whose class is θ2) as an example to explain how to generate
m1 based on fuzzy numbers in Step 1 in detail. The result of
interval-number-based method is also given for comparison.

1) Data modeling: For feature f1, the training data belong-
ing to each focal element A ∈ Θ can be modeled as an interval
number (IN) or a fuzzy number (TFNmean, TFNmed or
TrFN), as shown in Table II. The test sample can be modeled
as t̃1 = [11.8, 11.8] (IN), t̃1 = [11.8, 11.8, 11.8] (TFNmean or
TFNmed) or t̃1 = [11.8, 11.8, 11.8, 11.8] (TrFN).

In this case, the training data from class θ1 has an over-
lapped region with the data from θ2. For a test sample

belonging to this region, it is difficult to distinguish whether
class θ1 or θ2 it should be labeled as and its belief assigned to
focal element {θ1, θ2} (m1{θ1, θ2}) should also be considered.
Thus, the training data belonging to the overlapped region are
also modeled.

2) Calculate the distance between fuzzy numbers: The
distances between the test sample t̃1 and the training data from
different focal elements are calculated using Eq. (6) (for IN),
Eq. (11) (for TFNmean and TFNmed) or Eq. (10) (for TrFN),
as given in Table III.

TABLE III
THE DISTANCE BETWEEN THE TEST SAMPLE AND TRAINING DATA

Focal element IN TFNmean TFNmed TrFN

{θ1} 1.928 3.439 3.541 2.217
{θ2} 2.134 2.552 2.529 1.838
{θ3} 6.875 9.660 9.738 6.862
{θ1, θ2} 1.928 2.977 3.265 2.040

In Table III, according to the IN-based method, the test
sample is closer to {θ1} than {θ2}. However, without the
outlier, the actual range of the training data from {θ1} is
[8.1, 10.4] and the test sample 11.8 should be assigned a
smaller distance to {θ2}, whose range is [7.6, 13.1]. By only
considering the minimum and maximum values, the IN-based
method can easily get counterintuitive distances, especially
when there are outliers. However, the mean value and median
are relatively insensitive to outliers, so that the fuzzy-number-
based methods can obtain more reasonable distances. In this
case, the fuzzy-number-based methods assign the test sample
a smaller distance to {θ2} than {θ1}.

3) Calculate the similarities: The similarities between the
test sample t̃1 and the training data from different focal
elements are calculated from the above distances using Eq.
(7), where α is taken as 5, as shown in Table IV.

TABLE IV
THE SIMILARITIES BETWEEN THE TEST SAMPLE AND TRAINING DATA

Focal element IN TFNmean TFNmed TrFN

{θ1} 0.094 0.055 0.054 0.083
{θ2} 0.086 0.073 0.073 0.098
{θ3} 0.028 0.020 0.020 0.028
{θ1, θ2} 0.094 0.063 0.058 0.089

4) Generate m1: m1 is generated from the normalized
similarities, as shown in Table V. Our fuzzy-number-based



methods assign the largest mass of belief to {θ2} rather than
{θ1} or {θ1, θ2}, which is more reasonable compared with the
IN-based method.

TABLE V
THE GENERATED m1

Focal element IN TFNmean TFNmed TrFN

{θ1} 0.311 0.261 0.261 0.277
{θ2} 0.284 0.345 0.358 0.329
{θ3} 0.094 0.096 0.099 0.095
{θ1, θ2} 0.311 0.298 0.282 0.299

In the same way, m2 and m3 can be generated from feature
f2 and f3 repectively, as shown in Table VI and Table VII.

TABLE VI
THE GENERATED m2

Focal element IN TFNmean TFNmed TrFN

{θ1} 0.062 0.038 0.039 0.047
{θ2} 0.177 0.173 0.176 0.184
{θ3} 0.380 0.378 0.375 0.378
{θ2, θ3} 0.381 0.411 0.410 0.391

TABLE VII
THE GENERATED m3

Focal element IN TFNmean TFNmed TrFN

{θ1} 0.160 0.138 0.141 0.147
{θ2} 0.484 0.547 0.537 0.522
{θ3} 0.183 0.162 0.167 0.171
{θ1, θ3} 0.173 0.153 0.155 0.160

After generating m1, m2 and m3, the combined mass
function m can be obtained by using the Dempster’s rule of
combination (Eq. (4)) and then the probability measure BetP
can be obtained using Eq. (5), as given in Table VIII.

TABLE VIII
THE GENERATED BetP

Class IN TFNmean TFNmed TrFN

θ1 0.065 0.026 0.027 0.038
θ2 0.808 0.873 0.866 0.853
θ3 0.127 0.101 0.107 0.109

Finally, the test sample t = (11.8, 9.8, 3.9) is labeled as
class θ2 since it has the highest BetP value.

VI. EXPERIMENTS

To further compare the effectiveness of the proposed BBA
determination methods with the IN-based method, we did the
classification experiments on three UCI data sets (Iris, Wine
and Wdbc).

In each experiment, the amounts of the samples from
different classes are equal. Among the samples from the same
class, 60% samples are used as the training data and the rest

40% samples are used as the test samples. We generate BBAs
from all the features (one BBA generated from one feature)
and the final classification result is obtained from the combined
mass function. The value of α in Eq. (7) is set as 5. The
accuracy of each classification is calculated from 100 runs of
the Monte-Carlo experiments. The classification accuracies1

are given in Table IX.

TABLE IX
THE ACCURACIES OF THE CLASSIFICATIONS (%)

Data set IN TFNmean TFNmed TrFN

Iris 92.67 93.83 93.85 93.92
Wine 91.48 93.29 94.23 92.79
Wdbc 67.71 86.91 88.32 81.27

From Table IX we can see, the proposed fuzzy-number-
based methods can achieve higher accuracies than IN-based
method.

Furthermore, we compared the robustness of our proposed
method with IN-based method. We add one outlier to the
training data for each class, whose values on each feature are
set as:

O(fi) = max(fi) + 0.2× (max(fi)−min(fi)) (12)

where max(fi) and min(fi) are the maximum and minimum
values of the training data respectively on feature fi. The
accuracies are given in Table X.

TABLE X
THE ACCURACIES OF THE CLASSIFICATIONS WITH OUTLIERS (%)

Data set IN TFNmean TFNmed TrFN

Iris 88.72 93.08 93.07 92.13
Wine 80.89 91.75 92.53 90.06
Wdbc 61.80 82.87 84.28 73.69

From Table IX and Table X we can see, the accuracies
of IN-based method drop significantly when the outliers are
added while the accuracies of our fuzzy-number-based meth-
ods drop slightly. Therefore, the proposed fuzzy-number-based
methods are more robust for outliers than IN-based method.

VII. CONCLUSION

In this paper we have proposed new methods for gener-
ating BBA based on fuzzy numbers. The experiments on its
application of classification show that our proposed method
is effective and robust for outliers and can achieve higher
accuracies than the IN-based method.

In future work, we will focus on the distance between fuzzy
numbers. More types of distance will be used and compared to
describe the dissimilarity between the test sample and training
data. Other normalization functions to establish similarities
will be evaluated, as well as other possible decision-making
strategies. Also, other evidence combination rules will be
tested to make comparisons.

1The accuracy is defined as the percentage of correct classifications.
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